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ABSTRACT

We consider the least squares estimator of the autoregressive parameter in a nearly
integrated seasonal model. Building on the study by Chan (1989), who obtained the
limiting distribution, we derive a closed form expression for the appropriate limiting joint
moment—generating function. We use this function to tabulate percentage points of the
asymptotic distribution for various seasonal periods via numerical integration. The results
are extended by deriving an asymptotic expansion to order Op(T_l) whose percentage

points are also obtained by numerically integrating the appropriate limiting joint
moment-generating function. The adequacy of the approximation to the finite sample
distribution is discussed.
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1. INTRODUCTION

Consider a stochastic process {yt}, of which a sample of size (T + d) realizations is

available, generated by the following seasonal autoregressive model :
yt = dyt—d + ut ) (t = 11 Tt T) (1)

where {ut} is a sequence of independent and identically distributed random variable with
mean zero and finite variance 02. We shall also assume that y; (i=0,..,-d+1) are fixed
constants. When oy = 1, (1) characterizes a seasonal random walk model. Models of this

type play an important role in time series model building for business and economics data
when a seasonal component is present (see Box and Jenkins (1976)). The presence of a
seasonal root on the unit circle means that one should seasonally difference the data. Such
a process has been considered by Latour and Roy (1987) in the more general context of a
seasonal autoregressive integrated moving average model.

Denote by & 4 the least—squares estimator of o T The asymptotic distribution of & 1 has
been studied by Dickey, Hasza and Fuller (1984) in the case where o 4 = 1. They show that

the asymptotic distribution in this integrated case is not normal in contrast to the case
where |ad| < 1. Additional results on the behavior of the sample autocovariances in that

case can be found in Latour (1986) and Latour and Roy (1987). As documented in Dickey,
Hasza and Fuller (1984), the asymptotic distribution of &d is an adequate approximation

to the exact distribution of & 1 when « 1= 1. However, when a 1 is close to but not equal to

one, the asymptotic normal distribution is a poor guide to the exact distribution even for
quite large sample sizes. Such a feature is well documented in the non—seasonal case where
d = 1 (see Evans and Savin (1981) and Perron (1989), among others). The basic reason for
this poor approximation is the sharp discontinuity in the asymptotic distribution at the
point « 4= 1.

This feature has led to the development of an asymptotic framework that present no
such discontinuities at the point ay = 1. Models proposed by Bobkoski (1983), Chan and

Wei (1987) and Phillips (1987a) consider the presence of a root close to, but not necessarily
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equal, to unity. These are called nearly integrated processes and are characterized by an
autoregressive parameter defined by :

ay =exp(cd/T) » 1+ cd/T . (2)

Here c, a real valued constant, is a measure of the deviation from the unit root case. When
c is negative {y,} is said to be (locally) stationary and when c is positive it is (locally)

explosive. When ¢ = 0, we recover the standard seasonal random walk model with « 4= 1.
The asymptotic distribution of the least—squares estimator v&d under model (1) and (2) has
been derived by Chan (1989). The way a, is specified in (2) is, however, different from
that of Chan (1989) who specifies ay = 1 + ¢/T. We make this modification for two

reasons. The first is that it is easier and more natural to make comparisons of processes
with different values of d keeping a fixed a. To see this, invert (2) to obtain ¢ =
(T/d)In(a). For a fixed a and sample size T, c decreases as d increases. This is intuitively
appealing since as d increases the data are sampled more frequently. For instance, a process
sampled at monthly interval with coefficient a* < 1, say, exhibit stronger correlation than
a process sampled at quarterly interval with the same coefficient o*. Hence the former case
should be associated with a process closer to the boundary of the nonstationary region, i.e.
a value of ¢ closer to zero. These features are present in the specification (2) as ¢ decreases
with d for given fixed @ and T.

Secondly, we prefer the specification (2) since all the results of Chan (1989) hold under
this specification, but not under the specification o = 1 + ¢/T, as claimed in that paper.
Upon correction for this error, the source of which we discuss below, the limiting
distribution of &; when {y;} is generated by (1) and (2) can easily be obtained from

Theorem 1 of Chan (1989). We state this result in the following proposition.

PROPOSITION 1 (Chan (1989)) : Let {y t} be generated by (1) and (2) and assume that the
sequence {ut} is ¢ martingale sequence with respect to an increasing sequence of sigma fields

{F t} satisfying the following assumptions :

(i) 77’87 BGZ | 7,_ )+ o® in probability, and
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(ii) for all § > 0, T_IE";E’{U?I(I uy| > T1/25)|7t_1} =0

in probability, where I(A) denotes the indicator function of the set A. Then :

T(&d - ad)=> Z(c,d) = dA(c,d)/B(c,d) , (3)

where = denotes weak convergence in distribution, and
Ale,d)=35_Af)=3_ (L1 maw () “4)
z I =1J 0%t,c A
d d 2
B(c,d) = %_ B,(c) = 3 1fo [(r)7dr, (5)
with J, c( r) an Ornstein—Uhlenbeck process defined by :
sz-)c(r) = ch-’c(r)dr + dW,(r) , Jz’,c(o) =0 fori=1,..,4d;
and W (1), ..., Wd(r) are independent Wiener processes.

The error in the proof by Chan (1989) arises on p. 282 where it is claimed that Lemma
1(i) can be applied directly to the process Y, 4iq to obtain the limiting distributions stated

in Lemma 2. However, his Lemma 1 applies to a process for which a sample of size T (n in
the notation of Chan (1989)) is available whereas there are m (=T/d) observations on

Yi Ttd Hence, the noncentrality parameter v (in Chan’s notation) needs to be changed to

7/d in the statement of Lemma 2. The same error carries over to the statement of his

Theorem 1. However, all of Chan’s results are correct if a, is specified as in (2) instead of
ay =1+ ¢/T (except Lemma 2(ii) which should read as n~ Y (= d lw? (B (1)) (or
T 1Y,% =d 1y (1) in our notation). As stated above we prefer the specification (2) and

shall use it in the rest of this paper.

As shown in Proposition 1, the limiting distribution of T(a - @ d) depends on the

parameters ¢ and d. A first feature of interest is that the limiting distribution is continuous
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with respect to the parameter c. Hence, this nearly integrated framework indeed provides a
limiting representation that does not have the inherent discontinuity at ¢ = 0 (a =1

present in the standard asymptotic framework with a 1 fixed. One can therefore hope for a
better approximation to the finite sample distribution of & 4 when « 1 is in the vicinity of

one. Also of interest is the fact that when d = 1, (3) reduces to the limiting distribution of
the least-squares estimator in a nearly integrated first-order autoregressive process as
studied by Bobkoski (1983), Chan and Wei (1987), Phillips (1987a), Perron (1989) and
Chan (1988). If, in addition, ¢ = 0, then (3) reduces to (1/2)(W(1)% - 1)/ [ TW(x)dr, the

limiting distribution of the least-squares estimator in a random walk model as studied by
White (1958) and Evans and Savin (1981).

The aim of this paper is to provide percentage points of the limiting distribution given
by (3) for various values of ¢ and d. Chan (1988, 1989) suggests a method based on
simulations of the Wiener processes (using an infinite series representation of the terms in
(4) and (5)). We, however, adopt a different approach that provides exact values. We first
derive the exact joint moment—generating function of {dA(c,d), B(c,d)}. Distributional
quantities of interest can then be obtained using standard inversion formulae and numerical
integration. The method is similar to that used in Perron (1989). This exercise is performed
in Section 2. In the case where ¢ = 0 (the seasonal random walk), our results are compared
to those of Dickey, Hasza and Fuller (1984). '

Section 3 considers a generalization of Chan’s (1989) result by deriving the asymptotic
expansion of the distribution of T( @ — ay) to order Op(T_l). Again an expression for the

appropriate joint moment-generating function is derived and used to tabulate, via
numerical integration, various percentage points. Section 4 contains concluding remarks
and an appendix gives some technical derivations.
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2. THE LIMITING DISTRIBUTION OF T(& =@ d)

In this Section we analyze the joint moment—generating function of {dA(c,d), B(c,d)}
for arbitrary real values of ¢ and positive integer values for d. Denote this joint
moment—generating function by M ¢.4(v:u), which is defined by :

M, 4(v,u) = Elexp(dvA(c,d) + uB(c,d))] . (6)
Using (4) and (5) we have :
M, 4(v,u) = Elexp(dvE]_ A (c) + usl_ B.(c))
= Blexp(2{ _ {avA;(c) + uB,(c)})] . (7)

Given the independence of the Wiener processes, W, (r), .., W 4(r), defining each pair
{A;(c), B,(c)}, (7) reduces to :

M, q(v,u) = I _, Elexp(dvA,(c) + uB,(c))] . (8)

Using the result of Phillips (1987a, eq. (A.1) corrected for a misprint) or Perron (1990a,
Theorem 2) we have

Blexp(dvA;(c) + uBy(c))] = g (dv,u)!/2, ©)
where
Blxn) = Dhexp(-(x + /(A + (x + c))exp(-) + (A (x + ))exp(V)], (10)
with A = (c? + 2cx - 20)1/2.

Using (8) through (10), it is easy to obtain the joint moment—generating function of
{dA(c,d), B(c,d)}. Our result is summarized in the next theorem.
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THEOREM 1 : Let ¢ (zu) be defined by (10), then M, ,(vu), the joint
moment—generating function of {dA(c,d), B(c,d)}, is given by :

M, y(08) = § (do1)"?.

The moment-generating function stated in Theorem 1 allows us to compute the
cumulative distribution function, as well as other distributional quantities, using numerical
integration. Denote the joint characteristic function of {dA(c,d), B(c,d)} by cf, 4(v.u).

With i denoting the imaginary number, we have :
| S (o o df2
Cfc,d(v,u) = Mc,d(lv’lu) = ¢ (idv,iu) /2.

The distribution function of Z(c,d) can be obtained as follows. Let F c.4() = P[Z(c,d)
< z]. Given that P[B(c,d) < 0] = 0, we have, from Theorem 1 of Gurland (1948) :

lim
Fc,d(z) = (1/2) - (1/2m) %:o% fel<|v|<52 [cfc,d(v,—vz)/v]dv

= (1/2)-(1/20) [ ¥ AIMAG(cf, 4(v,~vz)/v]dv (11)

where AIMAG(-) denotes the imaginary part of the complex number. Further, the density
function is given by :

f, q(2) = OF _ 4(2)/ 02 = (1/2n) [ {Bef, 4(vu)/du},__,dv.

The moment-generating function described in Theorem 1 can also be used to calculate the
moments of Z(c,d). Using Metha and Swamy’s (1978) result, we have :

E[z(cd)ff = D(xyL [ uf‘l{anC, d(v,-u)/avf} du,

v=0

where T'(-) denotes the Gamma function. The above expressions can be evaluated using
numerical integration. In this section, we concentrate on calculating percentage points of
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the limiting distribution of T(ag - o 1) using (11). We evaluate the integrals in the range

(0 + €, V) where V is an upper bound set such that the integrand evaluated at V is less
than €. € was set at 1.0E-08 in each integration. For many cases, we also verified the
sensitivity of the results to using a higher bound of integration. In all cases the results were
identical at the precision reported.

A further comment about the nature of the numerical integration is warranted. The
integrand in (11) involves the square root of complex quantities. It does so first through A
given that, in the relevant expression, A = (c + 2idv(c + z)) 1/2 However this causes no
concern since the integrand in (11) is a function of A only through 22, To see this, note
that we can write ¢ c(ix, iu) as (see Perron (1989)) :

¢ (ix,iu) = exp((ix + c)/2)(cos(6) ~ (ix + c)sin(6) /9),

where § = i). Since cos(§) depends on 6§ only through 6 and sin(d) depends on # only
through odd powers of 4, it follows that ) C(ix,iu) depends on A only through A2. Hence, in

this case, the choice of the branch of the square root is unimportant.

Of more importance is the fact that when d is an odd number the integrand involves
again the square root of a complex valued quantity, namely ¢C(idv,—-ivz). In that case

special care must be applied to the integration as the use of the principal value of the
Square root may not ensure the continuity of the integrand. In that case, one must
therefore integrate over the Reimann surface consisting here of two planes. This feature is
present most notably in the non—seasonal model (d = 1) and the specifics of the procedure
for the integration are discussed in Perron (1989). In the seasonal context, however, the
values of d considered are most often even numbers (say 2, 4 and 12 as used below). Hence
the numerical problems discussed above do not apply and standard integration formulae
can be used. For the examples given below we have used the subroutine QDAG of the
International Mathematical and Statistical Library (IMSL).

Table I presents various percentage points of the asymptotic distribution of T(& 1~
a d) for the following configuration of parameters : ¢ = -10, -5, -2, -1, -.5, 0, .5, 1, 2 and 5.

Three values of d are considered, d = 2, 4 and 12. The percentage points were obtained
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using (11) with a secant method such that the probability associated with a given critical
value is within + 1.0E-0.6 of the percentage point of interest. The results concerning the
case where ¢ = 0.0 are especially interesting since they allow comparisons with those of
Dickey, Hasza and Fuller (1984) for the seasonal random walk case.

Several features are worth noting from these results. First, the spread of the
distribution is much larger for negative values of ¢ (the locally stationary case). It rapidly
becomes more concentrated around zero as ¢ increases. This is to be expected since the
usual asymptotic theory with ay fixed as the sample size increases suggests that &d

converges at rate 71/2 when || < 1instead of the rate T implied in the present setting.
On the other hand, when |« dl >1, & 4 converges to its true value at a rate faster than T.

Secondly, when c is negative or zero the distribution shows higher variance as d increases.
Such is not the case, however, when ¢ » 1.0 where the variance diminishes as d increases
(though a non—monotonic behavior is observed when ¢ = 1.0).

When ¢ = 0.0, our results can be compared to those of Dickey, Hasza and Fuller
(1984), referred to as DHF. The values obtained are usually in close agreement, though
some noticeable differences occur, especially in the left tail of the distribution. Consider, for
instance, the first percentage point of the distribution when d = 4. Our value is —-14.938,
while that of DHF is —15.27. We believe our results to be more accurate given that those of
DHF were obtained through simulation methods. Comparing our asymptotic critical value
to the finite sample critical value reported in DHF shows the asymptotic distribution to
match the finite sample critical value for a smaller sample size (near T = 200 instead of a
T greater than 800 as implied by the results of DHF). A similar feature holds with d = 12
and to a lesser extent with d = 2. The differences are not as severe for other percentage
points.

The percentage points presented in Table I are useful for a variety of purposes. They
can be used to comstruct asymptotic confidence intervals, to provide critical points on
which test statistics can be based and also to analyze the limiting power function of tests of
the null hypothesis of a seasonal random walk under a sequence of local alternatives. The
reader is referred to Perron (1989) for more details. Percentage points other than those
presented can be derived using (11). The numerical integration is simple and fast.
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3. AN Op(T_l) ASYMPTOTIC EXPANSION

In this Section, we generalize the results of Section 2 by considering an Op(T_I)
asymptotic expansion for the distribution of T(& - @ d)’ We also derive the appropriate

limiting joint moment-generating function used to tabulate, via numerical integration,
percentage points of the distribution for some values of ¢, d and sample size T.

We start with the following Lemma concerning the stochastic expansion for the
moments of the data. Here and throughout the rest of this paper, 2 signifies equality in
distribution.

LEMMA 1 : Let {yt} be generated by (1) and (2) and suppose that {ut} satisfies the

conditions of Proposition 1. Further assume that {u t} 18 Gaussian. Then :
)T 42 Ll (1)% ¢ ayeap(c). (U} + 0O (T ; (i=1, ..d)
T—i+1 i,c g e 2 ’ ’
i) T280y% 2P 2Red) + 0 (T—I) oFa %8 Fled)+ op(T‘f)
1;2 1 .

where F(c,d) = fOJi,c(r)dr + 271'.[ Oezp(cr)Jz.'c(r)dr (i=1,..,4d);
wi) T Z‘Iut 2,2, 02(2/T)1/2§ ;
iv) 7187y, 0, 2 0% H(e,d) + 0 (T‘I) o*a15d_ Hz.(c,d)+0p(T_1)

where Hi(c,d) = féJZ C(r)dWi(r) + 'yif éezp(cr)dWi(r) - d(2T)—1/2£ (i=1,.,d);

with Y = (d/ T)I/ 23,1_ it 1/0, £ a N(0,1) random variable distributed independently of the
Wiener processes Wir) (i=1, .., d), and with J ; c(r) as defined in Proposition 1.

The proof of Lemma 1 (based on derivations by Perron (1990b) and Phillips (1987b))
is presented in the Appendix. Noting that T(ay-ay) = T 21 Yigu/T Erfyf _q it is
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easy to deduce, from parts (ii) and (iv), an asymptotic expansion for the distribution of
T(& 4~ @) The result is presented in the following Theorem.

THEOREM 2 : Let {yt} be generated by (1) and (2) and suppose that the sequence {ut}

satisfies the conditions of Proposition 1. Further assume that {u t} 18 Gaussian. Then :
T(a, - a,) 2 Qled) + 0 (T7)
d d ! 4 !

where Q(c,d) = dH(c,d)/F(c,d) with H(c,d) and F(c,d) as defined in Lemma 1.

As can be seen from the result of Theorem 2, the Op(T—l) expansion for the
distribution of T(& 4 — @g) involves the initial condition y; @ =0, ..., <d+1). When these

initial conditions are zero, we have the following simplified result.

COROLLARY 1: Let the conditions of Theorem 2 be satisfied and further assume that Y, =
0(i=0, .. —d+1) Then:

Moy - o) Ba{3)_, [ 33, mawo) - aer) /%) Asd_ 372 i} + 0,(170).

In the case where the initial conditions are zero, the O (T 1/ 2) factor in the

asymptotic expansion is quite 31mp1e It only involves a standard N(0,1) variable in the
numerator. Hence, the O (T ) expansion provides no adjustment to the location of the

distribution (the correction factor having mean zero). The influence of the correction factor
is to increase, for any finite sample size, the variance of the random variable describing the
standard O p(1) asymptotic distribution. Hence, the expansion is likely to provide a better

approximation to the exact distribution of T(& 4~ @) in the cases where (1) the location of

the distribution is fairly stable as T changes and (2) the variance of the exact distribution
decreases as T increases.

In order to compute percentage points associated with the distribution of the random
variable Q(c,d) in the asymptotic expansion, we proceed as in Section 2 with the derivation
of the joint moment-generating function of {dH(c,d), F(c,d)} which we denote by
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MTc,d(v,u) = E[exp(dvH(c,d) + uF(c,d))] .

We start with the following Lemma concerning the joint moment—generating function
of the individual elements {dH,(c,d), Fy(c,d)} (i = 1,..., d).

LEMMA 2: Let ¢ (z, u) be as defined in (10). Then :

Blecp{dH;(c,d) + uF(c,d)}] = exp(~us; + (40)°/4T)8 (v, W)/ ?T (1, dv, w),
where Y (7, 3, ) = exp{~(75/2)(a + ¢ + M)[1 ~ exp(a + ¢ + A\ (5, )]} ;
with A = (% + 2ez — 20)1/2, 4, = (a/7)"/ %y_s, /o and 8, = o (ezp(2c) - 1)/2c.

The proof of Lemma 2 can be obtained as a special case of Theorem 1 of Perron (1990D).
With this result, it is straightforward to deduce the joint moment—generating function of
{dH(c,d), F(c,d)} which we state in the following Theorem.

THEOREM 3 : Let géc(z, u) be defined by (10) and Tc(7i' z, u) be as defined in Lemma 2,
then the joint moment—generating function of {dH(c,d), F(c,d)} is given by :

MT 400, w) =  (du,0) Zeap(®a®/47) 1% _ (exp(~ub )Y (v, dv, v)
_ 1/2 _ 2
where v, = (d/T) Y_;.4/0 and 6; = 7;(ezp(2c) - 1)/2c.

Proof : We have MTc,d(V’u) = E[exp(dvEcii:lHi(c,d) + uS(ii___lFi(c,d))] =
L_, E[exp(dei(c,d) + uF;(c,d)], given the independence of the Wiener processes involved
in the pairs {Hi(c,d), Fi(c,d)} (i=1,..,d), as well as the independence of the variable ¢.
Hence, using Lemma 2, MTc, glvu) = [[(ii=1[¢>c(dv,u)1/ 2exp(—u&i + (dv)2/4T)T (% dv,
w)] = ¢ (dv,0) Y/ Zexp(a®v?/4T) 19_ exp(-u8)Y (7, dv, u). o

When the initial conditions are 0, we have the following special case.
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COROLLARY 2: Ifyo = =Y_g.0=0, then :
MTc)d(v,'u,) = ezp(v2d3/4T)¢c(dv,u)d/2.

The results of Theorem 2 and Corollary 2 can be used to obtain percentage points of
Q(c,d), the Op(T—l) asymptotic distribution of T(& 4~ @g), for various values of ¢, d, T

and normalized initial conditions (y;/0) (i =0, ..., -d + 1). The method is similar to that

used in Section 2 and is based on numerically integrating expression (11) with appropriate
modification for the joint moment-generating function used.

We have calculated the percentage points of the distribution of Q(c,d) in the case
where the initial conditions are set to 0. Tables II through IV present the results for ¢ =
=5, 0 and 2 respectively. The values of d chosen are again 2, 4 and 12. The sample sizes
used vary with d and were chosen to allow comparisons (in the case ¢ = 0) with the finite
sample simulated values presented in Dickey, Hasza and Fuller (1984).

As discussed before, the Op(T_l/ 2) correction increases the spread of the distribution

in all cases. The corrections are quite minor when ¢ = 2.0. They become more important
when ¢ = 0 and -5, especially when d is small. Considering the case ¢ = 0 and comparing
the results with the percentage points from the usual Op(l) asymptotic distribution and

the exact values reported in Dickey, Hasza and Fuller (1984) we draw the following
conclusions. The critical values from the O p(T_l) asymptotic expansion are closer to the

exact value of the distribution of T(& 4~ @4) in the right tail of the distribution compared
to the critical values from the standard Op(l) asymptotic distribution. Hence, it provides

an improvement, though minor, in the right tail of the distribution. Concerning the median
and the left tail of the distribution, the critical values from the Op(T_l) expansion are

actually further away from the exact values compared to those of the standard Op(l)

asymptotic distribution (except for the 1% point with d = 12). Hence, in the left tail, the
asymptotic expansion fails to provide an improvement.
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4. CONCLUSION

This study offers a simple way to calculate percentage points and other distributional
quantities of interest for the limiting distribution of the least—squares estimator in a nearly
integrated seasonal model. The method involves only a one—dimensional numerical
integration based on the exact joint moment—generating function of the variables
characterizing the limiting distribution. Hence, it is faster and more accurate than the
simulation method proposed by Chan (1989).

The method proposed allow easy calculation of asymptotically valid confidence
intervals which do not suffer from the discontinuity problem inherent in the standard fixed
@y asymptotic theory. It also allows an easily computable approximation to the exact

distribution of T(& 4 — @) which is quite accurate for values of @4 in a neighborhood of

one, where the usual asymptotic theory fails to provide a useful guide. To be more precise,
the approximation is adequate for value of T, d and a 4 such that, from (2), ¢ = Tln(a 3)/d

is not "too far" from 0. Finally, given that the model studied here can be interpreted as a
sequence of models that are local to the seasonal random walk model as T increases, the
method can easily deliver values for the local power of tests for the null hypothesis of a
seasonal random walk.

Possible extensions to this line of research include the derivation of the appropriate
joint-moment generating function associated with the limiting distribution of the
least—squares estimators when a constant and/or a trend are included in the regression.
Also of interest are similar derivations concerning the t-statistic on & 4 in such models.

These topics involve non—trivial extensions to the present study.
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APPENDIX : PROOF OF LEMMA 1

Throughout we assume, without loss of generality, that T = md for some integer m.
For simplicity of notation we let o = ay = exp(cd/T). First note that we can write y, as

[(t=1)/d] | [t

_ +1)/d]
Tl ek Py

where [-] denotes the integer part of the argument. Note that y; depends only on a subset

of length [(t—1)/d] + 1 of the sequence {u;} and an initial condition. As in Chan (1989), we

can write :

Vid-i+1 = W(t-1)d-i+1 T Yd—it1 (t=1, ..., m)
(i=1,..d)

where the sequences {ut dei +1} are independent for i = 1, ..., d. Hence, Yid—it1 CanR be

represented by a near-integrated process of length m with non—centrality parameter c,
given that o = exp(cd/T) = exp(c/m). Hence Videit1 2 X, ; » say, where the process {xt i

; t =1, ..., m} satisfies, for a given fixed i, the difference equation :

X = exp(c/m) X(-1),i ¥ & (t=1, .., m) (A1)
(i=1,..4d)
with initial condition X0i =Y 11 and where the sequence { giit=1 ., m} is a subset

of the sequence {ut ; t =1, ..., md}. To prove part (i), we apply Lemma A.1 (a) of Perron
(1990b) to obtain (for alli =1, ..., d) :

7-1/2 D /212,

YT i+1 T,i

? —-1/2 ~1
2 o1,(1) + T 2exp(oy | + 0,(T™.
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Part (i) follows easily. To prove part (ii), we proceed similarly applying Lemma A.1 (c) of
Perron (1990b) to E?:é xf ; in the following way :

2T 2 _ .9d m—1 2 72 2
Ty a=T % % o0 Viguiyr = 4 5o

D —2.d 21 2 -1/2 1 -1
=d Ei=1{a fO‘Ii,c(r) dr + 2m / oy_i_'_lfoexp(cr).]i,c(r)dr} + Op(T ).

The result of part (ii) follows using the fact that T = md. Part (iii) follows from Phillips
(1987b) who shows that T_lzrfuf 2.2 T_1/2n + Op(T_l) where 7 ~ N(0, 1/2) with 1

= 2nf,(0) where f(1) is the spectral density of {u% - Euf} In the case of i.i.d. Gaussian

errors, =20, Hence, T_erfu% 224 02(2/T)1/2§ + Op(T_l) where ¢ ~ N(0, 1).

To prove part (iv), first note that, after some manipulations using (1), we obtain :

_ 2 2T 2 T 2
219-q% = (120 13y g4~ T ooy ~ T(@ - D)T “Byyy 4 - T 21“t}'

Using parts (i) through (iii) with the facts that a = exp(cd/T) =1 + Op(T—l) and T( o -
1) = 2cd + op(T‘l), we obtain :

5Ty, 1, 2 (1/2) {2?=1d_la2[.li,c(1)2 + exp(e); (1)
=207 B [ 50002 + 29, f Sexp(er)y; (r)a]
— o~ 22112 } +0,(T7)
= (P 1af/2) 8,1, 0% -2c [, (0Par-1)

+ 2?=17i[exp(c)Ji, (1) —2c f (l)exp(cr)Ji7 (r)dr]

—d(2r)1/2% } +0(T7Y). (A.2)
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It is shown in Phillips (1987a, eq. (8)) that (fori=1, ..., d):
(1/2)03; (1% - 2¢ f éJi,c(r)zdr -2 f éJi,c(r)dWi(r) , (A.3)
and in Perron (1990a, Lemma A.1) that (fori =1, ..., d) :
[exp(c)J; (1) ~2c [ 5exp(cr)Ji’C(r)dr] 2 [ Sexp(er)dW,(r) . (A.4)

Part (iv) follows upon substituting (A.3) and (A.4) into (A.2).
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