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Abstract

To solve a multiperiod optimization problem with a differentiable
and concave objective function and a differentiable function for the
dynamic process, this Paper suggests an alternative to dynamic program-
ming. It extends the method of Lagrange multipliers and Pontryagin’s
maximum principle to the stochastic case and proposes to solve for a
Lagrangean function rather than the value function in dynamic program-
ming. Since the value function is a solution to the partial differen-
tial equations given by the Lagrange functions, the method proposed is
analytically simpler and computationally more efficient. Numerical
methods of optimization using Lagrange multipliers and an illustrative

example from the study of real business cycles are provided.







DYNAMIC OPTIMIZATION WITHOUT DYNAMIC PROGRAMMING

Gregory C. Chow

To solve a multiperiod optimization problem with a diff erentiable and concave
objective function and a differentiable function for the dynamic process, this paper
suggests an alternative to dynamic programming. It is unnecessary, and often too
demanding, to solve for the value f unction in a Bellman equation. It is analytically
easier and computationally more economical to use Lagrange multipliers instead. In
section 1, a standard dynamic optimization problem is solved by using Lagrange
multipliers. In section 2, I compare the method of Lagrange multipliers with the method
of dynamic programming and explain why the former is better. Section 3 provides
numerical methods of optimization using Lagrange multipliers. Section 4 gives an

illustrative example from the study of real business cycles.

1. DYNAMIC OPTIMIZATION BY LAGRANGE MULTIPLIERS

The problem is

T t
I?‘E;X}T EO tgo Br(st,ut) (1)
t't=0 B
subject to
Sty = f(st,ut) te (2)

where S, is a pxl vector of state variables at time t, U, is a gx1 vector of control
variables, B is the discount f actor, Et is the conditional expectation operator given
information at time t which includes St’ and 8t+1 is an i.i.d. random vector with mean
zero and covariance matrix V. In (2), 8t+1 is assumed to be additive for convenience.
If €441 is inside f( ), we will put the expectation operator before f but can still

approximate the right-hand side of (2) by a linear function of €, Any higher-order

+1°




process for St is converted to first-order as usual. Both r and f are assumed to be
differentiable, and r is concave.

To solve this problem along the lines of Chow (1970, 1972 and 1975, pp. 157-159 and
280-383), we introduce the px1 vector At of Lagrange multipliers and set to zero the

derivatives of the Lagrangean expression

T

_ t _ attl, _ _
£ = E, t§0 {B r(st,ut) B At+1[st+l f(st,ut) €t+l]} (3)

with respect to U, s, and ;\t (t = T,T-1,...,0). Denoting the qxl vector 8r/8u by Ty
the gxp matrix 8f/8u by fz,etc., and setting to zero 6.,‘8/6ut, 6.,56/65,c and 62/6At

respectively yield

rz(st,ut) + BfZ(St’ut)EtAtﬂ =0 (4)

At = r‘l(st,ut) + Bfl(st’ut)EtAtﬂ (5)

and (2). Note that the problem is not to choose uo, ul,...,uT all at once in an
open-loop policy, but to choose u sequentially given the information S at time t in a
closed-loop policy. Since s, is in the information set when u is to be determined, the
expectations in equations (4) and (5) for the determination of u, and At at period t are
Et and not EO. We solve equations (4) and (5) using (2) backward in time to obtain the
solution. The value function Vt(st) and the Bellman equation in dynamic programming are
not used. Equations (4) and (5) are similar to the result from applying Pontryagin’s
maximum principle except for the stochastic aspect. The above extension to the
stochastic case appears obvious once pointed out. More credit should go to Lagrange
than to Pontryagin.

In many applications one can assume the existence of and compute a steady-state

solution s, 1_1, A for the deterministic control problem obtained by setting €, =0, i.e.,

t+1

by solving the three nonlinear equations (4), (5) and (2) for s, u and A after dropping

all time subscripts, omitting the operator Et and setting € in (2) equal to zero.




For any period t, the function At+l(st+1) is assumed given. After St4l is replaced
by f (st,ut)+et+l, (4) becomes an equation in s, and u which can be solved to obtain a
decision or control function ilt=gt(st). After substitution of gt(st) for u, the
right-hand side of (5) is a function of S, only. It provides At(st) for the next
iteration at t-1. Therefore it is natural to start with the last period T. For period
T, AT+1=O and uT=gT(sT) is obtained simply by solving r‘Z(ST,uT)=O using (4). If the

iterations converge, the functions g(s) and A(s) are the steady-state solutions. They

are defined by two equations (4) and (5) with all time subscripts removed.

2. COMPARISON WITH DYNAMIC PROGRAMMING

By the method of dynamic programming one would solve for the value function Vt in
the Bellman equation
Vt(st) = max [r(st,ut) + BEtVt+1(St+1)] (6)

Uyt

For differentiable V, one can set to zero the derivative of the expression in brackets

with respect to u, yielding

rz(st,ut) + sz(st’ut)Ethtﬂ/dStﬂ =0 (7)

which is identical with equation (4) with At+l denoting th+1/dSt+1' Assuming the
function Vt+1 to be known, equation (7) can be solved for ut=gt(st). Second,

substituting the maximizing gt(st) for u, in (6), we obtain

Vt(st) = r(s (st)) + BE V., (f(s

8 Veal (s, (8)

8¢

which can be used in the next iteration for t-1 to solve for ut—1=gt-1(st—1) using (7).
The method using Lagrange multipliers is different because it replaces (8) by (5).
With ut understood to equal the maximizing value gt(st), one can obtain (5)

by differentiating the Bellman equation (6) with respect to s. to yield

t




dv,/ds = rl(st’ut) + Bfl(st’ut)EthtH/dStH (9)

where th/dst can be denoted by At, yielding (5).

There are computational advantages in using the pair of equations (4) and (5), as
compared with using (7) and (8). Using the Bellman approach, one needs to store the
function Vt and evaluate its derivatives to solve equation (7) in each step. In the
Lagrange approach one does not carry Vt and is not required to evaluate its derivatives;
one deals with At directly. Furthermore equation (5) may be easier to solve than
equation (8) because the derivative of a function is simpler than the function itself.
For example, dealing with a linear A=dV/ds in (5) is easier than dealing with a
quadratic V in (8). One can deal with a quadratic A in (5), as we illustrate in section
3, while dealing with a cubic V in (8) would be much more diff icult. Also r‘l(s,u) in
(5) is a simpler function than r(s,u) in (8). If one is lucky r‘l(s,u)=0 as in many
applications in economics, including growth models with u denoting consumption in a
utility function r and s denoting capital stock which does not enter. The first term on
the right-hand side of (5) disappears, while one always carries the function r in (8).
One can deal with a quadratic r in (5), but perhaps not the corresponding r in (8).
Similarly, evaluating the expectation of dV/ds is much easier than the expectation of V.
Thus solving for V in the Bellman €quation is unnecessary. V is a luxury which one
often cannot afford but which is nice to have if one can afford it. One can always
obtain V by substituting gt(st) for u, in the objective function after equations (4) and
(5) are solved. When A(s) has a solution in closed form, V(s) often does not for it is
a solution to the partial differential equations 6V/Bsi=>\i(s). Dealing with A(s) is

much easier than with such a solution to the partial differential equations,




3. NUMERICAL. METHODS USING LAGRANGE MULTIPLIERS

Consider first the problem of f inding numerically an optimal linear decision

function

u = Gtst + g, (10)

This is an interesting problem in the literature of equilibrium business cycle models.
See, for example, Kydland and Prescott (1982), Long and Plosser (1983), and the more
recent work on computations summarized by Taylor and Uhlig (1990). In econometric
testing of equilibrium business cycle models, e.g., Altug (1989), Plosser (1989), Baxter
and King (1990), King (1990), and Watson (1990), one approach requires the computation
of optimal linear decision f unctions for the representative agent in order to apply the
statistical techniques for linear time series models.

In a popular method using equation (8) from dynamic programming, one approximates

Vt+1 and r, by quadratic functions

1

Vsl =3 SteHteiStag * Ste1lee1 * Crug (11)
and
r—ls’Ks+lu’Ku+s’K u+s’k‘+u'k + k (12)
t 2 %tT1t%t T 3 Yo t12,tt t 1t t 2t t

and f by a linear function, with the dynamic process written as

Stel T AraSp * Cpuy t b * €ig (13)

all approximations being evaluated at the deterministic steady state s and u. (10} and

(13) give Sie1 3S 2 linear function of S, only. Substituting this function for St in

(11) and taking expectation Et’ one finds EtVt+1 to be a quadratic function of S This
quadratic function plus (12) yields a quadratic function for Vt using (8). In the next
step, equation (7) for t-1 is used to obtain a linear function Gt—lst—1+gt—1 for u -
This is easily achieved because in (7) both




2,01 = Ko g U Ky S Ky t-1 (14)

and

Folse_pu B, (dV,/ds)) = C{E,_4(aV, /ds ) (15)

are linear functions. The iteration continues by using Gt—lst—1+gt—1 for u 1 in (13)

t-

to give s, as a linear function of s only, etc. Thus, as is well known, quadratic

t-1
approximations for V and r and a linear approximation for f would yield linear decision

functions (see Chow, 1975).

In the corresponding computations using Lagrange multipliers, one approximates

At+l’ r'lt and th by linear functions

At+1 = Ht+lst+1 + h1:+1 (16)
r, = Kltst + K12,tut + klt (17)
ot = Koy *+ K 150 + Ky (18)

and f by a linear function given in (13). As before, (10) and (13) give S, @S a

linear function of S, Substituting this function for St in (16) and taking

expectations Et’ one finds

Ftrra = iy [(At+1 TGOS Gy bt+l] * By (19)

which is linear in S, - (10) and (17) imply

r., = (K K G)st+K

1t T B2 tCt 12,¢8¢ * ki (20)

Substitution of (19) and (20) in (5), with f1t=A;:+l from (13), gives

A= [(Klt P RO F BALH A+ Ct+1Gt)] St

+ (Klz,t + BA’ H )gt + klt + BA’ (H b

t+1 41 e t+1 e Py Ry (21)

ht+l

= Htst + ht‘




which is a linear function of S, and defines Ht and ht' In the next step equations (18)

and (21) are substituted into (4) at t-1 with f 2t

, _1=C t to yield

oS ) + O

o t1%e1 * KigeogSeoy * kot-1 * BCLH, [Atst—l * Gt bt] + BCihy =0 (22)

(22) can be solved to give ut—1=Gt—lst—l+gt—1 and to define Gt—l and g1 The above
equations are displayed in order to compare the two methods, to show how the well-known
results of linear-quadratic control theory can be derived by the method of Lagrange

multipliers using equations (4) and (5), and to pave the way for a better approximation

that follows.

We illustrate the computational advantage of the method of Lagrange multipliers, as

compared with dynamic programming, by using quadratic approximations for A, r, and r in

1 2
equations (4) and (5) in order to obtain linear or nonlinear control functions. To be

specific, we change (16), (17) and (18) to quadratic functions

) [ St Q) t415t41
Aap = By St * 3 : (23)
‘ L Sta1 U, t415t41
[ (s, )]
7 7
(st ut)Plt J
r.=k_+K.s +K_u +21 . (24)
1t~ Tt 1t7t 12,t7°t 2 (s )
14 7 t
(St ut)Ppt J
i L U )]
and similarly for oy (10) and (13) give
Stap = Agyy * CpyyGyls, + Ctai8t * Ppyy * &y, (25)

By (23) and (25), Etht+1 is quadratic in S including linear terms and the f ollowing

vector of quadratic terms




s{Q* s

1t7t
. . * ’
: Q= (A, + €46 Qi t41Brer * CeyyGy) (26)
7 V%
St iS5t
Hence
[ f; ] ]
s’ a. Q* |s
t]. 1,t+17jt )"t
=t Y
f‘lEt?\t+1 = At+1Etht+1 = + linear function of St (27)
(p ’
si| ¥ a, Q* Is
t]. S A e
LU=t PR

where ajk, 41 denotes the j-k element of At+1'

Equations (10) and (24) give r.. as a quadratic function of s,

1t
1 ¥
stPT1tSt
P = Ky # Ki2,tC¢)s; + Kip 18 * 2k, + : (28)
I p¥
StPptSt
where
* = 4 4 i=
Pit = Pre,in * Pre oGy + CPit,21 * GtPi 256, (i=L...,p) (29)

with Pit ik denoting the j-k (j,k=1,2) submatrix of Pit in (24). (28) and (27) can be

combined on the right-hand side of (5) to express At as a quadratic function of S
—I)Et—lht or CtEt—IAt in (4) a

quadratic function of Si_1 and u - If we approximate r'z(st_l,ut_l) in (4) by a

This function, together with (13) for Sy makes fz(st—l’ut

quadratic function, we can linearize (4) about the deterministic steady state s and u to

solve for a linear control function ut—1=Gt—lst—1+gt-l’ or approximate the control

function by a specified nonlinear function, in order to continue with the iteration.

The corresponding computations using dynamic programming appear very difficult.
Using (4) and (5) an iterative solution for g(s) and A(s) consists of (a) using (5)

and ut=gt(st) to evaluate At(st) given At+1(st+1); (b) evaluating Et_lht(st) as a

(

function of St-l and ut—l; and (c) solving (4) at t-1 for u ). An

t-1"8-1'5¢-1




approximate solution can be conveniently obtained if A and r, belong to the same f amily
of functions, if linear combinations of them belong to the same f amily, and if f is
approximated by a linear function so that f 1 is a matrix and f lEtAt+l belongs to the
same family. Obviously some variables may be logs or other monotone transformations of
the original economic variables. Linear or quadratic functions of these transf ormations

can be employed to approximate A and r. Linearization of (4) can be performed to

obtain a linear control function.

4. AN ILLUSTRATIVE EXAMPLE

To illustrate our method we use the baseline real business cycle (RBC) model
discussed by King, Plosser and Rebelo (1988) and analyzed by Watson (1990). In this
model there are two control variables u1t=Ct and u2t=Nt (consumption and labor input)
and two state variables Slt=l°g At and 52t=Kt (capital stock at beginning of period)

with a production function Qt=Ki_a(AtNt)a' The function r in the objective function is

r = log u, + elog (1—u2t) (30)
The dynamic process is
S1t TV St 8y
(31)
- (1. (1-a) «
Spr = (18)s, ) + exples) | ) s, % Y2,t-1 T Yyt

where €, is i.i.d. with variance v, & is the rate of depreciation for capital stock and
the last two terms of (31) are output minus consumption or investment in the preceding
period. Note that the equation for ot in (31) has no stochastic residual.

Equations (4) and (5) for this model are respectively

o

-1
1t - AL+l ©
4| *B E = (32)

l1-a  «-1 t
-e(l—uZt) 0] ocexp(ocslt) Spr Upy 2,141
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Alt 1 ocexp(ocslt) Spr Usy Al,t+1
o o t
AZt 0 1-8 + (l—oc)exp(ocslt) Syt Upy Az,t+1

We first approximate At(st) by a linear function h+Hst. Using this linear function

to evaluate Et(ht 1) we can rewrite (32) and (33) as

-1 _ _ l-« o
Yot = B[hz * Hyylrvsy) + sz{(l O)sye + explasy) s;. " uy ult}] (34)
-1 -0 -1
G(I_UZt) = Ba exp(ocslt) Spp Uy X
h, + H (y+s ) + H_ _{(1-8)s. + explas,,) sl_""C o - u (35)
2 21 1t 22 2t 1t "2t 2t 1t

hy + Hpyspy + Hps,, =

l-a¢ o
B[h1 + H11(9r+slt) + H12(1 -8+ (l—oc)exp(ocslt) s u )] +

2t 2t
Ba exp(ocs ) s1 Rl X
2t 2t
h, + H  (y+s, ) + H _{(1-8)s. + explas. ) sl_“ - u (36)
2 21 1t 22 2t 1t° "2t 2t 1t

h + HZISlt HZZSZt = B[l -8 + (1-a) exp(ocs ) s 2t] X

l-a o
[hz + H (y+s ) + H {(1 6)s + exp(ocslt) Sye Uny - ult}] (37)

Given the six parameters h and H (1,j=1,2) of the linear functions for ?\1 and 7\2, we

solve equations (34) and (35) for ult glt(s SZt) and u

2t 78181 Sp,)-  IF & and g,

are linear, they can be obtained by linearizing (34) and (35) and solving for u and
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U, Replacing u, and u,, on the right-hand sides of (36) and (37) by glt(s

lt’SZt) and

th(SIt’SZt) respectively, we linearize the right-hand sides of (36) and (37) to yield

the coefficients hi and Hij for the next iteration.

the desired linear control equations and the linear approximations to 7\1 and A

The result of the iterations gives

>

To illustrate the method using a quadratic approximation to A, we write equation

(4) or (32) as

-1
u 0o -1
1t + BB X
-1 1-a -1
—9(1—u2t) 0 « exp(ocslt)SZt U,
By Hyp Hp LAAST?
* I-o o *
b, Hy Hy, (1-8)s,, + explas;)s, “u, - Uit
{ Y7 ([ 3 3\
[(7+ s, U Uz | [ 7+ sy,
A (1—6)52t + J { 01’21 Q1,22 J { (I—S)SZt + .. Ql,llv
5 + =0 (38)
Y/ [ 3 ) Q v
(7 s, D11 Yz | [7* sy, 21
1 (1—6)52t +..) | 02’21 Q2’22J { (l—a)s2t + )
In this equation, the parameters of At, i.e., hi’ Hij’ Ql,ij nd QZ,ij are given. We
solve u, (i=1,2) as a function gi(slt’SZt)' The right-hand side of equation (5) or
(33) is
(1-a) o
1 ocexp(ocslt)s2t u,. h1 H11 H12 ¥+ oS,
B (1-) « + + ...p (39)
0] l—6+(1—oc)exp(ocslt)s2t u,, h2 H21 H22 (1—6)52t +

where the expression inside curly brackets for approximating A

4] 1S the same as given

in (38). Using the solution gi(slt’SZt) provided by (38), we approximate (39) by a

11




quadratic function of it and Sot about the cieterministic steady state and use the
resulting parameters for hi’ Hij’ Ql,ij and QZ,ij in the next iteration to solve (38)
for g, and g,

The steady state of the deterministic version of this model is obtained by solving
for the six unknowns in the three pairs of equations (31), (32) and (33) with t
subscripts, €t+1 and Et omitted and =0 in (31). If we are interested in linear control
functions, we may use only a linear approximation to A by setting the matrices Q1 and 02
to zero and retaining only six parameters hi’ Hil and Hi2 (i=1,2). We then linearize
(38) about the steady-state values for u and s and solve for linear control functions
u=g(s). (39) is linearized to obtain a linear A(s), and so forth. If we use a
quadratic approximation of A by including six more parameters in the symmetric matrices
Q1 and 02’ We may approximate the control function g(s) by another specified function in
the solution of (38).

The main message of this paper is that the pair of equations (4) and (5) can be
conveniently used to solve optimal control problems involving differentiable ob jective
and state-transition functions and that the Lagrangean function A(s) should replace the

value function V(s) for solving such dynamic optimization problems. The method proposed

is simply an application of the method of Lagrange multipliers to multiperiod problems
with an extension to the stochastic case by taking conditional expectations
appropriately. The extension to continuous-time models should be straightforward as it
is the same extension of Pontryagin’s maximum principle using co-state variables Als,t)
by taking conditional expectations appropriately. The results are analogous to (4) and
(5), with Etht+1 replaced by ?\(s,t)+Etd7\ where the stochastic differential dA is
evaluated by Ito’s calculus and A satisfies a stochastic differential equation as the

value function V does (see, e.g., Chow, 1979, sections 4 and 5). Since A represents the

shadow price vector of s, economists would hardly require convincing to use it as the

12




centerpiece of analysis and computation rather than the total value of s under the

condition of constrained maximization.
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