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ABSTRACT

We consider the effect of seasonal adjustment filters in univariate dynamic models.
While most of the literature has considered the effect of seasonal adjustments in the linear
regression model, little is known in a dynamic context. We concentrate our analysis on the
behavior of the least-squares estimator of the sum of the autoregressive coefficients in a
univariate regression. We show the existence of a limiting upward bias with the X-11 filter
when the process does not contain a unit root. We also quantify the extent of this bias for a
range of models and filtering procedures. Such an asymptotic bias has interesting implications
with respect to the power of tests for a unit root. In order to assess the importance of this
effect we present an extensive simulation study of both the size and power of the usual
Dickey-Fuller (1979) and Phillips-Perron (1988) statistics (both with and without an estimated
trend). We show that, in many cases, there is a considerable reduction in power compared to
the benchmark cases where the data is unfiltered. Finally some practical implications of our
study are addressed with respect to tests for unit roots with seasonally adjusted data.
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1. INTRODUCTION

Much of the literature on seasonality has focused on univariate time series models
emphasizing the design of adjustment filters. In comparison, relatively little has been said
about the effects of seasonality and seasonal adjustment on inference and hypothesis testing.
Sims (1974) and Wallis (1974) explored the nature of the asymptotic bias due to the seasonal
noise in a linear regfession model when adjusted and unadjusted data were used. The focal
point of our paper is also inference and hypothesis testing, and how seasonal adjustment
affects it. Unlike Sims and Wallis, our concern is not econometric inference and testing of
(linear) relationships among a set of economic time series. Instead, we consider the simple
univariate autoregressive model and study the effect of filtering on the behavior of the
least-squares estimator of the sum of the autoregressive coefficients and on testing the
hypothesis of a unit root. The motivation for exploring this particular hypothesis is the current
general interest in such tests among applied econometricians because of its implications for
economic theory and econometric inference.

Intensive research efforts have been devoted to the characterization of both the
asymptotic and finite sample distribution of unit root tests and their power properties with
unfiltered data. Yet, in many practical applications, the hypothesis of a unit root is tested not
with raw data but with filtered series such as quarterly or monthly seasonally adjusted series
using the X-11 procedure of the U.S. Bureau of the Census. In Ghysels (1990), it was pointed
out that the use of seasonally adjusted data raises several practical problemsl. It was also
shown that the evidence supporting the unit root hypothesis in real GNP is less conclusive
when seasonally unadjusted series are used. Although some Monte Carlo evidence was
presented by Ghysels (1990), this simulation analysis was quite preliminary. In this paper we
explore in more detail the effect of seasonal filtering from both analytical and simulation
perspectives paying particular attention to the size and power of unit root tests as proposed by
Dickey and Fuller (1979) and Phillips and Perron (1988).

Section 2 contains a preliminary discussion of seasonal adjustment procedures. We first
review the commonly used X-11 filter and its associated linear approximation for both the
quarterly and monthly frequencies. Specific attention is also given to the Henderson moving
average filter as it is the subfilter which extracts the trend component of an already seasonally
adjusted series. Details about the specific weights associated with these linear filters appear in
an appendix. In Section 3 we outline the models considered in our study. They include
nonseasonal ARMA(1,1) models as well as seasonal unobserved component models. We also
present the test statistics considered.

1 As will be discussed further, there are at least three undesirable effects due to seasonal adjustment that
were identified : (1) smoothing of series; (2) distant autocorrelations produced by symmetric filtering; and
(3) time variation of the X-11 filter.
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In Section 4 we consider the behavior of both the least squares estimator in a first-order
autoregressive model and the least-squares estimator of the sum of the autoregressive
coefficients in an AR(p) regression. These are of importance because they form the basis of
the unit root tests considered. When the data generating process is stationary, we show the
existence of a non-vanishing asymptotic bias in the estimates of the autoregressive parameters
when filtered data are used, whether the original series contains a seasonal component or not.
We quantify the extent of this bias for a variety of parametric specifications. The extent of the
bias can be quite substantial especially when the underlying model contaixis a seasonal
component and the length of the autoregression is less than the seasonal period. When the
data generating process has a unit root, we show that the OLS estimator is consistent and that
the asymptotic distributions of unit root tests remain invariant to filtering with X-11. The
implications for the size and power of unit root tests are also discussed. Sims (1974) showed
that the least-squares estimator is consistent in a linear regression model with no lagged
dependent variable when each series is seasonally adjusted by the same filter. Our analysis
shows that this result does not carry over to cases of regression models with lagged dependent
variables. Wallis (1974) reports some results on the asymptotic bias of the least-squares
estimator in the AR(1) model; our paper analyzes the inconsistency in much greater detail.
Related work by Jaeger and Kunst (1990) shows the effect of seasonal adjustment on measures
of persistence in aggregate output.

Section 5 contains a detailed examination of the finite sample behavior of the
Dickey-Fuller and Phillips-Perron procedures applied to filtered data. Both exact sizes and
powers are considered. We use a variety of data generating processes and filters at both the
quarterly and monthly sampling frequency. The effects of the exact X-11 filter as well as its
linear approximation are given special attention. The simulation results support and extend the
qualitative properties suggested by the theoretical analysis of section 4. Finally, Section 6
offers some concluding comments.

2. FILTERING AND SEASONAL ADJUSTMENT

Seasonal adjustment filters are usually analyzed as linear filters. The U.S. Census X-11
and Statistics Canada X-11 ARIMA methods, which are widely applied in Canada, the U.S.
and several other countries, use a set of moving averages to produce seasonally adjusted data.
Likewise, the so-called "model-based" seasonal adjustment filters, which are designed on the
principle of optimal linear signal extraction theory, are also linear filters. In practice, however,
seasonal adjustment methods such as X-11 produce seasonally adjusted series which are not
the output of a linear filter. Although the basic idea of moving averages is simple, the sets of
filters used with X-11 changes through time and hence imply in a time-varying filtering of the
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original data2. Without completely ignoring the time variation associated with the X-11 filter,
we focus most of our attention on its linear approximation. In this section we present the
seasonal adjustment filters most commonly used and discuss their properties.

The Census X-11 program is considered first since it is the most widely applied
adjustment procedures3'. It was the product of several decades of research. Its development
started in the early thirties by researchers at the N.B.E.R. [see, e.g., Macaulay (1931)] and it
emerged as a fully operational procedure in the mid-sixties due to the work by Julius Shiskin
and his collaborators at the U.S. Bureau of the Census [see Shiskin et al. (1967)]. The
program consists of a set of moving average filters which are applied to the data sequentially.
It was noted that the program does not amount to a linear data transformation in almost all
practical circumstances. The X-11 program can be represented by a linear filter when the
default option is considered. Several authors, including Wallis (1974); Laroque (1977),
Dagum (1983), Burridge and Wallis (1984) and Ghysels (1984) have studied the quarterly
and/or monthly linear X-11 filters. The exact structure of the linear approximation for the
quarterly filter is presented in Laroque (1977). The actual filter weights of the linear
approximation to the monthly filter, while used in several previous studies, are not readily
available4. Hence we will pay slightly more attention to the structure of the monthly filter.
Some of the details are deferred to appendix A.

The different steps of the X-11 monthly filter are as follows. A centered thirteen term
MA is initially subtracted from the original series using the filter :

SM@L) =1- (1241 +L)1 +L .. + Ly L™
-~ 0.0421.9% - 0.083L7 - 0.083L4 - 0.083L.3 - 0.0831.2 - 0.083L + 0.917
~0.083L"! —0.083L72 - 0.083L73 - 0.083L™% - 0.083L> 6

-0.042L°"° (2.1)

The filtered series obtained is a first estimate of the seasonal plus noise part of the series5. A
first estimate of the seasonal part is obtained by applying the filter :

2 There are two main reasons why it is not a linear filter. First, the X-11 procedure switches between
different (sub)filters depending on the presence of outliers. Secondly, the program uses different filters at
each end of a data series since it requires an equal number of observations on each side of a data point.

3 Since only symmetric filters will be discussed, we do not cover the X-11 ARIMA variant [Dagum (1982)]
of the Census X~11 seasonal adjustment procedure.

4 Several authors, including Dagum (1983) and Burridge and Wallis (1984), graph the transfer function of
the linear monthly filter. Burridge and Wallis tabulated only some of the filter weights. In the appendix
to this paper we provide tables with actual filter weights for the monthly and quarterly linear filters.

5 Filter weights were rounded off at the third decimal place.



M, (L) = (119 +1 +L7?

0111125 + 0.22205 +0.333 + 022215 + 0.111L 28

(2.2)
with s = 12. In order to have the seasonal components sum to unity over one year the filter
SM(L) is applied once more. The whole process yields a first estimate of the seasonal
component. This estimate is subtracted from the original series after which a Henderson
moving average is applied :

HM(L) = - 0.019L5 - 0.028L5 + 0.066L3 + 0.147L.2 + 0.214L + 0.240 + 0.214L

+0.147L-2 + 0.066L~2 - 0.028L 7 - 0.019L.7°

(2.3)
to obtain a second estimate of the trend cycle componentS. The latter is subtracted from the
original series to obtain a second estimate of the seasonal plus noise from which a final
estimate of the seasonal component is obtained via the application of the filter :

—25)

- 0.067L35 + 0.133L25 + 0.200LS + 0.200 + 0.200L™S + 0.133L™25 + 0.067L"
2.4)

M,(L) = (/155 + 1 + L’S)(L2S +18+1+L75+L
3s

again with s = 12. Finally, in order to have the seasonal components sum to unity, the filter

SM(L) is applied again. Consequently, adding up these steps and denoting UI;,(I_II(L) as the
linear approximation, we have :

Ul;(ll_ll(L) = 1 - SML){M,L)(1 - HML)[1 - SML)M,; (L)SML)D)
= 1 - SML)M, (L) + SMIL)M,(L)HM(L)

- SM3(L)M1(L)M2(L)HM(L). (2.5)

The coefficients of this filter are presented in Table A.1 in appendix A. Each coefficient is
applied twice, once for the lag and once for the lead terms. The final two-sided symmetric
monthly X-11 filter, appearing in (2.5) and the Henderson moving average filter in (2.3) will
be used to study the effects of filtering on tests for unit roots. The Henderson MA filter is
included, although it is only a subfilter, because it represents the trend estimate used in the
program. The transfer functions of both filters are also reported for convenience in

6 The exact formula for calculating the weights of a Henderson moving average filter appears, for instance,
in Macauley (1931, p. 54), Dagum (1985) or Gouriéroux and Monfort (1990, p. 102).
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Appendix A, Figures A.1 and A.2. The transfer function of the final X-11 monthly filter has a
large dip at the seasonal frequency and wiggles around one at all other frequencies.
The Henderson MA filter is essentially a smoothing filter with a transfer function which equals
one at low frequencies and drops off to zero at high frequencies.

The quarterly X-11 filter, analyzed by Laroque (1977), is constructed in a similar
fashion. The final filter denoted by "%_11(‘" is composed of :

SQM) =1- (1/8)(1 + L) + L + L2 +L3)L~2
= ~0.125L2 - 0.250L + 0.750 - 0.250L"} - 0.125L.72. (2.6)
HQ(L) = - 0.073L2 + 0.294L + 0.558 + 0.294L1 - 0.073L~2 @2.7)

along with Ml(L) and M2(L), evaluated at s = 4. Again using (2.5) one can calculate the
implied weights for the filter. They appear in Table A.2 in appendix A. The transfer
functions of the quarterly final filter and its Henderson MA subfilter are reported in Figures
A.3 and A.4 respectively. They exhibit features similar to the monthly filters.

Besides the linear X-11 filter and the Henderson MA filter we will also consider the
X-11 filter, both monthly and quarterly, as it actually operates in practice. That is, instead of
using the standard (default option) linear approximation, we consider the actual procedure as
implemented in the SAS statistical package with its endogenous switching and use of different
filters at each end of a data series?”. Hence, the filter behaves in a nonlinear fashion. like it
does in almost all practical applications.

3. MODELS AND TEST STATISTICS

The quantification of the asymptotic biases and the Monte Carlo experiments to be
presented center on data generating processes that are either described by a single component
ARMA process or by standard unobserved component linear time series models. The first
model considered is an ARMA(1,1) process :

Y=Y, g te+ Oet_l ‘ ‘ G.1)

where e, ~ iid. N(0,1) without loss of generality. This nonseasonal ARMAC(1,1) process is
essentially a benchmark model, since it is widely used to study the power of unit root tests

7 1t should be noted that the SAS version of the X-11 procedure corresponds to an older version of the
X-11 Census program.



6

applied to unfiltered data processes. It will allow us to compare our results with previously
reported power analyses such as those of Dickey (1984), Dickey, Bell and Miller (1986),
Schwert (1989) and Perron (1988), among others. Considering the effect of filtering on the
power of unit root tests in the context of an ARMA(1,1) model also extends earlier work by
Ghysels (1990) who discussed pure autoregressive models. The size of the tests after filtering
as well as the power against several alternatives will be analyzed. Studying the effect of
seasonal adjustment filtering procedures on series that have no seasonal components also has
its advantages. Indeed, in this context, the issue concerning whether the seasonal part has been
removed adequately does not occur. Hence, it permits a more specific investigation of the
properties of the filters and their effects on the correlation structure of the data.

Unobserved component models with both a seasonal and nonseasonal component form a
second class of data generating processes. In this case, we have :

y, = yrtls + y:ti | (3.2a)
ns _ ns s s
Yo =Ons¥e-1 7 Ertl + ens Ertl—l (3.2b)

s _ s s s
Ye= & Yigpté t b5 & s (3.2¢)

t P

where srtls and e: are each ii.d. N(0,1) and uncorrelated with each other, and sp denotes the

seasonal period - 4 for quarterly data and 12 for monthly.

Two classes of unit root tests are studied. The first is the procedure of Dickey-Fuller
(1979) and Said-Dickey (1984), which is obtained from the t—statistic for testing o = 1 in the
following regressions, estimated by OLS :

A A k A A .
yy=h+oy, +j§1 cj Ayt—j +e; (3.3)
and

e (3.4)

k
yt=ﬁ+Bt+&yt_1+j§1 Ej Ay,
where k is a truncation lag parameter which specifies the number of lags of first—differences of
the data to be included in the regression. We denote these statistics by t& ant tz, respectively.
They will have the asymptotic distribution tabulated in Fuller (1976) if k increases at a
controlled rate as T increases to infinity [see Said and Dickey (1984)]. The second class of
tests is the one due to Phillips and Perron (1988), namely, the t-statistic and the normalized
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bias of the estimated first order autoregressive OLS parameter both applied with correction
factors. Consider the following regressions estimated by ordinary least-squares :

A A A .
Yp=Ht+ay te (3.5)
and

y=H+Bt+dy, [ +8 (3.6)

A ‘
Denote by 82 the residual sum of squares in a regression of Yy-q On a constant.
The Phillips-Perron statistics, in the case of non-trending series, i.e. (3.5), are defined by :

7(Q) = T(@ - 1) - T2(6? - 32)/2§2 , (.7
Z(h) = (Ge/c’})t& ~T(6? - 82)/28§ , (3.8)

32 15T A2, . . . A
where e = T Zl ey is the estimated variance of the residuals from (3.5), ta is the usual
t—statistic for testing o = 1 and

T
T e

. (3.9)
t=t41 ¢t T

k
=15 2 +217! 3wk
1=1
w(T,k) is a lag window which, in the simulation experiments of Section 5, is specified as
w(t,k) =1 —1/(k + 1) following Newey and West (1987). Here k is a truncation lag parameter

which determines the number of autocovariances to be considered in constructing the estimate.

The statistics for the case where a trend is fitted are defined analogously by using the residuals
from (3.6) and defining the corresponding estimate in (3.9) by 32 Similar use is made, in
(3.7) and (3.8), of 52 defined as the residual sum of squares in a regression of Yi_q O0 2

constant and a trend. The statistics in the case where a trend is fitted are denoted by Z(ax) and
Z(ts)-

4. ASYMPTOTIC BIASES

In this section, we analyze the limit of the least-squares estimators. We put the
emphasis on the asymptotic bias, i.e. the difference between the expected value of the limiting
random variable with and without filtering. We start by considering the following general
time series model for a given variable of interest [yt} :



yt=“+ﬂt+zt, v 4.1)

where A(L) Zt = B(L)et and € ~ iid. (0, 02). B(L) is a qth order polynomial in the lag

operator L with roots outside the unit circle; i.e. B(L) is invertible. A(L) is a pth order
polynomial in L. with at most one root on the unit circle and all other roots outside the unit
circle. Hence we are allowing for the possibility that {yt} represents a difference stationary
process. In that case (4.1) can be written as

Y, = B+ Y1+ Yy 4.2)

where v, = A"‘(L)'1 B(L)f-:t and A*(L) is defined such that (1 - L)A*(L) = A(L). Note that,
given our assumptions, A*(L) has all its roots outside the unit circle.

We denote by y(L) a general linear two-sided filter. Given the structure of the filters
described in section 2 we consider only polynomials y(L) which are symmetric and whose

coefficients sum to one, i.e. for which y(L) = w(L_l) and y(1) = 1. Under these conditions,

the filtered version of Yo denoted ylt: = I,U(L)yt , is given by :

Yo =p+ B+ yLZ, (4.3)

Of particular interest is the fact that a symmetric filter with y(1) = 1 leaves unchanged

the deterministic nonseasonal part of the series. The behavior of & in (3.4) and (3.6) is
invariant to the true values of the parameters of the trend function, g and B [see Dickey
(1984)]. Though it is not numerically invariant to the specification of the initial condition Yor
the effect is trivial for usual values of this parameter [Dickey (1984)]. Hence we can, without
loss of generality, specify u = f8 = Yo = 0 in (4.1) and (4.2), and analyse the unfiltered and
filtered processes :

Y =7, ;o ¥=0, (4.4)
F_. '
Y = WLZ, . y{; =0. (4.5)

Similarly 3: in (3.3) and (3.5) is invariant with respect to u (though not with respect to ) and
the effect of the initial condition is again negligible.
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To ease the presentation of our analytical results, we first consider regressions with no
estimated intercept and trend. We then show how the results remain identical in the more
general cases. Hence we consider :

Y= 0%y, g+ ey s (4.6)
and
k
— ry¥ * *
Y= 0%y, 4 +j§1 c} Ayt—j +ey, (4.7

where the autoregressive parameter is specifically defined in the case of (4.6) as :

ot = 2'11‘ Vi Y1/ 2'11‘ yt%l 4.8)
with unfiltered data, and with filtered data as :
T F F T(F ]2
=2 YY1/ Y [yt-l] : (4.9)

4.1 Limiting Results in the Unit Root Case

We first consider the limiting behavior of a* and ai'g when A(L) has a root on the unit
circle. In this case both estimators converge to 1 as the sample size increases; hence, there is
no asymptotic bias. To see this, note that from (4.2) with B = 0, we have

yf = y(L)y, = y(L)y,_q + y(L)v,

F
=yt-—1 +wt’

where w, = w(L)A*(L)"lB(L)at . From (4.9), (o - 1) = T! Zf ylf_l we/ ™ 21; [Yf_llz-

Given that A*(L) and B(L) have roots outside the unit circle, w, is a stationary and invertible

t
ARMA process and T-1 Z:,Ir yI:_l w, 0 (in probability) as T - . Hence aI’g -+ 1
(in probability). o* also converges to 1 using usual arguments [e.g., Phillips (1987)].

The asymptotic distributions of T(ai:i - 1) and T(o* - 1) are different because of the
transformed correlation structure of the error term. First note, that both A and W, satisfy the
mixing conditions for the application of a functional central limit theorem to their partial sums
[see, e.g., Phillips (1987) and Phillips and Perron (1988)). Let o2 = lim T™! E[S2. ] wherc

T-00 ’
2

Sty = 2'lT vp and similarly, oy = ,}‘:T 1! E[S%’w], where S = ZlT w,. We note that

o%, = 21thv(0) and o‘%, = 21thw(0) where hx(O) denotes the non-normalized spectral density



function of x evaluated at frequency 0. We have o% = cg', given that 6‘2‘/ = c}%;,[w(l)zB(l)2 /

A*(l)Z] = cx‘;zs[B(l)2 / A*(l)z] = 03 using the fact that y(1) = 1 since the weights of the filter
sum to unity. The variances of the processes (vt} and {wt} are, however, different. To see

m m

this note that 82 = Var(w,) = Var(y(L)v,) = X 2 vy Cov (-1) (see, e.g., (4.10)),
w t t j=-m l=-m J 1 v

where Covv(k) is the autocovariance function of {Vt} at lag k. Hence, the limiting distribution

of T(o*-1) is (1/2) (W(1)> - S2/c2)/|W()%dr and the limiting distribution of T(cik-1) is

(1/2) (W(l)2 - SE/G% )/I (l)w(r)zdr. The expressions for the limiting distributions change
accordingly when an intercept and/or trend are estimated.

While the asymptotic distribution of T(a*-1) and T(af;—l) are different, the asymptotic
distribution of the Dickey-Fuller and Phillips-Perron statistics are identical [and as tabulated
in Fuller (1976)]. This is because the structure of the errors in each case is such that the
corrections applied by each procedure effectively eliminate the dependency of the asymptotic
distribution on nuisance parameters associated with the correlation in the errors. -

The basic result that the asymptotic null distributions of the unit root test statistics are
not affected by filtering the data does not imply, however, that the finite sample distributions
are unaffected, and the simulation results of section 6 show that, indeed in some cases, the
finite sarhple distributions can be substantially different after filtering.

4.2 Limiting Results in the Stationary Case

When the polynomial A(L) does not contain a unit root, things are rather different
because there exists an asymptotic bias induced by filtering, and -- more importantly - the
bias is positive. Thus, in (4.6) and (4.7), al"; has a limit greater than o*. Hence, one can
expect unit root tests performed with filtered data to be less powerful against stationary
alternatives.

. -15T
Lim T "2y, g/
T

plim T"1 ilr yfl = yy(l) /7 y(O) where 'yy(i) is the autocovariance function of {yt} at lag j.

T
. . . -1sT F_F I P
With filtered data, we have plim o = plim T y. Y, /plimT (2, y
p 1mog =p 2 Yy Vi1 Toree 1

T-e0 T-re0
the more general case that will follow, consider the probability limit of T'1 2’11‘ yf: ylti g

Consider first the behavior of a* in (4.6). We have plima* =p
— 00

]:_ 1)2. For

Denoting the order of the symmetric MA polynomial y(L) by m, we have :
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F . -1 T

. -1 <T '
=plimT 21 an V.Y, ,: an VYo oo
Toreo S t+1j=_m i’ t+j-s

15T
gn z Yi¥ [plme 21yt+iyt+j—s]’

-mj=-m

f" ) UAZ Y(i—j+S)E});(s). (4.10)

m_]——

Using (4.8) through (4.10), it is easy to deduce the following asymptotic bias of ai'g which we
denote as b(ai';, 0) for reasons that will become clear later :

b(og ) = [ (1) / (O] - (7,01 / 1,00 . (@.11)

With (4.10), it is easy to numerically compute this asymptotic bias provided we specify the
covariance structure of the original series {yt}, i.e. the prefiltered series. Before we do so we
now consider the more general case of the AR(p) process (4.7) with p =k + 1, where now ok
represents the sum of the autoregressive coefficients. First write (4.7) as :

Olyt 1+ 92yt_2 + ..+ prt_p +e, (4.12)
. : . E P_
where, in accordance with (4.7), we have o* = Oj and c’i‘ = - 2 Oj. Let
i=1 3=
[61 » 65 eens . 0 ] The least—squares estimator of the vector of parameters 0 is given by
A -1 -1 1 1
0=A "V whereA =T Z XX Vg =T " X Xiy, where X, = (y,_q, - ¥y_ ) is
t=p+1 t=p+1 P

a p x 1 vector of lagged values of the data. For the filtered data, 6 is defined similarly with
{yt—s}l;:O replaced by [yt—s]s=0 . Lete'=(1,1,..,1) bea1xp vector of ones. Then af; =

e'léF and a* = e"é . Denote the asymptotic bias of ai'g when k lags of first differences of the
data are included in (4.7) by b(af:, k) (note that p = k + 1). The following proposition
characterizes this asymptotic bias.

Proposition 1 : Let {y } be generated by (4.4). Let Ié be the OLS estimator of 8 obtained from
regression (4.12) and o* = e 9 Similarly let {y } be generated by yt lp(L)yt and aF @F



where ,éF is the vector of least-squares estimators of 8 in (4.12) when the filtered data, yI:, are
used. Then

b(agk, k) = plim % - plim a*

300 T-e

1 1

V - e'A

=¢e'A g VY

B (4.13)

where A is a p x p matrix with elements aij = yy(i -j) 4,j=1,.,p), Visapx 1 vector with
elements v, = 'yy(i) i=1,..p); AF and VF are defined similarly with elements ali:j = )}; G-j

and v} = ;1; (i), with )};(s) defined by (4.10).
Proposition 1, whose proof is straightforward and omitted, provides a computable
expression for the limiting bias of the least-squares estimator of al"_; in (4.7) when k lags of

first differences of the data are included (i.e. in a pth order autoregression with p = k + 1).
Given (4.10), all that is needed to compute this asymptotic bias is the covariance function ¥, (s)
of the original unfiltered data and the weights of the filter polynomial y(L). Note that when k
=0, p =1 and (4.13) reduces to (4.11).

Though the asymptotic bias as described in proposition 1 pertains to the estimators ai’;
when no constant and trend are included in the regression, the same quantitative result holds if
a constant or a constant and a time trend are included in the regression. This is a consequence
of the next proposition.

Proposition 2 : Denote by a*, Sz and o, respectively, the OLS estimator of o in (4.6), (3.5) and
(3.6). Similarly, denote by al"g. , &F and '&F the OLS estimator in the same regressions using

the filtered data yI: = ty(L)yt. Consider the estimates obtained using the unfiltered data
generated by (4.1) with the following specification : i) B = B = 0 for o* and 01,1"5; i) B=0(

A A - -
unrestricted) for o and o and iii) p and P unrestricted for o and o Then

plim a*=plim&=plim a
T-re0 To00 T-ee

and

A ~
plimat=plimo-=plima,.
T aF T-00 aF Toe aF
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The result of Proposition 2 states that, when analyzing the limiting behavior of 3:, a, &F
and &F we need only consider the limiting behavior of o* and al"g defined by (4.6) in the
first-order case and (4.7) in the pth order case. In particular the asymptotic bias is given by

A A ~ ~
bias=plimag -plima=plimo;-plima=plim oX - plim o*.
00 aF T To00 aF Tooo Tooo aF Toe

Note, however, that the asymptotic distributions will differ, but this causes no difficulties as
we shall concentrate solely on the extent of the asymptotic bias. The proof of Proposition 2 is
straightforward and details are omitted. The intuition is first that the filter y(L) leaves
unchanged the trend function of the series as defined by (4.1). Given that the least squares
estimator of « in (3.6) is invariant to the values of p and B, we may specify, without loss of
generality U = B = O (similarly the estimator of a in (3.5) is invariant to the true value of p;

hence, we may set L = 0 again). The idea behind the proof of proposition 2 is simply that &F,

&F and ai'; have identical limiting values though not equal to the limit in the unfiltered case.
Tedious algebra shows this to be the case.

4.3 The Covariance Structure of the Processes

In this section, we briefly describe the covariance function of the processes outlined in
section 3. Consider first the nonseasonal ARMA(1,1) model given by (3.1). We have [e.g.,

Box and Jenkins (1970, p. 76)] :
7,0 = +od?+200)/(1- 0D ;

1D =(1+06) (@+6)/(1- o?) ; (4.15)
1,0 =axG-1), i22.

In the case of the seasonal unobserved component model, we have, given that ef and eltls

are uncorrelated with each other, yy(j) = )}y’ S(j) + }’; (§), i.e. the covariance, at lag j, of y is the
sum of the covariances, at lag j, of the seasonal and nonseasonal components. The covariance
structure of the nonseasonal component is given by (4.15) with o and 6 s 35 parameters
instead of o and 6. The covariance structure of the seasonal component is given by [e.g.,
Box-Jenkins (1970, p. 333)] :
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B0 =1+ )%/ (1 - a)?
K== 6-1=0 (4.16)
6(5) = (6 + @)1 + a8) /(1 - )
KO =a G-  jzs+l,

where s is the seasonal period (4 for quarterly data and 12 for monthly data). The
autocovariance function of [yt} is simply the sum of the autocovariances in (4.15) and (4.16).

For the nonseasonal ARMA(1,1) process we present results for the following
configuration of parameter values : a = -0.9, -0.5, 0.0, 0.1, 0.5, 0.8, 0.9 and 0.95 and
6 =-0.8, -0.5, 0.0, 0.5 and 0.8 . For the seasonal unobserved component model we specify
0= 0.0, 0.5, 0.8 and 0.9; 6 s = 0.0, 0.5, -0.5 and Gs = 0.0, 0.5 and -0.5 . We present
tabulated results only for the case where o § = 0.85 for the sake of brevity.8 In each case, we
present results on the asymptotic bias of the least-squares estimator of the sum of the
autoregressive coefficients in an autoregression of order k + 1 for k = 0, 4 and 8. For the
seasonal unobserved component model, we also considered k = 12. The specifications are
chosen to ensure adequate comparisons with both the finite sample results about the power of
the test statistics presented in Section 5, as well as to provide some possible comparisons with
earlier studies about the behavior of the statistics with unfiltered data.

In each of the cases described above, we consider the effect of applying four different
linear and symmetric filters (whose coefficients sum to one). First, the linear approximation of
the X-11 filter for both the quarterly and monthly versions whose weights are described in the
appendix. We also consider the Henderson moving average filter, whose weights are described
in (2.7) for the quarterly version and in (2.3) for the monthly version.

4.4 Description of the Results

Consider first the case of the nonseasonal ARMA(1,1) model presented in Tables 1 to 3
for k = 0, 4 and 8 respectively. The major feature that emerges from these tables is that the
asymptotic bias is always positive (with one small exception). Hence, filtering the data causes
an increase in the limiting value of the sum of the autoregressive coefficients over what the
limit is with unfiltered data. Given that the Dickey-Fuller and Phillips-Perron statistics are

8 We also considered asymptotic biases with (xs = 0.9 and 0.95. The pattern of the results is the same with
the biases being larger throughout.



based on these estimators, we can expect a loss of power associated with these tests when the
data are seasonally adjusted even if no seasonality is really present in the data.

In general, the asymptotic bias decreases as the AR parameter o increases with
non-negative values of 6 and o.. For 6 negative, non-monotonic behavior occurs when k = 0
and to some extent k = 4. With k = 8, the asymptotic bias decreases with o for any range of
values (with very minor exceptions). For a given value of « the behavior of the asymptotic
bias shows non-monotonicity in the MA parameter 6. Consider, for example, o = 0.0 with the
X-11 filter and k = 0. Here the asymptotic bias is greatest for values of 8 around 6 = 0.0 .
When k = 4 or 8, the bias shows non-monotonic patterns that are different for the chosen
values of 8 and varies depending on the filter, i.e. the quarterly and monthly cases.

When k = 0, the asymptotic bias is in general small for the X-11 filter. It tends to
increase as k increases especially for negative values of o. The bias is, however, quite large

when the quarterly Henderson MA filter is applied. For example, when 6 = 0.0, the limit of &i‘;
varies between 0.903 and 0.99 as o varies between -0.9 and 0.9. It is, indeed, remarkable how

A
the limit of aI"_; is close to one for most configurations of parameters & and 6 when applying
the monthly Henderson MA filter. The behavior of the asymptotic bias is roughly similar when
k is 4 or 8. We also experimented with k = 12 and obtained similar results.

The behavior of the asymptotic biases changes dramatically with the unobserved
seasonal component model presented in Tables 4 through 7 for k = 0, 4, 8 and 12 respectively.
Consider first the case where k = 0 (Table 4). The first thing to note is that the biases are
positive (with one exception) and quite large. For example, consider the case k =0, « s = ) -
= BS =0 and o, = 0.85. The asymptotic bias induced by the quarterly X-11 filter is 0.405, by
the monthly X-11 filter 0.193, and by the quarterly Henderson MA filter it is 0.916 . The
relative ranking stays similar across experiments; in particular, the asymptotic bias is larger
with the quarterly X-11 filter than with the monthly version. The opposite is true with the
Henderson MA filters, the monthly version showing greatest bias overall. For many cases, it is
remarkable how the limit of al"g is biased towards one (without exceeding one). For the
monthly Henderson filter, the limit of al"g is again above 0.9 for the majority of cases
irrespective of the limit of a* using unfiltered data. For the X-11 filter the smallest
asymptotic bias occurs when there is negative serial correlation in the moving average of the
seasonal component, i.e. the smallest asymptotic bias occur in the least likely case in practice.

In the quarterly case, the picture is very different when considering an autoregression
with k equal to 4 or 8 instead of k = 0. When k = 4, the asymptotic bias induced by the
quarterly X-11 filter and the quarterly Henderson MA filter are reduced dramatically. Indeed,
the biases become close to the level they are with the nonseasonal ARMA(1, 1) model,
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especially conceming the X-11 filter. When k increases from 4 to 8 the bias induced by the
quarterly X-11 filter shows a further marginal decrease, while the bias due to the quarterly
Henderson MA filter shows a marginal increase.

This decrease in bias is not observed for the monthly filters when k is increased from
Oto4 or 8. Indeed, the asymptotic biases of both the X-11 and Henderson MA filters still
increase as k increases up to 8 when o = 0.0 or 0.5 (sometimes with a slight decrease from
k=0 to k =4 when aNg = 0.5) and marginally decreases when aNg = 0.8 or 0.9. While the
limit of af: induced by the monthly X-11 filter varies across parameter configurations it can
reach as high a value as 0.675 when the limiting value of o* with unfiltered data is 0.0
(e.g., o= ens =0, o = 0.85, GS = (0.5 and k = 4; the corresponding figure with k = 8 is
~ 0.778). With o, = 0.95, the corresponding biases are 0.868 with k = 4 and 0.919 with k = 8.
On the other hand, the limiting value of ai':j. induced by applying the Henderson MA filter
appears to vary only slightly, irrespective of the limiting value of o* with unfiltered data.
With k = 4 this limiting value is around 0.96 and with k = 8 it is around 0.99 . Hence, as was
the case with the nonseasonal ARMA model, the asymptotic biases induced by the various
filters are, in almost all cases, positive. However, with a seasonal unobserved component
model, the asymptotic biases can be very large. Table 7 presents results for the case” where
k=12. It can be seen that the asymptotic biases with the monthly X-11 filter decrease
substantially, as was the case with k = 4 in a quarterly seasonal model. Hence, our results
clearly show that the bias in the sum of the autoregressive coefficients is substantial unless the
order of the estimated autoregression is at least as great as the seasonal period when
correlation at seasonal lags is present in the original data and the X-11 filter is applied.

We draw the following tentative implications of our results with respect to the effect of
seasonal adjustment on tests for a unit root. First, given that the seasonal adjustment filters
analyzed here cause an upward asymptotic bias in the estimator of the sum of the
autoregressive coefficients when the model is stationary, tests for a unit root will have less
power with filtered data than with unfiltered data. This fact is best illustrated when the
underlying series does not contain a seasonal component and the filter is nevertheless applied.

More interestingly, the extent of the asymptotic bias depends upon the nature of the
underlying seasonal component, the period of the seasonality and the length of the
autoregression considered. The major feature that emerges from our results is that if the length
of the autoregression estimated is less than the seasonal period, filtering the data induces a
substantial upward bias in the sum of the autoregressive coefficients. For example, our results
show a large bias when applying the quarterly filter and estimating an autoregression with k =
0 when seasonal correlation is present. However, the asymptotic bias decreases rapidly for all
models considered when k is increased to 4. With the monthly filter our results showed an



increasing bias as k increased from O to 4 and to 8 and a substantial decrease when k reached
12; i.e. at least as large as the seasonal period.

Consider first the implications for unit root tests of the Dickey-Fuller type based on the
estimator of the sum of the autoregressive coefficients in an autoregression of order p, say.
Our results indicate that one must consider an estimated autoregression of an order at least as
great as the seasonal period in order to avoid a substantial bias. Even with such an order,
however, there will still remain an upward bias. Hence, seasonal adjustment of the data does
not permit a reduction in the order of the autoregression. This is basically due to the fact that
even though seasonal adjustment reduces correlation in the data at seasonal frequencies, it
induces a bias in the autocorrelation function at lags less than the seasonal period which does
not vanish even asymptotically. Given that an autoregression of order at least as great as the
seasonal period is needed with filtered data, it is reasonable to expect tests for a unit root to
have higher power with unfiltered data than with filtered data. Indeed, not only does seasonal
adjustment not permit a reduction in the length of the autoregression cstim.ated. (which would
help increase power), but it also induces an upward bias in the statistic of interest.

Our results imply still more pronounced effects on the behavior of the Phillips-Perron
statistics. The important element is that these statistics are based on an estimated first-order
autoregression no matter what the correlation structure of the data. They apply a correction to
the statistics based on this first-order autoregression which eliminates any dependency of the
asymptotic distribution on the nature of the correlation present. Given our results, as long as
there is a seasonal component present in the data, the Phillips-Perron statistics will be biased
towards non-rejection if filtered data are used. This loss of power is due to the fact that
seasonal filters induce a substantial upward bias in the first-order autocorrelation of the data
when there is seasonal autocorrelation present. From an asymptotic perspective, it is therefore
expected that the Phillips-Perron test statistics will lead to tests of the unit root hypothesis
with greater power if unadjusted data are used. Of course the finite sample performance of the
tests may be significantly affected, even with unfiltered data, if the finite sample properties of
the estimator in a first-order autoregression or of the correction made to it are affected by the
presence of seasonal correlation. These and other issues are the focus of the next section
which presents an extensive simulation study of the finite sample behavior of both the
Phillips-Perron and Dickey-Fuller statistics when seasonal issues are taken into account.

5. A SIMULATION STUDY OF THE FINITE SAMPLE BEHAVIOR

The finite sample properties of the Dickey—Fuller t-test and the Phillips—Perron Z(t[)

and Z(&) tests with filtered data series are examined by means of a detailed simulation
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experiment. The design of the Monte Carlo experiment is described first, followed by a
discussion of the results.

The size and power of the unit root tests is first studied with data generated by the
univariate (nonseasonal) ARMA(1,1) process described in equation (3.1). The design of this
first experiment is similar to that of several studies, such as Dickey (1984), Dickey, Bell and
Miller (1986) and Schwert (1989), which report finite sample simulation results on size and
power with the same type of data generating process. In our experiment the time series are
affected, however, by filtering. Three different types of filters will be considered, namely (1)
the quarterly and monthly linear seasonal adjustment filters; (2) the quarterly and monthly
Henderson MA filters and finally (3) the actual X-11 procedure. Comparisons with existing
studies allow us to assess the effect of the filtering process on the finite sample distribution of
each of the tests. Next we turn to seasonal unobserved component models as described in
equations (3.2a) through (3.2c). Monthly and quarterly seasonal processes are considered.
 The size and power of the t—tests and the normalized bias test were simulated, using the same
filters as in the first experiment. In each experiment we also report the size and power of the
same unit root tests applied to the unfiltered time series, again in order to make the proper
comparisons.

Simulations will be reported for two sample sizes, the first containing 100 observations
and the second 200. The choice of both sample sizes was motivated by the fact that filters
with a quarterly as well as a monthly frequency were used. Data sets ranging from 25 to 50
years of quarterly data are common. In addition, quite often one finds monthly series with
between ten and twenty years of observations. Moreover, the sample sizes selected also
correspond to those often appearing in previous studies. To obtain a sample of either 100 or
200 filtered time series with symmetric two-sided filters, it was necessary to generate extra
data points before and after the actual sample. The unfiltered data sets were therefore
simulated with 200 extra observations, half prior to the sample of interest and the other half
following it. Hence a sample with 100 filtered observations starts with the 101st observation
of the unfiltered data series after it is adjusted by the filtering process. A comparison with the
corresponding unfiltered data also starts with the 101st observation. There is one exception to
the aforementioned modus operandi. The simulations with the actual X-11 (SAS) procedure
involves neither starting values nor extra tail observations. Lack of such extra observations
makes the program switch filters at each end of the data sets it filters. The experiments were
based on 10000 replications, except for the SAS X-11 experiments, where only 1000



replications were used.9 In this latter case, we also restricted the experiment to the
Dickey—Fuller unit root t-test. Due to space limitations not all the results can be reported.
Moreover, there are similarities in the simulation findings which allows us to reduce the

number of cases to report explicitly.

Table 8§ reports the size and power of the three types of unit root tests, calculated from a
regression equation without an estimated trend, for a nonseasonal ARMA(1,1) process filtered
with the monthly linear X-11 filter. Table 9 reports size and power of the tests when an
estimated trend is included in the regression equation. The parameter configurations for the
ARMAC(1,1) data generating process defined in equation (3.1) were as follows : a = 0.95, 0.9
or 0.8 and © = 0.5, 0.0 or -0.5. One must be careful of course when reading this and
subsequent tables. While the input process is a simple ARMA(1,1) it should be kept in mind
that the tests are actually applied to a data set with a complex autocorrelation structure due to
the filtering. The lag length for the DF tests considered are 4, 6 and 8. The number of lags in
the correction term of the PP tests are 6, 8 and 12. Both are denoted k in the tables.

For the Dickey—Fuller t—test one finds the right size both at the five and ten percent
nominal level when the series are filtered with the linear X-11 filter. This is true whether or
not an estimated trend is included in the regression equation. Thus our simulation results show
that the small sample properties of the OLS estimator with filtered series are the same in this
respect as the asymptotic properties. In addition, our results also confirm similar findings
about the size of DF t—tests reported in earlier Monte Carlo studies which considered unfiltered
data series. Tables 8 and 9 also contain evidence on the size of the two Phillips—Perron unit
root tests being studied. Here the results are quite different. Despite the fact that the
asymptotic distribution of the OLS estimator is invariant to linear symmetric filters which sum
to one for data generated by unit root processes, one observes a conservative test under the
null hypothesis of a random walk input process or a unit root pre-filtered process with
positively autocorrelated errors. In contrast, when the ‘MA term © is negative the
Phillips-Perron tests are clearly too liberal. The results are similar to those reported by
Schwert (1989), Perron (1988) and Phillips and Perron (1988), who studied the case of
unfiltered ARMA process. We also considered the actual X-11 filter, although we do not
report it in the table. Results with the actual X-11 procedure do not indicate the right size (i.e.
they were too liberal) for the DF t—test in particular when the number of AR lags included in
the regression increases. As noted in section 2, the X-11 procedure is characterized by
endogenous filter-switching. The procedure is, therefore, no loﬁger a time-invariant filtering

9 The number of replications was reduced for the latter because it was prohibitively expensive to do
otherwise. The structure of SAS programming, in particular the fact that SAS procedures cannot be nested
forced us to store large collections of random samples into SAS data sets which were passed through the
X-11 procedure. The output of PROC X11 was again retrieved into data sets before final analysis. The
SAS programs were therefore CPU time—consuming and required a great deal of memory space.
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process applied to the original data set. It is difficult, however, to formalize the effects of
time-variation associated with this filter. We know, however, that the theoretical
developments in section 4, specifically the invariance of the unit root limiting distribution with
regard to linear filters, do not apply when the actual X-11 procedure is used. The simulation
results seem to suggest, however, that longer AR expansions affect adversely the size of the
DF t-—tests in mo_deraitely sized samples as is the case with unfiltered data. |

Let us turn now to the power of the unit root tests presented in Tables 8 and 9. The
asymptotic bias calculations appearing in Tables 1 through 3 indicated that for univariate
ARMAC(1,1) models the asymptotic biases were usually minor. Hence we should expect, for
small samples, results approximately similar to previous results with unfiltered data except for
a slight reduction in power. The asymptotic bias being minor in many cases, it is no surprise
to find that our results for o = (.85 are about the same as the empirical power reported in, for
instance, Perron (1988) where tests were applied without filtering. In Table 2 of Perron (1988)
it is reported that for k equal to 6 and a sample size of 200 the rejection frequency at the 5 %
nominal level for the DF test is 0.94 for © = -0.5. We do have the same result'in Table 8.
Likewise, when ©=0. we find 0.88 for the DF test versus 0.86 in Perron (1988). The
difference is probably due to the number of replications in the experiments, namely 10000 in
ours rather than 1000 in Perron (1988). As o gets closer to one, the asymptotic bias should
play a greater role. A comparison of the results in Tables 8 and 9 indicates that including an
estimated trend in the regression model also leads to a substantial reduction in power, as
expected. The power of the DF test when the actual X-11 filter is applied looks very similar
to the results with the linear X-11 filter shown in Tables 8 and 9. A minor reduction in power
can be detected in some cases, but it appears not to be uniform across the models. One must
keep in mind, however, that filtering series with the actual X-11 filter resulted in a liberal DF
test. Consequently, considering size-adjusted power would lead one to conclude that filtering
with the actual X-11 filter reduces the power of the DF test more than the linear X-11 filter
does.

We also calculated the power with the Henderson MA filters (monthly and quarterly).
The Henderson MA filter destroys the power of all the tests. We do not explicitly report the
results in tables because they are relatively easy to summarize. One striking example may
illustrate how low the power of the DF test is with the Henderson MA filter. Consider the
case of an AR(1) process with o = 0.85. When the process is filtered with the Henderson MA
filter the rejection frequency of the test in a sample of 100 is only between 20 and 30 percent
at the five percent critical value. Such results are in fact not so surprising. The transfer
function of the Henderson MA filters, quarterly and monthly, showed that the filter eliminates
all the high frequencies. Unit root tests get their power in small samples from the implied
high frequency behavior of low frequency models. When all the high frequency behavior has
disappeared because the series was passed through a smoothing filter we should expect to have



a reduction in power. Finally, we conducted experiments with the quarterly linear X-11, the
quarterly Henderson MA filter and the actual X-11 procedure. While our study was not as
extensive as in the monthly case, we observed the same pattern in the results.

We now turn to the small sample behavior of the tests when the unfiltered data sets are
generated by seasonal unobserved component models. First, we discuss the Dickey-Fuller test.
The size and power of the test, when no trend is included, appear in Table 10. The case of an
estimated trend is not reported as it is similar. The quarterly unobserved component model is
discussed first. The size of the test when it is applied to the unfiltered data sets is reported
together with the results when the series are filtered. We report results for three different lag
lengths of the AR polynomial expansion. The shortest lag length is 2 and hence less than the
quarterly seasonal periodicity. The other two, namely 4 and 6, equal or exceed the seasonal
period.

Three parameter configurations were selected for the MA parts of the unobserved
components. They were selected on the basis of the asymptotic biases reported in Tables 4
through 7. A first case with MA components parameters Ons =0.5 and Gs = -(0.5 represents
one where the asymptotic bias is small (e.g., Table 4 with . = 0.9). A second case with
Gns =0.0 and GS = (.5 has a large asymptotic bias (see also Table 4) and finally a third one
has an intermediate asymptotic bias with parameters ens = 0.0 and (-)s =0.0.

. o

A first thing to note is that the DF test applied to unfiltered data is top liberal when
k = 2, except perhaps in the case where the asymptotic bias is low. When k equals 4 or 6, we
do get approximately the right size. When the DGP is filtered with the linear and standard
X-11 filters, we observe an empirical size in finite samples corresponding to the nominal size,
with perhaps one exception, namely the high asymptotic bias case. Hence, when filtering
induces a large asymptotic bias under the alternative it seems to also affect the null distribution
of the test statistic in small samples. The size of the tests applied to data filtered with the
Henderson MA filter is incorrect in particular with k = 4, where it tends to overreject. It may
appear that the results with the Henderson MA filter obtained here are in conflict with the
previous results we had with the same filter. That apparent conflict can be explained,
however. While the Henderson MA filter eliminates the high frequencies it does not eliminate
the seasonal frequency, neither in the monthly nor in the quarterly case. From figures A.2 and
A.4 we note that the transfer function for both the quarterly and monthly Henderson MA filter
are about 0.7 at the seasonal frequency. This means that the filter does not really erase the
strong seasonal correlation in the unit root process. In contrast, the seasonal adjustment filters
do eliminate the seasonal correlation, albeit imperfectly, which explains why they have the
right size. It is also interesting to observe that here the time-varying actual X-11 filter yields
results similar to the linear case.
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The power of the DF tests also appears in Table 10. The reduction in power due to
filtering the data with the linear X-11 filter depends on the magnitude of the asymptotic bias.
With a low asymptotic bias for the OLS estimator the rejection rate only drops by one or two
percent in many cases (see, €.g., Table 10, T =200 and T = 100 with k =2). The power
reduction is larger when we turn to the intermediate and large asymptotic bias cases (see, e.g.,
T = 100 and k = 4 for the intermediate case). There are also a number of cases where the
power increases with the application of the linear X-11 filter (see, for instance, T = 200 and
k = 6 in the large asymptotic bias case). Such results are not surprising since in finite samples
there are many determinants of the power function other than the asymptotic bias due to
filtering, such as the number of AR lags included, the correlation structure of the errors, etc.
We also simulated the size and power of a number of other cases characterized by large
asymptotic biases (notably an = Bs =0.5; Gns =-0.5 and Os =0.0; an = -0.5 and es =(.5) and
found results similar to the ones reported in Table 10. We also observe in Table 10 that the
actual X-11 program leads to less powerful tests compared to the linear version of the program
as would be expected. It is also interesting to note that, in small samples, the power does not
seem to increase when the expansion of the lag structure in the regression is increased from 2
to 4 and hence becomes greater than the seasonal lag, except for the Henderson filter.
Consequently, the small sample evidence may appear to contradict the anal‘ytical large sample
results in Tables 4 through 7 which suggested that the power should improve with AR
expansions beyond the seasonal lag. This is not the case, however, since in small samples one
faces a trade-off between more power due to the lower bias with AR expansions beyond the
seasonal lag and less power due to a higher number of estimated parameters and loss of initial
values in the auxiliary regression of the augmented Dickey-Fuller test.

The exact size of the Phillips-Perron tests is reported for the quarterly filters in Tables
11 and 12. We consider again three lag lengths, namely 6, 8 and 12, for the Newey-West
correction applied to the regression errors. The size is not equal to the nominal one except
when the MA parts of both the seasonal and nonseasonal are nonzero and equal to respectively
-0.5 and 0.5. When we look at the power of the tests, also appearing in Tables 11 and 12, we
find that in cases where both tests have the right size (namely when the MA parts are 0.5 and
-0.5) the tests are most powerful when applied to the unfiltered series and much more
powerful than the DF procedure. The tests applied to data transformed with the linear X-11
filter rank second and those with the Henderson MA filter are the least powerful. We also
notice that the power reduction is more substantial in the large asymptotic bias case. This
result is not surprising since both PP tests depend only on the estimated first AR coefficient. It
confirms the asymptotic results discussed in the previous section. It is also interesting to note
that the PP tests are much more powerful than the DF tests when the asymptotic bias of the
OLS estimator is small.
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The final results we report consider the finite sample size and power of unit root tests
with data generated by monthly unobserved component models filtered by monthly seasonal
adjustment filters. For this we turn to Table 13. Only the results for the DF are reported. The
lag lengths chosen were 6 and 12, again to study the behavior of the finite sample distribution
with a lag length smaller than and one equal to the seasonal period. Once again, we observe
that the test has the right size with either of the two filters. With the unfiltered process, we
note that the DF test has the right size except in the high asymptotic bias case when k = 6.
Hence, like in Table 10 we notice that the filtering process may affect the null distribution in
finite samples. We again face the power trade-off discussed earlier when we consider the lag
length of the AR expansion. As in the quarterly case, we observe a reduction in power with
the increase in lag length. A power reduction due to filtering is once again observed,
sometimes very dramatically. The results in Table 13 show very convincingly that the
asymptotic bias affects the power of DF tests. For example, when T = 100, k = 6 and the
asymptotic bias is large, the power of the test drops from a 44 % rejection rate to 17 % (at the
5 % critical value) when the series is filtered. When T = 200, the power drops from 83 % to
52 %. When the asymptotic bias is low the power reduction is minor.

6. CONCLUSIONS

We have considered the effect of seasonal adjustment procedures on tests for a unit root.
One result of interest is that the OLS estimator of the sum of the autoregressive coefficients in
a univariate regression with a stationary series shows an upward bias when commonly used
seasonal adjustment filters are applied. Sims (1974) showed that the OLS estimator remains
consistent after filtering all the series with the same adjustment filter in a regression model
with no lagged dependent variables. We show that this result does not go through in dynamic
models. The limiting bias was quantified for a class of ARMA and seasonal unobserved
component models and was found to be large in many cases. More interestingly, exact
numerical calculations showed that the inconsistency of the OLS estimator is greatly reduced
when one expands the AR polynomial in the regression beyond the seasonal lag. This result
counters the common assumption that one can ignore seasonal lags in testing for a unit root
once the series are adjusted. While the seasonal adjustment filter indeed eliminates seasonal
correlation it induces a bias at the low frequencies, which makes unit root tests less powerful.
Most of the asymptotic results seem also to hold in moderately sized samples. The results also
provide additional justifications for using annual data when testing for a unit root (see Perron
(1990) and Shiller and Perron (1985)).

Further extensions of our results call for some additional research projects. Namely, it is
easy to see that the asymptotic bias shown here to exist in univariate dynamic models will hold
for multivariate models as well. The extent of the bias in models such as VAR is of course



difficult to assess at this stage. The impact of the asymptotic bias on impulse response
functions would also be important to study. Empirical findings in Ghysels (1987) seem to
suggest, however, that impulse response functions in VAR models estimated with adjusted data
differ substantially from impulse response functions obtained from unadjusted series even if
one concentrates on nonseasonal impulses. Our paper clearly suggests that there are important
inference issues besides the methodological ones (discussed in Ghysels (1988)) associated with
studying impulse response functions in seasonal dynamic models.
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APPENDIX A
Table A.1 : Filter Weights of the Linear Monthly X-11 Filter

Lags and
Leads
0 0.819
1 0.019
2 0.018
3 0.017
4 0.016
5 0.015
6 0.014
7 0.013
8 0.014
9 0.015
10 0.018
11 0.020
12 -0.179
13 0.021
14 0.020
15 0.018
16 0.016
17 0.015
18 0.012
19 0.009
20 0.009
21 0.009
22 0.010

Source : Ghysels (1984, Table A.3.3).

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

45

Table A.2 : Filter Weights of the Linear Quarterly X-11 Filter

Lags and
Leads
0 0.856
1 0.051
2 0.041
3 0.050
4 -0.140
5 0.055
6 0.034
7 0.029
8 -0.097
9 0.038
10 0.025
11 0.012
12 -0.053
13 0.021

Source : Laroque (1977, Table 1).
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Figure A.1 : Transfer Function of the Linear Monthly X-11 Filter
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Figure A.2 : Transfer Function of the Monthly Henderson MA Filter
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Table 1: b(ai“-:, 0); Asymptotic Bias of af; with Filtered ARMA (1,1) Data; k=0

X-11 Filter
Quarterly Monthly
0.103 0.017
0.038 0.00
0.006 0.001
0.008 0.002
0.039 0.006
0.071 0.027
0.083 0.050
0.089 0.067
0.113 0.018
0.044 0.003
0.024 0.008
0.030 0.010
0.071 0.027
0.082 0.058
0.064 0.056
0.042 0.040
0.184 0.033
0.074 0.014
0.071 0.027
0.076 0.029
0.070 0.037
0.033 0.031
0.017 0.019
0.009 0.010
0.340 0.084
0.071 0.027
0.070 0.028
0.068 0.028
0.042 0.026
0.015 0.018
0.008 0.010
- 0.004 0.005
0.161 0.056
0.043 0.026
0.064 0.026
0.062 0.026
0.036 0.024
0.013 0.016
0.006 0.009

0.003

0.005

Henderson Filter

Quarterly

0.289
0.707
0.679
0.667
0.620
0.576
0.535
0.467

0.372
0.796
0.720
0.696
0.576
0.389
0.254
0.150

0.777
0.910
0.576
0.512
0.270
0.104
0.051
0.025

1.053
0.576
0.271
0.229
0.101
0.034
0.016
0.008

0.701
0.388
0.196
0.168
0.075
0.026
0.012
0.006

Monthly

1.670
1.558
1.318
1.270
1.080
0.915
0.804
0.666

1.783
1.591
1.287
1.221
0.915
0.555
0.347
0.200

1.803
1.410
0.915
0.817
0.435
0.166
0.081
0.040

1.542
0915
0.519
0.454
0.223
0.079
0.038
0.018

1.055
0.701
0.432
0.382
0.192
0.069
0.033
0.016

plim a*
Ts00

-0.949
-0.746
-0.488
-0.435
-0.214
0.000
0.140
0.300

-0.944
-0.714
-0.400
-0.330
0.000
0.400
0.629
0.788

-0.900
-0.500
0.000
0.100
0.500
0.800
0.900
0.950

-0.629
0.000
0.400
0.467
0.714
0.888
0.944
0.972

-0.140
0.214
0.488
0.540
0.746
0.899
0.949
0.975
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Table 2 : b(a’[":, 4); Asymptotic Bias of al"; with Filtered ARMA (1,1) Data; k = 4

X-11 Filter Henderson Filter plim o*
o Quarterly Monthly Quarterly Monthly T-e0
-0.8 -0.90 0.875 0.209 2514 4950 —4.317
-0.50 0.483 0.082 1.941 4.062 -3.351
0.00 0.190 0.072 1.463 2.938 -2.131
0.10 0.166 0.073 1.366 2.709 -1.884
0.50 0.141 0.086 0.937 1.761 -0.867
0.80 0.112 0.115 0.536 0.951 0.000
0.90 0.081 0.097 0.345 0.593 0.381
0.95 0.054 0.067 0.210 0.352 0.634
o=-05 -0.90 0.576 0.303 1.859 3.463 —2.633
-0.50 0.293 0.188 1.410 2.756 -1.890
0.00 0.134 0.151 0.999 1.863 -0.954
0.10 0.127 0.144 0912 1.683 -0.765
0.50 0.112 0.115 0.536 0.951 0.000
0.80 0.061» 0.067 0.225 0.389 0.590
0.90 0.034 0.036 0.114 0.196 0.793
0.95 0.018 0.018 0.058 0.098 0.896
0.0 =0.90 0.199 0.228 0.941 1.806 -0.900
-0.50 0.108 0.155 0.741 1.427 -0.500
0.00 0.112 0.115 0.536 0.951 0.000
0.10 0.115 0.107 0.488 0.856 0.100
0.50 0.095 0.073 0.280 0475 0.500
0.80 0.043 0.032 0.114 0.191 0.800
0.90 0.023 0.015 0.057 0.093 0.900
0.95 0.012 0.007 0.029 0.048 0.950
©=0.5 -0.90 0.145 0.164 0.574 1.206 -0.281
-0.50 0.112 0.115 0.536 0951 0.000
0.00 0.123 0.084 0.387 0.631 0.338
0.10 0.119 0.078 0.350 0.567 0.405
0.50 0.075 0.051 0.195 0.314 0.671
0.80 0.030 0.021 0.078 0.126 0.869
0.90 0.015 0.009 0.039 0.061 0.934
0.95 0.007 0.004 0.019 0.028 0.967
0.8 -0.90 0.152 0.139 0.527 1.027 -0.084
-0.50 0.091 0.096 0478 0.771 0.190
0.00 0.095 0.070 0.311 0.506 0.468
0.10 0.090 0.064 0.278 0.455 0.521
0.50 0.051 0.042 0.151 0.252 0.735
0.80 0.019 0.016 0.060 0.100 0.894
0.90 0.009 0.007 0.030 0.054 0.947

0.95 0.005 0.003 0.015 0.020 - 0974
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Table 3 : b(af:, 8); Asymptotic Bias of af'. with Filtered ARMA (1,1) Data; k = 8§

X-11 Filter Henderson Filter plim o*
o Quarterly Monthly Quarterly Monthly T
-0.8 -0.90 1.508 0.764 4317 7.054 -6.497
-0.50 0917 0.558 3.357 5.659 -5.004
0.00 0.425 0.261 2.206 3.899 -3.127
0.10 0.375 0.254 1.994 3.545 -2.749
0.50 0.264 0.300 1.169 2.106 -1.217
0.80 0.152 0.181 0.533 0.955 0.000
0.90 0.092 0.098 0.294 - 0522 0.455
0.95 0.052 0.052 0.159 0.279 0.709
-0.5 -0.90 0.684 0.657 2.261 3.602 -2.789
-0.50 0.399 0.492 1.721 2.849 -1.993
0.00 0213 . 0.290 1.092 1.903 -0.997
0.10 0.199 0.269 0.977 1.714 -0.798
0.50 0.152 0.181 0.533 0.954 0.000
0.80 0.075 0.060 0.212 0.382 0.599
0.90 0.040 0.025 0.106 0.190 0.800
0.95 0.021 0.011 0.053 0.096 0.900
0.0 -0.90 0.238 0.383 1.131 1.813 -0.900
-0.50 0.160 0.279 0.845 1.432 -0.500
0.00 0.152 0.181 0.533 0.954 0.000
0.10 0.151 0.166 0.477 0.859 0.100
0.50 0.113 0.087 0.260 0.476 0.500
0.80 0.051 0.021 0.103 0.188 0.800
0.90 0.026 0.008 0.051 0.099 0.900
0.95 0.013 0.004 0.026 0.005 0.950
0.5 -0.90 0.174 0.258 0.729 1.210 -0.268
-0.50 0.152 0.181 0.533 0.954 0.000
0.00 0.150 0.129 0.342 0.636 0.334
0.10 0.143 0.118 0.307 0.572 0.400
0.50 0.087 0.054 0.170 0.318 0.667
0.80 0.035 0.011 0.068 0.134 0.867
0.90 0.017 0.004 0.034 0.082 0.933
0.95 0.009 0.002 0.017 -0.007 0.967
0.8 -0.90 0.175 0.208 0.580 1.017 -0.066
-0.50 0.134 0.137 0.431 0.786 0.177
0.00 0.122 0.108 0.295 0.520 0.455
0.10 0.114 0.099 0.267 0.466 0.510
0.50 0.063 0.042 0.151 0.254 0.728
.0.80 0.024 0.007 0.061 0.097 0.891
0.90 0.012 0.003 0.030 0.027 0.946

0.95 0.006 0.001 0.016 0.035 0973
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Table 4 : b(a;\, 0); Asymptotic Bias of arf; with Filtered Data
from an Unobserved Component Model;

0.00
0.00
0.00
0.50
0.50
0.50
-0.50
-0.50
-0.50

0.00
0.00

0.50
0.50
0.50
-0.50
-0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50

0.50
-0.50

0.00
0.50
-0.50
0.00
0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50
0.00
0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50
0.00
0.50
-0.50

X-11
Filter

0.405
0.562
0.174
0.448
0.592
0.205
0.293
0.469
0.104

0.460
0.601
0.216
0.425
0.574
0.190
0.405
0.562
0.174

0.416
0.569
0.181
0.306
0.469
0.118
0.452
0.594
0.214

0.324
0.488
0.127
0.202
0.347
0.070
0.449
0.591
0.211

k=0,a = 0.85.
Quarterly
Henderson plim o*

Filter T

0.511 0.000
0.497 0.000
0.547 0.000
0.449 0.103
0.466 0.057
0.421 0.186
0.570 -0.103
0.530 -0.057
0.647 -0.186
0.458 0.135
0472 0.075
0.429 0.240
0.385 0.281
0.435 0.168
0.300 0.442
0.511 0.000
0.497 0.000
0.547 0.000
0.385 0.348
0.439 0.215
0.294 0.527
0.272 0.544
0.363 0.381
0.168 0.708
0.487 0.103
0.487 0.057
0.485 0.186
0.296 0.534
0.382 0.369
0.192 0.707
0.179 0.716
0.274 0.566
0.097 0.838
0.458 0.213
0.476 0.123
0.415 0.353

X-11
Filter

0.193
0.313
0.069
0.300
0.410
0.123
0.042
0.162
-0.002

0.334
0.442
0.144
0.358
0.480
0.148
0.193
0.313
0.069

0.377
0.508
0.161
0.296
0.448
0.112
0.318
0.423
0.146

0.314
0.468
0.122
0.201
0.343
0.071
0.375
0.483
0.176

Monthly

Henderson plim o*

Filter

0916
0.917
0.916
0.815
0.861
0.732
1.017
0.972
1.096

0.790
0.847
0.689
0.650
0.758
0.492
0.916
0.917
0916

0.605
0.730
0.433
0.417
0.574
0.256
0.831
0.871
0.757

0.438
0.596
0.271
0.262
0.408
0.143
0.741
0.820
0.611

T00

0.000
0.000
0.000
0.103
0.057
0.186
-0.103
-0.057
-0.186

0.135
0.075
0.240
0.281
0.168
0.442
0.000
0.000

0.348
0.215
0.527
0.544
0.381
0.708
0.103
0.057
0.186

0.534
0.369
0.707
0.716
0.566
0.838
0.213
0.123
0.353
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Table 5 : b(af:, 4); Asymptotic Bias of a‘f; with Filtered Data
from an Unobserved Component Model; k = 4, o, = 0.85.

NS

os =00 000
0.00

0.50
0.50
0.50
-0.50
-0.50
-0.50

0.00
0.00
0.50
0.50
0.50
-0.50
-0.50
-0.50

s = 080 00

0.00
0.50
0.50
0.50
-0.50
-0.50
-0.50

s =090 000

0.00
0.50
0.50
0.50
-0.50
-0.50
-0.50

(5]

0.00
0.50
-0.50
0.00
0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
—0.50
0.00
0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50

0.50
-0.50

X-11
Filter

0.081
0.047
0.130
0.128
0.075
0.176
0.062
0.039
0.104

0.109
0.067
0.141
0.153
0.105
0.159
0.081
0.047
0.130

0.080
0.057
0.084
0.098
0.079
0.085
0.071
0.045
0.098

0.049
0.038
0.048
0.056
0.049
0.046
0.052
0.036
0.064

Quarterly

Filter

0.116
0.057
0.319
0.133
0.066
0.315
0.132
0.066
0.380

0.108
0.056
0.249
0.128
0.071
0.233
0.116
0.057
0.319

0.069
0.041
0.131
0.075
0.048
0.116
0.086
0.047
0.203

0.041
0.027
0.071
0.043
0.029
0.062
0.060
0.037
0.126

Henderson plim o*

i )

0.665
0.809
0.297
0.599
0.753
0.325
0.686
0.829
0.211

0.636
0.764
0.435
0.592
0.697
0.501
0.665

0.297

0.744
0.796
0.698
0.752
0.776
0.754
0.715
0.816
0.535

0.844
0.860
0.835
0.859
0.862
0.869
0.791
0.847
0.712

X-11
Filter

0.527
0.675
0.259
0.462
0.616
0.223
0.584
0.720
0.291

0421
0.576
0.199
0.334
0.478
0.156
0.527
0.675
0.259

0.244
0.384
0.105
0.167
0.265
0.075
0.423
0.583
0.196

0.138
0.239
0.056
0.088
0.147
0.038
0.309
0.472
0.130

Monthly
Henderson
Filter

0.962
0.966
0.956
0.870
0912
0.801
1.076
1.025
1.185

0.766
0.844
0.659
0.629
0.732
0.513
0.962
0.966
0.956

0.429
0.553
0.318
0.311
0.405
0.234
0.714
0.811
0.584

0.240
- 0.339
0.167.
0.165
0.225
0.123
0.490
0.631
0.349

plim o*
T 00

0.000
0.000
0.000
0.094
0.054
0.162
-0.116
-0.060
-0.239

0.202
0.124
0.308
0.343
0.238
0.461
0.000
0.000
0.000

0.553
0.426
0.666
0.675
0.577
0.754
0.259
0.161
0.390

0.750
0.649
0.824
0.827
0.765
0.872
0.493
0.349
0.636
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Table 6 : b(af‘\, 8); Asymptotic Bias of u.i": with Filtered Data
from an Unobserved Component Model; k = 8, o = 0.85.

0.00
0.50
-0.50

0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50
0.00
0.50
-0.50

0.00

0.50
-0.50
0.00
0.50
-0.50

0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50

0.50
-0.50

X-11
Filter

0.066
0.047
0.123
0.086
0.054
0.154
0.051
0.038
0.100

0.086
0.058
0.133
0.102
0.067
0.142
0.066
0.047
0.123

0.070
0.055
0.082
0.067
0.053
0.076
0.069
0.052
0.097

0.044
0.039
0.047
0.039
0.033
0.042
0.054
0.046
0.062

Quarterly

Henderson plim o*

Filter

0.136
0.093
0.296
0.149
0.095
0.289
0.126
0.088
0.318

0.151
0.103
0.255
0.159
0.106
0.231
0.136
0.093
0.296

0.118
0.095
0.144
0.103
0.082
0.118
0.132
0.099
0.210

0.073
0.067
0.079
0.059
0.051
0.063
0.102

T 100

0.739
0.827
0.424
0.708
0.815
0.429
0.758
0.833
0.399

0.709
0.808
0.495
0.690
0.789
0.548
0.739
0.827
0.424

0.770
0.819
0.713
0.797
0.831
0.770

0.819
0.581

0.856
0.870
0.842
0.884
0.894
0.878
0.801
0.839
0.740

X-11
Filter

0.656
0.778
0.377
0.562
0.708
0.302
0.763
0.842
0.485

0.478
0.638
0.239
0.364
0.518
0.174
0.656
0.778
0.377

0.229
0.361
0.095
0.157
0.250
0.064
0.428
0.598
0.198

0.118
0.199
0.045
0.079
0.130
0.031
0.259
0.416
0.104

Monthly
Henderson
Filter

0.984
0.990
0.968
0.886
0.933
0.808
1.103
1.052
1.204

0.778
0.860
0.665
0.637
0.743
0.517
0.984
0.990
0.968

0.419
0.533
0.317
0.312
0.398
0.236
0.689
0.796
0.559

0.225
0.306
0.165
0.162
0.215
0.123

10431
0.566
0312

plim o*
T

0.000
0.000
0.000
0.094
0.054
0.162
-0.116
-0.060
-0.239

0.203
0.126
0.308
0.343
0.239
0.461
0.000
0.000
0.000

0.566
0.453
0.668
0.677
0.588
0.754
0.294
0.191
0419

0.764
0.685
0.826
0.830
0.777
0.872
0.557
0.424
0.675
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Table 7 : b(a’l'::., 12); Asymptotic Bias of o.f; with Filtered Data
from an Unobserved Component Model;k = 12, s = 0.85.

0.50
0.50
0.50
-0.50
-0.50
-0.50

0.00

0.00
0.50
0.50
0.50
-0.50
-0.50
-0.50

0.50
-0.50

0.50
-0.50

0.00
0.50
-0.50
0.00
0.50
-0.50
0.00
0.50
-0.50

0.00
0.50
-0.50

0.50
-0.50

0.50
-0.50

X-11
Filter

0.068
0.050
0.126
0.080
0.055
0.149
0.059
0.047
0.108

0.081
0.057
0.135
0.092
0.066
0.138
0.068
0.050
0.126

0.070
0.058
0.086
0.065
0.057
0.075
0.072
0.053
0.106

0.046
0.043
0.049
0.038
0.037
0.041
0.058
0.048
0.069

Quarterly
Henderson
Filter

0.143
0.102
0.300
0.154
0.106
0.304
0.139
0.105
0.306

0.157
0.109
0.276
0.167
0.120
0.254
0.143
0.102
0.300

0.132
0.107
0.165
0.116
0.103
0.133
0.145
0.104
0.233

0.085
0.079
0.091
0.067
0.067
0.071
0.117
0.095
0.148

plim a*
Two

0.759
0.829
0.489
0.741
0.823
0.486
0.762
0.824
0.478

0.738
0.819
0.532
0.721
0.800
0.575
0.759
0.829
0.489

0.779
0.822
0.720
0.805
0.828
0.778
0.757
0.826
0.599

0.857
0.867
0.845
0.887
0.888
0.881
0.803
0.841
0.745

X-11
Filter

0.042
0.031
0.056
0.078
0.046
0.106
0.051
0.038
0.057

0.059
0.036
0.079
0.111
0.071
0.119
0.042
0.031
0.056

0.064
0.045
0.068
0.095
0.077
0.082
0.023
0.018
0.035

0.047
0.036
0.044
0.061
0.054
0.049
0.017
0.012
0.025

Monthly
Henderson
Filter

0.317
0.180
0.667
0.380
0.234
0.641
0.299
0.162
0.749

0.350
0.230
0.537
0.389
0.294
'0.475
0.317
0.180
0.667

0.253
0.213
0.288
0.242
0.226
0.236
0.275
0.186
0.424

0.152
0.143
0.157
0.139
0.138
0.125
0.189
0.150
0.245

plim a*
T—00

0.665
0.809
0.297
0.599
0.753
0.325
0.686
0.829
0.212

0.629
0.756
0.434
0.589
0.689
0.501
0.665
0.809
0.297

0.732
0.773
0.698
0.746
0.761
0.753
0.706
0.800
0.552

0.839
0.848
0.836
0.856
0.854
0.869
0.797
. 0.838
0.741
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Table 8 : Size and Power of Unit Root Tests with Monthly Linear X-11 Filter
Model : y = ay, ;| + € + € _,

DF t-test
k =

4
6

8
k=4
6

8
k=4
6

8

PP Z(t&)

k=26
8
12

k=6
8
12

k=6

8
12

A
PP Z(o)

Regression Model without Trend
T =100 T =200 T =100 T =200
10% 5% 10% 5% 10% 5% 10% 5%
e=-0.5 =00

o=1.00

009 005 010 005 0.11 0.06 0.10 005

009 005 010 005 0.09 005 0.08 0.06

009 005 010 005 0.12 006 0.11 0.04
o =095

0.18 0.10 041 025 017 0.09 039 023

0.17 010 039 023 0.19 0.10 042 0.26

0.18 0.10 040 025 021 0.12 045 028
o =085

073 056 1.00 099 060 041 099 095

0.57 038 098 094 051 034 096 0.88

047 030 095 087 048 031 095 086
o=1.00

049 040 042 033 0.10 0.05 0.07 0.03

052 044 044 036 006 0.03 0.07 0.03

056 048 049 040 005 0.03 0.07 003
o =0.95

0.88 0.82 0.99 0.97 0.20 0.11 044 0.27

090 0.85 0.99 0.97 0.21 0.11 047 0.28

093 0.88 1.00 099 021 0.10 049 0.29
o =0.85

1.00 1.00 1.00 1.00 092 0.81 1.00 1.00

1.00 1.00 1.00 100 093 081 100 1.00

1.00 1.00 1.00 100 093 079 100 1.00
o= 1.00

049 040 042 034 0.08 0.03 0.05 0.02

052 044 045 037 003 0.01 0.04 0.02

057 049 050 042 002 000 0.04 001
o =0.95

0.90 083 099 097 023 0.12 055 034

092 086 099 098 024 0.12 058 0.37

095 090 100 099 024 011 0.60 0.39
. o =0.85

1.00 100 1.00 100 096 087 100 1.00

1.00 100 100 100 097 088 1.00 1.00

1.00 1.00 1.00 1.00 097 086 100 1.00

T =100
10% 5%

0.09
0.10
0.11

0.17
0.19
0.22

0.55
0.49
0.49

0.07
0.07
0.06

0.11

0.10.

0.08

0.63
0.60
0.47

0.04
0.04
0.03

0.13
0.12
0.09

0.77
0.74
0.63

T =200
10% 5%

=05

0.05
0.05
0.06

0.09
0.11
0.13

0.37
0.32
0.33

0.03
0.03
0.03

0.04
0.04
0.03

0.37
0.32
0.20

0.01
0.01
0.01

0.04
0.04
0.02

0.50
0.44
0.26

0.10
0.11
0.12

0.38
0.43
0.47

0.98
0.95
0.95

0.08
0.08
0.08

0.30
0.32
0.30

1.00
1.00
1.00

0.06
0.06
0.06

0.41
0.43
0.43

1.00
1.00
1.00

0.05
0.06
0.06

0.23
0.27
0.30

0.92
0.87
0.87

0.03
0.04
0.04

0.15
0.15
0.13

0.98
0.98
0.96

0.02
0.02
0.02

0.21
0.22
0.20

1.00
0.99
0.99

Notes : DF t-test is the Dickey-Fuller (1979) t-test with k the AR expansion; PP Z(t&) is the

Phillips-Perron t-test with a correction factor using a Newey-West covariance estimator with k

number of lags.
factor.

A
PP Z(xx) is the Phillips-Perron normalized bias test using the same correction
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Table 9 : Size and Power of Unit Root Tests with Monthly Linear X-11 Filter

DF t-test
k=4

O~ oD OO

PP Z(t &)

k=26
8
12

k=6
8
12

k=6

8
12

Model : 1Y =y, g & +ee
Regression Model with Trend
T =100 T =200 T =100 T =200
10% 5% 10% 5% 10% 5% 10% 5%
e=-0.5 =00
o =1.00
008 004 009 004 0.11 006 003 0.03
008 004 009 005 009 0.04 0.05 0.02
009 005 0.10 005 0.13 0.07 009 0.04
o =095
0.12 006 025 014 011 0.06 023 0.13
0.12 006 024 0.13 014 007 027 0.15
0.12 0.06 025 0.14 0.15 0.08 0.39 0.24
o =0.85
050 033 098 092 037 022 091 0.79
040 028 090 077 035 020 084 0.68
027 0.16 082 0.65 030 0.18 0.82 0.66
o =1.00
0.75 067 067 059 003 0.01 0.01 0.00
078 071 071 063 003 0.01 0.01 0.00
082 076 076 0.69 0.02 0.00 0.00 0.00
o =0.95
090 085 098 096 0.14 0.07 0.28 0.15
093 088 098 097 0.14 0.07 030 0.16
095 091 099 098 0.12 0.06 035 021
o = 0.85
1.00 1.00 100 100 077 0.58 1.00 099
1.00 1.00 100 100 077 058 1.00 099
1.00 1.00 1.00 1.00 072 052 100 099
o=1.00
072 063 066 057 003 001 003 001
076 0.68 0.70 0.61 003 001 0.02 0.01
0.81 0.74 076 0.69 0.03 0.01 0.01 0.00
o =0.95
0.89 083 098 095 0.11 0.05 028 0.14
092 086 098 097 0.11 0.04 030 0.15
094 090 099 098 0.09 0.03 037 020
o =0.85
100 100 100 100 0.75 053 1.00 099
1.00 100 100 100 074 052 1.00 099
1.00 100 100 100 0.67 044 100 1.00

T =100
10% 5 %

0.08
0.11
0.13

0.11
0.14
0.17
0.33

0.32
0.32

0.04
0.04
0.03
0.05
0.03
0.28

0.12

0.01
0.01
0.00

0.03
0.01
0.25

0.16
0.07

T =200
10% 5%

0=05

0.04
0.06
0.07

0.06
0.07
0.10

0.19
0.20
0.20

0.02
0.02
0.01

0.02
0.01
0.01

0.10
0.07
0.04

0.00
0.00
0.00

0.00
0.00
0.00

0.06

10.03

0.01

0.09
0.11
0.12

0.23
0.28
0.32

0.87
0.82
0.83

0.05
0.05
0.05

0.13
0.13
0.11

0.95
0.94
091

0.04
0.03

0.13
0.14
0.11

0.97
0.96
0.94

0.04
0.05
0.06

0.12
0.16
0.20

0.73
0.67
0.69

0.02
0.02
0.02

0.05
0.05
0.03
0.82

0.79
0.68

0.01
0.01
0.05
0.05
0.03

0.86

073
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Table 10 : Size and Power of Dickey-Fuller Unit Root Tcsts with Quarterly Filters
Quarterly Unobserved Component Model : yt =0 my - 1 + ens +6 t—:" S

T

100
100

200
200
200

100
100
100

200

200
200

100
100
200

200
200

yt=asyt—4+£§+es8:—4

Regression Model without Trend
Linear X-11 Standard X-11 Henderson
10 % 5% 10 % 5% 10 % 5%
] Low asymptotic bias case
Size : o s = 1.0/0cs = 0.9/6ns = 0’5/es =-0.5
0.12  0.06 0.14 0.08 0.06 0.03
0.11 0.05 0.11 0.05 0.22 0.11
0.12 0.05 0.12 0.05 0.15 0.08
0.13 0.06 0.13 0.07 0.06 0.03
0.12 0.05 0.12 0.05 0.25 0.13
0.13 0.06 0.13 0.06 0.18 0.09
Power : o ns = % = 0.9/6ns =(0.5/6 g = -0.5
0.51 0.29 0.45 0.23 0.13 0.04
0.38 0.20 0.30 0.16 0.64 0.47
0.39 0.20 0.44 0.29 0.50 0.32
094 . 0.81 0.65 0.57 0.47 0.22
0.84 0.65 0.70 0.51 0.98 091
0.83 0.64 0.83 0.67 091 0.79
_ Intermediate asymptotic bias case
Size : o s = 1.0/ 5= 0'9/ens = es = 0.0

0.13 006 . 0.2 0.07 0.06 0.03

0.12 0.06 0.11 0.08 0.32 0.22

0.13 0.06 0.14 0.08 0.17 0.09

0.14 0.07 0.16 0.09 0.06 0.03

0.14 0.06 0.10 0.05 0.39 0.26

0.14 0.06 0.13 0.06 0.20 0.09

Power : o =0 = 0‘9/ens =0, = 0.0

0.50 0.30 0.45 0.22 0.13 0.05

043 0.24 0.35 0.20 0.80 0.67

0.38 0.21 0.36 0.24 0.48 0.29

093 0.78 0.55 043 0.38 0.18

0.87 0.68 0.69 0.51 1.00 0.98

0.80 0.58 0.74 0.57 0.88 0.71

Unfiltered
10 % 5%
0.13 0.06
0.18 0.09
0.10 0.05
0.12 0.06
0.18 0.09
0.11 0.04
0.53 0.32
0.61 0.41
0.36 0.19
0.95 0.82
0.96 0.86
0.79 0.58
0.35 0.24
0.14 0.07
0.13 0.05
0.38 0.25
0.14 0.07
0.12 0.06
0.88 0.77
0.49 0.30
0.38 0.22
1.00 0.99
0.88 0.71
0.79 0.58



(o W L 38 (@ W0 8

ANRDND AN

100
100
200
200

100
100
100
200

200

Linear X-11

10 %

0.52
0.38
0.36
091

0.75

5%

0.08
0.06
0.07

0.08
0.06
0.07

Table 10 (continued)
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Standard X-11

10 %

5%

Henderson

10 %

_ Large asymptotic bias case
Size : o s = l.Olocs = 0.9/6nS = 0.0/6s =0.5

0.19
0.14
0.11

0.20
0.12
0.11

0.11
0.08
0.06

0.14
0.06
0.05

0.07
0.37
0.22

0.07
0.34
0.20

5%

0.03
0.24
0.12

0.04
0.22
0.11

Power : o ns = as = 0.9/9ns = 0.0/6S =0.5

0.33
0.21
0.20

0.78
0.57
0.54

0.45
0.30
0.32

0.73
0.63
0.58

0.39
0.81
0.19

0.58
0.48
0.34

0.17
0.77
0.50

0.43
0.98
0.86

0.08
0.63
0.33

0.25
0.94
0.71

Unﬁltcrcd
10 % 5%
0.60 0.49
0.12 0.05
0.12 0.06
0.55 043
0.12 0.06
0.12 0.05
0.95 0.90
0.37 0.21
0.32 0.17
1.00 1.00
0.75 0.54
0.68 0.47
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Table 11 : Size and Power of Phillips-Perron Z(t&) Unit Root Tests with Quarterly Filters

..Ds _ ns s s
Quarterly Unobserved Component Model : Y =@, Y g+ E‘tl + ensgtl-l

S_ .8
Y =Ygt g: + e.vrﬁi-4

Regression Model without trend
Linear X-11 Henderson Unfiltered
T 10 % 5% 10 % 5% 10 % 5%

. Low asymptotic bias case
Size : o0 = 1.0/00 = 0.9/ =0.5/6, =-0.5

100 0.16 0.09 0.12 0.05 0.12 0.05
100 015 0.09 0.11 0.05 0.11 0.05
100 - 0.16 0.08 0.10 0.05 0.10 0.05
200 0.16 0.08 0.14 0.06 0.14 0.06
200 0.16 0.08 0.14 0.06 0.14 0.06
200 0.16 0.09 0.14 0.06 0.14 0.06
P_owcr T o ns = o o= 0.9/9ns = 0'5/es = -(.5
100 0.66 0.44 0.50 0.24 0.91 0.81
100 0.66 0.43 0.47 021 0.92 0.84
100 0.65 0.41 0.38 0.15 0.93 0.86
200 0.98 0.90 0.93 0.79 1.00 0.99
200 0.98 0.91 0.93 0.77 1.00 0.99
200 0.98 0.92 0.92 0.73 1.00 1.00

_ Intermediate asymptotic bias case
Size : o s = 1.0/a 5= 0.9/9ns =8 = 0.0

100 0.41 0.29 0.42 0.31 0.42 0.31
100 041 0.30 0.43 0.33 043 0.33
100 0.45 0.34 0.47 0.36 0.47 0.36
200 0.35 0.24 0.40 029 . 0.40 0.29
200 0.37 0.26 041 0.30 0.41 0.30
200 0.41 0.29 0.39 0.29 0.38 0.28
Power : o s = % = 0.9/9rls = es =0.0
100 0.93 0.84 0.92 0.83 1.00 1.00
100 0.94 0.87 0.92 0.84 1.00 1.00
100 0.95 0.90 0.93 0.86 1.00 1.00
200 1.00 0.99 1.00 0.99 1.00 1.00
200 1.00 1.00 1.00 0.99 1.00 1.00
200 1.00 1.00 1.00 1.00 1.00 1.00



100
100
200
200

100
100

200

200

Table 11 (continued)

Linear X-11

10 %

0.51
0.53
0.58

0.47
0.49
0.54

Power : « ns = %= 0.9/9ns = O.O/eS =0.5

5%

0.41
0.44
0.48

0.36
0.38
0.44

0.90
0.93
0.95

0.99
1.00
1.00

42

Henderson
10 % 5%

) Large asymptotic bias case
Size : s = 1.0/a = O.9/ens = 0.0/6s =0.5

0.62
0.65
0.69

0.61
0.63
0.66

0.53
0.56
0.60

0.50
0.53
0.58

0.95
0.96
097

00
00
.00

[y

Unfiltered
10 %

sS85 885

ok poeh k.

5%



43

Table 12 : Size and Power of Phillips-Perron Z(&) Unit Root Tcsts with Quarterly Filters

100
100
200
200

100
100
200
200

100
100
100
200

200

100
100
200
200

Quarterly Unobserved Component Model : y { =© my t 1 + Ens +6, ens

Yy = Oy 4+ & + O 4
Regression Model w1thout Trend
Linear X-11 Henderson
10 % 5% 10 % 5%
_ Low asymptotic bias case
Size : o ns = l.O/as = 0.9/9ns = O.5/es =-0.5
0.13 0.07 0.08 0.04
0.13 0.07 0.08 0.04
0.13 0.08 0.08 0.02
0.14 0.08 0.11 0.05
0.15 0.08 0.11 0.05
0.15 0.09 0.10 0.04
Power : o ns = %5 = 0.9/6ns = 0'5/63 = -0.5
0.71 0.50 0.55 0.32
0.72 0.50 0.52 0.28
0.71 0.48 043 0.19
0.99 0.94 0.96 0.88
0.99 0.95 0.96 0.87
0.99 0.96 0.95 0.85

Intermediate asymptotic bias case

Size : o ns
0.38 0.28
0.40 0.31
0.43 0.35
0.33 0.25
0.36 0.27
0.45 0.32

Power : a ns
0.94 0.87
0.95 0.90
0.96 0.92
1.00 1.00
1.00 1.00
1.00 1.00

= 1.0/x o= 0.9/6ns

0.40
041
0.44

0.38
0.39
0.49

= q o= O.9/en

0.92
0.93
0.94

288

0.31
0.33
0.36

0.29
0.30
0.40

s=6,=00

0.86
0.87
0.89

0.99
0.99
1.00

=9s=0.0

Unfiltered
10 % 5%
0.08 0.04
0.08 0.04
0.08 0.02
0.11 0.05
0.11 0.05
0.10 0.04
0.92 0.85
0.94 0.87
0.95 0.90
1.00 1.00
1.00 1.00
1.00 1.00
0.40 0.31
041 0.33
0.44 0.36
0.38 0.29
0.39 0.30
0.51 0.39
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00
1.00 1.00



100
100
200

200
200

100
100
100
200

200

Table 12 (continued)

Linear X-11

10 %

0.49
0.53
0.58

0.47
0.48
0.54

Power : o = 0= 0.9/9ns = O.O/eS =0.5

5%

041
0.44
0.50

0.37
0.40
0.46

Henderson

10 %

_ Large asymptotic bias case
Size : a s = 1.0/a. = 0.9/ s = 0.0/6S =05

0.61
0.64
0.68

0.60
0.62
0.66

5%

0.53
0.56
0.61

0.52
0.54
0.59

0.95
0.97
0.97

0.99
0.99
1.00

Unfiltered
10 %

0.95
0.97
0.94
0.97

s8s 833

Pk bk

5%

0.93
0.94
0.96

0.92
0.93
0.95
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Table 13 : Size and Power of Dickey-Fuller Unit Root Tests with Monthly Filters
Monthly Unobserved Component Model : y'tls =Q "syttlf 1+ e'tls + ensert)il

100
100

200
200

100
100

200
200

100
100

200
200

100
100

200
200

S_ . .8
Ye=CY12t E: + G’.v;'si—lz

Regression Model without Trend
Linear X-11 Henderson
10 % 5 % 10 % 5%

. Low asymptotic bias case
Size : o ns = 1.0/as = 0.9/6ns = O‘S/Gs =-0.5

0.11 0.05 0.12 0.05
0.10 0.05 0.10 0.06
0.12 0.05 0.12 0.05
0.11 0.06 0.11 0.06
Power : o ns = % = 0.9/9ns = 0.5/es = -0.5
0.33 0.18 0.29 0.16
023 0.11 0.19 0.09
0.77 0.57 0.74 0.52
0.59 0.41 0.69 0.41

_ Intermediate asymptotic bias case
Size : o= 1.0/a .= 0.9/9ns =8 = 0.0

0.10 0.05 0.09 0.04
0.10 0.04 0.08 0.03
0.11 0.05 0.09 0.04
0.10 0.05 0.09 0.04

Power : o ns = O = 0'9/ens = es = 0.0
0.33 0.18 0.21 0.10
0.20 0.09 0.24 0.14
0.76 0.55 0.56 0.33

0.58 0.35 0.61 0.45

Unfiltered
10 %

0.11
0.10

'0.36
0.27

0.82
0.75

0.49
0.40

0.88
0.81

5%

0.05
0.06

-0.05
0.05

0.07
0.07

0.07
0.06

0.32
0.29

0.75
0.78



100
100

200
200

100
100

200
200
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Table 13 (continued)

Linear X-11
10 % 5%

Henderson

10 % 5%

Large asymptotic bias case

Size : o, = 1.0/a o= 0.9/6ns = O.O/GS =0.5

0.10 0.04
0.11 0.05
0.11 0.05
0.11 0.05

Power : o 5= O o= 0.9/6ns = 0.0/es = 0.0

0.32 0.17
0.24 0.12
0.74 0.52
0.61 0.39

0.07 0.04
0.11 0.05
0.07 0.03
0.11 0.05

0.13 0.06
0.22 0.11
0.37 0.19
0.55 0.33

 Unfiltered
10 %

0.20
0.10

0.21
0.10

0.60
0.19

0.92
0.51

5%

0.11
0.05

0.12
0.04

0.44
0.08

0.83
0.30



