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ABSTRACT

This study considers testing for a unit root in a time series characterized by a
structural change in its mean level. The analysis is in the spirit of Perron (1990a) who
showed that the existence of such a shift in a stationary time series biases the usual tests
for a unit root towards non-rejection. The approach is, however, different given that we
suppose the date of the change to be unknown. The statistic of interest is then the minimal
t—statistic over all possible break points in regressions similar to those proposed in Perron
(1990a). We derive and tabulate the asymptotic distributions of interest. However, most of
the emphasis is given to the tabulation of finite sample critical values using simulation
experiments. Particular attention is given to the effect, on the finite sample critical values,
of various procedures to select the appropriate order of the estimated autoregressions. We
apply our procedure to analyze the issue of purchasing power parity between the US and
the UK, and also between the US and Finland whose real exchange rates are characterized
by apparent shifts in level when using particular price indices.
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1. INTRODUCTION.

Testing for the presence of a unit root in a time series of data has become a topic of
great concern to economists. Since the seminal work of Nelson and Plosser (1982), the view
that most macroeconomic variables are best construed as exhibiting some kind of stochastic
nonstationarity has become prevalent. The unit root hypothesis has far reaching
implications with respect to both economic theory and the interpretation of empirical
evidence. Indeed, under the unit root hypothesis random shocks have a permanent effect on
the system, i.e. fluctuations are not transitory.

To illustrate these implications, consider the issue raised by the Purchasing Power
Parity (PPP) hypothesis. A mild version of this hypothesis asserts that, given two
countries, movements in the nominal exchange rate and movements in their respective
price indices adjust over time such as to leave a constant relative purchasing power
between the two countries (see, e.g., Dornbusch (1988)). In statistical terms, this
hypothesis implies that fluctuations in the real exchange rate between any two given
countries are stationary, i.e. that the shocks to this relation have temporary effects. On the
other hand, a sufficient condition for a violation of PPP is that the real exchange rate is
characterized by the presence of a unit root. In this case, shocks have permanent effects
and there is no tendency to return to a stable value. This implication has been used by
many authors to test the PPP hypothesis (e.g., Enders (1988, 1989), Corbae and Ouliaris
(1988) and Taylor and McMahon (1988)). In this framework, failure to reject the null
hypothesis of a unit root is taken as evidence against PPP.

In a recent study, Dornbusch and Vogelsang (1990) provide an empirical analysis of
this issue using annual data over a long period. The analysis is performed with the real
exchange rate between the US and many countries using (when possible) two price indices,
a Consumer Price Index (CPI) and a GNP (or GDP) Deflator. Unlike many recent studies,
the unit root hypothesis for the real exchange rate is usually rejected. This rejection can be
explained by the higher power of the tests when a long 'spa.n of data is used (see Perron
(1990b)). However, in some instances the unit root is rejected with one price index but not

the other.

To illustrate the issue, consider first Figure 1 which presents a graph of the real
exchange rate between the US and the UK. Panel A is the real exchange rate based on the
CPI, and Panel B is a similar series based on the GNP deflator. A standard Dickey—Fuller
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(1979) test applied to the GNP deflator-based series rejects the unit root hypothesis at a
high significance level (t-statistic of -3.23 with 8 lags of first—differences of the data
added) . However, the same test applied to the CPI-based measure implies a non—rejection
(t-—statistics of —1.59 with 4 additional lags). As can be seen from the graph, the CPI-based
measure appears to exhibit a permanent change in level at some point between 1940 and
1950. Such is not the case with the GNP Deflator-based series. Figure 2 presents a similar
example using the real exchange rate between the US and Finland 2. Here, the opposite
result holds. The unit root is easily rejected using the CPI-based measure (t-statistic of
—5.74 with 1 lag) but not with the GDP-based measure (t-statistic of — 1.62 with 2 lags).
As seen from the graph, the GDP based measure appears to exhibit a permanent decrease
in level after 1940. ‘

In the examples depicted above, the non-rejection of the unit root hypothesis is
associated with an apparent permanent change in the level of the series. Such issues have
recently been analyzed by Perron (1990a). In that paper it was shown that if a series is
characterized by stationary fluctuations with a mean that exhibit a one—time permanent
change in level, the usual tests for a unit root are biased towards non-rejection. Perron
(1990a) also proposed a class of statistics to test the unit root hypothesis allowing for the
possible presence of a one-time change in mean. The distribution theory underlying the
derivation of the critical values assumed that the date of the change in mean was
exogenous (or uncorrelated with the data). In the examples discussed above, this
assumption appears inappropriate as it is difficult to single out any major exogenous event
that could have caused the change in mean for one particular version of the real exchange
rate measure while not for the other. It appears more plausible to view the possible change
in mean as occurring at an unknown date 3. The distribution theory underlying the unit root
test in this case is, however, different. '

The aim of this paper is to provide a class of statistics to test for the unit root
hypothesis allowing for a possible change in the level of the series occurring at an unknown
date. The models considered are similar to those in Perron (1990a), namely an "additive
outlier model", appropriate when the change in level is sudden, and an "innovational
outlier model", appropriate when the change in level occurs gradually. The class of
statistics considered is similar to those in Banerjee, Lumsdaine and Stock (1990), Zivot and
Andrews (1990) and Perron (1990c). They are based on the minimal value, over all possible
break points, of the t-statistic on the sum of the autoregressive coefficients in the
appropriate augmented autoregression . We also consider a class of statistics based on the
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same t-statistic but now evaluated at the break point that yields the lowest (or highest)
t—statistic on the coefficient associated with the change in mean. This permits imposing the
mild a priori imposition of a one-sided change in mean and allows tests with possibly
higher power.

Though we derive the asymptotic distribution of the statistics introduced, we put
more emphasis on the finite sample distribution obtained using simulation experiments. In
this context, we provide an extensive analysis of the effects of different procedures to select
the order of the appropriate autoregression on the finite sample critical values. We consider
the following procedures for selecting this truncation lag parameter : a) fixed , b) chosen
according to a significance test on the last included lag (given a prespecified maximum) , c)
chosen according to an F-test on additional lags (up to some prespecified maximum) , and
d) chosen to minimize the relevant t-statistic for testing the unit root hypothesis. In each
case, we present tabulated critical values for both the "additive outlier model" and the
"innovational outlier model".

The plan of the paper is as follows. Section 2 discusses the class of models considered
and the test statistics analyzed. The asymptotic distribution of the statistics under the null
hypothesis of a unit root process is presented in Section 3. The finite sample critical values
and the simulation experiments used to obtain them are discussed in Section 4. In Section
5, we apply our procedure to the two real exchange rate examples discussed previously.
Section 6 provides a possible explanation and interpretation for the apparent change in
mean in these series. Finally, Section 7 contains concluding comments and an appendix
some mathematical derivations.
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2. THE MODELS AND TEST STATISTICS.

We briefly discuss, in this section, the models and statistical procedures involved in
testing for a unit root allowing for the possibility of a change in the level of the series. The
reader is referred to Perron (1989, 1990a) for a more detailed discussion and interpretation.
Throughout this paper, we assume that there is at most one change in the mean of the
trend function. We denote the date of break, should it occur, by TB with 1 < TB <T

where T is the sample size.

The first model is labelled, following the literature on time series with outliers (e.g.
Tiao (1985)), the "additive outlier model" (AO). In this case, the change is assumed to
take effect instantaneously. In particular, the effect of the change on the level of the series
of interest {yt}, say, does not depend on the dynamics exhibited by the correlation

structure of {yt}' Under the null hypothesis of a unit root, this model can be parameterized

- as:
y, = 6D(TB), +y, ; + W, , (t=2,..,T) (1)

where D(TB)t =1ift = Tg + 1 and 0 otherwise. Here, and throughout this paper, v, =
y(1) is either a fixed constant or a random variable. The sequence of errors {Wt} is, for

simplicity, specified to be a stationary and invertible ARMA(p, q) process. More
specifically, A*(L)wt = B(L)e, where e, is iid. (0, 0'2) with A*(L) and B(L) being

polynomials in L of order p and q, respectively. The roots of A*(L) and B(L) are assumed
to be strictly outside the unit circle. Under model (1), the mean of the series is y(1) up to
time Ty and y(1) + § afterwards. Under the alternative hypothesis, the series {yt} does

not contain a unit root and can be characterized by the following specification :

y,=c+ U, +v, , (t=2, ..,T) 2)

where DU, = 0 if t < T and 1 otherwise. The sequence of errors {v,} is likewise a
stationary and invertible ARMA(p + 1, q) process of the form A(L)v, = B(L)e,. The mean
of the series is ¢ up to time TB and ¢ + § afterwards. The null hypothesis specified by
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model (1) is a special case of the general specification (2) when ¢ = y(1) and A(L) = (1 -
L)A*(L). Hence, a natural testing strategy is to first remove an estimate of the
deterministic part of the series (¢ + 'yDUt) and to test whether the remaining noise is

characterized by the presence of a unit root. For a fixed value of the break point TB, this

leads to the following two step procedure. First, remove the deterministic part of the series
using the following regression estimated by OLS :

Yy = b+ JDUt + 75, - (t=1,..,T) (3)

The test is then performed using the t-statistic for @ = 1 in the next regression (again
estimated by OLS) :

7, = wD(TB), + of,_, +5i_ A, . +e .  (t=k+2,.,T) (4)

The reason for including the dummy variable D(TB) ; in the second step regression will be

discussed in more detail in Section 3. It is needed to ensure that the t—statistic on a in (4)
has the same asymptotic distribution as in the "innovational outlier model". Note in
particular that the asymptotic distribution is different if this regressor is omitted 4. This
testing strategy follows the method of Dickey and Fuller (1979) and Said and Dickey
(1984) by approximating ARMA(p, q) processes by AR(k) processes. The method will be
asymptotically valid provided k increases at a controlled rate as T increases (see Said and
Dickey (1984)). We denote the t-statistic for testing a = 1 in regression (4) as
t&(AO,TB,k) where TB is the break date, k is the truncation lag parameter and AO

indicates that we are applying the two step procedure appropriate for the "additive outlier
model". The issues of interest are the specific procedures for choosing Ty and k. We return

to this problem after a discussion of the "innovational outlier model".

Under the "innovational outlier model", the change is supposed to affect the level of
the series {yt} gradually, i.e. there is a transition period. Though, in principle, the dynamic

effect could take any form, a natural and simple way to model such a transition is to
suppose that the economy responds to a "shock" to the trend function (here the change in
mean) in the same way that it reacts to any other shocks. This assumption leads to the
following specification under the null hypothesis of a unit root :



—6—

¥, =¥,_; + AL)(e, + OD(TB),), (t=2 .. T (5)

where Y(L) = A*(L)_lB(L) defines the moving average representation of the noise function
with A*(L) and B(L) as defined in (1). The immediate impact of the change in mean is 4
while the long run impact is given by 9(1)0. Under the alternative hypothesis of stationary
fluctuations, the model is represented by :

v, =a+ ¢(L)(e, + 6DU,), (t=2,..7T) (6)

where ¢(L) = A(L)—IB(L) with A(L) as defined in (2). In the stationary case, the
immediate impact of the change in mean is §, and the long run impact is 6¢(1). Models (5)
and (6) can be nested and approximated by the following finite order autoregressive
model :

y, =4+ DU, + D(TB), + ay, | +5°_cAy,  +e,. (t=k+2,.,T) (1)

Again, this regression is in the spirit of Said and Dickey (1984) where an ARMA(p,q)
model is approximated by a finite order AR(k) model. Under the null hypothesis of a unit
root, a is equal to one (which also implies § = 0). Hence, the appropriate testing strategy is
to use the t—statistic for testing a = 1 when regression (7) is estimated by OLS. We denote
such a t-statistic, obtained with given values of Ty and k, by t,(I0,Tg,k).

For both statistics t &(i,TB,k) (i= AO, 10), the appropriate values of Ty and k are

unknown. Hence, the testing procedure must take account of this fact. Consider first the
modifications induced by the fact that Tp is unknown. As in Banerjee, Lumsdaine and

Stock (1990), Zivot and Andrews (1990) and Perron (1990b), we analyze the behavior of
the statistics t,(i,TRk) = InfTBe(k +2,T)t&(i,TB,k) (i=AO0,I0) where different

specifications about the choice of k will be analyzed. This procedure is in the tradition of
tests for structural change when the date of the change is assumed unknown. Note also that
such a procedure is valid whether or not there is a change under the null hypothesis, i.e. we
do not requite that Ty be identifiable (see, e.g., Davies (1987)).
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We also investigate a second procedure where Ty is chosen such as to minimize the

t—statistic for tésting & = 0 in regression (3) for the AO model and in regression (7) for the
IO model. Given the symmetric nature of the problem, this is also equivalent to analyzing
the behavior of the statistic when TB is chosen to maximize the t-statistic for testing 6 = 0

in each regression. We denote the resulting statistics by t a[(i,TB(ZS),k) (i = AO, I0). This

procedure allows the imposition of the mild a priori restriction of a one—sided change in the
mean level of the series while still treating the date of the break point as unknown. As we
will see in later sections, this may allow a substantial increase in power relative to the
other procedure.

For each of the two procedures for selecting TB, we analyze different ways of selecting

the truncation lag parameter k. The first method follows the theoretical development in
Said and Dickey (1984) by treating k as a fixed function of the sample size T. Given that in
finite samples such a rule does not restrict the choice of k, in practice this procedure simply
specifies a choice of k that is independent of the data, i.e. determined a priori. We denote
the statistic of interest under this procedure by t &(i,j,l—() (i=A0,I0;j= Tﬁ, TB(;S)).

In practice, the truncation lag parameter in an estimated autoregressions is rarely
chosen as a fixed function of the sample size T, i.e. in such a way that the choice of k is
uncorrelated with the data. Rather, it is usually chosen by some test statistic on the
significance of the lagged first—differences of the data. We consider two such procedures.
The first is that used in Perron (1989, 1990a). Here, for any given value of Ty, k is chosen

such that the coefficient on the last included lag of the first—differences of the data is
significant (at some significance level ) and the coefficient on the last included lag in
higher order autoregressions are insignificant up to some a priori specified maximum order
‘kmax, say. We use the fact that the asymptotic distribution of the t—statistic on these
coefficients is standard normal to carry the inference. This procedure is justified in the pure
AR case given that for an AR(p) process ¢, =0foralli> pand ¢, #0 for i = p. Hence,

this procedure is implicitly estimating the true order of the autoregression assuming that
an upper bound is known a priori 5. We denote the resulting statistics by t&(i,j,k(t)) (=

AO,10; j=T§, Ty(8)).
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The other procedure investigated is similar and follows the empirical application in
Said and Dickey (1984) where again an upper bound on the order is assumed to be known.
This procedure uses an "F test" to assess the joint significance of the coefficients on the
lagged first—differences of the data in the estimated autoregressions. The exact procedure is
as follows. First, a maximum value of k, kmax, is specified. For a given value of

TB, the autoregression is estimated with kmax and (kmax — 1) lags. A % one-tailed

F-test is used to assess whether the coefficient on the kmaxth lag is significant, and if so,
the value of k chosen is this maximum value. If not, the model is estimated with (kmax —
2) lags. The lag (kmax - 1) is deemed significant if either the F-test for (kmax — 2) versus
(kmax — 1) lags or the F—test for (kmax — 2) versus kmax lags are judged significant based
on the % critical values of the X2 distribution. The prdcedure is repeated by lowering k
until a rejection of the null hypothesis that additional lags are insignificant occurs or the
lower bound k = 0 is attained. We denote the resulting statistics by ta(i,j,k(F)) (i=

A0,10; j= T, Tg(3)).

The last data dependent method investigated for selecting the order of the
autoregression mimics the way TB is chosen, namely to minimize the t—statistic for testing

a = 1 given some prespecified maximal value kmax. These statistics are formally defined as
t&(i,j,k*) = infke(o,kmax)t&(i’j’k) (i=A0,10;j= TE, TB(6)). This is probably the

procedure which uses the least information possible and presumably leads to tests with
lowest power. It is useful, however, to consider such a case as it will clearly show that by
choosing k to maximize the chance of rejection leads to critical values that are
substantially higher (in absolute value). This suggests that inappropriate inference will be
achieved (possibly even asymptotically) when using the critical values correSponding to the
standard case 8. Nevertheless, given that no simple asymptotic distribution appears
manageable in this case and given the presumably low power associated with this
procedure, we do not recommend it in practice.
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3. THE LIMITING DISTRIBUTION OF THE STATISTICS.

Our strategy in discussing the asymptotic distribution of the statistics of interest is as
follows. We first consider the case where under the null hypothesis the noise function is
uncorrelated ; that is, in the "additive outlier model" (1) we specify A*(L) = B(L) = L
Similarly, in the "innovational outlier model" (5), 9(L) = 1. In this case, both model yields
the same data-generating process, namely :

y, = 0D(TB), + v, ; + ¢ y1)=0 (t=2,..,T), (8)

where e, ~ i.i.d. (0, 02) and where the initial condition is set to 0 for simplicity. In the
Appendix, we derive the limiting distribution of the statistics ta(i,j,k=0) (i=A0,I0;j=
TA, TB(3)) when no lags of the first—differences of the data are included in the

autoregressions, i.e. k = 0 in (4) and (7). The asymptotic distributions derived under these
conditions remain valid if additional correlation is present in the data—generating process
when higher order autoregressions are applied. In the case where k is a fixed function of the
sample size (such that k - oo and k3/T ~+0as T -+ co) we appeal to results of Said and
Dickey (1984) to argue that the limiting distributions remain unchanged. The case where k
is chosen according to a data based method is discussed below.

Consider first the asymptotic distribution of the statistics when Ty is chosen to

minimize the t—statistic for a = 1 in regressions (4) or (7). The first thing to note is that
the same asymptotic distribution applies when considering the "additive" or "innovational"
outlier model. Note, however, that this asymptotic equivalence holds only if the one—time
dummy D(TB), is included in the second step regression (4) in the case of the "additive

outlier model". This is basically due to the fact that these models are similar except for
some transitional effects which do not matter asymptotically.

Suppose first that k is a fixed function of the sample size and assume, as in Said and
Dickey (1984), that k3/T 50 as T » 0o. The following result is proved in the Appendix
using results in Perron (1989, 1990a) and Zivot and Andrews (1990). Let W*(A,r) denote
the projection residual of a standard Wiener process W(r) (defined on the space C(0,1)) on
the subspace generated by the functions {1, du(},r)} where du(A,r) = 0ifr < A and du(),r)
— 1ifr > )\ We then obtain the following asymptotic representation under the null
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hypothesis of a unit root process (either (1) or (5)) :

t5(i,T%,K) = inf, A{ Saw*(ndw() [ f twe(,n)%an 2} (i = AO,10) (9)

where A is a closed subset of the interval (0, 1) and where = denotes weak convergence in
distribution. The fact that the space of values for ) is restricted to a closed subset of (0,1)
means that, under this asymptotic interpretation, some trimming ought to be applied.
Banerjee, Lumsdaine and Stock (1990) and Andrews (1990) suggest using a window A e
(.15, .85) which implies that, in finite samples, TB can only take values in the range

([-15T], [.85T]) where [-] denotes the integer argument. This choice is arbitrary and, as in
Zivot and Andrews (1990), we consider the largest "window" possible in both the
theoretical derivations and the empirical applications, namely (k+2, T-1) 7. We believe
that this restriction on the interval specified by A can be relaxed and that we could
consider the limiting distribution defined over the full interval [0,1]. Qur proof, however,
does not permit stating this explicitly as it relies on arguments in Zivot and Andrews

(1990). These authors derive the limiting distribution of various components entering in
 the definition of the t-statistic and apply a continuous mapping argument to arrive at an
expression similar to that of (9) in a related context. The application of this continuous
mapping argument is valid if all the terms are bounded uniformly over A. There is a need
to trim the space of A because some components are unbounded as )\ approaches 0 or 1.
However, the uniform boundedness of each component is only a sufficient condition to
arrive at the desired result. In the case of the t-statistic discussed above, even though the
individual components are unbounded as A approaches 0 or 1, the t—statistic itself remains
bounded. Hence, there seems to be no need to restrict the space A. To make this claim
precise we would need to show tightness of the finite sample distribution as well as the
convergence result presented in the appendix. Such a derivation is outside the scope of this
paper. Note, however, that these comments do not apply to the limiting distribution of the
statistics discussed below.

To tabulate the percentage points of the asymptotic distribution represented in (9) we
proceeded by simulations in a manner similar to that of Perron (1989). First note that we
can write (see Perron (1990a) :

SIWHOndW(r) = (1/2)(W(1)% - 1) - XIw(a) [ aw(r)dr
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~(1=NTHW() - W) f 3 Wn)dr (10)
ahd
[ aw*(x r)2dr = [oWm)2dr - 27 fIw(r)an? - 1 =07 IW()dn). (11)

We used expressions (10) and (11) to obtain critical values via simulation methods. The
procedure is briefly described as follows. First, we generate a sample of size 1,000 of i.i.d.
N(0,1) random deviates, {e;}. We then construct sample moments of the data which

converge weakly to the various functionals of the Wiener process involved in the
representation of the asymptotic distribution. For example, as T - 00, T -1/ 22 ¢ = W(1),

/25 B e, = W(), T ‘3/22T>:t e, = [Iw(r)dr, T_12T(2t_1 e, =>(1/2)(W(1)2—
1 =1t 0

1), etc. With a sample size of 1,000 and ii.d N(0,1) variates, we can expect the
approximation to be quite accurate. Once the various functionals are evaluated, we
construct the expressions in (10) and (11), and obtain one realization of the limiting
distribution of the statistic f oW*(Ar)dW(r) | f oW*(2, r)2dr]_1/ for a given value of A.

For a given set of simulated errors {e,} we repeat this procedure for all values of A =

/1,000 ; j =2, ..., 999. The statistic of interest is then the minimum over all values of A
The procedure is repeated 10,000 times and the critical values are obtained from the sorted
array. The resulting critical values are presented in the rows labelled T = oo in Table 1
("additive outlier model") and Table 2 ("innovational outlier model"). As mentioned
before, the asymptotic distribution is the same in both cases.

Consider now the limiting distribution of the statistics t- &L THk(t)) and
t &( , B,k(F)) where the truncation lag parameter is chosen using a test of significance on

the coefficients of the lagged first—differences of the data. The asymptotic result given in
(9) remains valid if the noise function is that of an AR(p) process and the upper bound
kmax is selected to be greater than p. This is basically due to the fact that, asymptotically,
these procedures will select the appropriate order of the autoregressive process with
probability one, and that the tests of significance on the coefficients of the lags are
asymptotically independent of the t-statistic on a, see Hall (1990) for details. In the case
where the noise function is a general ARMA (p,q) process no asymptotic results are



available. Our conjecture is that the asymptotic distribution given by (9) would remain
valid using an argument similar to that of Said and Dickey (1984), namely by requiring the
upper bound (kmax) to increase to infinity at a controlled rate as the sample size increases
to infinity. The verification of such a conjecture is outside the scope of this paper.

Things are different when the truncation lag parameter k is chosen to minimize the
value of the t—statistic for testing a = 1. Here, no asymptotic results are yet available. The
problems lies in the fact that the procedure for selecting k remains correlated with the
t-statistic on a even asymptotically. There is also a presumption that the asymptotic
distribution of t a(i,Tﬁ,k*) (i = AO, IO) remains affected by nuisance parameters (i.e. the

particular correlation structure of the data) even asymptotically. As mentioned above, we
present results concerning this statistic mainly to enquire about the extent to which data
mining can create problems of inference, and such statistics are not recommended in
practice.

Consider now the asymptotic distribution of the statistics t&(i,TB(;S),E) (i= A0, 10)
where Ty is now chosen to minimize the t-statistic for testing 6 = 0, the coefficient on the
change in mean in regressions (3) or (7). Unlike the case where Ty is chosen to minimize
t & the asymptotic distributions of the statistics in the "additive outlier model" and the

"innovational outlier model" are different. We first consider the case of the "innovational
outlier model". Again, the asymptotic distribution is the same when considering the
behavior of the t—statistic in (7) with k = 0 under the model (8) as it is when k increases at
a suitable rate as T increases and the general model (5) is considered. Derivations similar
to those involved in the proof of Theorem 2 of Perron (1989) yields the following
representation, valid whether § = 0 or not in (8) (see the Appendix for detail) :

t5(10,Tp(5,8) = [ (I)W*(A*,r)dW(r){ f (I)W*(/\*,r)zdr}_l/ 2 (12)
where X* = argmin, , Z()) with Z()) = H(\)/K(\)!/2
sad  H(Y) = AWW(L) - W] - BO)(1/2)(W(1)2 1) -w(1) [ twie)ar]

K(A) = A[M1 - \)A -B(V)?;
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with A= [ (W) dr - (fIW()ar)? and B(Y) = A S oW(m)dr ~ [aW(r)dr .

As before A denotes a closed subset of the interval (0,1). To simulate the asymptotic
distribution represented by (12) we proceeded as in the case of the tabulation of the
asymptotic distribution described by (9). These critical values are presented in Table 4 in
the row labelled T = oo. Note that the same comments apply as before concerning the
asymptotic distribution of the statistics when the truncation lag parameter is chosen
according to a significance test on the coefficients of the lagged first—differences or is chosen
to minimize the t—statistic for testing a = 1.

Consider now the asymptotic distribution of t &(AO’TB( §),k) for the "additive outlier
model", where again Ty is chosen to minimize the t-statistic for testing § = 0 in (3),
denoted t5 The first thing to note is that t; is unbounded as T -+ co. However, a

non—degenerate asymptotic distribution is obtained if we conmsider the scaled version

T_I/ 2t 5 Hence, in this asymptotic framework, the procedure is valid if one considers

choosing TB such that the value of T_I/ 21;3 is minimized. Of course, in finite samples, it
makes no difference whether one minimizes tyor T_l/ 2 5 It is shown in the Appendix that

(whether or not § = 0 in (8)) :
t4(A0TR(0)8) = f (IJW*(/\*,r)dW(r){ [ (I)W*(A*,r)zdr}—l_/ 2 (13)
where \* = argmin , Q()) with Q(A) = B(A)/[K())/A]'/2,

where A, B()) and K(X) are as defined in (12). To tabulate the critical values of the
asymptotic distribution we proceeded in a manner analogous to the previous cases. These
critical values are presented in Table 3 in the row labelled T = oo. Again, similar
comments as expressed above apply concerning the asymptotic distribution of the statistic
when the truncation lag parameter is chosen according to a significance test on the
coefficients of the lagged first—differences or is chosen to minimize the t-statistic for testing

a=1.
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4. SSIMULATIONS OF THE FINITE SAMPLE CRITICAL VALUES.

In this section, we present an extensive study of the finite sample distribution of the
statistics t a(i,j,k) i=A0,I0,;j= T]’g, TB(S)) under the null hypothesis of a unit root

using various procedures for selecting the truncation lag parameter k. We consider the
following data generating process for the simulations :

Vi =Y1 T8 y;=0. (14)

We set y, = 0 without loss of much generality (the effect of the initial condition being

minor). Similarly, we impose 6 = 0 in (1) and § = 0 in (5) given that the statistics are
asymptotically invariant to these parameters. There may be an effect in small samples, but
it is likely to be small. Furthermore, the case of a null hypothesis specified with no
structural change is the leading case of interest given that one may often wish to
discriminate between a constant mean unit root pfocess and a stationary process with a
changing mean. We specify the sequence of innovations {et} to be i.i.d. N(0,1) even though

the finite sample distributions of the statistics are not invariant to the correlation structure
of the data. The basic justification is that the asymptotic distributions are invariant to
additional correlation in the data under some regularity conditions (except perhaps when k
is chosen to minimize t &). Hence, there is no loss in generality in specifying i.i.d. errors

under this asymptotic interpretation. The implicit assumption is that, in finite samples, the
introduction of additional lags of first—differences of the data would mostly eliminate the
dependency of the distributions on the correlation structure. More importantly, by
specifying i.i.d: errors we are better able to assess the relative impact on the finite sample
distributions of various factors such as the length of the autoregression (if fixed), the finite
sample correlation between the statistics to choose k and the t—statistic on & (in the k(t)
and k(F) methods), and the effect of choosing k based on the value of the t—statistic on a.
Using i.i.d. errors allows us to isolate the relative effects of each of these factors.

For all statistics considered, we present results for three sample sizes, namely T = 50,
100 and 150. When choosing k using a data dependent method, we specify the upper bound
on the autoregression, kmax, to be 5 8. In the case where k is a fixed value, we present
results for k = 0, 2, and 5 . This allows us to analyze the effect of overparameterization on
the finite sample critical values. When k is chosen according to a test on the coefficients of
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the lagged first—differences, the size of the test is set at 10% 9 . Each set of results was
obtained using 2,000 replications. The program was coded using the C language, and N(0,
1) random deviates were obtained from the routine RAN1 of Press et al. (1986). To
minimize sampling variability, we used the same set of generated data for all cases that
share a common value of T, the sample size.

Table 1 presents the results concerning the statistic ta(AO,T]"é,k), i.e. the t—statistic

for testing @ = 1 in the "additive outlier" regression (4) where the break point Ty is
chosen to minimize this t-statistic. Consider first the asymptotic distribution. The first
thing to note is that it is considerably shifted to the left compared to the case where the
break point is assumed known. Consider for instance the 5th percentage point. From
Perron (1990a), the asymptotic critical value when the break point is assumed to occur at
mid-sample is —3.04. In contrast, when the break point is assumed unknown, Table 1 shows
the corresponding critical value to be —4.44. Secondly, the asymptotic distribution is a good
approximation to the exact distribution when k is fixed at 0 (though slightly less than in
the "innovational outlier model" discussed below).

When the autoregression is overparameterized (k is greater than 0) the critical values
increase substantially, especially in the left tail of the distribution. The extent of the
increase is more pronounced for a small sample size (e.g., T = 50) than for a larger sample
size (e.g., T = 150). This feature is interesting. Indeed, it is generally believed that test
statistics of the Dickey—Fuller (1979) type have power that decreases as the order of the
autoregression increases because more parameters need to be estimated and because of the
loss of observations due to the need for additional initial conditions. The fact that the finite
sample critical values increases as k increases implies that these effects may be
counteracted to some extent when the increase in k results in overparameterization 1.

When k is chosen using a test of significance on the coefficients of the lagged
first—differences (rows k = k(F) and k = k(t)), the critical values are substantially smaller
than those corresponding to both the fixed k case and the asymptotic distribution,
especially if the sample size is small. This is due to the correlation, in finite samples,
between the statistics on the coefficients of the lagged first—differences and the t—statistic
for testing @ = 1. As discussed above, this correlation disappears asymptotically. Our
simulation results shows this correlation to vanish slowly. Hence, for common sample sizes,
care must be taken in using the asymptotic critical values in this case. Also of interest is
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the fact that the critical values using an F-test (row k = k(F)) to assess the joint
significance of the coefficients on the lagged first—differences are somewhat higher (in the
left tail of the distribution) than those corresponding to the case where a t-test on the
coefficient of the last lag is used (row k = k(t)). The difference, however, becomes minor,
when T = 150. This implies that, for small sample sizes, the former procedure may be more
powerful. Finally, when k is chosen such that the t-statistic for testing @ = 1 is minimized
(row k = k¥*), the critical values are substantially smaller than those in all other cases even
for large sample sizes. This illustrates the extent to which data mining can affect inference.
Indeed, selecting k using such a procedure and not properly adjusting the critical values
would lead to tests with inflated sizes. However, once the critical values are properly
chosen, such a procedure is likely to lead to tests with relatively low power and, hence, is
not recommended.

Table 2 presents the critical values corresponding to the statistic t a(IO,TE,k), i.e the
t-statistic for testing @ = 1 using the "innovational outlier" regression (7) and Ty chosen

to minimize this t-statistic. Many of the qualitative results are similar to the case of the
"additive outlier model" presented in Table 1. Hence, we discuss only the main features
and differences. First, the asymptotic distribution is very close to the finite sample
distribution with k fixed at 0 (especially in the left tail of the distribution), even for a
sample size as small as 50. Secondly, unlike in the "additive outlier model", the critical
values with k fixed are relatively stable across various values of k. Third, even for small
sample sizes there are no significant differences between the critical values when using
either test of significance for choosing k (the k(t) or k(F) procedures). In general, the
critical values are quite similar to those in the "additive outlier" case. Again, the method
whereby k is chosen to minimize the t—statistic on a yields the smallest critical values.

We now turn to the results concerning the cases where the time of break Tp is chosen

to minimize the t—statistic on the coefficient associated with the change in mean. Table 3
presents the results corresponding to the "additive outlier model" where Ty is chosen to

minimize the t-statistic for testing § = 0 in regression (3). Recall that this procedure
allows the a priori imposition of a one-sided change in the mean of the series (the results
also apply if one were to maximize the t-statistic for testing 6 = 0). Hence, as stated
above, we can expect possibly higher power through higher critical value (i.e. less
negative). As shown in Table 3, this is indeed the case. For instance, the asymptotic 5%
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critical value is -3.61 compared to —4.44 (and the 10% critical value is —3.27 compared to
~4.19). Similarly, the finite sample critical values are uniformly higher (less negative) than
those for the "additive outlier model" where Ty is chosen to minimize the t-statistic on a

(see Table 1). Indeed much of the same qualitative comparisons across methods hold : the
critical values decrease noticeably as k increases when the sample size is small (the
differences are minor when T is large), the critical values from the procedure using the
F-test on the coefficients of the lags are larger than those using the t—test when T = 50 but
not significantly different when T is 100 or 150, and the procedure whereby k is chosen to
minimize the t-statistic on a leads to the smallest (most negative) critical values.

Finally, Table 4 presents the simulation results concerning the statistics
t&(IO,TB(;S),k) using the "innovational outlier model" where Ty is chosen to minimize the

t—statistic for testing § = 0 in (7). A feature of substantial interest is that the asymptotic
critical values in the "innovational outlier model" are substantially smaller than in the
"additive outlier model". For instance, the 5% critical value is —4.19 compared to -3.61.
One would therefore expect higher power under the "additive outlier model”. The other
differences between the critical values in Tables 3 and 4 are similar to the differences
discussed when comparing the results in Tables 1 and 2. In particular, the asymptotic
distribution is, in general, a good approximation to the finite sample distribution when k is
fixed and the critical values are not much influenced by the value of k when it is fixed.
There are very little differences between the critical values using the F—test or the t—test
on the coefficients of the lagged first—differences, and the critical values are smaller
throughout (more negative) in the "innovational outlier" case than they are in the
"additive outlier" case (though here the difference is more important).

The results presented in this section permit testing the unit root hypothesis allowing
for a possible change in level using a wide variety of procedures. Whether the "additive" or
"innovational" outlier model is appropriate depends, of course, on the particular series.
Concerning the procedure to be adopted for each of these models, we recommend using a
data dependent method for selecting the truncation lag parameter k whereby this lag is
chosen according to a significance test on the coefficients of the lagged first—differences.
Using a fixed k procedure is bound to produce test that may either have the wrong size
(due to possible underspecification) or to lack power if the order is wrongly selected. Use of
the data dependent procedure whereby k is chosen to minimize the t—statistic for testing a
= 1 may provide a rough guide, but is open to difficulty of interpretation.
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5. APPLICATION TO THE PURCHASING POWER PARITY HYPOTHESIS.

In this Section, we apply the proposed testing procedures to the two real exchange
rates discussed in the introduction, namely the US/UK series based on the CPI and the
US/Finland series based on the GNP deflator. The motivation for using a unit root test on
the real exchange rate series as a test of the Purchasing Power Parity (PPP) hypothesis
can be described as follows. First, consider the multiplicative model of the real exchange
rate given by EtP:/Pt = bwt , where Et is the dollar price of the foreign currency, 'Pt is

the U.S. price level, P: is the foreign price level, b is a constant and W, is a positive

disturbance term with mean 1. Given that PPP is rarely considered a theory of exchange
rate determination, we can view Et’ Pt and Pz‘ as endogenously determined. Defining

EtPI/Pt to be the real exchange rate, Rt’ we have Rt = bwt, and taking the logarithm we
obtain the linear specification L=r+u, where r, is the logarithm of the real exchange
rate, r is a constant and ﬁt is a mean zero disturbance term. The absolute version of PPP

states that the real exchange rate is equal to one at every point in time (which would imply
r =0 and u = 0). Practical considerations imply a less strict interpretation. First, since

only price indices are observed and not price levels, we can only test a relative version of
PPP which states that r must be constant but imposes no restrictions on its level. Second,
given the world’s inherent stochastic environment, we would expect deviations from PPP
over time. If we allow only transitory shocks, u, is then a stationary stochastic process. It

is this empirical implication of PPP which is of interest. Indeed, a situation in which
shocks have permanent effects is in contradiction to the version of PPP just described. It is
therefore of interest to test whether shocks to the real exchange rate exhibit a long term
effect.

In practice, one must specify a general class of models in which these issues can be
analyzed. For our purpose, it is useful to consider the process u, as a member of the class of

finite-order ARMA(p,q) models, i.e. A(L)ut = B(L)et where e, is a white noise disturbance

term. In this framework, we can test the null hypothesis that PPP does not hold by testing
whether the autoregressive polynomial A(L) contains a root on the unit circle. Given that
the interest in testing PPP centers around the stochastic behavior of the noise function
{“t}’ we may wish to specify a more flexible structure about the level of the real exchange
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rate series. In particular, as Figures 1 and 2 suggest, one may want to allow for the
possibility of a structural change in mean at some unknown date. Reasons for such a
possible change will be investigated later. Using the methods described in this paper, one
can test whether the noise function {ut} is characterized by the presence of an

autoregressive unit root.

We applied the procedures proposed in earlier sections to the US/UK CPI based real
exchange rate series and the US/Finland real exchange rate series based on the GNP
deflator. Consider first applying the "additive outlier model" with the break point Ty

chosen to minimize ‘the value of the t-statistic on the sum of the autoregressive coefficients,
ie. t &(AO,Tﬁ,k). The results are presented in Table 5 for three methods of choosing Tq

and k. When all methods yield the same values, only one regression is reported, otherwise
separate regressions are listed. The statistics of most interest are the estimates of @ and
their t—statistics as well as four sets of p—values in the last four columns (reported to the
nearest 1%). The first set of p—values is obtained using the distribution of the t—statistic in
the fixed k scenario using the empirically selected value of k. This amounts, basically, to
reporting the p-values based on the asymptotic distribution corrected, to a first
approximation, for small sample biases (except perhaps when using the procedure where k
is chosen to minimize the t—statistic on a). The second set of p—values is obtained using the
distribution of the t-statistic when both Ty and k are chosen to minimize the t-statistic

on a (k = k* in Table 1). The third set of p-values correspond to the critical values of the
t—statistic when k and Tpg are chosen so that the last lag is significant according to a 10%

two—sided t—test on its coefficient and the last lag in higher order autoregressions has
insignificant coefficients (k = k(t) in Table 1). The last set of p—values are those
corresponding to the case where Ty and k are chosen according to a 10% joint significance

test on the coefficients of the lagged first—differences of the data (k = k(F) in Table 1). In
all cases, we selected kmax = 5 and the p-values are obtained using the simulations
performed for T = 100. As the results in Table 5 show, the unit root hypothesis can easily
be rejected at the 5% level using any procedure for selecting k and Tpg. Indeed, for both the

US/Finland and US/UK series, all procedures yields the same values, namely Ty = 1938
and k = 1 for US/Finland and T = 1943 and k = 1 for US/UK 1.
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Table 6 presents results applying the "innovational outlier model" and selecting Tg
and k to minimize the t-statistic for testing a = 1, i.e. using the statistic t &(IO,Tﬁ,k). The
presentation of the results follows that in Table 1. For the US /UK series, Ty =1944 and k
= 1 irrespective of the method used to select TB and k, and the results again allow a
rejection of the unit root at the 5% level. For the US/Finland series, Tg =1945 (and k =

1) when using a test of significance of the coefficients of the lags and the p—value for the
null hypothesis of a unit root is .07. When using no such test of significance, Ty =1938 (k

= 1) and the p—value is .03. Hence, in both cases the unit root is rejected. Since the noise
function is stationary one can use the fact that the asymptotic distribution of t3 is

standard normal and conclude that the US/Finland series is characterized by a significant
decrease in mean, while the US/UK series is characterized by a significant increase in
mean. ' '

Tables 7 and 8 present the results when TB and k are selected to minimize (in the case

of US/Finland) or maximize (in the case of US/UK) the t-statistic on the coefficient
associated with the change in mean, t3 The application of these procedures imply the a

priori imposition of a one-sided change in mean occurring at an unknown date. Table 7
considers the "additive outlier model", i.e using the statistic t&(AO,TB( 8),k). The same

procedures are used to select k and TB. For the US/Finland series the unit root is rejected

at less than the 1% level using any procedure. This shows how the mild a priori imposition
of a one-sided change can increase the power of the test substantially. The results are
similar for the US/UK series with a rejection at close to the 1% level. Here the break point
is estimated to be 1940 for the US/Finland series and 1946 for the US/UK series.

Table 8 presents similar results when using the "innovational outlier model". For the
US/UK series, TB = 1944 and k = 1 irrespective of the method used, and the unit root

hypothesis is again easily rejected. For the US/Finland series, Ty = 1945 if a test of

significance on the coefficients of lagged first—differences is used. Here again, the unit root
can be rejected at the 5% level.
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The results obtained strongly suggest that both the US/Finland real exchange rate
based on the CPI and the US/UK real exchange rate based on the GNP Deflator are
stationary series if allowance is made for the possibility of a one-time change in the mean
of the series. This is contrary to the evidence obtained using a standard Dickey—Fuller test
in which case the unit root cannot be rejected. Our results show the non-rejection to be
due to the fact that no allowance was made for a change in mean.
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6. PRELIMINARY EXPLANATION OF SHIFTS IN REAL EXCHANGE RATES.

In this Section we present a possible explanation for the shift in mean apparent in the
real exchange rate series discussed in Section 5. For the sake of conciseness we focus on the
US/Finland series. A similar argument could possibly explain the case of the US/UK real
exchange rate.

The issue at hand is the apparent shift in the level of the US/Finland real exchange
rate when GDP deflators are used as the price indices. When CPI's are used as price
indices, the level of the US/Finland real exchange rate remains fairly stable (see Figure 2).
Because there is no shift when the CPI’s are used, we can deduce that the shift in the GDP
deflator—based series is not due to changes in the nominal exchange rate. In fact, the
nominal exchange rate was moving in opposite direction to the real exchange rate at the
time of the shift. Thus the source of the shift must be from one of the GDP deflator series.

To determine which of the two deflator series, US or Finland, is the source of the shift
we constructed GDP deflator-based real exchange rates between the US, Finland and the
following countries: Canada, Japan, Sweden and the UK 12. In the case of the US, all of the
series, except for Japan, were stable and no shift in mean was present. However, in the case
of Finland, all of the series, except for Japan, exhibited a shift in mean near the time of
World War II 13. We view this as evidence that the shift in mean was a phenomenon between
Finland and the rest of the.world. To further corroborate the fact that the Finland GNP
deflator was the source of the shift and not the Finnish nominal exchange rate, we
constructed CPI-based real exchange rates between Finland and the following countries:
Canada, France, Italy and Sweden 4. In all cases the level of the real exchange rate was
stable with no apparent shift in mean 15.

As a preliminary attempt at explaining the behavior of Finland’s real exchange rate, »
we discuss the issue in the context of a simple Ricardian free trade model taken from Jones
(1979). In this model there are two countries which we refer to as Finland and the rest of
the world (ROW). There are three goods produced in the world economy using a single
input, labor. Good 2 is produced by both Finland and the ROW and is the numeraire. We
assume that Finland is the sole producer of good 1 in which it has a comparative
technological advantage. Likewise, the ROW is the sole producer of good 3. Production is
described in terms of unit labor costs ay; where i refers to the good. We assume that all
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goods are traded and consumed by both Finland and the ROW, and that consumption
varies little between Finland and the ROW.

Consider technical regress in good 1. At constant wages, the percentage change in the
price of good 1 is positive and equal to the percentage change in the unit labor cost
associated with that good, ap 1~ With the price of good 1 higher the GDP deflator in

Finland will be higher. However, since good 2 is the numeraire, the price of good 3 remains
constant. Hence, the GDP deflator in the ROW will be unchanged. Therefore, the real
exchange rate in Finland, measured in terms of domestically produced goods, will
appreciate. On the other hand, due to the fact that Finland and the ROW both consume
good 1, the CPI in both countries will rise leaving the real exchange rate, measured in
terms of consumption, unehanged. So, with technical regress in good 1 we would expect to
see a shift in the GDP deflator-based real exchange rate, but no change in the CPI-based
real exchange rate.

Within the model just described, we suggest the following story. In the 1940’s
Finland’s largest single export good was lumber and lumber by-products comprising
80-85% of export value (c.f. Bank of Finland (1947)). If we concentrate on other European
countries, we could think, to a first approxinration, of lumber as being specific to Finland.
For our story to apply, there would have to be technical regress in Finland’s lumber
industry in the 1940’s. A possibility is that Finland switched to a type of forest harvesting
which takes into account the costs of depléting a scarce, but only slowly renewable resource
such as forests. In this case we would see a reduction in the productivity of lumber related
activities, i.e. technical regress. Of course such an explanation is preliminary in nature and
no doubt a more extensive analysis is needed to fully account for the phenomenon
described. Nevertheless, the point made is sufficient for our purpose in that it shows how it
is possible to have a significant one time change in structure which can cause a shift in
mean in some measured real exchange rate series. Such a change has a separate source from
the regular temporal fluctuations in the real exchange rate series. It is these regular
fluctuations that are of interest when testing issues such as purchasing power parity.
Hence, this illustrates the need to separate this one-time change from the noise function as
was done in the last section.
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7. CONCLUDING COMMENTS.

This paper has presented a class of procedures to test the null hypothesis of a unit root
in a time series of data that is possibly affected by a one-time change in its mean level. We
considered two classes of models, labelled the "additive outlier model" and the
"innovational outlier model". The former is best suited for series exhibiting a sudden
change in mean while the latter is best suited if the change takes place gradually. The
appropriateness of these models henceforth depends on the actual series being used.
Nevertheless, our empirical applications showed that the results can be robust to
alternative specifications.

For each of these models, we considered two type of statistics. The first considers the
minimal value of the t-statistic on the sum of the autoregressive coefficients over all
possible break points. This, in effect, allows testing the unit root hypothesis without any a
priori assumption about either the location of the break point or the sign of the change in
mean. In an attempt to provide statistical tests with higher power, we also analyzed a
procedure whereby the break point is chosen to minimize (or maximize) the t-statistic on
the coefficient of the change in mean, henceforth imposing the mild a priori assumption
that the sign of the possible change is known (while its location remains unknown). This
class of statistics allows an interesting sensitivity check on the obtained inference that may
. be a compromise between the more powerful case where the break point is assumed known
and the least powerful case where no structure is imposed.

Finally, for each procedure suggested, we analyzed the effects on the critical values of
different assumptions about the method used for choosing the truncation lag parameter in
the estimated autoregressions. In practice, we recommend using a test of significance on the
coefficients of the lagged first—differences. In particular, the k(t) procedure, whereby the
order is selected by a test of significance of the last included lag, is quite easy to implement
using standard regression output. Care, however, must be taken to correct for finite sample
biases introduced by the correlation between the final statistics of interest and the t—tests
on these additional lags. Our tabulated critical values should prove to be useful in this
respect. '
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FOOTNOTES

In this and other Dickey-Fuller tests reported in this Section, the t—statistics are
constructed from a regression with a constant but no trend. Lags of first—differences
are added to account for serial correlation. The number of such lags included was
determined using a 10% two-sided significant test on the last included lag in the
autoregressions (see Section 2 for more detail). The 5% and 1% critical values are
—2.86 and —3.43, respectively.

The US/UK real exchange rate series based on the CPI index is annual from 1892 to
1988. The series based on the GNP Deflator is also annual from 1869 to 1987. The
source of the data is as follows. Nominal exchange rate series : 1869-1912 from
Mitchell (1981), 19131949 from Board of Governors of the Federal Reserve (1943,
1976), 1950-1988 from International Monetary Fund (1988) ; Consumer Price Index :
1892-1969 from Mitchell (1981), 1970-1988 from International Monetary Fund (1988);
GNP Deflator : 1868-1975 from Friedman and Schwartz (1982), 1976-1987 from
International Monetary Fund (1988). The US/Finland real exchange rate series based
on the CPI index is annual from 1900 to 1988, while that based on the GDP deflator is
from 1900 to 1987. The source of the data is as follows. Nominal exchange rate series :
1900-1988 from the Bank of Finland ; Consumer Price Index : 1900-1985 from the
Bank of Finland, 1986-1988 from the International Monetary Fund (1988) ; GDP
Deflator : 1900-1985 from the Bank of Finland, 1986-1987 from International
Monetary Fund (1988). The sources of the data for the US are as follows. GNP
deflator : 1869-1975 from Friedman and Schwartz (1982), 1976-1988 from IMF
(1988) ; CPI : 18601970 from the U.S. Bureau of Census (1976), 1971-1988 from IMF
(1988).

There is also some validity to the argument that the break point ought to be viewed
always as an unknown parameter irrespective of the fact that one may be able to
identify an exogenous event that is responsible for the change at a particular date (see,
e.g. Christiano (1988)). However, the distribution theory obtained assuming a known
break point may often be a good approximation to the appropriate distribution if no
attempts were made to select the break point by systematically analyzing the data
prior to this choice. See the discussion in Perron (1990c).

Note that the second step regression (4) is different from the one proposed in Perron
(1990a) where the dummy regressor D(TB)t was not included. The treatment of the
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asymptotic distribution in the "additive outlier model" is, in fact, erroneous in Perron
(1990a). However, all the results about, the asymptotic distribution remain valid if this
additional regressor is included. See section 3 and the appendix for more detail.

See Section 3 for a discussion of the validity of such a procedure, in an asymptotic
framework, when the data is generated by an ARMA(p,q) process.

The same comments apply to the usual Dickey—Fuller (1979) test. If the truncation lag
parameter k is chosen a priori or by a test of significance on the coefficients of the
lagged first—differences, the t—statistic will have the asymptotic distribution tabulated
in Fuller (1976). This will occur provided the test related to the choice of k is applied
starting from a general overparameterized model successively eliminating insignificant
lags (see Hall (1990)). When the truncation lag is chosen according to the value of the
t-statistic on the sum of the autoregressive coefficients (e.g. choosing k such that this
t—statistic is minimized), no asymptotic distribution results are yet available. In
particular the asymptotic distribution will not be that tabulated in Fuller, and
inappropriate inference may follow from such a procedure.

The fact that A needs to be restricted to a subset of the interval (0, 1) is because the
behavior of the statistic exhibits excessive variability when the endpoints are included.
Choosing a "rectangular window", such as (¢, 1 — ¢€) for any ¢ > 0, is one way to get
rid of the problem caused by the endpoints (choosing ¢ = 0 would imply that
t &(i,Tﬁ,E) is unbounded as T increases, see Andrews (1990)). However, this is not the

only way to downweight the influence of the endpoints. An alternative is to take the
minimum of the t—statistics over the full interval (0,1) and weighting the statistic by
A(1-)). This, however, implies a different asymptotic distribution. See Deshayes and
Picard (1986) for a more thorough discussion of these issues.

In the simulations, kmax was selected to be 5 mainly for computational reasons. The
processing time becomes excessive when greater values are used. In some instances, we
performed some robustness check by allowing a greater value of kmax. The results
were very similar. In practice, kmax can be specified to be greater than 5. What is
important is that it be greater than the true order of the autoregression. In principle,
the greater kmax is the more likely this criterion will be fulfilled. However, this must
be balanced by the fact that estimating high order autoregressions may involve the
presence of substantial multicolinearity, making difficult the interpretation of the
results.

We also tabulated critical values for the following additional cases. When k is fixed,
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we considered values up to k = 10, the results showed no interesting differences and
are not reported. In the case where k is chosen using a test of significance, we also
tabulated critical values when the size of the test is 5%. The results, available upon
request, are very similar to the 10% size case.

This, however, presumes using appropriate finite sample critical values as opposed to
the commonly used asymptotic critical values. No studies are yet available
investigating whether this feature is present in the standard Dickey—Fuller (1979)
testing procedure.

Given that the unit root is rejected for both series, one could test whether the change
in mean is significant using the t-statistic for testing 6 = 0 in the first step regression.
To carry proper asymptotic inferences would require, however, correcting the standard
errors to account for serial correlation. Such a test is easier to perform in the
"innovational outlier model" where no such correction is necessary given that the
serial correlation is parametrically taken into account in the same regression.

The choice of these countries was determined by data availability. We used data from
Dornbusch and Vogelsang (1990), Lee (1976) and the IMF (1988). All series covered
the period of 1900-1987.

Using the standard Dickey-Fuller tests, we were not able to reject the unit root
hypothesis for any of the series except for Finland/Japan which can be rejected at the
1% significance level. Once we accounted for the shift in mean, we could reject the
unit root hypothesis at the 5% significance level in all cases using the "innovational
outlier model". This was true regardless of the procedure used to pick the break year
Tg or the lag length k.

Once again, the choice of countries was determined by data availability. The sources
were Dornbusch and Vogelsang (1990), Lee (1976) and the IMF (1988). The period for
France and Sweden was 1900-1988 and that for Canada and Italy was 1914-1987.

Using standard Dickey—~Fuller tests we were able to reject the unit root hypothesis at |
the 1% level for Finland/Canada and Finland/France, at the 5% level for
Finland/Sweden and at the 10% level for Finland/Italy.
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MATHEMATICAL APPENDIX

In the proof that follows we only show weak convergence of the finite sample
distribution without proving tightness. The proof is made complete using arguments in
Zivot and Andrews (1990) who show that the statistics can be expressed as continuous
mappings from D[0,1] to R! provided we take the infimum with respect to A over a closed
subset of the interval (0,1).

Given that the statistics of interest are constructed applying a particular regression for
all values of TB, it will, in general, be the case that the postulated value of the break in

that regression does not correspond to the true value of the break in the data-generating
process (8). Hence, we cannot appeal to a finite sample invariance with respect to the true
value of §. However, as the proofs below show, such an invariance property holds
asymptotically. To make the argument precise, let the true value of the break be denoted
by TB ’. Under the null hypothesis, the data-generating process is :

yt=6D(TB)+yt1+e—5D(TB)+yt1+e (A1)

t )

where D(TB’)t =1ift = Ty’ + 1 and 0 otherwise, D(TB)t =1ift=Tp + 1and 0
otherwise, and e} = e, +6(D(TB’ ) — D(TB),). Alternatively, we can express Y as:

¥y = y(0) + §DU’t + St ; (A.2)

. t / — 3 / ' A M 7
whereSt—Ej=1et,DU 1;—OlfthB and DU,G—llft>TB .

Proof of (9) : We prove (9) for the "additive outlier model" only in the case where no
additional lags are included in regression (4) and the data—generating process is given by
(8). As mentioned in the text, we rely on arguments made in Said and Dickey (1984) when
additional correlation is present and higher order autoregressions are estimated. The result
for the "innovational outlier model" follows, with appropriate modifications using results in
Zivot and Andrews (1990), and details for this case are omitted. Consider first applying
regression (3) for a given value Tg- We assume Ty < Ty’ without loss of generality given

that the asymptotic distribution is invariant to Tg’. Throughout, we denote A = TB/T




and A’ = Tg’/T. Simple algebra yields :

yt=yt_Ya,=St‘Sa ift<T

B’
'}'rt :yt—sz St—Sb-—é(l—A’)/(l—/\) ifTB <tSTB' , (A.3)
5y =Yy Ty = 5, 8§ + 6- &1-1)/(1- ) if Tp' <t<T;

T T
ih ¥ - 7 ~lg B, _ 1.1 TB o 1T _ -1
with Y, = Tg % yp = A TTE Vo Yy = (T—TB) ETB+1yt = (1-1)

T T
_ m -lgBg _ ,-1.-1.1B s _ (mm \=1gT _
Yoo S, = Tg Z;°8, = AT 7Sy and § = (T-Tp) ETB-i-lSt =

(1- /\)_IT_12$ 15¢- Denote the residuals from a projection of §, on D(TB), by 7*, and
gLt t t Y ¥y

similarly the residuals from a projection of yt_l on D(TB)t by i’{fl. We have :

yt =8,-5, ift<Tg,

yji=0 ift=Tg+1,

¥t =5, -5, - &1-2)/(1-1) ifTp+1<t<Tp’, (Ad)

Fi=5,-5S,+8-61-1)/1-)) -ifTB’v<th.
Similarly,

:?If1=S;_1.—§a | ift< Ty,

yir =0 ift=Tp+1,

Fir =81 -Sp-&1-2)/(1-1x) ifTp+1<t<Tp’, (A5)

Fir =S8, 1 -Sp+6-&1-21)/(1-)) T <t<T.

Using (A.4) and (A.5), we deduce that :

Sk _ ok _ . ,
Yt yt—l—et 1ft#TB+landt¢TB + 1,




=eTB,+1+§ ift=TB’+1.

The t-statistic for testing a = 1 in regression (4) with k = 0 is given by :
2,1/2 ~1yT. 22m—20T, 21 2
e = (- D578 = T - st BT A2, (an)

where §2 = T_l}?gﬁf with i, = ¥, - &;D(TB)t =~ &F,_;. Consider first the numerator in
(A.7). Simple manipulations yields :

Tess _ 1/2 ~1,,-3/2
TS G - 73t = T8y S _je, - (T E1 e)’\ T E s,
~1/2¢T ~1,-3/24T
-(17%5T IRLY/CEDY tr=3/25T 1S+ op(D).

Using Lemma A.3 of Perron (1989), we deduce that :

TR 5t -1t = /2w - ) - 3w £ AW
<=0 - WO wiad)

= o [TWH(A1)aW (1) (A.8)
Consider now the denominator in (A.7). We have, using (A.4) and some manipulations :
T2, ) 2 =T 2zTB(s 52412 B (s =8, ~ (1 - A")/(1 - A))>
Vi) = t-17 "3 Tp+1%-1 "5
—2¢T & , 2
~2¢T o2 ~15~3 B -17-3
=T 58— AT 17, P8 )% - (1- 07l 3(s] 415 D2+ o)

= az{f (I)W(r)zdr -7k f éw(r)dr) (-2 f AW(r)dr)z}



= 2f1W* A r)2dr : (A.9)

Tedious but straightforward manipulations show that §2 - 02 in probability. The result in
(9) is then proved using (A.7) through (A.9).

Remark : Perron (1990a) considered testing for a unit root in the "additive outlier model"
without the regressors D(TB)t in regression (4) and claimed that the asymptotic

distribution of the t—statistic for testing & = 1 was the same as the expression in (9). The
above results show this claim to be erroneous. To see this note that, in this case, the
t—statistic is ;

Y= T 555, (5, - %, /217505, )2, C(A0)

where §2 = T IZT(” ayt_l)'z. Using (A.3), we deduce after some algebra that

115T; 15T g & ols g
Bg%ta0t ~ i) = T 238, ey~ T7S18, + T7(8, 5,05, + o (1)

= 02{(1/2)(W(1)2 -1) - (- 07w) [ W

+ 27 L Owndrl(1 - )7 [ weyar - 271 f éW(r)dr]} (A.11)

t =T B8 - A T—B(z 57 - (1- )—IT_s(ET +1 t— 1) +0,(1)

= oA [ gWeedr - 37 f dW(man)? - (1 - 0L [ W)’

= 2f 3W*(/\,r)2dr ; (A.12)
2 =17153e2 + TS, -5,)% + 0,(1)

= o1+ (A7 AW(rdr - (1 - a7 [ IW(r)dr)?) . (A.13)

(A.10) through (A.13) show the asymptotic distribution of the t—statistic t, when D(TB)t

is not introduced as a regressor in (4) to be different from that stated in (9) and in Perron
(1990a).



A-5

Proof of (12) : To prove (12), we need only show that the limiting distribution of t 518 Z();)
when t7 is the t—statistic for § = 0 in regression (7) with k = 0 under the null hypothesis
that y, is generated by (8). As in Perron (1989, 1990a), the presence of the regressor
D(TB) ; in (7) does not change the asymptotic distribution of the t—statistic. To simplify

notation, we therefore omit this regressor in the following derivations and express the
t—statistic as :

= {[zfMerl[z'MXE]}11{52[(Z'MXZ)‘1]11}“1/ 24 0,(1); (A.14)

where Z = [DU, Vo) [(T-1) x 2], X’ = [L,1, ..,1] [1 x (T-1)], E = [e3, €3, -.. , ef] [1x
(T-1)], M =1I- X(X’X)_IX’ and §2 = T_IET“2 with 4, the regression residuals from
applying OLS to (7) and e} defined in (A.1). Note that 325 o2 (in probability), see Perron
(1990a). Straightforward algebra yields :

(2 My2) My, = B2, - T Dy, )2 ()

) 3 : T,
where J = X1 - \T[Zyy;_, - T (5Ty, )A-Dsly, -3, Yel™

Note that, using Lemma A.3 of Perron (1989) :

T30 = A1 - M) f Iw(r)ar - (f sW()dr)?] - %A [ Iwe)ar - [ow(z)ar?

= 0®A(1- M)A - 6?B(A)? = *K()\)/A . (A.16)
Also :
v -1 2 _ 2,2 ,
T{(Z My Z) )| = 62A/K(\)/A] = PA%/K();
using (A.15) and (A.16). Finally, simple algebra, using in particular (A.1), shows that

1!/ 2{[z'szrl[z'MxE]}11 =
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et - (1- N1 25 ey

-3 —2vT 2 ~3/pT 2y 1—1/24T
/(i gyt -1y N A e

~3/2¢T -3/2.1B 1T -3/2gT  1/24T
-8Ry, -T2, By (sl et -1 z2e;}.

9¥41T

It is straightforward to see that the asymptotic distributions of T_l/ 22% _He’{,
B
1/22’1‘

e* and T ETyt le: are identical to those of T"l/ 22$B 118 T_l/ 223et and

—lﬂrgyt 1et Using this fact, (A.16) and Lemma A.3 of Perron (1989), we have :

71/ 2{[z'MXZ]‘l[z'MXE]}11 = |
AAKONARW() - W] - BW/2WW? - 1) - W() f fW(r)ar]}
= 0?AH(A)/K()) . (A.17)

Using (A.14) through (A.17) we deduce, as required, that :

t5=+ [PARO)/KA)]/[o* AR = BOY/RO)Y2.

Proof of (13) : To prove (13) we need only show that the limiting distribution of T/ 2t$ is
Q(A) when t5 is the t—statistic for § = 0 in regression (3) and y, is generated by (8). The

t—statistic is not invariant, in finite samples, with respect to the value of §. However, the
following proof shows that its asymptotic distribution is invariant. First note that :

5= B3 X512, (A.18)

- -1 2 _ plgT o2 _ olgT .
Where(x X)2;=T/[TB(T_TB)]=[TA(1_A)] y S =T Et 1 t = zt:l(yt—#’_

U B 1,'B
oDU,)" where ji = (AT) L, _q¥; and

§=[(1- N1 5T _ —rg 1% NI lzt Ty | (A.19)
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Using (A.2), we can write (after some rearrangements) :

6-6=[(1- 1) 5% 15 —[/\T]—IE’fBSt —H1-A)/(1-2). (A.20)

Using Lemma A.3 of Perron (1989) we deduce, from (A.20), that :

25~ )= a{(l -V W@ - a7l SW(r)dr}
= of(1 - ,\)A]‘l{,\ S oW - f ())‘W(r)dr}

= o{(1 - M)A TIB(N). (A.21)

Note that (A.21) implies that 71/ 2(3— §) has the same asymptotic distribution as T~/ 2§
since T™/2650 a5 T = 0. Using similar arguments,

2= 12T =1¥ t ['\Tzl_l(z 1yt) -l -NT ]—I(Et =Tp+1 t)

=15 _ s2- [xrz]‘l(zt 21807 - [ - 0Tt _ 141 5,)% + 0 o)

and

T2 5 4 { S oW ar - X7 fdwear)? - (1- )7 f )I‘W(r)dr)z}

=1 - ,\),\]_1{(1 = A f gW(r)2dr - (1= X)( [ W (r)dr)? - A( f iW(r)dr)2}
= 02[(1 - /\)/\]_IK(A)/A , after rearrangements. (A.22)
Using (A.18), (A.21) and (A.22) we obtain :
T2 = 7251112 - a2

= of(1- )N BOV/[02((1 - MAZK(2)/A]H2
= B(\)/[K(\)/A]'/2; as required.
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Figure 1(a):

Logarithm of the U.S./U.K. real exchange rate (1892-1988, annual) based on the
consumer price indices (CPI).
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Figure 1 (b):

Logarithm of the U.S./U.K. real exchange rate (1892-1988, annual) based on the GNP
deflators as the price indices.
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Figure 2 (a):

Logarithm of the U.S./Finland real exchange rate (1900-1987, annual) based on the
consumer price indices (CPI).
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Figure 2 (b):

Logarithm of the U.S./Finland real exchange rate (1900-1987, annual) based on the
GNP deflators as the price
indices.




