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Abstract

This paper shows a convenient way to test whether instrumental
variables are correlated with indiyidual effects in a panel data set.
It shows that the correlated fixed effects specification tests developed
by Hausman and Taylor (1981) extend in an analogous way to panel data
sets with endogenous right hand side variables. 1In the panel data
context, there are different sets of instrumental variables that can be
used to construct the test. Asymptotically, we show that the test
typically is more efficient if an incomplete set of instruments is used.
However, in small samples one is likely to do better using the complete
set of instruments. Simulation results demonstrate the likely gains for
different assumptions about the degree of variance in the data across

observations relative to across time.

KEYWORDS: Econometrics, Panel Data, Instrumental Variables, Specifi-

cation Testing.






I. Introduction

The use of panel data sets has increased dramatically since the
ploneering research of Mundlak (1961), Nerlove (1971) and Maddala (1971),
among others. An important benefit of pooled cross section time series data is
the possibiiity of controlling for unobservable individual specific effects.
If these unobserved variables are correlated with right hand side variables in
the regression, ordinary least squares (OLS) estimates of the coefficients
will be biased and inconsistent. In the presence of correlated individual
effects, first difference or fixed effects (within) estimators yield
consistent estimates of the regression parameters. However consistency comes
at a cost: the between groups information is ignored which may substantially
reduce the efficiency of the estimates. As a result, a good deal of research
has been undertaken to derive tests to detect this possible correlation (e.g.
Hausman (1978), Hausman and faylor (1981), Chamberlain (1983), and Holtz-Eakin
(1988)).

However, none of the tests allow for the possibility that some of the
right hand side variables are correlated with the random error (aside from the
individual effect). This is perhaps not surprising. Little work has been
done on estimation of panel data models in a simultaneous system. Schmidt and
Wyhowski (1988) review the limited literature and provide results which extend
the results from the single equation literature in a limited information
context (2SLS) and a full information context (3SLS). They do not discuss the
issue of specification testing in the context of instrumental variable
estimation.

Below, I extend the results of Hausman (1978) and Hausman and Taylor
(1981) to the case where right hand side variables are assumed to be
endogenous (specifically, correlated with the time varying component of the
error structure). It turns out that the IV analogous specification tests for
correlated fixed effects given in Hausman and Taylor (1981) are applicable in
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this context. However, it is important to specify the instrument set
appropriately for the specification test. I then consider the small sample
properties of the test statistic under different assumptions about the quality.
of the inst;ument and the degree of correlation of the fixed effects and the
instrument. I show that asymptotically the quality of the instrumental
variable (in the sense of its correlation with the endogenous right hand side
variables) does not affect the power of the test. The power is a function of
the degree to which the null hypothesis is violated and the information
contained in the instrument (its variance). However, the small sample
properties of the test will depend on the quality of the instrument. This
will be true even in relatively large data sets. Perhaps surprisingly, the
more powerful test statistic uses an inefficient estimator. Asymptotically,
while the variance used to construct the test statistic will be greater than
the variance associated with using the efficient estimator, its asymptotic
bias will also be greater as the null hypothesis of no correlation is
violated. The increase in bias more than offsets the increase in variance
thereby leading to a more powerf%} test statistic.

The degree to which the test statistic using an inefficient estimator is
an improvement over the statistic using the efficient estimator depends on the
relative amounts of the variance of the explanatory variables and the
instruments which is due to variation across individuals versus across time
(tﬁe "between" versus the "within" variation). If the ratio of the variancé
components is the same for the explanatory variables and the instruments, then
the two test statistics are equally powerful. However, in small samples the

test statistic using the more efficient estimator performs better as we show

below.

The next section shows that the test statistic as suggested by Hausman
and Taylor (1981) carries over to the 2SLS case. We discués the appropriate
construction of the instrument set given various assumptions about the type of
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correlation between the instruments and the individual effects The following
section presents results from a simple Monte Carlo experiment. Finally there
is a brief conclusion which considers other issues specific to specification

testing and estimation in a limited information context.

II. The Model and Test
The model under consideration is
(1) Y=X8+ a@eT + €
where Y is an NT x 1 vector, X an NT x k matrix, « an N x 1 vector of
individual effects (ai iid with mean 0 and variance a;) and € an iid random
vector with mean 0 and covariance matrix aiINT. The vector e isaTx1

vector of ones. The data are stacked by individuals over time. That is, Y’

.th

(Y Y; ce Y;] where Y is a T x 1 vector of observations on the i
1 .

1
individual. This equation is part of a simultaneous system and by assumption
some columns of X are correlated with e. It is assumed that some (possibly
all) columns of X are also correlated with the individual effects. ‘There is a
set of instruments Z, a matrix NT x L, L=k, wvalid in the sense that Z is
correlated with X but uncorrelated with ¢. It is assumed that columns of X
which are uncorrelated with ¢ are contained in Z. The pPresent purpose is to
test whether Z is correlated with the fixed effects. 1In the literature, the
correlation has been assumed to be of two types and we construct two sets of

hypotheses to test. Below we discuss the assumptions underlying the two sets

of hypotheses and their relationship. Specifically, we test:

N
H: Plim( £ Z] a/N) =
N0 i=]
1 N
H,: Plin( £ 2/ a /N} » 0
N>® j=1

or



N
H: Plim{ T Z’ t(:\:‘/N} = 0
H N0 i=p 0t Vot
N
H: Plim{ £ Z” « /N) = 0O
A it i
N=© i=1

holding T fixed, where ZL is the average over time of the observations of
Zitl. Givenbthe loss of information resulting from the use of the within or
first difference estimators to eliminate correlated fixed effects, there is a
large gain possible if we can assume the null hypothesis. 1In this case, the

GLS-IV estimator will be an improvement.

Letting u = a®e + €, then

N 2
(2) E(uu’) Q Taan + aeINT
or
(2%) ‘ E(uw’ ) = o°P + 0°Q
1 v € v

where o° = To? + az, P =(I®ee’)/TandQ =1 - P . For future reference,
1 a € v N TT v v

we use the fact that 0 /2 - a:Pv + o;le and denote 0 '/? by H. va

replaces the observations for each column of X by the average of the

observations for each individual over time. QQX replaces the observations by

the deviations from the time averages.

We wish to show that the Hausman type specification test comparing the
GLS-1IV estimator with the fixed effects (within) estimator can be constructed
using the within and the between estimators. The essential step is to show
that the GLS-1IV estimator of B can be written as a matrix weighted average of
within and between estimators. Define the operator A" as the projection
operator: A" = AA’A) A, A" is the projection of the columns of X onto the

space spanned by the columns of A. Given the panel nature of the data, the

GLS estimator of B8 accounts for the non-spherical error structure of u. If Z

In Schmidt and Wyhowski’s (1988) terminology, Z is a set of doubly

exogenous variables under the null hypothesis and singly exogenous under the
alternative,



is a set of variables uncorrelated with ¢, there are different possible
instrument sets that we can use. Following the general approach of Schmidt
and Wyhowski, we consider instrument sets of the form Z = [QVZ,PVB] where‘B is
defined according to the appropriate null hypothesis. The GLS-IV estimator is
given by

A
v

(3) B, = (XW Z7HX) X’ H Z"HY.

It can easily be shown that s A a;z(QvZ)” + a;z(PVB)1r and so

-1
v -2, T -2, n.|.
(4) ﬁGLS = [ae X (sz') X+ o, X (PVB) X]
[a'zx' Q)Y + o (P B)"Y]
€ v 1 v
1f we define the Nxk matrix X = [il i; e i; ]° where ii is the mean of the T

observations on X for the it'h individual (and similarly for B, Y, and Z), we
can rewrite (4) using the fac; that PvB -Be® e Making this substitution
and some simple algebra leads to

~Iv

-1
, -2, T “2%, 837 |
47) ﬂGLS [ae X (QVZ) X + Te "X'B'X ]

[a'zx' Q)™ + To & 1'3"?].
€ v 1

Now the within estimator (ﬂév) follows first from eliminating a from
equation 1:
(5) QY = QX8 + Qe
We premultiply this by zr and, noting that A (QVZ)1r + (PVB)“, obtain
(6) Q2)"Y = (Q2)"%8 + (Q2)"e

and therefore

A

-1
(7 g -[x' Q Z)"x] [x Q Z)"Y] :
W v v
This is simply the 2SLS regression of Q;Y on va using sz as instruments.
The between estimator (ﬂ;v) is similarly derived and is given by
~ -1
(8) p - [x 5°%] [x E"?].

Again, this is simply the 2SLS regression of Y on X using B as instruments.



Defining
-1
(9) A= [a'ZX' (Q2)™X + To %’ B"R] o % (Q2)"x,
€ v 1 € v

then it follows immediately that

A

(10) | 8

v
GLS

“1v “1v
AR+ (1) B

Equation (10) shows that the GLS-IV estimator can be written as a matrix
weighted average of the within IV and the between IV estimators and is the IV
analogy to the result for OLS estimators presented in Maddala (1971).

Under the null hypothesis, ;;; and Bév are consistent estimators of B
with 32; the more efficient estimator while under either alternative from H1

A

A
w o, . w o, . . s
or Hz’ ﬂw is consistent and ﬁms is inconsistent. A Hausman test statistic

of the form

_ ~Iv IV, o, AV STV -1, 01V IV
(11) q, = (B - BV, BB - B
can be constructed. Under the null, q, is distributed as a chi-square
statistic with k degrees of freedom. Simple algebra using equation (10) shows
that q, is equal to to q, where

o v, -1,01tv oI
(12) q, = By - BV, +V)THEY - ).
And we are done. One advantage of q, over q is that the covariance matrix of
the difference between the between and within estimators is easier to compute,
While the Cov(,;Iv - BIV) is equal to V - V if ;Iv is asymptotically
GLS W W GLS GLS

efficient, the estimated difference of the covariance matrices may not be
positive definite in small samples. Moreover, the method used in Hausman
(1978) to show that the covariance of the differences equals the differences

of the covariances cannot necessarily be used as there is no guarantee that

the GLS-IV estimator is asymptotically efficientz. Besides being easier to

Moreover, Amemiya and MaCurdy (1986) (hereafter A-M) show that the
Hausman-Taylor GLS estimator is not asymptotically efficient for a particular
class of instrument sets considered in the A-M paper.



BN

. . oIV v
compute than 9, 9, has the advantage that the covariance matrix of ﬂw - B

B

is guaranteed to be positive definite in small samples.

The result on the equality of the two specification tests is quite
general given instrument sets of the form [QVZ,PVB]. Under the null
hypothesis that the means of the instruments are uncorrelated with the
individual effects (Hl), an obvious choice for B is Z itself. Then Z =
[QVZ,PVZ]. In other words, the instruments Z are used twice: first as
deviations from their time means and then as the time means themselves. This
is essentially the Hausman-Taylor (HT) estimator discussed in Breusch, Mizon,
and Schmidt (1989). With no additional assumptions, Schmidt and Wyhowski
(1988) show that the estimator in equation (3) is the GLS-IV estimator and
additionally can be derived as a generalized method of moments type estimator.

With the additional assumptions embodied in Hz’ a more efficient
estimator is available. If the values of Zit are uncorrelated with the
individual effects for each t, then each of the T NxL matrices Zz’ where Zt =
[Z;t,...,Z;t]’, can be used as instruments for Xt. As a result, more
instruments are available which cannot decrease the efficiency of the GLS-IV

estimator. The estimator in equation 3 only requires that the means of Z be

uncorrelated with the individual effects under the null hypothesis. Under the
null hypothesis that individual values of Z are uncorrelated with the

*
individual effects for all values of t, then the instrument set B = Z

provides more efficient estimates of 8 where

* *
is an N x TL matrix formed by combining the Zis. Note that sz = 0 and PVZ
* ~ *
= Z . Hence, Z = [sz’ Z].

Amemiya and MaCurdy (1986) discuss the implications of the first null
hypothesis in H1 for the null hypothesis in H2 described above. Strictly
speaking, the first assumption is a weaker assumption and-explains why the

: *
GLS-TIV estimator using Z rather than P Z is a more efficient estimator.
v
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However, they note the following fact. In addition to the assumptions
underlying Hl, impose the assumption that our estimator for A continue to be

consistent if we carry out the estimation using any T-1 of the T time periods.

N
That is, assume that Plim{ I Zf ’ai/N} =0, for s = 1,...,T where Zz =
1. - LI

N>© i=1

T%T }: Zit. This set of T assumptions along with the assumption that

t#s
N

Plim{ I Z; ai/N) = 0 implies the set of T assumptions in the second null
N 3=1 ~°

hypothesis. While there may be circumstances in which this second set of T-1
assumptions fails to hold while the assumption under the null hypothesis in H1
holds, it seems more plausible to believe that this is an unusual
case. Therefore from hereon we assume that the assumption underlying H2 are
relevant when considering the null hypothesis. We assume that Z* is the
appropriate set of instruments if the null hypothesis is correct.

This suggests that the approbriate specification test should employ the
more efficient GLS estimator to obtain greater power. However, this will not
turn out to be the case. The next section considers the asymptotic efficiency

for a particular class of data processes to illustrate the issue.

ITIT. Asymptotic Efficiency
We consider data of the following form for the model described in

equation 1:

(13a) Xib - 71X1t.-1 + Yie
(13b) zit - 1ZZit-1 + M
(13c) plim( l——u’n) -2
NT vn
N-®
1
(134) pPlim(—= v’'v) = =
Ny NT v
. 1,
(13e) pllm(ﬁ n’n) Zn
N-0



where ¥ and ¥ are positive definite matrices and ZVW is a non-zero matrix.
4 n

> 1is a kxk matrix, Zn is an LxL matrix and Zun is a kxL matrix. We will
v

occasionally refer to £ and Zz. They equal
X

Z and —E—— Z respectively.
2 v
l-v 1- 'y
1
We assume that n is uncorrelated with e¢. However, it may be correlated with

a, this correlation noted by

. 1,
(14) pllm(T Zta) = Zza
N

where Eza will be an Lx1 zero vector under the null hypothesis and non-zero
otherwise.

This is a particularly simple structure for the data generation process
but it has the appealing property that as y increases from 0O to 1, an
increasing fraction of the variance of the random variable is due to the
variation across individuals.3 Since panel data are often slow moving over
time, the performance of the specification test at high levels of vy is of

considerable interest. We define the between estimator using the means of the

A A

*
instruments as ﬁl and the between estimator using Z as ﬂz. Under the null

hypothesis, the asymptotic covariance of VFﬁﬂ is given by
T2 (22 b - T)

-1
e -
1 (2(a+b)T)

t A
where a = Zyj' and bt - 27:1. The asymptotic covariance matrix for v N ﬂz
s E]

is given by
-1
-1, -1 ’
(16) Vv =g | FBF Z Z Z
2 u T2
Xz zZZ x2z

where F = [a+b -1 a_ +b -1 ..., a+b -1] and B is the TxT matrix
T 1 T-1 2 1T

For example, the between variance for X as a fraction of the total variance

t
equals (2§at-T)/T2 where a= 217:-1‘ This fraction varies between 1/T and 1
s=

as v, increases from 0 to 1.



We consider.local alternatives of the form E: % 0 and VN E: > P < = as
zQx . zQ

N approaches ». Under the null hypothesis, the probability limit (as N > =)
of ﬂwv- ﬂiv is zero and q, is Chi square with k degrees of freedom. Under the
alternative hypothesis, q, is distributed as a non-central chi square random
variable with k degrees of freedom and non-centrality parameter § where §% -
i’Mﬁli, q is the probability limit of Vﬁ(;iv- ;iv) and M is the asymptotic
covariance of Vﬁqz (see Scheffe (1959)). We define ii as q with Bi

A
. v . 4 : . .
substituted for ﬁi (i=1,2) . The asymptotic biases for the two estimators

using the different set of instruments are

_ T2 - ‘a-1 -1
R o DN DNI)
N . Xz 2 Xz Xz 2 zQ

and

W
i

T-FB 1e

o EE[TTUITIET

If 1= 7, it is straightforward to show that Vl- V2 and that &1- &2

leading to the following proposition:

Do not confuse q,, a chi square test statistic with ii, the asymptotic bias

of a chi square statistic.
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Proposition 1: Given the model in equations 13 - 14 and the assumption that

A A

Y.=7_, the two estimators ﬁl and ﬂz are equally efficient asymptotically and
12

the power of the specification test of the hypothesis that the instrumental
variables are uncorrelated with the individual effects is unaffected by the
choice of instrument set.

As 1, T, diverges from zero, the variances and power of the
specification test begins to differ. Since Vl-VZ, is positive definite, it
would appear that the power of the specification test should increase using z"
as the set of instruments. However, it will turn out that il will be also be
greater than iz which will increase the power of the test using the means of Z
as instruments. For 1, > 0, this result is formalized in the following

proposition.

Proposition 2; If 71>O and 72=0, then the power of the test statistic using Z

as instruments is greater than the power using z" as instruments.
Proof: see appendix.

Figure 1 graphs the increase in power of the test statistic using Z as
instruments over Z as instruments for various values of T and 7, for k=L~ 1.
The covariance of Z and a is set equal to half the variance of Z. The graph
depicts the ratio of the power of the two test statistics. A fraction greater
than one indicates that the test statistic using Z as instruments correctly
rejects the null hypothesis more frequently. The graph shows that the two
tests perform significantly differently at high values of 1, Furthermore,
the tests do not quickly converge as T increases. For 7, - .8, the test using
Z correctly rejects 19.4% more frequently at T=8 (power is .24 versus .20);
the ratio declines to 12.9% at T=16 (power is .62 versus .55). Even at modest
degrees of correlation across time (e.g. 71-.5), the increase in power is on
the order of 4 to 6% for T between 4 and 8.

We now turn our attention to the case where T, = b and 7, > 0. Some
tedious algebra shows that the asymptotic bias for the test statistic under

the alternative hypothesis is greater when Z is used as the set of

11



instruments. Again, the variance of the between estimator is greater when Z
is used. In this case it is difficult however to show that the power of the
test is greater when Z is used as the instrument set rather than Z*. In the
simple case where k=L=1 a grid search shows that the test statistic using Z is
more powerful than when Z* is used.

The increase in power is more dramatic now as illustrated in figure 2.
Again, K=L=1 and the covariance of Z and a is set equal to half the variance
of Z. as illustrated in figure 2. At 7, = .8 and T = 7, the increase in the
number of rejections is 41% (power equals .14 versus .10) and declines to 26%
at T=16 (power is .33 versus .26). At v, = .9, the test using the mean of the
instruments rejects nearly twice as often as when the instruments for each
time period are used separately. Note that at y = .9 and T = 7, 80% of the
variation in the data occurs across individuals rather than for individuals
across time. It is quite typical for many panel data applications to lose 80%
of the variance in the data when using the fixed effects estimator{

Finally, figure 3 graphs the efficiency gains from using the means of the
instruments for k=L=1 when T=5 and 1, and 7, vary betweenv.l and .9. As
pointed out above, the tests perform equivalently when 7,~7, and the test
using the means of the instruments performs better as the two autocorrelations
move apart. However, the improvement is not dramatic with a maximum
improvement of less than 14%. This raises the issue of the performance of the-

tests in small samples. We turn our attention to this issue in the next

section.

IV, Small Sample Characteristics of the Test
Specification test statistics in general have been criticized for having
low power (e.g. Holly [1982], Newey [1985]). One might expect that the power
of the test would deteriorate further as a result of thehadditional noise from
the instrumenting of variables in X. To consider how well the test works in
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practice, we present results from a Monte Carlo experiment. We consider a
simple model with k=L=1, set ﬂAequal t6 0 in equation 1 and take draws from

a normal distribution for Xit, znﬂ €. and a, each with mean 0. The first
three variables have variance 1 and a has variance 1/T. The covariance of Z
and ¢ is zero while the other covariances vary from experiment to exberiment.
After generating the data, we compute thevwithin and between estimates of 8,
their variances, and the chi-square test (which has 1 degree of freedom).5 We
repeat the process 1000 times for each model.

For the first set of results, we assume that 71-12-0. With these

assumptions, 5% is given by the formula

2 2.2 T-1
(19) §° = YT [ 1 ]
The asymptotic power of the test increases with more time periods, and with a
higher correlation between the time means of the instruments and the
individual effects. Note that the tests should perform equally well based on

the results from the last section.

The first results are from a simulation with N-ZOO and T=5. va(xnfein)
= 0.4 and . and o_, vary from 0 to 0.06 and 0.1 to 0.7 respectively. bTable
1 shows the fraction of times the null hypothesis is rejected due to q, in
equation 12 exceeding the 5% critical value for a Chi-square random variable
with 1 degree of freedom. The top panel of table 1 presents results using the
mean of Z as the instrument set while the bottom panel uses the set 2". For
future reference, call the first test statistic ¢, and the second statistic
c,- The first column in each panel shows the computed size of the test. For

each of the four simulations ranging axz from 0.1 to 0.7, the size of the test

using c, is higher and closer to the theoretical level of 5%. However,

Equivalently, we could take the square root of the statistic and use the
standard normal distribution. Constructing the experiment with one degree of
freedom allows us to avoid issues of direction in defining the local
alternatives which affect the power of the test.

13



neither of these tests has a computed size near 5% at very low levels of
correlation between Z and X. This is suggestive of the results of Nelson and
Startz (1990a, 1990b) who have shown that the distribution of IV estimators
diverges dramatically from the asymptotic distribution in the presence of poor
instrumenté.

The remaining columns of the two panels in table 1 show the power of the
test in the face of increasing correlation of Z with a. 1In every instance,
the power of‘c2 is higher than that of c,- The increase in power can be
significant, particularly with poor instruments. These results are striking
given the number of individuals in the data set (N=200) as well as the fact
that c, has the same distribution asymptotically as c . Clearly, the main
advantage of c, over clAlies in its perférmance in the presence of poor
instruments.

Whether this is of any practical significance depends on the degree to
which the two test statistics give conflicting answers about the null
hypothesis. Table 2 presents this information. For each simulation this
table indicates the fraction of times either c1 or c2 (but not both) is
significantly different from zero (bottom number) and the fraction of times c,
1s significantly different from zero conditional on ¢, mot being significant
at the 5% level (top number). For example, when o, = 0.3 and O ™ 0.04, the
tests give conflicting results 13.5% of the time. Conditional on the tests
disagreeing, cz'gave the correct result 72.6% of the time.

This table shows that when the test statistics disagree, it is much more
likely that c, gives the correct result, assuming O ™ 0. It is true that in
the case when the null hypothesis is true, c, is more likely to reject this
hypothesis; however, this has the effect of making the size closer to the
theoretical size of the test. Furthermore, the tests-can conflict in a great
many cases - as much as 22% of the time. Conditional on oa” 0, the average
fraction of times the test statistics give conflicting answers is slightly

14



more than 8% of the time. In those cases, c, will give the correct answer
over 80% of the time.

Why does < perform so badly compared to cz? There are three possible
reasons: the distributions of the estimator themselves (both within and
between), the moment matrices required to comstruct the variance of the
estimators and the estimated variance of the error term constructed from the
residuals. Table 3 presents results for varying qualities of instruments
(axz) for the case where the null hypothesis is correct. The first panel of
the table presents information on the between estimators using Z and z" as the
instrument sets respectively. A subscript of 1 indicates the between
estimator using Z as the instrument set while a subscript of 2 indicates the
between estimator using Z'. The second column shows the theoretical variance
of ; for different values of o . The theoretical variance of the error term

A

(02) is 0.40. Columns 3 and 4 show the sample variance of B8 from the

simulation’s 1000 replications. Except for the case where o =.1, the sample
Xz
A

variances are close to the true variance. However ﬂl has an extremely
dispersed distribution in the presence of a poor IV. While not reported, the

sample means of the estimators correspond fairly well to their theoretical
A

value of zero. The estimated variance of ﬂz and of the residual variance is
less sensitive to the quality of the instrument than in the case of estimators

using Z as the instrument set. For all values of o the estimated variance
Xz

A

of ﬂl tends to be too large, thereby contributing to the poor power

characteristics of c,.
This is confirmed in the second part of the table where results for the
fixed effects estimator are presented. Column 2 gives the asymptotic variance

of Bw ; the variance of the error term equals 1 in the limit. The sample

A
variances of B are close to the true variance for reasonably good instruments

though there is greater dispersion for ¢ = 0.1. The estimated variance of 8
X2z

as well as the estimated variance of the error term are very close to the true
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variances for o > 0.1, suggesting that the problem with c in cases where
Xz

o> 0.1 is with the between estimator rather than the within.

To give a sense of how quickly the asymptotic results hold, we repeated
the experiment with N=1000 and T=5. Tables 4 and 5 give the essential
results. In table 4, we report the fraction of null hypothesis rejections as
o increases from .05 to .20 and as o, ranges from 0 to .03. With
moderately good instruments (an .20) the distributions of c, and c, look
very similar. The actual size of the tests corresponds closely to the
theoretical size and the computed powers of the two tests are quite similar.
It continues to be the case though that c, has greater power in all cases than
< although the differences become quite small as o . increases. Both test
statistics perform badly with very poor instruments as would be expected. The
statistic c, continues to be somewhat too conservative a test at low levels of
o, (i.e. size too small),.

Table 5 shows that the two tests, c and C,» continue to give conflicting
results in roughly 10% of the cases (conditional on the alternative
hypothesis)." In those cases, c, correctly identifies the positive correlation

between Z and a while c, does not anywhere from 53 to 85% of the time.

Clearly one should not assume in panel data with instrumental variables that

1000 equals infinity.

The next set of results assumes that T, - 0.9 and 7, = 0. Recall that
this implies that 80% of the variance in X is lost when the fixed effects
estimator is used. In all other respects, the model is the same as in the
first experiment. Table 6 shows the power of the two test statistics. The
clear advantage of c, over c, is evident here. While both test statistics
have the correct size at moderate levels of correlation between Z and X, the
power of c, is greater than the power of c, in every case conditional on the
alternative. More significantly, table 7 shows that < is more likely to
detect correctly correlations between the instruments and the individual
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effects when the two test statistics give conflicting results for a 95% level
significance test. While the two statistics are like likely to give
conflicting results on average 9% of the time, c correctly detects the
correlation in the cases where it does in fact occur some 89% of the time.
There is a clear advantage to using the more powerful test statistic in this
case,

In most data applications, it is likely to be the case that both the
explanatory variables (Xs) and the instruments (Zs) are likely to be slow
moving data over time. The asymptotic theory says that the tests are
equivalent (or nearly so) in this case. The final set of results tests
whether this is in fact the case for small samples. The last experiment is
repeated with the additional assumption that v, =, = 0.9. Results are
presented in tables 8 and 9. As is the case in the experiment when 1, and 7,
both equal zero, there is a clear advantage to using the instrument set Z
rather than the means of the instruments. The actual péwer of the test is
greater and the fraction of cases in which c, correctly rejects the null
hypothesis when ¢, fails to reject is .85. The two tests give conflicting
results 16% of the time.

The results from this set of simulations can be summarized as follows.
If the data exhibit the same relative degree of variation within individuals
over time (in the sense of the value of v) then the two test statistics c, and
¢, are asymptotically equivalent but in small samples c, can outperform c -
Where the variation between and within is different for the instruments than
the endogenous right hand side variables, than c, should be employed. In
large samples c, should always be employed since it can never be less

efficient than c,- However, note that N = 1000 may not be large enough.
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V. Conclusion

Testing for correlated individual>effects has become increasingly
important with the greater use of panel data sets. This paper shows that the
type of specification test often employed in models where all the explanatory
variables are considered exogenous carries over in a straight forward manner
to models with endogenous explanatory variables. However greater attention
must be paid to the quality of the instruments used for the explanatory
variables if the actual size and power of the test statistic is to correspond
to the theoretical size and power. Even in reiatively large samples (N =
1000) the true size of the test may be quité a bit smaller than the
theoretical size even if the instruments seem reasonable. Particular caution
should be exercised with small data sets.

While the asymptotic theory suggests comparing the fixed effects
estimator with the between estimator using the means of the instruments, there
may be cases when it is preferable to use the full set of instruments Z .

This is particularly so when the "within" varidtion in the data and’
instruments is a large fraction of the total variénce. Conversely, if the Xs
are slow moving over time but the instruments are not (or vice versa), then

there is a distinct advantage to constructing the specification test using the

less efficient estimator to take advantage of its greater asymptotic bias.
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Appendix

s 2 .
Proof of Proposition 2: Define 61 as the non-centrality parameter for the
test using Z as the instrument set. Similarly, define 6 for the instrument

*
set Z . Let V be the variance of the within estimator. First, we note that

Vl-V2 1s a positive definite matrix, assuming 7, > 0:

-1
(A1) V-V-Ta-[zz Z ][ ! ]>o
! (za) TZa:

by Chebyshev's Inequality.

-1
It is easily shown that V q = V q - (Za./T) E: E: }:

Xz 22 zZQx
A Therefore,

2 2 , )
(A2) 61 - 52 = A (R1 Rz),\

and is greater than zero if R R is positive definite, where R equals
[v; lvv A M1 ~1,2, R -R will be positive definite if RZ - R; is
positive definite. But
-1 -1 -1 -1 -1 -1 -1 -1
A Rla - - -
(A3) R.2 R1 (V2 V1 )VW(V2 V1 ) + (Vé V1 ).
Each of the bracketed terms in A3 is positive definite, so R;I-R;l is positive

definite and 65 S 6?. (]

20



Table 1. Computed Power and Size
o = .4

x€

N = 200 T=25

Cc
1
[+4
zx
0 02 .04 06
1 .005 .036 .156 .304
.3 .040 .154 .529 .863
o .5 .037 .210 .530 .855
= .7 .040 171 .511 .831
C
2
ag
zQ
0 02 .04 06
.1 .023 .078 .237 YA
.3 .055 .208 .592 .881
o .5 .048 . 243 .564 .881
xe .7 .044 .200 .568 .859

These tables present the fraction of rejections of the
null hypothesis that On ™ 0 out of 1000 replications.

The top panel (cl) uses Z as an instrument for X while

*
the bottom panel (cz) uses Z .
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Table 2. Quality of c versus c
o = .4

XE€

N = 200 T=>5

g

zx
0 02 .04 06
.1 1.000 .875 .786 .820
.016 .056 .140 217
3 714 .810 726 667
.035 .084 .135 .057
o .5 .789 .807 .750 846
Xz .019 .057 .064 .039
7 778 921 .951 .938
.009 .038 061 .032

The top number in each cell is the fraction of times
c, is significant and c insignificant at the 5%

level. The bottom number is the fraction of times the
two test statistics give conflicting answers at the 5%
level.
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.10
.30
.50

.70

xz
.10
.30
.50

.70

Table 3. Variance Estimates
g = .4
x€

N=200 T=235

Between Estimators

Sample Estimated
A ) A A A. A A2 /\z
VB V) V) V) V) o o
1.000 2700 .458 2x10° .705 498.8 .459
L1111 .127 .095 .148 .108 .430 .408
.040 .038 .035 .044 .040 .407 .401
.020 .019 .019 .021 .021 .402 .400
Fixed Effects Estimator
Sample  Estimated
V(B) V() V(8) o’
.125 .638 15.58 1.73
.014 .015 .015 1.02
.005 .005 .005 1.01
.003 .003 .003 1.01
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Table 4. Computed Power and Size
c = .4

xX€

N=1000 T =5

za
0 01 .02 03
.05 .006 .050° .170 .326
.10 .026 .177 .537 .786
.15 .034 .226 .578 .897
.20 .043 .203 .605 .920
c
2
o
zx
0 01 .02 03
.05 .025 .091 .246 b4
.10 .050 .219 .546 .832
.15 .052 .255 .612 .907
.20 .050 .224 .639 .923

These tables present the fraction of rejections of the
null hypothesis that ¢ o« 0 out of 1000 replications.
z

The top panel (cl) uses Z as an instrument for X while

*
the bottom panel (cz) uses Z .
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Table 5. Quality of c Vversus c,

o = .4
X€

N=1000 T =>5

zx

0 01 .02 03
.05  .913 .847 .779 .831
.023 .059 .136 .178
.10 .929 .719 .534 .698
.028 .096 .131 .116

g .
1 .15 .821 .663 .639 .609
.028 .089 122 .046
.20 .652 .698 .718 .537
.023 .053 .078 .041

The top number in each cell is the fraction of times
c, is significant and c, insignificant at the 5%

level. The bottom number is the fraction of times the
two test statistics give conflicting answers at the 5%
level,
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Xz

Table 6. Computed Power and Size

N =200 T=5 5 =09

Xz

a
za
0 06 .12 18
1 .002 .007 .021 .023
3 .026 .124 .310 .362
.5 042 .256 .514 .715
.7 .043 .328 .813 .942
C
2
ag
2z
0 06 .12 18
.1 .003 .005 .012 .011
.3 .040 .101 242 .261
.5 .058 .191 421 .639
.7 .046 .259 .608 .791

These tables present the fraction of rejections of the
null hypothesis that O™ 0 out of 1000 replications.

The top panel (cl) uses Z as an instrument for X while
the bottom panel (cz) uses Z*.
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Table 7. Quality of c_ versus <,

1
N = 200 T=25 v, <= 0.9

ag
zQ
0 06 .12 18
.1 .667 .333 .091 .000
.003 .006 .011 .012
.3 .792 .298 .041 .000
.024 .057 .074 .061
o
1.5 .654 .099 .021 .298
.026 .081 .097 .188
.7 .571 .063 .023 .048
.021 .079 .215 .167

The top number in each cell is the fraction of times
c, is significant and c, insignificant at the 5%

level. The bottom number is the fraction of times the
two test statistics give conflicting answers at the 5%
level.
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Table 8. Computed Power and Size
N = 200 T=25 L 0.9

g
zQ
0 06 .12 18
1 .001 .008 .019 .022
.3 .018 071 147 .203
.5 .022 .187 VA .489
7 .021 .302 .733 .799
[o]
2
g
f{e
0 06 .12 18
1 .010 .013 .037 .053
.3 .039 .163 .321 .369
.5 .046 .306 .654 .718
.7 .041 422 .838 .906

These tables present the fraction of rejections of the -
null hypothesis that o™ 0 out of 1000 replications.

The top panel (cl) uses Z as an instrument for X while

*
the bottom panel (cz) uses Z .
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Table 9. Quality of c versus c

N =200 T=5 ¥, =7, =0.9

1 2
g
zQ
0 06 .12 18
.1 1.000 .778 .909 .833
.009 .009 .022 .048
.3 .839 .896 .901 .881
.031 .115 .212 .218
g
21 .5 .750 .837 .879 .893
.048 .178 .281 .291
.7 .794 .773 .768 .855
.034 .216 .194 .152

The top number in each cell is the fraction of times
c, is significant and c, insignificant at the 5%

level. The bottom number is the fraction of times the

two test statistics give conflicting answers at the 5%
level.
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Figure 1. Power Ratio of ¢, to Co




Figure 2. Power Ratio of ¢, to Co
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