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THE MULTIPLIER-ACCELERATOR MODEL IN THE LIGHT OF COINTEGRATION

Gregory C. Chow

Aggregate investment and consumption functions are among the most important rela-
tionships in macroeconomics. This paper reexamines the natqre of these relationships
using an econometric method that takes into account the possible nonstationarity of the
time series observations. Two key empirical questions will be addressed. Is the accel-
eration principle valid, and what form should it take? What is the dynamic relationship
between consumption and income, and is there an equilibrium relationship between these
fwo variables in the long run? In section I these relationships will be formulated in a
simple system of simultaneous equations. For estimating and testing these equations, a
suitable econometric method will be presented in section II to deal with the possible
nonstationarity of the variables.

The econometric procedure to be recommended consists of two steps. In the first
step, one finds the number of unit roots in the model and the canonical variables
(linear combinations of the original variables) which are stationary, i.e., correspond
'to the stable roots. In the second step, one gets rid of the unit roots and retains the
stationary canonical variables, thus estimating a stationary model by standard econo-
metric methods. In conception, this two-step procedure is similar to the approach of
Box and Jenkins (1970) to nonstationary univariate time series. In the univariate case,
the first step is to perf ormvdif ferencing. The resulting stationary series can then bé
analyzed. In the m-variate case, one should not simply difference all m variables,
because each differencing imposes a unit root in the model, and there may be, and fre-
quently are, fewer than m unit roots. If we know the number d=m of uni.t roots, we can

do the right amount of differencing, and the resulting system will be stationary.



Performing the right amount of differencing means getting rid of the right number of

unit roots. In the second step the model consists of only stationary variables,

including first differences of the original variables and those linear combinations of

them that are stationary. The components of this two-step procedure are well known. We
merely suggest a framework for putting them together into a procedure which is very easy
to use for estimating linear simultaneous-equations models of nonstationary time

series.

Section III addresses several econometric issues concerning error-correction -
models, simultaneous-equations models and cointegrated relations. The issues are both
theoretical and empirical. Often, one dynamic econometric equation is formulated in an
error correction form, with the first difference of the dependent vériable affected by
the first dif ferences of current and lagged explanatory variables and by the error-
correction term, i.e., the deviation in the last period of the dependent variable from
its long-run equilibrium relationship with selected explanatory variables (al;so called a
cointegrating relationship). Questions arise concerning the appropriateness of such a
single-equation specification in the context of a simulatneous-equations system. If
there are d unit roots in the model, there are d fewer long-run equilibrium cointe-
grating relations than the number of equations. It is therefore impossible for each
equation to be associated with a unique long-run equilibrium cointegrating relation.

One cannot specify each structural equation as dependent on an error correction term
based on a cointegrating relation for that equation alone. Several cointegrating rela-
tions, or none, may affect one structural equation. A related issue is whether the
omission of selected variables in the specification of each structural equation is
empirically justified.

Using annual and quarterly data respectively, sections IV and V present empirical
results from estimating a simple multiplier-accelerator model. Besides obtaining empir-

ical investment and consumption functions, we also address the econometric issues con-



cerning error-correction and simultaneous-equations models. Section VI concludes this

paper.

I. MODEL FORMULATION

The model to be studied consists of three macroeconomic variables: aggregate real
investment Yier aggregate real consumption expenditures th and an income variable y:3t
which equals y1t+yZt plus government expenditures minus taxes .net of transf er;. Invest-
ment it is a function of Ay3t by the acceleration principle, and of lagged yl’ t-j and
y3,t-_j (j>0). Consumption Yot is a function of V3¢ and of lagged y2,t—j and y3,t—j
(j>0). Income V3¢ is a function of lagged yl,t—j’ y2,t-j and y3,t-j' Since the own
lagged variable yi, t-1 is an explanatory variable for each variable yit’ one can simply
subtract it from both sides of each equation yielding Ayit as the dependent var'iablé.

If the number of lagged variables in each equation is at most p+l, we can replace p+l
lagged variables yi,t-l""’yi,t-p-l by yi,t-l’ Ayi,t-l’ vees Ayi,t—p without loss.
Hence, assuming linearity the three structural equations in error correction form for

the vector Ayt of dependent variables are

[ 1T b [ 1T b
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+ I‘lAyt_1 + ...+ r‘pAyt_p + U+ u,

By the acceleration principle, Ay3t is the appropriate income variable explaining
investment ¥yp OF Aylt' Therefore, when both Ay3t and g t-] @pPpear as explanatory
variables, the coefficient ¢13 of Y3 -1 should be small relative to the coefficient 813

of Ay3t' On the other hand, in the consumption function, Y3 is the appropriate



income variable explaining Yo OF Ath; the coefficient ¢23 of y3’ t-1 should not be
small relative to the coefficient 323 of Ay3t, as these income variables enter as 323y3t
plus (¢23—323)y3’ -1 The small ratio ¢813/B13 for the investment equation as compared
with the ratio ¢23/323 for the consumption equation is an important hypothesis to be
examined.

If there is a long-run equilibrium relation between consumption and income gen-
erated by the consumption function alone, it would be given by ¢22y2' to1 ¥ ¢23y3’ o1t
Hys which is the second row of model (1) when we set all Ayt-j (j = 0,...,p) and u,
equal to zero. By the error-correction interpretation, ¢22 should be negative; when the
deviation from equilibrium y2,t—1 + (¢>23y3’t_1 + ”2)/¢22 is positive, Yot in the follow- .
ing period will tend to decrease. ¢23 should be positive, with -¢23/¢22 measuring the
long-run mér‘ginal propensity to consume. For a recent application of the error-
correction formulation see Hendry and Ericsson (1989). On the other hand, by the accel-
eration principle, while capital stock may have a long-run equilibrium relation with
income, investment need not have such a long-run relationship. We have pointed out that
¢13 is expected to be small. One should not expect the coefficients ¢11 and ¢13 to be
respectively negative and positive and be significant. Thus the signs and significance
of ¢22 and ¢23, as compared witﬁ ¢11 and ¢13, are important hypotheses of the model to
be tested.

Third, based on error-corrections applied to individual equations separately and on
possible additional identification restrictions on simultaneous structural equations,
¢12 and ¢21 may be expected to be zero. Further yz’ t-1 should be absent from the
investment function of (1) and yl, t-1 should be absent from the consumption function.

These hypotheses will be tested in sections IV and V.



II. ECONOMETRIC METHOD

Consider a linear model for a vector Yy of m time series to be written as

(2) Ve = Ayt-l + AlAyt—l + ...+ ApAyt—p + b+ €,

where ¢ ¢ is serially uncorrelated. If all the roots of the matrix A are smaller than
one in absolute value, the model is stationary and standard econometric methods apply.

The model is nonstationary if some roots of A equal unity. Let

(3) A=PJQ =[P P2] I 0 Q

d

0 J2 Q

1 1| =P+ PJ0,

2

where the d columns of l“1 are the right characteristic vectors of A corresponding to the
unit roots, the r = m-d columns of P2 correspond to the stationary roots on the diagonal
of Jz; Q= P-l, its first d rows Q1 are the left characteristic vectors of A corres-
ponding to the d unit roots and the remaining rows Q2 correspond to the r stationary

roots. Premultiplying (2) by Q gives
(4) Q)’;’t = JQyt_1 + QAlAyt—l + .+ QApAyt_p + Qb + QE:t

Defining the canonical variables z, = Qyt, 2, = Qlyt and 2y = szt' we rewrite

(4) in two parts as

(S) Q

Pt T %1 T P APz e QARPAZ, 4 Qb + Qe

(6) QY =25, = Jzzz’t_1 *QAPAZ 4.+ QZApPAZt—p * Qb + Qe

By (S) and (6) the first d canonical variables z, have unit roots while the remaining
m-d = r canonical variables 2y = szt are stationary, the r rows of Q2 being the coin-

tegrating vectors.



Alternatively, subtract ¥,_; from both sides of (2) and write

(7) Ayt = Tryt_1 + AlAyt-l + ...+ ApAyt-p + b+ £,
where
(8) MT=A-1=PJQ-1=PU-I)Q
= [P1 P2] 0 0] = 1’2(.12-1)02 = PZDZQZ
0 JZ-IP

I has d zero roots and r=m-d nonzero roots equal to the nonzero roots of A minus one,

and has the same characteristic vectors as A. Denoting the mxr matrix PZD'2 by «, we can

replace Hyt-l in (7) by ocszt or Xz, If Q2 were known, the parameters «, Al""’Ap

can be estimated by least squares to yield estimates with the usual distributional pro-
perties since all variables z2t and Ayt—k are stationary.

To estimate the cointegrating vectors Q2 = B’ we apply the method of maximum like-
lihood in Johansen (1988, 1989) assuming normal et. Let rOt be the residual of the

regression of Ayt on Ay Ay and 1, and Lt be the residual of the regression of

-1 8¢ p

¥,_; on the same variables. T in (7) is the matrix of coefficients of the regression of
T

-1 )

‘Let Sij =T t§1 ritrjt

rank of T is m, its least squares estimate I is SOkSl.dlc' If the rank of 1 is r<m, M=aB’

with « being mxr. Given B, the L.S. estimate of « is

(i,j = 0,k). If the

ot

the residuals r., on the residuals Pt

A , -1
and the covariance matrix of regression residuals rOt—QB’rkt is estimated by
(10) AB) =S, -48's 8b =s -s p@'s plas
B) = Spg = @B'SBa’ =S, - S BB'S, kO



Analogous to limited-information maximum likelihood estimation of linear simultaneous
equations with normal residuals, B is found by minimizing the detérminant of (9) which

equals

’ =1 ’ ’
(11) 1So0 = SoB(B S8 B’S / |8 SiiB]

kol = | B'S B B'S

S S

okP 00

- ] - ’ -1 ’
= [Sgol 18"y B = BSoS0oSoiBl / 18S,, 8]

B is estimated by the r characteristic vectors corresponding to the r largest roots

A1>A2 ...>Ar of

-1

(12) ‘ 1ASi = SkoSooSox! = ©

with the normalization B’SkkB = Ir'

The problem of determining the number r of cointegrating vectors, or the number
m-r=d of zero roots in I, can be solved by a likelihood ratio test. The null hypothesis
M=aB’, a being mxr, is tested by using the likelihood ratio L (the alternative hypo-
thesis being r=m)

m

(13) 2lnl=-T T In0-a)
i=r+l

The null hypothesis (of m-r zero roots) would be re jected if the m-r smallest roots
ir+1""’im of (12) are large enough fo make (13) greater than the critical value tabu~
lated in Tables T.I to T.III on pp. 80-82 of Johansen (1989). Table T.II is for using
model (2) without the intercept. Tables T.I and T.II are for using the above model
including the intercept b. There are two subcases when b#0. The first case is for
leatO in (5), when the variables z, incorporate a time trend (see Table T.I). The

second case is for le=0 (Table T.II). Since the distribution of (13) has a thicker

tail in the second case, Table T.II is used if one wishes to avoid undercounting zero



roots in I or unit roots in A. The null hypothesis of r nonzero roots in II against the

alternative of r+l nonzero roots is tested by using the likelihood ratio statistic

(14) : -2InL=-T Inl-xr ),
r+l1

The critical values for (14) are also tabulated in the above 3 tables.

Once the number r of cointegrating vectors is determined, we know the appropriate
degr'ee' of diff erehcing by imposing m-r zero roots in (7). Johansen estimates 8 by the r
characteristic vectors corresponding to the r largest roots of (12). This estimator é
is super-consistent, converging at rate T. é can be treated as given when estimating
the remaining coefficients a, Al""’Ap of (7). A computer program written by S. Johan-
sen, K. Juselius and H. Hansen using RATS for computing the test statistics for the rank
of T has been used to estimate r and B for the empirical results of sections IV and V.
An alternative method to Johansen’s for estimating r and B can be found in Ahn and
Reinsel (1900).

Turning to the estimation and testing of linear simultaneous equations with some

unit roots. Let the model be

(15) BAyt = °yt-1 + l"lAyt_1 + ...+ rpAyt-p Rt

where B is nonsingular with diagonal elements set equal to one and other selected ele-
ments set equal to zero. Equation (1) is an example of (15). Identification restric-

tions may also be imposed on <I>,I'1,...,I‘p and ¥ = cov(ut). Premultiplying (15) by B-1
gives the reduced-form (7). To find out the number r of cointegrating vectors in the
structural equations (15), one can apply the same analysis as for the reduced-form (7).
Since the matrix ¢ in (I15) equals a nonsingular matrix B times 1 in (7), the rank of &

is the same as the rank r of T. Writing ¢ = BIl = Bag’ = a*B’, we find that the cointe-

grating vectors of the structural equations (15) are the same as those of (7).



To estimate the ith structural equation or the ith row of (IS) one can apply a
limited information method such as instrumental variables (IV). The IV estimates are
consistent. The problem is that when unit roots exist the distribution of the estimatés
of the ith row of ¢ is non-standard, ’since the variables yt_1 are nonstationary. To
resolve this problem, I recommend using a two-step procedure. In the first step, one
finds r and B=)§ as suggested above. Once r<m and B are determined , we replace Qyt-l in
(1S) by ccmB’yt_1 = ozmzz’t_1 in the second step. Since Z,, and Ayt are stationary, all
parameters of the model can be estimated by standard methods for simultaneous equations.
In particular the distribution of the estimator ;: of the ith row of oci‘E has a covariance
matrix, denoted by Vi’ which can be consistently estimated. If we estimate & by ; =
&*B’, the covariance matrix of its ith row ;&i = ;:B' is simply BViB’ which can be used
for inf erenée concerning ¢Abi. Treating B=é as given does not affect the asymptotic
distribution in the second step because é converges at rate T, as in the two-step proce-
dure of Engle and Granger (1987). This two-step procedure is much more convenient to
use than applying the results of Sims, Stock and Watson (1990) in one step. Once the
nonstandard distribution theory is applied in the first step, inference becomes standard
in the second step. Imposing a unit root is equivalent to differencing in scalar time
series. For a vector time series, imposing d unit roots or d zero roots in equation
(15) is a generalization of diff erencing for univariate time series. Retaining the

canonical variables 2, = B’yt' corresponding to the remaining stationary roots enables

one to deal with a stationary, appropriately diff erenced, model for standard analysis.

III. ISSUES ON ERROR CORRECTIONS AND SIMULTANEOUS EQUATIONS

When there are unit roots in the model, the number r of cointegrating vectors (rows
of B’) is smaller than the number m of structural equations. It is therefore impossible

to associate each structural equation with an error-correction mechanism generated by an



equilibrium relationship attributed to that equation alone. There simply are not enough
equilibrium relationships to be assigned to all structural equations. In general, all

of the r canonical variables 22’ to] = B’yt_1 corresponding to the r cointegrating vec-
tors B’ may affect the dependent variable of the ith structural equation, with the
effects measured by the coefficients a:. It is possible for a structural equation to
have an error-correction term attributable only to an equilibrium relationship among its
own variables. An example is the consumption function specified by model (1). This
cannot apply to all equations. Hence one has to be careful in specifying any economic
relation in terms of an error correction due to that equation only. A related issue is
the estimation of a cointegrating vector by single-equation methods as proposed by Engle
and Granger (1987) and by Stock (1987). These methods assume that one and only one
cointegrating relation or stationary canonical variable is inf luencing the dependent
variable in question.

When unit roots exist, one cannot associate one structural equation with one coin-
tegrating vector. A.structur‘al equation may have no cointegrating vector associated with
it. An example is the investment equation specified in model (1). A structural equa-
tion may have several cointegrating vectors associated with it, as it may be affected by
several stationary canonical variables. The algebra of equation (15) makes clear the
distinction between structural equations and stationary relations. The latter are
obtainéd by setting to zero all Ayt-j (j = 0,...,p) and U, and dropping the time

subscript of Yepr yielding

(16) by + u=0

When there are unit roots, the rank r of & is smaller than m and (16) does not have
sufficient linearly independent equations to determine y.

If we write ¢y as aB’y = az,, the choice of « and B’ requires a normalization.

10



- . -1 .
Since aB’ = aW 1WB’ for any nonsingular rxr matrix W, «aW =~ and WB’ will serve our pur-
pose as well as « and B’. In order to associate one and only one cointegrating vector
. .th . . . .th
with the i~ structural equation, one can normalize by letting the i row @, of a be a
.th . .th
vector of zeros except for the i element .. The error correction term for the i
. . .th .
equation of (16) will then be aiiB’iy or a.z,, where B’i is the i row of B”’. B’i is
. . . . .th . .
interpreted as the cointegrating vector associated with the i equation and a,. is the
negative adjustment coefficient. This error-correction specification may require that
certain elements of B'i be zero as the corresponding variables are assumed to be absent
.th . ‘

from the i~ structural equation.

The above discussion suggests that assigning an error-correction mechanism to a
structural equation when there are unit roots in the model imposes strong restrictions
on the structural coefficients. Whether these restrictions are justified can be tested

by using the distribution of the estimators in the second step of the two-step procedure

recommended in section II.

IV. EMPIRICAL FINDINGS FROM ANNUAL OBSERVATIONS

The multiplier-accelerator model studied in this paper is a simplified version of
.an already very aggregative annual model of Chow (1967). The two main simplifications
consist of eliminating the liquidity preference equation, justified by the small effect
of the rate of interest on investment found in the previous model, and aggregating the
two components of investment, including new construction as a separate component, into
one investment variable. A third difference is that, in the previous model price defla-
tion was performed by introducing the GNP deflator as a separate explanatory variable in
each linear equation, whereas we now divide each nominal variable by the GNP deflator.
The data are standard national income data for the United States, recorded quarterly

from 1947.1 in the City Bank data f ile, citibase.rat. The consumption series is GC,

11



personal comsumption expenditures. The investment series is CPIl, gross private domestic
investment. The income series is GC+CPI-(GGFNET+GGSNET), the last two series being
respectively surplus or deficit of the Federal and State-Local government receipts and
expenditures. All three variables are divided by GD, the implicit price deflator of
GNP. |

[ was led to reexamine this model because I consider the accelerator to be one of
the most basic and empirically valid laws of economics, having found in previous studies
strong supporting evidence by examining data for the demand for automobiles in the
United States (1957, 1960), f or.aggregate U.S. investment (1967, 1968 and 1969), and for
aggregate investment in China (1985a, p. 236, and 1985b). There is no need to learn
dynamic programming and rational expectations econometrics to understand that if capital
stock Kt is 'dependent on income then the change jn capital stock or investment will be
dependent on the change in income. In the references cited, every time I regressed
investment on both current income and lagged income, I found the coefficient of lagged
income to be negative and approximately equal in absolute value (or slightly smaller if
gross investment Kt—(i-a)l(t_1 is explained) to the coefficient of current income, but
not so for consumpion. A second interesting empirical question is whether there exists
a long-run equilibrium relation between consumption and income. In the model of Chow
(1967) a uhit root was imposed in the consumption function by dif ferencing. With the
new tools for differencing multivariate models at our disposal, it is of interest to
reexamine the former model.

Denoting investment, consumption and income by i You and Y3t respectively, we

can write the investment and consumption functions of the former model as
(17) By T BgAYae Y eyt PigYae T T Yy

(18) BYp¢ = BogByzy + ¥ppB¥, (o) * By + U,

12



The coefficient of y3, t-1 in (17) is expected to equal 8 times the coefficient of Ay?,t'

d being the rate of depreciation. _ (18) is derived by assuming Yo, to be a function of
Y3t and 5 11 and taking first difference. A unit root is thus imposed in the model.
Furthermore, by the absence of y2,t—1 and y3,t-1 in (18), i.e., by assuming ¢22 and ¢23
of model (1) to be zero, any cointegrating relation between consumption and income, if
it exists, is not allowed to inf luencAe Ath.

The model of equations (17)-(18) has been estimated by first estimating a more
general model as specified by equation (1) with more lagged 1.\yl and Ay3 in the invest-
ment equation and with yz’ =1 313’_1 and more lagged Ay2 and Ay3 in the consumption
equation. Using annual data from 1947 to 1989, we first estimate an equation explaining
Ay3,c by 3 lagged Yir Yo and Yy using variables yl,t-l’ yz,t-l' y3’t_1 and two lag Ayi
(i=1,2,3) in the form of the third equation of model (1). Using the above explanatory
variables as instruments, we estimate the investment and consumption equations of model
(1) by the method of .instrumental variables. The results are given in the first three
equations of Table 1 where the three variables are labeled I, C and Y respectively. The
sample period is 1950-1989, excluding the three initial observations. The number in
parentheses below each coefficient is the "t" statistic in absolute value. We first
interpret the statistical results by ignoring the possible existence of unit roots,
leaving the issue of nonstationarity in a discussion that follows.

The investment equation (17) is in perfect agreement with the data. The coeffi-
cient of Ay3 is .771 and significant. The coefficient of lagged income is practically
zero as the theory predicts. The acceleration prinéiple is strongly confirmed. We
have included two insignificant lagged variables Ayl’_1 and Ay3’_1 which will be dropped
in the next estimation. These variables were absent in the specification of equation _
(n. Si_nce the coefficients of both yl,-l and y:.,.’_1 are insignificant, there is no
long-run equilibrium relation between investment and income. The consumption function

(18) is partly correct and partly incorrect. The correct part is the very significant

13



Table 1
The Multiplier-Accelerator Model: Annual Data 1947-1989

No Unit Roots

Depen- Coefficients of
dent 2

variable AY I__1 C_1 Y_1 AI__1 AC__1 AY_1 AI_2 AC_2 AY_2 R™/s
1. Al 771 -.243 .020 -.024 .119 .668/.028
(2.2} (.82) (.33) (.11) (.40) DW=1.810
2. AC .573 -.325 .256 .213 -.061 .821/.014
(7.3) (z.0) (2.1) (1.2)  (.48) DW=2.066
3. AY -.790 .239 -.005 -.040 -.130 . 708 .413 -.650 -.075 .685/.02%
(2.9) (.55) (.015) (.14) (.28) (2.0) (1.8) (1.9) (.25) DW=2.178
4. Al .916 -.130 -.002 .651/.028
(4.3) (.65) (.04) DW=1.901
5. AC .561 -.275 .218 .144 .823/.014
(7.7) (2.3) (2.3) (1.45). DW=2.007
6. AY -.660 .083 .072 -.247 -.038 .629 .610/.030
(3.1) (.24) (.25) (1.0) (.11) (2.0) Dw=1.724
7. Al .897 -.156 .006 .641/.028
(3.2) (.66) (.12) DW=1.944
8. AC .618 -.285 .224 .119 .805/.014
' (7.4) (2.2) (2.3) (1.1) DW=1.942

14



coefficient .573 for the change in income, in relation to the also significant coeffi-
cient .256 of lagged income. This shows the main difference between the consumption and
investment equations according to the acceleration principle, as the coefficient of
lagged income in the investment equation is zero. The incorrect part is that both yz’_1
and y3,_1 are significant, indicating the presence of a long-run relation between con-
sumption and income, with a point estimate of .256/.325 or .788 for the marginal propen-
sity to consume. This aspect of the equation was overlooked in the specification of
equation (18). After dropping Ayl,_1 and Ay3,_1 from the investment equation and Ay3’_l
from the consumption equation, we obtained equations 4 and 5 of Table 1. The results
confirm the above conclusions concerning these two equations more strongly, with smaller
standard errors for the key coefficients. As the lagged variables in equations 4 and 5
are so few, I dropped the last three instrumental variables. The regression of Ay3 on
this shorter list of instruments is given by equation 6, while the investment and con-
sumption functions are given by equations 7 and 8 respectively, all with observations
from 1949 to 1989. The results are almost the same.

To deal with possible nonstationarity, the first step is to find the number of zero
roots of model (1) and the characteristic vectors B corresponding to the nonzero roots
of (12). Using lags of order two, as in eugation 6 of Table 1, we find the roots Ai to
be .4479, .3838, and .1522, yielding -Tln(l-)\i) of 24.352, 19.850 and 6.769 respec-
tively. The value 6.769 is smaller than the 5% critical value 8.083 from Table T.II of
Jéhansen (1989, p. 8I), leading to accepting the hypothesis of one zero root. The cri-
tical value at the 10% level of significance is 6.691. At the 10% level, the hypothesis
of the smallest root being zero can barely be rejected. One would then conclude that
the model is stationary and hence the standard errors of Table ! are valid. If we
accept one zero root, we next ask whether there are two zero roots by comparing the sum
6.769+19.850 or 26.619 with the 5% critical value 17.844 and the 1% critical value

21.962 of Table T.II. The hypothesis of two zero roots is rejected at levels much below
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1%. One may conclude that model (1) has one zero root or the rank of & is 2. The two

characteristic vectors associated with the nonzero roots are

-44.661 -30.893 32.777

-4.566 -7.135 8.083

Using these two cointegrating vectors to form two canonical variables B’yt =
(zlt,ZZt)’, we reestimate equations 7 and 8 of Table 1. The results are given in Table
2. Equation 1 of Table 2 expresses the investment equation in terms of the canonical
variables 2 and 22’_1, with coefficients C;. = (gcl &2) being .0056 and —.015. In
equation 2, the coefficients of I-l’ C_l and Y_1 are estimated by qAS = ;B’. The estimate
of the covariance matrix of ; is B(Cov ;c)B', yielding the "t" ratios of the coefficients
to their standard errors as given in parentheses. Equation 2 of Table 2 is very similar
to the corresponding equation 7 of Table 1. Norie of the coefficients of I—l’ C_1 and
Y_1 is significant in both cases, though in Table 1 we imposed a zero coefficient for
C—l' The coefficient of AY is very similar. The acceleration principle is very
strongly confirmed. By imposing a unit root in the model, we did not change the results
in this case.

The consumption function is given by equations 3 and 4 of Table 2. Equation 4 is
somewhat different from equation 8 of Table 1. The difference comes mainly from the
presence of the coefficient -.313 for I—l' with a "t" retio of -1.97, whereas in Table
1, this coefficient was assumed to be zero by the specification of the consumption func-
tion. Allowing for the presence of I_1 and imposing one unit root in Table 2, one finds
the effect of AY en consumption reduced and the effect of AC_1 increased while the coin-
tegrating vector relating C_l and Y_1 are approximateiy the same. In order to isolate

the effect of imposing a unit root, I have added I_l as an explanatory variable in equa-

tion 8 of Table 1 and presented the result in equation 5 of Table 2. Equation S is not
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Table 2
The Multiplier-Accelerator Model: Annual Data 1947-1989

One Unit Root; * for No Unit Root

Depen- Coefficients of
dent 2
variable Ay 2 Z, I_1 C_1 Y_1 AC._1 R7/s
1. Al .874 .0056 . -.015 .644/.028
(2.9) (.92) (3.2) DW=1.937
2. Al .874 -.182 -.066 .051 .644/.028
(2.9) ’ (.65) (.33) (.23) DW=1.937
3. AC '.263 .0066 . 0040 . .295 .856/.012
(1.4) (1.8) (1.7) v (2.6) DW=2.645
4. AC .263 -.313 -.232 .252 .295 .856/.012
’ (1.4) (1.97) (2.10) (2.14) (2.6) DW=2.645
5.*% AC .402 ' -.202 -.377 .336 .216 .872/.012
(2.14) (1.25) (2.93) (2.78) (1.86) DW=2.374
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very different from equation 4. The main difference is the smaller "t" ratio for the
coefficient of I-l’ making it insignificant. The coefficient of AY is .401 with a stan-
dard error of .188; it is .263 with a standard error of .182 for equation 4. The stan-
dard errors of the coefficients of I—l’ C-l’ and Y-l are respectively .162, .129 and

.121 in equation 5; they are respectively .159, .111 and .118 in equation 4. The dif-
ferences between the coefficients of equations 4 and 5 are not large as compared with
the sténdar‘d errérs. The similarity of the standard errors in the two equations again
illustrates a small effect of imposing a unit root on statistical inference as in the
case of the investment equation 2.

The major findings of this section can be summarized. First, the acceleration
principle as formulated in equation (17) is strongly confirmed in the presence or. ab-
sence of unit roots; this principle does not apply to the consumption function. Second,
there exists an equilibrium relation between consumption and income which affects short-
run consumption beha&ior, and there is no long-run equilibrium relation between invest-
ment and income affecting investment behavior. Third, coefficient estimates and their
standard errors obtained by ignoring the presence of unit roots happened to be close
enough to those obtained by imposing one unit root that no ma jor changes in inference
occurred concerning our investment and consumption equations. Note that both sets of
standard errors are similar because both are derived under the assumption of a statio-
nary model. Fourth, for those who like to keep unit roots, there appears to be one unit
root in the multiplier-accelerator model that we have formulated. The hypothesis of one
unit root, i.e., one zero root in the model (1) explaining Ay, cannot be rejected at the
97 level, but the hypothesis of two unit roots, i.e., two zero roots in model (1), can
be rejected at levels much below 1%. Fifth, our investment equation illustrates the
usef ulness and validity of the simultaneéus—equations approach to econometric modelling
by excluding variables from structural equations, an approach questioned by Liu (1960)

and Sims (1980). The coefficients of C_1 and Y_1 turned out to be zero as the simul-
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taneous-equations model (1) specifies. On the other hand, the possible effect of I_l in
the consumption function as illustrated by equations 4 and 5 of Table 2 suggests caution
to simultaneous-equations model builders in imposing zero restrictions on selected coef-
ficients. Sixth, our estimation of the & matrix in model (1) serves as a warning to

those who formulate and estimate error-correction mechanisms equation by equation in the
explanation of a set of interrelated economic variables. It is here suggested that the
number of unit roots and the subsequent cointegrating vectors be estimated by using a
simultaneous-equations model. Otherwise, the possible presence of I_1 in the consump-

tion function can never be discerned.

V. EMPIRICAL FINDINGS FROM QUARTERLY OBSERVATIONS

Using duarterly data from 1947.1 to 1989.4 we first estimate the investment and
consumption functions of model (1) by the method of instrumental variables without re-
gard to unit roots. The instrumental variables used include all three lagged variables
up to order 3, or lagged differences up to order 2, since three additional lagged varia-
bles are all insignificant in explaining AY, and including them increases the standard
error (adjusted for the degrees of freedom) of the regression of AY slightly. Equations
1, 2 and 3 of Table 3 are estimates of the investment f unction; equations 4 and 5 are
estimates of the consumption function. The investment functions again confirm the
acceleraﬁon principle strongly. The coefficient of AY is very significant while the
coefficient. of Y_1 is practically zero. This is-true after we drop L\I_1 and AY_1 to
obtain equgtion 2. The coefficients of I-l’ C_1 and Y_1 are all virtually zero in
equation 3. A zero coefficient for C_1 confirms the validity of the specification of
our investment equation in a simultaneous system of structural equations. The zero
coefficient for Y_1 supports the absence of a cointegrating relation between Y and I
affecting investment behavior. The consumption functions also support the accelerations

principle since the coefficients of Y__1 are not very small as compared with the coeffi-
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The Multiplier-Accelerator Model:

No Unit Roots

Table 3

Quarterly Data 1947.1-1989.4

Depen- Coefficients of
dent 5

Variable Ay I_1 C_1 ‘{_1 AI_1 AC_1 AY_1 AC_2 R7/s

1 Al 1.014 -.022 -.003 .088 .135 .282/.0186
(5.5) (.43) (.31) (.93) (1.5) DW=1.936

2. Al 1.087 .013 -.007 .179/.0197
(5.8) (.03) (.71) DW=1.936

3. Al 1.014 -.023 -.001 ~-.003 .088 .135 .281/.0186
(5.3) (.42) (.01) (.04) (.93) (1.5) DW=1.936

4. AC .599 -.157 .125 -.374 . 115 .071 .113/.0124
(3.8) (3.2) (3.3) (2.9) (2.1) (.81) DW=2.014

S. AC .398 ~-.064 ~-.169 .146 -.273 .088 .104 .372/.0105
(2.4) (2.1) (4.0) (4.4) (2.3) (1.8) (1.4) DW=2.050
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cients of AY, and are Both very significant. The significant coefficients of C_1 and
Y_1 suggest - the existence of a long-run equilibrium relation between C and Y affectiong
consumption behavior. From equation 4, the long-run marginal propensity to consume is
estimated to be .125/.157 or .80. The significant coefficient of I_1 in equation 5
suggests the possible effect of lagged investment on consumption, casting doubt on the
single-equation approach to the formulation of an error-correction mechanism for con-
sumption. If AY_2 is added to equation 5, the coefficient has "t" ratio of .52 while
the coefficients of AY, Y_l and I_l and their corresponding "t" ratios are hardly
affected. The results from using quarterly observations are in agreement with the
results from annual observations presented in Table 1. |

To allow for unit roots, we first estimate the number of zero roots of model (1).
Using data from 1947.1 to 1989.4 and three lags for the three variables, we find the
roots Ai of (12) to be .34722, .278()1 and .18651 with corresponding —Tln(l-?\i) of
37.960, 28.991 and 18.372. The hypothesis of one zero root is re jected at levels much
lower than 1%, for which the critical value from Table T.II of Johansen (1989, p. 8l) is
only 11.576, much smaller than 18.372. The model is. Judged to be stationary! The
reader might accept the analysis of Table 3 assuming no unit roots. To continue our
dliscussion note that if we employ data from 1951.1 to 1989.4, with the first observation
beginning at 1951.4, we find the roots of Ai of (12) to be .33094, .14148 and .04225S,
with -Tln(l-li) for the smallest root being 6.604, sma_ller than the 107 critical value
of 6.691 and leading to accepting one zero root. The sum of -Tln(l-Ai) for the two
smallest roots is 29.944, much larger than the 1% critical value of 21.962, leading to
rejecting strongly the existehce of two zero roots. The rank of ¢ is two, with cointe-

grating vectors equal to
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10.993 12.246 -12.571

®
"

32.405 19.143 -20.576

Estimates of the investment and consumption functions are given respectively by
equations 1 and 2 of Table 4. We omit presenting estfmates of the coefficients of the
two canonical variables z_1 = B’y_1 and report only the estimates of the coefficients of
the original lagged variables Yy The results are the same as reported in Table 3
ignoring unit roots. To make the results more comparable, we use the same saﬁ)‘ple period
1951.4~1989.4 aésuming stati'onarity and report the results in equations 3 and 4 of Table
4. The assumption of stationarity has no effect on the investment equation and in-
creases slightly the absolute values of the coefficients of AY, C_1 and Y_1 in Athe con-
sumption equation but gives very similar standard errors for both equations. Overall,
statistical inference is little affected by assuming the existence of one unit root.

Thé major conclusions from Table 3 and from using annual observations as reported in
Tables 1 and 2 remain valid.

It might be of interest to investigate whether our conclusions are valid for two
separate samples using data 1951.1-1969.4 and 1969.2-1989.4. The first sample has an
estimate of 5.795 for the smallest -Tln(l-hi), leading to accepting one zero root at the
107 level. It has an estimate of 26.021 for the sum of the two smallest -Tln(l-li),
leading to the rejection of two zero roots at much lower than the 17 level. The second
sample has corresponding estimates of 6.730 and 26.935 respectively, leading to accept-
ing one zero root at the 9.5% level and re Jecting two zero roots strongly. Assuming two
stationary canonical variables, we present estimates of the investment and consumption
functions for the first period in equations 5 and 6 of Table 4, and for the second
period in_equationé 7 and 8. The conclusions from both periods are the same as for

the entire sample, except for two qualifications. First, in equation S for the first
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The Multiplier-Accelerator Model: Quarterly Data 1951.1-1989.4

Table 4

One Unit Root; * for No Unit Root

Depen- Coefficients of
dent 2
Variable AY I_1 C__1 Y_1 AI_1 AC_1 AY_1 AC_2 R /s
1. Al . 820 -.032 . 045 -.035 .089 . 145 .415/.0167
(5.7) (.63) (1.14) (.88) (.99) (1.65) DW=2.002
2. AC .256 -.071 - -.091 .089 -.173 .108 .063 .436/.0097
(1.97) (2.46) (4.20) (4.01) (1.45) (2.2) .85) DW=2.046
3.* Al .887 -.022 .001 ~-.004 .074 . 140 .383/.0172
(5.2) (.42) (.017) (.070) (.79) (1.54) DW=2.003
4.* AC . 345 -.062 -.139 .123 -.203 .101 . 055 .421/.0099
(2.35) (2.06) (3.39) (3.67) (1.65) (2.0) .73) DW=2.019
5. Al . 427 -.275 .012 . 048 .199 .064 .426/.011
[-69.4] (1.55) (3.03) (.855) (1.87) (1.76) (.045) DW=2.048
6. AC .173 .025 -.0181 .0159 -.246 .242 .038 .417/.0063
[-69.4] (.98) (.46) (2.08) (.97) (2.1) (3.1) .37) DW=2.125
7. Al .851 -.0018 .047 -.045 .031 .222 .439/.021
[(70.1-] (5.2) (.025) (.84) (.79) (.23) (1.7) DW=2.032
8. AC .273 -.081 -.116 .114 -.207 . 097 . 015 .429/7.012
[70.1-1 (1.83) (1.97) (3.9) (3.9) (1.3) (.13) .13) DW=2.023
9.* Al .399 -.275 .039 .027 .195 .025 .422/.011
[-69.4] (1.3) (2.99) (.35) (.29) (1.7) (.16) DW=2.040
10.* AC .293 .028 -.121 .095 -.242 .173 .067 .474/.0060
(-69.4] (1.6) (.55) (1.97) (1.93) (2.2) (2.05) .66) DW=2.023
11.* Al .875 .002 .018 -.024 .022 .219 .427/.012
[70.1-1 (4.9) (.025) (.18) (.29) (.16) (1.7) DW=2.030
12.* AC .310 -.078 -.171 .156 -.204 .081 .431/.012
[70.1-1 (2.0) (1.9) (3.0) (3.3) (1.2) (1.1) DW=2.011
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period, the coefficient of I_1 explaining Al is significant. However, one can still
accept the null hypothesis of no cointegrating relation between I and Y because the 957%
confidence interval for the ratio of the coefficient of Y._1 to the coefficient of I_l is
-.301 to .018, including the value zero. Second, in equation 6 for AC in the first
period, the coefficient for C_1 and Y_l are smaller than in equation 2 for the full
sample and in equation 8 .f or the second half of the sample. All other conclusions
remain valid. Equations 9* to 12* are estimated by assuming stationarity. They are
very similar to the corresponding equations 5 to 8, except for the somewhat larger (in
absolute value) point estimates of the coefficients of C_1 and Y_1 in equations 10 and
12, as compared with the corresponding equations 6 and 8. Note the larger standard
deviations s of the residuals of the equations for the later half of the sample as one
would expec;t. The "t" ratios presented are based on the standard errors of the coeffi-
cients without adjusting for heteroskedasticity because they are perhaps more inter-
esting to examine for the purpose of comparing the estmation methods with and without
the presence of unit roots.

We have replaced the three variables by their logarithms and repeated the analysis
of Table 4 (except for omitting the AlnC_2 variable in the consumption equations). For
the entire period 1951.4-1989.4, the smallest -Tln(l-A3) is 12.497, leading to rejection
of one zero root at levels below 1% (11.576 being the 17 critical value). One can con-
clude that the data are stationary. For the subperiods 1951.4~1969.4 and 1970.1-1989.4,
-Tln(l-ks)-are 6.264 and 10.846 respectively, leading to accepting one zero root at the
107 level for the first subperiod and rejecting one zero root at about the 2% level for
the second subperiod. If we assume one unit root for comparison with the results of
Table 4, we obtain the non-starred equations of Table 5. For Table 5 all conclusions
stated in the last paragraph remain valid, except for the more homogeneous standard
~errors of the regressions for the two subperiods as expected. Using GNP in 1982 dollars

for the entire period, -Tln(l-A3) becomes 3.223, accepting one zero root, but two zero
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Table 5

Thé Multiplier-Accelerator Model: Quarterly Data in Logs 1951.1-1989.4

One Unit Root;

* for No Unit Root

Dependent Coefficient of 5
Variable AlnY lnI_1 lnC_1 lnY_1 AlnI_1 AlnC_1 AlnY_1 R7/s
1. Alnl 4.37 -.079 -.104 .178 .146 .495 -402/.0435
(4.16) (1.37) (.37) (.61) (1.7) (1.1) DW=2.002
2. AlnC .430 -.0046 -.113 117 -.179 . 168 .365/.0058
(2.24) (.57) (3.02) (3.02) (1.64) (2.95) DW=1.982
3.* Alnl 4.41 -.078 -.125 .197 .146 .486 .398/.0438
(4.03) (1.34) (.38) (.60) (1.7) (1.05) DW=2.003
4.*% AlnC .509  -.0027 .144 .143 -.201 .159 .347/.0059
(2.50) (.32) (3.26) (3.3) (1.79) (2.73) DW=1.953
5. AlnI 3.34 -.211 .111 .125 .193 .171 -462/.0420
[-69.4] (1.86) (2.13) (.34) (.37) (1.79) (.21) DW=2.032
6. AlInC .179. .0082 -.072 .068 -.234 . 260 .363/.0055
[-69.4] (.68) (.60) (1.69) (1.53) (1.86) (2.58) DW=2.056
7. Alnl 4.58 -.0080 .0032  -.0005 .074 1.15 .404/.0445
[70.1-] (4.86) (.11) (.012) (.002) (.57) (1.73) DW=2.003
8. AlnC .455 -.01S -.116 .138 -.220 .161 .409/.0060
[70.1-1] (2.59) (1.54) (3.31) (3.22) (1.45) (1.87) DW=2.014
9.* Alnl 3.64 ~-.210 -.079 . 306 .199 .0064  .456/.0425
(-69.4] (1.88) (2.10) (.15) (.58) (1.80) (.007) DW=2.042
10.* AlnC 271 .009 -.126 119 -.242 .220 .423/.0053
[-69.4] (1.01) (.67) (1.88) (1.80) (2.00) (2.10) DW=1.995
11.* AlnI 4.64 -.0054 -.060 .058 .070 1.14 .397/.0451 |
[70.1-] (4.56) (.70) (.13) (.12) (.52) (1.69) DW=2.003
12.* AlnC - .507 -.014 0.189 .206 0.213 .132 .406/.0060
[70.1-] (2.81) (1.36) (.308) (.3.23) (1.40) (1.48) DW=2.006
GNP82 for Y
13. AlnlI 6.03 -.088 -.156 .248 .059 -.690 .575/.0367
(4.51) (1.48) (.90) (1.30) (.69) (1.0) DW=2.115
14. AlnC 477  -.0052 -.0037 .0091 -.244 .152 .437/.0054
(2.19) (.60) (.14) (.32) (2.63) (1.7) DW=2.024
15.* Alnl 6.24 -.087 -.207 .304 .055 -.756, .583/.0377
(4.36) (1.43) (1.03) (1.37) (.63) (1.1) DW=2.115
16.* AlnC .508 -.0051 -.010 .016 -.248 .143 .434/.0054
(2.22) (.58) (.35) (.50) (2.65) (1.55) DW=2.021
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roots are strongly rejected. The results are given in equations 13 to 16 of Table 5,
supporting all previous conclusions except for the lack of an equilibrium relation

between consumption and GNP.

VI. CONCLUSIONS

In this paper I set out to reexamine £he aggregate investment and consumption func-
tions which were estimated a quarter of a century ago in Chow (1967) using annual data
from 1929 to 1963. The investment function stood up extremely well against new data of
twenty-six years. The acceleration principle has received very strong additional sup-
port. The consumption f unétion has been partly reconfirmed concerning the short-run
effect of income, but I have now found the existence of a long-run equilibrium relation
between consumption and income which was ruled out by the previous formulation in first
differences of the two variables. I happened to be correct in imposing a unit root in
the multiplier-accelerator model, but I was incorrect in placing it entirely in the
consumption func£ion. I did not know how to impose one unit root in a model of three
equations, to be shared by them.

The major empirical findings of this paper are the six points stated in the last
paragraph of section IV after the model was estimated by annual observations. The six
points regarding the acceleration principle, the long-run income-consumption relation,
the similarity of standard errors in the three-equation models assuming stationarity and
nonstationafity with the presence of one unit root, the possible existence of one but
not two unit roots in the model the validity of the simultaneous-equations approach to
econometric modelling and the caution r‘eduired_ in single-equation formulations of the
error-correction mechanism are all valid for models estimated by quarterly data, and

separately for two subsamples each of twenty years. Any theory of aggregate consumption
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has to explain the short-run and long-run effects of income as formulated and estimated

here.

Concerning the two-step procedure here recommended to estimate and test linear
simultaneous equations with unit roots, three comments shoud be made. First, it is
possible to find the standard errors of the estimated coefficients in the second step,
having imposed the rank of ¢ in (IS) to achieve stationarity, to be similar to the stan-
dard errors of the estimates based on stationarity in the first place because both are
derived under the assumption of a stationary model. Second, if an econometrician does
not take the first step and ‘tries to derive the asymptotic distribution of the estimates
of & assuming the true rank of & to be less than full, she will obtain a different set
of standard errors based on nonstandard distributions involving integrals of Wiener
processes. ﬁird, if one insists on the existence of some unit roots as the null hypo-
thesis, there is a choice between a one-step procedure and the two-step procedure. By
imposing the rank of ¢ in (15), the two-step procedure can produce different point esti-
mates for the coefficients from those obtained without the rank restriction, as illus-
trated by the coefficients of C_1 and Y_1 in the consumption functions of Table 4 and by
the coefficients of lnC_1 and lnY_i in the consumption functions of Table 5, but the
asymptotic distribution of these estimates is normal and standard. The two-step proce-
dure is much easier to use. It is subject to possible pretest bias as the Box and

Jenkins (1970) differencing procedure and many other currently practiced econometric

procedures are.
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