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ABSTRACT

We consider the normalized least squares estimator of the parameter in a nearly
integrated first-order autoregressive model with dependent errors. The dependence in the
errors is modeled as either an MA(1) or an AR(1) process. As discussed in Perron (1991a),
the usual asymptotic distribution is a poor guide to the finite sample distribution in the
cases where i) the MA root approaches -1 ; and ii) the AR root approaches either 1 or -1.
This occurs even for large sample sizes. The aim of this paper is to provide alternative
asymptotic frameworks that treat the MA and AR roots as being local to their boundary.
The appropriate limiting distributions are derived as well as the limiting characteristic
functions allowing tabulation of distributional quantities via numerical integration. The
results presented in this paper provide a better approximation to the finite sample
distribution and helps explain many of the finite sample results discussed in Perron
(1991a). '
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1. INTRODUCTION

In an attempt to cover more general time series structures, it has become popular in
econometric methodology to consider models which permit that both the regressors and the
errors have substantial heterogeneity and dependence over time. On a theoretical level, this
advance has become possible due to a new class of central limit theorems (or functional
central limit theorems) which provides asymptotic results allowing both substantial
heterogeneity and dependence. This paper considers the leading case of a dynamic
first—order autoregressive model when the errors are allowed to be dependent. To be more
precise, we consider the following first—order stochastic difference equation :

(1.1) V= oy (t=1,.,T)

where Yo is a fixed constant (or a random variable with a fixed distribution independent of
T, the sample size) and {ut} is a sequence of weakly dependent random variables with

mean zero. The least-squares estimator of a based on a sequence of observations {yt}g is
given by : '

s _ ol T 2 -1
(1.2) a=% 1 ¥ Gy i)

Recently, a new class of models which specifically deal with the presence of a root
close to, but not necessarily equal to one, has been studied. We consider a near-integrated
process where the autoregressive parameter is defined by :

(1.3) a = exp(c/T).

Here, the constant c is a measure of the deviation from the unit root case. The model
(1.1) and (1.3) may also be described as having a root local to unity : as the sample size
increases, the autoregressive parameter converges to unity. When ¢ < 0, the process {y,} is
said to be (locally) stationary and when ¢ > 0, it is said to be (locally) explosive.

Theoretical aspects of the limiting distribution of the least-squares estimator & have been
considered in Bobkoski (1983), Cavanagh (1986), Chan and Wei (1987) and Phillips (1987).

In this near-integrated context, with errors that are weakly dependent, Phillips (1987)
showed that (under appropriate mixing conditions on the sequence {ut}) :



)

(1.4) T(a- a) = { [La mawe) + A} { IE; Jc(r)2dr}_1 ,

where ) = (0% - 0%)/(26%) , —hmT_’ooE(T_IST),ST—E’f 1 J,az—hmT_’oo
T E(Z‘. t=1 t) J.(r) = f o &xP((r-8)c)dW(r) ; and W(r) is the unit Wiener process (or
standard Brownian motlon) on C[0,1], the space of real-valued continuous functions on the
[0,1] interval. This type of asymptotic distribution provides a useful framework to analyze

models with dependent errors.

Tabulations of the limiting distribution (1.4) with A = 0 have been obtained by Chan
(1988), Cavanagh (1986), Nabeya and Tanaka (1990) and Perron (1989) using different
procedures. These studies also provide measures of the ‘adequacy of this limiting

distribution as an approximation to the finite sample distribution of & when a is in the
vicinity of 1. They show the approximation to be quite good in the case where Yo = 0.
Perron (1991b,c) also considers a continuous-time approximation which performs well even
in the case where the initial condition is non—zero. These asymptotic frameworks provide a
substantial improvement over the traditional asymptotic distribution theory, when a is in
the vicinity of one, essentially because the asymptotic distributions obtained are
continuous with respect to the autoregressive parameter a.

Perron (19913) presented an extensive simulation analysis to assess the adequacy of
the limiting distribution (1.4) as an approx1mat10n to the finite sample distribution,
concentrating on two leading cases, namely :

(1.5) MA(1) errors : u=e + 0,

(1.6) AR(1) errors : u =pu_ +e,

where {e,} is a sequence of i.i.d. N(0, ag) random variables. The results shown in Perron
(1991a) can be summarized as follows : 1) the asymptotic distribution is a very poor guide
to the finite sample distribution, even for quite large sample sizes, when either # (in the
MA case) or p (in the AR case) are close to — 1 ; 2) the inadequacy of the approximation is
more severe in the MA case (for a given equal value of § and p) ; 3) when p is close to + 1,
the approximation is not as bad but the approach to the limiting distribution is quite slow;

4) the stochastic asymptotic expansion of the limiting distribution to order Op(T_l)
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provides a less accurate approximation in most cases than the standard limiting
distribution expressed in (1.4) ; 5) in the MA case the variance shows non-monotonic
behavior as # varies with a fixed sample size T.

This paper is devoted to providing an alternative asymptotic framework in each of the
cases mentioned above where the usual asymptotic distribution fails to be a sensible guide
to the finite sample distribution. The aim.is twofold. First, to provide an asymptotic
framework which is likely to provide a better approximation to the finite sample
distribution. Secondly, our analysis will give theoretical explanations for the features of the
finite sample distributions mentioned above.

In Section 2 we consider the limiting behavior of the normalized least—squares
estimator allowing the MA parameter 6 to approach — 1 at a suitable rate. This provides an
asymptotic framework which we label as "nearly white noise — nearly integrated process".
We derive a characteristic function which allows the calculation of distributional
quantities. The adequacy of this local framework is assessed.

Section 3 considers the case where p, the AR parameter, approaches 1. Our asymptotic
analysis provides a limiting distribution for processes with nearly two unit roots. Section 4
considers the case where p approaches — 1. Here the framework is shown to be related to a
nearly integrated seasonal model of period 2. These asymptotic analyses help to understand
the differing behavior of the normalized least squares estimator as p approaches plus or
minus one. In each case, we derive the limiting distribution and an appropriate limiting
characteristic function which allows tabulation of distributional quantities via numerical
integration. The adequacy of these asymptotic distributions as approximations to the finite
sample distributions is also assessed. Finally, Section 5 provides some concluding comments
and an appendix contains mathematical derivations.
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2. A NEARLY WHITE NOISE NEARLY INTEGRATED PROCESS

In this Section, we propose an alternative asymptotic framework that is intended, on
the one hand, to provide an asymptotic distribution which better approximates the exact

distribution of T(& — a) when the errors have an MA(1) structure with large negative
correlation, i.e. when @ is close to — 1. On the other hand, our intention, using this
alternative approach, is also to explain some of the finite samples phenomena discussed in
the introduction. Consider the following parameterization of the nearly integrated process
with MA(1) errors :

(2.1) y, = exp(c/T)y,_; + e + Ope; 4 »
where

1/2
(2.2) by = -1+ 612

For simplicity we assume that e, ~ i.i.d. (0, 03)‘ The process defined by (2.1) and (2.2)
is an ARMA(1,1) where the autoregressive root approaches 1 and the moving average root
approaches — 1 as T converges to infinity. In the limit, the roots cancel and the process
{yt} is white noise provided the sequence {et} is white noise. However, in any finite
sample, {y,} is nearly integrated, hence the expression "nearly white noise — nearly
integrated model". A variant of this specification, with ¢ = 0.0, has been considered by
Pantula (1991) in a different context. Our aim, in this section, is to study the asymptotic

distribution of & under the specification (2.1) and (2.2). The next Theorem, proved in the
Appendix, characterizes this asymptotic distribution.

THEOREM 1 : Let {yt} be a sequence of random variables generated by (2.1) and (2.2) and
assumethaty0=e0=0, thenas T- 00 :

a= {szé Jc(r)‘edr} {1 + 62f5 Jc(r)edr}_I = A(S, ¢);

where J c(r) = f Zvezp( (r—s)c)dW(s), and W(s) is the unit Wiener process on C[0,1].
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Remark : i) The support of the limiting distribution of & is the interval [0, 1], and since a -
1 as T -+ oo the limiting distribution of & — « has negative support. Note also that the

support of the limiting distribution of & — « is independent of ¢, though its distribution is
not. ii) The condition Yo = € = 0 is not imposed for simplicity. The theorem is valid if Yo
=€ but otherwise the limiting distribution is not invariant to their values.

Theorem 1 shows that under this nearly white ‘noise setting the asymptotic
distribution of & is degenerate unless § = 0, in the sense that a converges to a random
variable instead of fixed constant. Hence & is not a consistent estimator of a. If § = 0, we

have that &- 0 in probability as expected ; and as § - oo the limit of & tends to 1.

This result helps to explain some of the findings in Perron (1991a). Note first that,
under the present setting, T(& — a) is unbounded and converges to — co. Hence , on the one

hand, we would expect the finite sample distribution of T(& — a) to shift leftward as ¢
decreases. On the other hand, we would also expect the usual asymptotic approximation to
be inadequate for values of 8 close to — 1.

Theorem 1 presents an alternative distributional theory that could provide a more

adequate approximation to the exact distribution of T(& — a) for values of T and 4 where
the usual asymptotic theory fails to provide a useful guide. To investigate this issue the
next Theorem presents a limiting characteristic function that will allow computation of

distributional quantities related to a.

THEOREM 2 : Let {yt} be a stochastic process defined by (2.1) and (2.2) with Yp=¢g="0.
The limiting distribution of &, limp, P& < z], is given by P[Zi > 0] where Zi is a random
variable with characteristic function Di(.?iw)"l/ 2 where

DL(M) = exp(c — Aa)(cosh(is) ~ c sinh()/)

and p = {c2 - A62(z - 1)}1/2.
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Theorem 2 allows direct computation, by numerical integration, of the cumulative
distribution and probability density functions as well as the moments of the asymptotic

distribution. Denote the limiting distribution of & by F(x; c, ) and its associated density
function by G(x; ¢, &). These quantities can be numerically evaluated using Imhof’s (1961)
formulae : ‘

(2.3) Fx; ¢, §) = (1/2) + (1/7) [ (1/w)IM{D}(2iw) ™ 2yaw,

(@4) Gl e )= (10 (1/w{on}iw) /2 oxjaw,

where IM(-) denotes the imaginary part of the argument. In computing the integrals the

upper limit was set to a value w for which |D11c(2iw)_1/ 2| < 10719 nolds.

Denote by ¥,(w; x) the moment-generating function associated with the

characteristic function D’lt(2iw)_1/ 2. The moments of the asymptotic distribution can be
obtained using Mehta and Swamy’s (1978) result, which in our case implies :

(2.5) E(A(S) = Ty L[ v“l{a‘wl(-u; v/u)/auf}u=0 dv .

To get an idea of the type of distribution involved, Figure 1 graphs the mean and

standard deviation of the limiting distribution of & as a function of §, for the three cases c
= 0.0, — 5.0 and 2.0. As expected for § close to 0 the mean is close to40, and as § increases
the mean approaches 1. The standard deviation of the process is close to 0 when either 6 is
very small or very large. As § moves away from 0, both the mean and standard deviation
increase more rapidly with the parameter c. From these considerations, we would expect :
a) the approximation of the finite sample distribution to worsen as either § gets large or
close to zero (due to the implied zero variance) , and b) the approximation of the mean to
be more adequate for small values of ¢ (due to a less rapid approach of the mean of the
asymptotic distribution towards 1) ; and c) the approximation of the variance to be more
adequate for large values of ¢ (due to a less flat asymptotic function).

Figure 2 presents the limiting density function of & for several pairs of values for ¢ and
6. As can be infered from this figure the limiting density shifts to the right as § increases
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for a given value of c. The same behavior occurs, though to a lesser extent, as ¢ increases
with a given values of §. Interestingly, the density can be bimodal as is the case for ¢ = 2.0
and § = 1.0. '

To use the asymptotic distribution of Theorem 1 as an approximation to the exact

distribution of T(& - a), we Specify the correspondence § = TI/ 2(1 + 6). From the
comments above one would expect a better approximation for combinations of T and ¢
such that & is neither too small nor too large. Table I presents the percentage points of the

distribution of T(& - a) calculated using this nearly white noise — nearly integrated
asymptotic distribution. The cases considered arec = 0.0 ; 6 =~0.9, - 0.7 and - 0.5, with
T = 25, 50, 100, 500, 1000 (except for § = — 0.5), and T = 5000 (for § = - 0.9). The finite
sample values from Perron (1991a) are presented in parentheses. These are based on 10,000
replications using the model (2.1) and (2.2) with i.i.d. N(0, 1) innovations e,. For § = -
0.9, the approximation is excellent with T > 500, especially in the left tail. When T = 100
the approximation is still respectable but deteriorates as T reaches 50 or 25, especially in
the right tail. Nevertheless, in all cases the approximation is much better than the
standard asymptotic distribution (see Perron (1991a)). When 4 = - 0.7, the approximation
is best when T = 25 or 50 and deteriorates as T gets larger. Again the left tail is much
better approximated than the right tail. When 6 = — 0.5, the extreme right tail of the
distribution is badly approximated due to the implied negativity of the asymptotic

distribution of T(& - a) provided by the nearly white noise local framework.

Table II presents the approximation to the mean and variance of T(& — a) provided by
the nearly white noise asymptotic framework for the three values of ¢ considered (c=0.0,-
5.0, 2.0). With ¢ = 0.0, the approximation is excellent for all sample sizes when § = - 0.9.
With 8 = - 0.7, the approximation is adequate for samples of size less than 500. When 8 is -
0.50 the approximation is not as adequate, though it is highly superior to the standard
asymptotic approximation when T < 500. The same qualitative features hold when ¢ = 2.0
or — 5.0 but with a better approximation for ¢ = — 5.0 and less adequate for ¢ = 2.0.

Consider now the variance of the distribution of T(@ — a). When § = — 0.9, the
variance is badly approximated unless T > 500. When 8 is — 0.7 the approximation is
reasonable for T = 100 and 500. When @ is — 0.5 it is reasonable for smaller sample sizes.
For the cases ¢ = — 5.0 and 2.0, the results show the same qualitative features but now,
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interestingly, the approximation is better when ¢ = 2.0 and worse when ¢ = — 5.0 (unlike
what was found for the mean of the distribution). A feature of particular interest is the
behavior of the variance as 4 approaches — 1 with a given sample size. As mentioned in the
introduction, the exact results shows a non-monotonic behavior. This feature is well
explained by this local asymptotic theory. Indeed, this non-monotonic behavior is present
in several of the cases presented in Table II.B. The reason for this behavior can be obtained
by looking at Figure 1 where it is shown that the standard deviation of the local

asymptotic distribution of & is zero when § = 0 and eventually approaches zero again as §

increases. Given that § = T/ 2(1 + 0), a decrease in 4 for a fixed T implies that §
approaches 0. The non—monotonic behavior occurs when the change in #is such as to move
6 over the hump in the standard deviation function presented in Figure 1.

Figure 3 considers a more detailed simulation experiment for the case c = 0 and 6§ = 1.

In that figure, the limiting distribution of & is compared to the finite sample distributions
for T = 50, 100 and 200. Note that this case corresponds to one where the adequacy of the
approximation is rather poor compared to larger values of 6. This feature transpires mainly

through the fact that the exact distribution of & has a support that is not bounded below
by O unlike its asymptotic counterpart. Hence, the left tail of the distribution is poorly
approximated. The approximation is better in the right tail and improves rapidly as T
increases.

The results of our experiments show the nearly white noise — nearly integrated
asymptotic distribution to be a far better approximation to the finite sample distribution of

T(& - a) when 8 is close to — 1 than is the standard asymptotic distribution. However, the
approximation still lacks some accuracy in an important range of cases. First when 4 is
away from — 1 and T is large. This case, however, is not of much consequences since in this
region the usual asymptotic theory is adequate. Of more consequence is the fact that the
approximation is inadequate when T is small and 4 is close to — 1 (i.e., when § is close to
0). Here none of the asymptotic distributions available so far provide a satisfactory
approximation. ’
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3. A NEARLY TWICE INTEGRATED MODEL

In this Section, the aim is to provide a local asymptotic framework that could explain

the behavior of the distribution of T(& — ) when the errors have an AR(1) structure with
(large) positive correlation. Our intention is also to assess whether this alternative
asymptotic distribution provides a better approximation to the finite sample distribution.
We start with the following parameterization of the process of interest :

(3.1) yy = exp(c/T)y,_; + 1y,
(32) u, = exp($/Thu,_y + ¢,
where, for simplicity, we specify e, ~ i.i.d. (0,02‘). We can write (3.1) and (3.2) as :
(33) 3, =[exp(c/T) + exp(6/Dly,_; ~expl(c + $)/T)y, o + ¢, -
As T converges to infinity {y,} becomes :
Vo= Wi Vot &

Therefore, as T increases, {yt} converges to a process with two unit roots, hence the

expression "nearly twice integrated”. Our aim is to study the asymptotic behavior of T(& -
a) under this specification.

We first need to define some new notation. Consider the following transformation of
the random process J ¢(r) :

(34) Q4 = f§ expl(x = V)e) y(v)dv

where, as before, J ,(v) = f (v)exp((v - 8)¢)dW(s). Hence, Q (J ¢(r)) is a weighted integral
of the process J ¢(v where the weight function depends upon the parameter c. If ¢ = 0, we

have Qq(J4(r)) = f oJ p(V)dv and if ¢ = ¢ =0, QoIg(@) = S GW(v)dv. Using this
notation, we characterize the asymptotic distribution of T(& - 1) in the next Theorem .
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THEOREM 3 : Let {y,} be a stochastic process generated by (8.1) and (5.2), and let the
function Q (J¢(r)) be as defined in (5.4), thenas T~ 00 :

Tl - 1) = (1/2) QU (1) {  § @0, ar) ™!

Remarks : i) The conditions specified by (3.1) and (3.2) are overly stringent for the validity
of this result. In fact Theorem 3 still holds if we assume that the sequence of innovations
E°J°_0ujnt . (¢ = 1,2, ...) where {r,} is a
martmga.le difference process satisfying some conditions (see Na.beya. and Tanaka (1990))

{e } is a linear process of the form e, =

These conditions are satisfied if {n,} is i.i.d. (0, o ) with finite o°. Indeed, the proof in the
appendix requires only some weak mixing conditions on the error sequence {et} such that

the partial sum of the errors §, = EJ 18; i satisfies a functional central limit theorem; ii)

The limiting distribution of T(& — 1) has nonnegative support. iii) Let a = exp(c/T) be the
autoregressive parameter in (3.1). Since T(& - @) = T(&¢-1) - T(a-1), and T(a—1) ¢
as T = oo, the limiting distribution of T(& — a) is given by

(35)  T(a-a)= (1/2) QU4 { [ Q) 7ar} -

The support of the limiting distribution of T(& - a) is therefore bounded below by - c.

There are several interesting features to note about Theorem 3. First, neither ¢ nor ¢
is restricted to be negative; these parameters can take any real value. Hence the result
applies to many cases of interest. In particular it can encompass a stationary process (c, ¢
< 0), a process with an explosive and a stationary root (either ¢ or ¢ is negative and the
other is positive), a process with two explosive roots (c, ¢ > 0); or a process with two unit
roots (¢ = ¢ = 0). The latter is of particular interest. In that special case we have :

(3.6) T(a-1) = (1/2){ f (I)W(r)dr}z{ [y {,W(s)ds)zdr}'l.

This result is interesting in view of the simulation experiment reported in Dickey and
Pantula (1987). They showed that with a sample of length 50, the standard Dickey-Fuller
(1979) test rejects the null hypothesis of a single unit root in favor of a stationary process



slightly more than 5% of the time when the series actually has two unit roots. Given our
result in (3.6) this feature is due to the small sample size used in the simulations. Indeed,
in large samples, the Dickey—Fuller criterion would never reject a unit root in favor of a
stationary process when two unit roots are present as the limiting distribution in (3.6) has
a positive support.

It is worth emphasizing about Theorem 3 that, contrary to the case analyzed in the

previous section with an MA(1) root local to — 1, T(& — a) has a non—degenerate
asymptotic distribution. This explains the relatively small discrepancies between the usual
asymptotic approximation and the exact distribution when p is close to one (as opposed to
the large ones when the MA or AR roots are close to — 1). For p close to one, the fact that
the exact distribution approaches its asymptotic counterpart quite slowly is explained by
the difference between the local asymptotic distribution described above and the
asymptotic distribution described by (1.4).

Theorem 3 can be used to compute, for a given pair of values of c and ¢, an alternative

approximation to the exact distribution of T(& — a) or T(& — 1) when the errors have an
autoregressive root close to one. As in the previous section, we derive a closed form solution
for an appropriate limiting characteristic function in this nearly twice integrated setting.
The result is stated in the next Theorem.

THEOREM 4 : Let {yt} be a stochastic process generated by (8.1) and (5.2), the limiting
distribution of T(a - 1), limeP[T(& - 1) € z], is given by P(Zi > 0) where Zi i3 a
random variable with the characteristic function Di( 2iw)—1/ 2 where :

DE(\) = eap(c + 9) {cosh(u Jcosh(uy) + b sinh(is )sinh(lg)y (i )

— (1/2)(c + ¢ )[cosh(i )sinh(g)/ig + sinh(i )cosh(ug)/u,]
1+ (c + 9)(c — §)%/2]fcosh(is Jsinh(isg) g ~ sinh(s )cosh(ug)/is I/ (W} - )

4 8A(22 — ¢ — )[1 - cosh(u Jeosh(ing) + (cF + §%)sinh(is )sinh(ug)/ (8 i)/ 5 -u3)%}
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with u, uy = (/9 + 9%+ [(cF - 4% + ra /B,

Remarks : i) Again, the result of Theorem 4 holds under conditions more general than
those stated, see Remark (i) of Theorem 3. ii) The parameters ¢ and ¢ can be any two real
numbers or any two complex conjugate pairs. Hence (3.3) is, in this general context, well
defined in the realm of real numbers though (3.1) and (3.2) are not necessarily so. iii) The
result with ¢ = ¢ = 0 was also obtained by Tanaka (1990). iv) The limiting charateristic
function described in Theorem 4 can be used to numerically eyaluate the limiting

distribution and density functions of T(& — 1) using (2.3) and (2.4). The specifications used
are similar to those in Section 2.

To get an idea of the type of limiting distributions involved, Figure 4 presents limiting

density functions of T(& — 1) for some values of ¢ and ¢. Every curve in Figure 4 starts
from oo at x = 0 and tends to 0 as x + 0.

Selected percentage points of the asymptotic distribution of T(& — a) with a =
exp(c/T) are presented in Tables III along with finite sample values in parentheses
reproduced from Perron (1991a). The limiting values are obtained from the distribution
(3.5) and the limiting characteristic function of Theorem 4 with x — ¢ substituted for x.
Consider first the case where ¢ = 0 presented in Table III.A. Here the left tail of the
distribution is not well approxima.téd for any value of p. This is due to the fact that when ¢
= 0.0 , the local asymptotic distribution considered implies a non-negative variable in the
limit. However, the left tail of the finite sample distribution is in the negative part. On the
other hand, the right tail of the distribution is much better approximated by the local
asymptotic distribution than by the usual asymptotic distribution for a p value of 0.95 and
to some extent 0.9. It provides, however, no improvement when p is 0.5. These facts are
corroborated by the behavior of the mean and variance of the distribution. Both are better
approximated by the local asymptotic distribution when p = 0.95 and to some extent when
p = 0.90, but not when p = 0.50.

Consider now the case where ¢ = — 5.0 presented in Table III1.B. The results are quite
different from the case where ¢ = 0.0. Here the "nearly doubly integrated" local asymptotic
distribution seems to provide a worse approximation, in the left tail, than the usual
asymptotic distribution for all values of p considered (even though the variance is better
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approximated). To get a closer view of the approximation, Figure 5 shows the results of
simulations for the case ¢ = -5.0 and ¢ = -2.5 using N(0,1) random numbers for the
innovation process {et}. Note that this case corresponds to one where the adequacy of the
asymptotic approximation is rather poor compared to other cases considered in Table III.
This fact is revealed by a substantial distance between the curves of the limiting and finite
samples distributions in the left tail. This can be partly explained by the fact that the

support of the empirical distribution of T(& - 1) extends below zero whereas the support of
its limiting distribution is bounded below by zero (see the Remark (i) to Theorem 3).

The case with ¢ = 2.0 is presented in Table III.C. For p = 0.50 the approximation is
worse than the usual asymptotic distribution (see Perron (1991a)). On the other hand,
when p = 0.90 or 0.95, the improvement is substantial. The median and the right tail of
the distribution are very well approximated. For example, when p = 0.9 and T = 25, the
values for the 95% point are 2.13 (exact) and 2.135 (local asymptotic). Unlike the case with

= 0.0 or — 5.0 the left tail of the distribution is not as badly approximated especially for
the 10% point. .

Figures 6 and 7 present the results of a simulation exercise concerning the robustness
of the limiting results to additional correlation in the errors {et} as discussed in Remark (i)
of Theorem 3. The results pertain to a comparison of the finite sample and asymptotic

distributions of the statistic T(& — 1). Figure 6 considers the case ¢ = ¢ = 0 with MA(1)
errors e, = 1, - (3/4)"t—1‘ Figure 7 is for the case ¢ = — 1 —i and ¢ = — 1 + i using AR(1)
errors e, = —(2/3)e, ; + 7,. In both cases, N(0,1) random numbers are used to generate
the sequence {nt}. Both figures illustrate the validity of the asymptotic result, though the
convergence of the finite sample distribution to its asymptotic counterpart is rather slow.
This is due to the fact that the moving-average and autoregressive parameters are large
negative numbers. The convergence is more rapid with an error sequence that is less
correlated or positively correlated.

In summary, combining the results of Perron (1991a) and those discussed above, the
different types of asymptotic distributions considered for the case with positively corretated
AR(1) errors appear to be complementary. None of them provides an approximation to the
finite sample distribution that is satisfactory for all values of p and all percentage points.
However, for a wide range of parameter configurations there is a particular asymptotic
framework that seems appropriate. When p is small, say less than 0.5, the usual O(1)



—-14 -

asymptotic performs quite well. When p is close to 0.5, the OP(T—I) stochastic expansion
provides a substantial improvement in the left tail of the distribution (unless ¢ = 2.0) but
not in the right tail. This feature is not too troublesome, given that there are much less
variations in the right tail of the distribution as T changés. When p approaches 1, the

Op(T_l) stochastic expansion fails to provide much of an improvement. On the other
hand, the "nearly twice integrated" model proposed here seems to provide a marked
improvement in approximating the percentage points in the right tail of the distribution
when p is close to one (especially when ¢ = 0.0 or ¢ = 2.0). The region where none of the
asymptotic frameworks discussed provide an adequate approximation for sample sizes in
the range from 25 to 100 is in the left tail of the distribution when p is close to one.



4. A NEARLY INTEGRATED SEASONAL MODEL

In this Section, our aim is to provide a local asymptotic framework for the case where
the errors have an autoregressive root near minus unity. We consider the adequacy of such
an asymptotic approximation and we also investigate how the theoretical results can shed

light on the differing behavior of T(& — @) when the errors are negatively correlated with
AR(1) or MA(1) structures as discussed in the introduction. Consider first the following
parameterization of the process under study :

(4'1) W= exp(c/T)yt_l + ut )

(4.2) u, = —exp(¢/T)u,_; +e, ;

where we again specify e, ~iid. (O,o'g) and for simplicity €y = Uy = 0. The model (4.1)
and (4.2) can be written as :

(43) 5, = [exp(c/T) - exp(8/T)ly,_; + exp((c + #)/T)y, p + ¢, -
As T increases to infinity {y,} approaches the process :
(4.4) yt = yt—2 + et .

The equation (4.4) characterizes a seasonal model of period 2 with a root on the unit
circle. We therefore label the process (4.1) and (4.2) as a "nearly integrated seasonal
model". To get some insights into the result presented below, consider a special case where
¢ = ¢. Then (4.3) reduces to :

(4.5) y, = exp(2¢/T)y, , +e, .

This is a special case of a class of nearly integrated seasonal models that have recently
been studied by Chan (1989) and Perron (1990b). ‘Chan (1989) derives the asymptotic

distribution of T(ad ~ a) where @, is the least-squares estimator of the coefficient on Yio
in equation (4.5). Perron (1990b) tabulates the percemtage points of this asymptotic
distribution. The difference in focus here is that we wish to study the asymptotic
distribution of the first~order autocorrelation coefficient when the process is a nearly
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integrated seasonal model of period 2.

Recall that & = T"22T A 1/T 221 ¥i_y- Under (4.5), it is easy to deduce from
Chan (1989,Lemma 2.i) tha.t

(4.6) T2 2 = (P8 [ [Jc,i(r)]z dr;

where J.(r) = f Bexp((r—s)c)dWi(s), i= 1, 2 ; and W,(r) and W,(r) and independent

Wiener processes. Consider now the numerator of & First note that we can write :

@0y, =B (i e y;
and
(4.8) 1 _z[(t D/ exp(2ci/The, ai1

where [-] denotes the integer part of the number. Given that the errors {e,} are i.i.d., y,
and Vi are independent processes as they are functions of different subsets of the
sequence {e }. Hence A A is the product of two independent nearly integrated random
processes ha.vmg [¢/2] and [(t-1)/2] elements respectively (assuming e, = 0). Following the

results on the sums of products of two independent random walks, it is straightforward to
show that :

(4.9) T2 v,y = (62/2) [ I () gle)dr

Hence we have the following asymptotic result whenc = ¢ :

(4.10) &= {2 fi Jc,l(r)Jcﬂ(r)dr]{)}?:l NGk dr}‘l .

Note that & has a degenerate asymptotic distribution , in the sense that it converges
to a random variable instead of a fixed constant as was the case with MA(1) errors having
a root approaching — 1. Qur result is consistent with that of Yajima (1985) who showed,
among other things, that in seasonally integrated models of period k, the sample
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autocorrelations of orders other than kn (for any integer n) have a degenerate asymptotic
distributions in the semse that they converge to random variables instead of fixed
constants.

Given (4.10), T(& - a) is unbounded as T increases, which explains the large
discrepancies between the exact and asymptotic distributions reported in Perron (1991a).
Note, however, the different rate at which the root is permitted to approach — 1 as T
increases to infinity. In the AR(1) case it does so at rate T, while in the MA(1) case the

rate is Tl/ 2 This feature explains well the differences in the discrepancies between the
finite sample and asymptotic distributions reported in Perron (1991a). As shown, the
discrepancies are much larger in the MA(1) case for an-equal value of 4 and p. Such a
feature can be theoretically interpreted by noting that for a given same value for § and p, ¢
is further away than § from the zero boundary because of the different normalizing power

on T. Indeed, in the MA case, we have § = TV/%(1 + 6) and, in the AR case, ¢ = T(1 +
p). In this sense, for a given value of § and p close to — 1 and a given T, the process (2.1)
and (2.2) is closer to a white noise process than the process (4.1) and (4.2) is to a seasonal
random walk. One can therefore expect the standard asymptotic distribution to provide a
less accurate approximation in the former case.

Note also that (4.10) does not presume that c is negative; it can also accommodate
locally explosive processes as well as a seasonal random walk. In the latter case we have an
interesting result, namely the asymptotic behavior of the first—order autocorrelation
coefficient when the true model is a seasonal random walk of period 2. In this case :

(4.11) a = {2f g wywymar{z_, [ w(r |,

where W, (r) and W,(r) are independent Wiener processes. The general case where ¢ # ¢ is
more complex but yields qualitatively similar results. The following Theorem, proved in
the Appendix, provides the formal asymptotic distribution.

THEOREM 5 : Let {yt} be o stochastic process generated by (4.1) and (4.2). Define the

random functions J¢ (s) = f ezp((s — v)p)dW; (v) and Q, (J (r)) foezp((r - 8)c)
(s)ds (i = 1,2) ; where W (r) and W (r) are mdependent erner processes. Also let

c,1(3) = fg exp((s - ”)C)dw1(”)- Thenas T 00 :
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a= 1 -2f } Bo)%ar | f i) - )P + B6)Pyar} ™!
ahere  A(1) = (8 - fQuly (1) ~ QT o]+ 2, (1),

and B(r) = J¢'1(r) - J¢,2(r) .

Remark : The limiting distribution of & is of the form (Z; - Z,)/(Z; + Z,) where Z (=

f (1)[A(r) - B(r)]2dr) and Z, (= f (I)B(r)zd.r) are nonnegative random variables. Hence, the
support of the limiting distribution is restricted to the interval [-1, 1].

Note that the result in Theorem 5 reduces to (4.10) when ¢ = ¢. Note also that, again
in this general context, ¢ and ¢ can take any real value. This result shows that a has a
degenerate asymptotic distribution even in the general case where ¢ # ¢. Hence & is not a

consistent estimator and T(& — a) is unbounded as T increases. However unlike the MA(1)
case and similar to the AR(1) case with a positive root on the unit circle, the asymptotic
distribution in Theorem 5 has a non—zero variance even on the boundary ¢ = 0. The next
theorem characterizes the appropriate limiting characteristic function that can be used to

numerically evaluate the limiting distribution of &.

THEOREM 6 : Let {yt} be a stochastic process generated by (4.1) and (4.2). The limiting
distribution of the first—order least—squares estimator &, lz’mT_’ o<)P[éz < zj, 18 given by P(Z‘z

> 0) where Z° is a random varible with characteristic function D3(2iw)~/% uhere DY)
is defined by :
D3) = eap(e + ) {eosh({® - Az - 1)/}/%)
— csinh({c® - Az - DAY/2NE - 2a - )/
[cosh((9® ~ Az + 1)/4Y/%)
- ¢ sinn((e? - Az + D/V2/6% -2+ 082

Remark : The limiting characteristic function described in Theorem 6 can be used to
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numerically evaluate the limiting distribution and density functions of & using (2.3) and
(2.4). The specifications used are similar to those in Section 2.

To get an idea of the type of limiting distributions involved, Figure 8 presents the
limiting density functions for some values of the parameters ¢ and ¢. Note that as ¢
increases the limiting density function exhibits a high peak near 1 though the maximum
height is finite.

Table IV presents the distribution of T(& — «) based upon the local asymptotic
framework described in Theorem 5 using the joint characteristic function of Theorem 6 for
p = - 0.9. The cases considered are again ¢ = 0.0, — 5.0 and 2.0 with T = 25, 50, 100 and
500. The finite sample results, reproduced in parentheses from Perron (1991a), are based on
normally distributed innovations. In general, the approximation is satisfactory and
certainly represent a major improvement over the standard asymptotic distribution (see
Perron (1991a)). The approximation is best, and indeed very good, when ¢ = — 5.0 (most
notably with T = 50 and 100). It deteriorates as c increases. Also, for a fixed value of c, the
approximation is better when T is small; it deteriorates as T increases to 500. This last
feature is to be expected given that our asymptotic framework is local to the boundary p = -
1; when T increases the noncentrality parameter ¢ is correspondingly higher. Finally, it is
to be noted that the approximation is better in the left tail of the distribution.

Figure 9 presents an extended simulation for the case ¢ = 2.0 and ¢ = -2.5 whose
asymptotic density is graphed in Figure 8. When c is positive, the finite sample

distribution of & has a relatively heavy weight in the region x > 1, in spite of the fact that

the support of the limiting distribution of & is restricted to the interval [-1, 1] (see the
remark to Theorem 5). It is seen that the convergence of the finite sample distribution to
its asymptotic counterpart is accordingly slow in the right tail of the distribution (near 1)
whereas it is fast in the left tail. This reflects the fact mentioned above concerning the high
peak of the limiting density near one with the fact that the support is bounded above by
one. For other combinations of ¢ and ¢ considered in Figure 8, the approach of the finite
sample distribution to its asymptotic counterpart is faster.
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5. CONCLUDING COMMENTS

This study presented alternative frameworks that could provide better approximations
to the finite sample distributions of the statistic of interest. Our results are encouraging in
that our local asymptotic distributions provide substantial improvements in approximating
the finite sample distributions in the region of the parameter space where the traditional
asymptotic framework provides severe inaccuracies. These local asymptotic distributions
still depend upon nuisance parameters, namely those indexing the extent of correlation in
the residuals. In practice one would need to have an estimate of these parameters in order
to use our distributional results. These could be obtained by a preliminary investigation of
the nature of the correlation structure of the residuals. Consider, for example, the case of
testing for a unit root. A preliminary estimate of the correlation structure under the null .
hypothesis can be obtained by analyzing the sample correlation of the first-difference of the
data. Suppose, for illustration, that a large negative MA(1) component is estimated. The
test can then be carried using the local asymptotic distribution described in Section 2 with
0 chosen according to the estimated value of the MA parameter . Of course, similar
procedures can be followed in the case where the residuals have an autoregressive structure.

On a theoretical side, our study along with that of Perron (1991a) show how different
asymptotic frameworks can be complementary in several respects. First, each framework
provides a better approximation to the finite sample distribution where the other shows
great inaccuracies. Secondly, the asymptotic results in the local asymptotic frameworks
were shown to be useful in explaining why and when the usual asymptotic theory may fail.
Nevertheless, our results also show the need for a unified asymptotic theory that could
provide a sensible guide to the finite sample distribution over most of the relevant
parameter space, albeit with possibly the need to estimate nuisance parameters. Such a
topic is of interest for future research.
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MATHEMATICAL APPENDIX

Proof of Theorem 1: Assuming that y, = e, = 0, we can write y, = 2§=1exp((t - j)e/ T)uj.

Given that U =€ € + 6'1‘_1/ 2et—1’ simple manipulations show that :

(A.1) y, = ape, + bpX,,

where

(A2) aq = (1 - 0T/ Byexp(—</T),
(4.3) by = 1 - exp(-</T)(1 - i,

and X, = Eg 1exp((t—.])c/ T)e is a near-integrated process given by X, = exp(c/T)X,_; +

e, , with e, ~ iid. (0, a)andX = 0. NotethataT-»la.ndTl/2bT—+6asT-'oo
Consider first the second sample moment of ¥y We have :

~1cT .2 _ 1T 2
T8 vi =T 2] (age, + bpX,)

= a21715T 2 4 Th2T 2T X2 + 22,1 2,13/ %5T X,
Note that T\ e -+ o (in probability) and T 251 X2 = a2 f g I (1)%dr as T - 0.

Furthermore, in a manner similar to Theorem 2.4 of Chan and Wei (1987), it can be shown
that B] X,e, = O o(T)- Hence

1T 2
(A4) . T Ely%=$a + 0 62f0Jc(r) dr.

Consider now the sum T_IE'{ Vi1 Using (2.1) and (2.2) we can write :

1T 1T ~1/2y 15T 2
T2y v,y = apT Z) e, —aq(l- 6T P15l el
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-1,T -1/2y, 1T
where a, and by, are deﬁned in (A.2) and (A.3). We can show that Elet {1180 (T1/2)
2}'}‘)(t_1et and ETXt 181 are Op(T) and that T IET 2 = a (in probability) as T - co.
Using these results and the fact that ap -1 and bT -0 as T - 0o, we obtain :

-1¢T 2
(A.5) T El AR
This proves Theorem 1 using a— a = T_IET Vi 1ut/T 121 Vi1 with (A.4), (A.5) and
the fact that a = exp(c/T)~1as T~ 00.0

Proof of Theorem 2: From Theorem 1, limy_ P& ¢ x] = P[A(§,c) < x]. Note that A(é,c) ¢
x is equivalent to Z =x+ 62(1: 1)Y > 0 where Y = f e (r)2dr. The moment-generating

function of Y can be obtained as a special case of Phillips (1987, eq. (A1) corrected for a
misprint) (see also Perron (1989, p. 244) and Nabeya and Tanaka (1990, Theorem 4)) It is
given by MGy(v) = exp(-c/2)(cosh(u) - ¢ sinh(u)/4)" 1/2 ghere u = (c® - 2v)!/2. The

characteristic function of Zch is obtained upon substituting v = (x — 1)62wi and multiplying'
MGy(v) by exp(iwx).

Proof of Theorem 3 : We prove Theorem 3 under general "mixing" conditions on the
sequence {e,}. An explicit statement of these conditions can be found in, e.g., Phillips and

Perron (1988). Suffice it to say that they are sufficient to ensure the application of a
functional central limit theorem, i.e. they are such that T~ 1/ [T 1] = oW(r) where o =

limq, , E[T"'S4] with S, = zJ _ ¢, We start with the following Lemma concerning the

sample moments of {y,} under the nearly twice integrated framework of Section 3.

LEMMA A1l: Suppose that {yt} isa sequence of random variables generated according to
(8.1) and (3.2), let a = lzmeE[T—IS J and Q, (J (r)) be as defined in (3. 4). Then as

T-00:



o Ty =0 QU0);

y 1Rl = o fo ) e
o % y_p, - (*/2){ Qs (0 - 2ef b 1) ar}
Proof :.We first define the random process Xep(r) as :

Xp(r) = i 2S[Tr] = it/ % (G-1)/T<r<j/T

- G =1,..T)

where S i = Eg___let. Given the assumed conditions on the sequence {e,} we have Xqpl) =
W(r), the unit Wiener process. To prove part (a), we assume, for simplicity, that y;, = ¢,
= 0, and using (3.1) and (3.2) we have (1 — exp(¢/T)L)(1 - exp(c/T)L)y, = e,, where L is

the lag operator. We can therefore write y, as

¥, = Sk _gexp(c(t - k)/T)E g exp(@(k - )/T) ;.
Then :

902y 1 = 128 Tlerp(e(me) - 0/ 8% exn(olk - /D)
~ 3T T emp(e(rme] - /D08y S {1y pexe(oe - )/ TIaXg(s)ov
= o fexp(c(z = v)) f pexp(g(v — 8))dXp(s)dv
= of Texp(e(r = )} X(¥) + 6 f Fexp(d(v - ) Xy(s)as}av
= o Sexp(e(e - {W() + 8 Jexp(6(v - ) Wis)ds}v
= o Kexplc(z - M 7)iv = Qd o)
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This proves part (a). To prove part (b), we have:

4] y] = T (B el - /DT g exp(d(k- /D) e,
= T‘lzf { f t/ Texp(c(t/T -v)) f 0exp(qb(v - s))dXT(s)dv}2
= o f (1) { f 0exp(c(r -v)) f gexp(qb(v - s))dXT(s)dv}zdr

7 [ 3Qe ) e

using arguments similar to those of part (a). To prove part (c), note that squaring (3.1),
summing over t and rearranging, we have :

(a6) 321% 1% =

(1/2)exp(-2c/T){T‘3y%-T(exp(zc/T) -1y - 32¥uf}.

Note that, from parts (a) and (b), T_3 yp = 0 Q (J (1)) and ’I‘_42)1yt 4 = |

2 f (I)Q J ¢(r))2dr We also have T 2ET uy =0 f OJ (r)2dr given that {u,} is a nearly
integrated process with non—centrality parameter ¢, hence T ET 2 -+ 0 (in probability).
Taking the limit of (A.6) and noting that T(exp(2¢/T) - 1) - 2¢, we ha.ve :

L ¥ = ()2) {Q (@47 -2 [ 4Q (J¢(r))2dr}

35T —4¢T 2
2] ¥419/T 7 ¥y hence:

To prove Theorem 3, simply note that T(&-a)=T
T(a- @) = (1/2) QW) S §o0 ) ar] ™ -

Since T(&-1) = T(&- @) - T(1 - a) and T(1 - @) » - ¢, we have :

T(a-1) = (1/2) QUM [ iQ T ganan}™ o
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Proof of Theorem 4 : We first deal with the case

(A7) ¢$0,4#0andct#¢%.

Note that the inequality T(& - 1) < x i8 equivalent to xVip — Up 2 0, where (since y_; =
Yo = 0):

JE | T 2
(A-8) Up = 2T7(%y _g¥¥y 1 ~ By =o¥i1) »
o 4sT_2

Defining a; = exp(c/T) and ay = exp(¢/T) we have, using (3.3) andy_; =y, =0:
_ gt ol bl il _
Vi = Ej___l(a:1 a) (o a )ej (t=1, 2,...).
Substituting in (A.8) and (A.9) we obtain :

(A10)  Up= T—12'Jp=12'11;_ T_2(a1 - a2)‘2{- 2ol Kl - 2TFHH) (1 4 )
+(2-0p- %)(aﬁ—kl + a_lzj-kl _ a’{‘—j+1a’§—k+1

-1¢T
= 2 2{ 1BN(J:k)e €K (say),

(A.11) VT=T'12'f 2 12'13'?'(,::1 a2) {(a““‘| 2T-FE+2) (1 - of)

i i - -] T-k+1 T-j+1
(@l 4 ol - oT J+1a'£ kbl _ Tkl T )/(l—ala2)}ejek

-1,T .
=T % j= L‘k lBD(J,k)eJek (say).
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The coefficients BN(j,k) and Bp(jk) (j, k =1, ..., T) in the summations (A.10) and
(A.11) can be approximated uniformly by the continuous functions KN(s,t) and KD(s,t),
respectively, in the sense that limp | maxj,kl BN(j,k) - K( j/Tk/T)| = 0, and similarly
for KD(s,t), where

Kpg(s,t) = [exp(c(1-8)) — exp(4(1-8))][exp(c(1-t)) - exp($(1-4))]/(c - 9)°

Kp(sit) = {[exp(C(H—t)) - exp(c|s-t])}/c + [exp($(2-8-1)) — exp(@s-4])]/¢
+ 2[exp(c|s-t|) + exp(¢|s-t|) - exp(c(1-8)+4(1-t))

- exp(c(1-t)+9(1-5))/(c + )} /(e - 9)".

We note that Ky(s;t) and Kp(8,t) are real-valued symmetric functions defined on the

interval [0,1]x[0,1], and that both are positive definite in the sense that
f (1) f (I)KN(s,t)f(s)f(t)dsdt > 0 for any real-valued continuous function f(t) on the interval

[0,1], and similarly for Kpy(s,t).

Applying results in Nabeya and Tanaka (1988, 1990), the characteristic function of the
limiting distribution of xV., — Uy as T - o0 is given by {Di(2iw)}—1/ 2 where D2(1) is the

Fredholm determinant for the kernel xKD(s,t) - Ky(s,t). To find Di()\) consider the

integral equation

(A.12) f({) =/ (1, {xKp(s,t) - Ky(s,t)}(s)ds .

It is readily seen that f(t) satisfies the following fourth order differential equation :
(A.13) ) - (2 + 631 () + (P9% - 2Ax)i(t) = 0 .

The characteristic equation associated with (A.13) is :

(2 + oDt + (P%-2xx) =0,
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which has the solutions + 4, and  pg a8 defined in Theorem 4. If + 4, and * py are four

different numbers, the general solution to (A.13) is given by :
(A.14) f(t) = blexp(ult) + b2exp(—p.1t) + b3exp(y.2t) +b 4exp(—,u2t) .

Using the right hand side of (A.14) for (A.12), the terms involving exp(st), exp(—p; t),
exp(pot) and exp(—pyt) cancel out. Equating the coefficients of exp(ct), exp(c(1-t)),

exp(¢t) and exp(¢(1-t)) on both sides of (A.12), we obtain a system of linear homogeneous
equations in b1 tob 4 From the determinant of the coefficient matrix of the equations, we

obtain Di(/\) as specified in Theorem 4. Note that the result holds if any of the conditions

in (A.7) is violated since Di()\) is continuous with respect to c and ¢.

Remarks : 1) Note that xKp(s,t) - K(8,t) is negative definite if x < 0. This implies that

the support of the limiting distribution of T(& - 1) is limited to the interval [0, 00). Hence,
the limiting distribution of T(& — a) is restricted to the interval [—c, c0). 2) The result of
Theorem 4 was first given in Nabeya (1987) as a conjecture. At that time the author could
not verify the condition that, for every eigenvalue ), the multiplicity for the integral
equation (A.12) and the order of zero to D_(X) should be the same. This condition has now

been verified by assessing the validity of the equations
1 ’
J otxKp(s.8) - Kiy(s.8)}ds = -D(0),
1 2 / 77
[ Lxg(8,t) - Ky(s,4)}dsdt = {D5(0))* - D (0),

* using the computerized algebra REDUCE. The details of the proof of other conditions are
described in Nabeya (1987).

Proof of Theorem 5 : To prove Theorem 5, we proceed with a series of Lemmas concerning
various sample moments of the data. For ease of notation, assume without loss of
generality, that the sample size T is an even number and let m = T/2.b Also let a =
exp(c/T) in (4.1) and p = exp(¢/T) in (4.2). The first Lemma is concerned with the
asymptotic distribution of sample moments involving different subsets of the data, i.e.
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separating the sequence {yt} and {“t} into two subsets corresponding to whether the time

indejc { is even or odd.

LEMMA A.2: Let the functions A(r) and B(r) be as defined in Theorem 5 and consider a
sequence of random variables {yt} defined by (4.1) and (4.2). Thenas T+ 00 :

o) For [Tr] an even number : T~ /2y, = 2=%/24(r);
b TART_d =P [ Lp(r)Par ;

o T-%8T_ 2= (o%s) [ IB(r)far;

Q) T™ABT_ 4o ,= (07/16) [ La(r)ar ;

e) T 27 _ Iyzk_lzuek_ = ~(0%/8) [ JA(r)B(r)dr

Proof : To prove part (a), note that from (4.1) : Vi = 2: =1 1;"-iu - Hence, for t an even
number, we have y,, = 22]; 2k'juj (k = 1,..,m). Separating the sequence {uj}

according to whether jis even or odd we have :

k 2k 2j+1
(A.15) Yox = 2k 2"\1 + Ek I+ Ui -

~ Now define the following variables :

N
(A.16) Xy = z:ljf=1(p ) ey,

2yk-]
(A.17) Xoy = ‘J]; l(p) €951
Note that X, . and X, are independent nearly integrated random processes with

noncentrality parameter ¢ given that p2 = exp(2¢/T) = exp(¢/m) and that the random
sequences {e, j}?=1 and {e, j—l}x,!il=1 are independent by assumption (since the innovation
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sequence {et}rf=1 ig i.i.d.). It is straightforward to show that :

(A18) g = Xy P %ok
(A.19) Uy 1 = X.z,k - (1/p)X1’k + (1/p)egy, -

Using (A.15) through (A.19) we deduce that :
T2, =101 - ofp)T/ 2):‘;=1(a2)k‘1x1, ;

| ) . ) ot

(A.20) +T(a-p)T 3/221;=1(a2)“ ix, ; + (afp)T 1/ (o ey

Noting that o? = exp(2¢/T) = exp(c/in) and p2 = exp(2¢/T) = exp(¢/m), using standard
limiting arguments, we have (see the proof of Lemma A.1 (@) : '

m /258 _ (oKX, = o, f fexp(e(r ~9)) [ gexp(9(s — V)AW, (v)ds = QT ()
and, similarly,
w3258 _ (I, = o f fexp(els - 9)) f Gexp((s - M)AWy(v)ds = Qe 5(5)

with W,(v) and Wo(v) independent Wiener processes. Given that m~3/2 E.'lj‘__zl(cﬁ)k_je2j
= [Texp(@(x - VAW (v) = ,(x) , T(1 - afp) + (¢ = <) , T(a=p) = (¢ = ¢), @+ L and
p-1asT - oo, we obtain from (A.20) :

T2y, =232 -0Q 3, (1) + 2732(c - $)Q (3 4 o(r)) + 25 1)

=27/ 2A(r).
To brove part (b), first note that from (4.2) ugy ; = 2?_];‘__'1'1 (-p)2k—j_ le i Separating this

sum into ones that involve even and odd values of j we have :
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Uog-1 = El;:l(l’z)k_jezj_l -(1/p) Sk I(P )k Je

(A.21) = xg,k - (I/P)Xl’k + (I/P)egk
=Xy~ Xy + op(Tl/ 2

given that p -+ 1 as T - oo. Hence, we have :

T g = (AR = (/a5 (X - Xy g + 0y (TH/2)?

= (d2/4) f(l)[J¢’2(r)—J ¢’1(r)]2dr-:-(az/4) | 5B(x)%dr .

To prove part (c), note that Z’f___luf = Eril:lugk + 21]?:1“31;_1' In a manner similar to

. - 2
part (b), it is easy to show that u,, = xl,k - pX2,k . Hence EII?:I“% = E’il=1[x1,k -p
X, k]2' Using (A.21) we have :

T .2 2 2 2 2
(A22) %, _juf=(1+1/p ))3"1'3:1)(1,k +(o° + 1)5) X3 r-2Ap+ l/p)Elf=1X1’kX2’k

+ (1% B5_ o5y + (2/0) BY_ Xy gy — PR _ X gy

It is easy to verify that the last three terms in (A.22) are Op(T). Hence using standard

convergence arguments and the fact that p+1as T - oo.:
T2 5y = (/D) m B X, - X P + o (1)
= (%/2) [0 pa(0 -1 ¢,2(r)]2dr = (62/2) [ B()%dr .
The proof of part (d) follows straightforwardly from part (a) using the fact that

_221“ 1y2k 9 = = (1/4)m™ Em lygk o and that m -1/ 2y2k = (1/2)A(r). To prove part
(e) note that (using y, = 0) :

2 —2.m—1 ) 2
T8 —1Yok9U9p1 =T Zp— Va1 =T Sk —1Vorlogr — T ¥pUpyg
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-9 -2
=T 211?:15'21:("’“21: +egp 1) =T "y

_ 2
(A.23) =T ‘B0 _ Vol + op(1)

. -2 —2
given that p - 1 as T -+ oo and that both T 21;1=1y2ke2k+1 and T ypUry ar€ op(l).
Now using (A.20) and the fact that ug, = Xl,k - ,a)(2,k we have :

T3 gy = (1/4) m B (X, = Xy ]I(1 - o) 21;=1(02)k_jxl,j
+ (@) (X, + (afp)B5_ () Ve
= (62/8) [ 3(8 - QI 1(6) - QT4 50N + 20 1 (0]
{3,,100-3, 5(0)}ds = (4%/8) f {ACIBC)dr.

This proves part (e) using (A.23). The next Lemma characterizes the limiting distribution

of the numerator and denominator of (@ - a), namely T 22T u, and T ZET 2

=17¢-1% =1Y{-1"

LEMMA A.3 : Let the functions A(r) and B(r) be as defined in Theorem 5 and consider ¢
sequence of random variables {yt} defined by (4.1) and (4.2). Then as T~ 00 :

)T 5T_J2 =S {[A(r) B(r)f+3(r)2}dr,

b) T—22€=1yt_1ut= - (05/4) f{] B(r)‘edr.

To prove part (a), first note that E'f Vi1 = 21]?-—1"3]:—1 + 211!:=1Y§k.2- Using the fact
that yo, 1 = a¥gy o +Ugy 1 WE deduce that :

T 2 _,2 2 2
21 vy =(a"+ DEp Yoo + 208} _ 1Yoy ooy + P =192p1-
Using Lemma A.2 (b,d and e), we deduce that :

T 24T 32 = (d2/8) f A dr - (a2/4) f GA(D)B(r)dr + (02/4) f gB(r)dr
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= (22/8) [ 3{[A@ - B + B@)?} d

as required. To prove part (b), note that using derivations similar to those used to obtain
(A.6), we have :

—2¢T 2.2 m—2, 2 T 2 ~2¢T 2
T Elyt_lut=(1/2a)[T yp-T (o -2y - T Elut].

Note that a -+ 1 and T(a2 -1)-42 a8 T- 00, y% = Op(T) using Lemma A.2 (a) and
Erfy%_l = Op(Tz) using part (a). Hence :

2T -2 2 1 2
1251y, ju, = -(1/2)T z'fut+op(1)=-(a§/4) [ iB@miar,

using Lemma A.2 (c). o

The proof of Theorem 5 follows using the fact that a = a + T_2E’fyt_1ut / T-ZE’fyf_l

with Lemma A.3 and noting that a»1as T+ 00. O

— . _ om=2T op2eT 2
Proof of Theorem 6 : Using the notation Ut = 2T "%} _o¥,¥;_1» Vi=2T "8, o v p
a; = exp(c/T) and ay = - exp(¢/T), we have from (A.8) through (A.11) :
_ 2
V,i. + U.—} = TUT +‘2T VT
~1¢T -1 -2, 1J 2T-jk+2
(A.24) = 2j=12’11:‘=1{2T (¢ - a)) (a{J—kI - o et )/(1 - o:l)}ejek
+0,(T7,
V,"l“ - Ur’f = —TUT
AT 6T for-l o _ =2 |3k] _ 2T—k+2
a2 =1t Lrlay - e o - TR 4 aples

+ 0 l)('1“1).
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Let (W,(), Wo(+)) be a pair of independent Brownian motions defined by
(T Y/ 2zg£§1ej, T‘1/2z§£§1(-1)iej) = (W, (1), Wy(r)) (0 ¢ 1 € 1). Tet By(Gk) (k= 1, .,
T) be the coefficients associated with €y in the sum defined by (A.24) and let B,(j,k) (s
k, =1, ..., T) be the coefficients associated with (—l)jej(—l)kek in (A.25). We have :

. -1 - -k 2T—-jk+2
B, (k) = 2T (a; - o) Z(al*| - ZTT*42) (1 - a)),
) -1 - j 2T-jk+2
By(jk) = 2T (o - ag) 2(J ay| HE! = g PTF %) /1 - | oy)).
Let a;=¢ and a9 = ¢ and define the functions

K, (5,t) = (~1/20,)(exp(a;|s-¢|) - exp(a;(2-s-1))) - (=12

We have :
imp max; | B,(jk) - Ki(j/T,k/T)| =0. (i=1,2)

Therefore, (V3 + Uf, Vi - U7t) converge jointly in distribution to (Z;, Z,) as T - oo,

where
z, = [ o 5(-1/28,)lexp(a;|s-t1) - exp(a;(2-s-t)IAW; ()W, (t) . (i=12)

The characteristic functions of Z1 and Z2 are given, for i = 1, 2, by (see Nabeya and

Tanaka (1990)) :

Elexp(iwZ,)] = exp(-8;/2){cosh{(a} - iw)1/2) - a, sinh{(a? — iw)/2}/ (a2 - iw) 2} 2

Since Z; and Z, are independent, the joint limiting characteristic function of (UX,

V1) bgcomes :



Efexp(i(u+v)Z,/2)|Elexp(i(v-u)Z,/2)] =
exp(-{c+9)/2) loosh{(c? ~i(u+v)/2)!/?}
— ¢ sinh{(c? — i(u+v)/2) 2} /(2 - i(u+v)/2) 2]
foosh{(¢? - i(v-u)/2)1/%)
- ¢ sink{(9” - i(v-w)/2)'/2}/(¢” - i(v-w)/2) A2

Since & < x is equivalent to xV.i. - U,} > 0, the theorem is proved substituting u = -w and

vV = WX.
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TABLE II : Distribution of T(@— a) ; a=exp(c/T) ; Nearly White Noise Model

Asymptotic values based on § =T1/ 2(1+ 0) ; finite sample values in parentheses.
A:Mean
c 0 T=25 T=50 T=100 T=500 T=1000 T=5000
0.0 -0.90 -22.51 —41.50 -73.02 -210.72 -291.68 —456.60
(-21.13) (-39.07) (-69.00) (-201.45) (-275.74) (-447.14)
-0.70 -14.54 -22.12 =31.01 —49.83 -54.88
(-12.43) (-18.49) (-25.32) (-39.19)  (—42.33)
-0.50 -9.45 -12.73 -15.80 -20.37 -21.24
(-6.92)  (-8.77) (-10.39) (-12.65)  (-13.77)
-5.0 -0.90 —24.45 —47.88 -91.96 —354.94 -561.33  -1103.46
(-22.07) (-45.08) (-88.46) (-341.04) (-539.09) (-1018.31)
-0.70 -20.98 -36.49 -58.54 -119.19 -138.92
(-16.25) (-30.63) (—48.70) (-91.69) (-106.82)
-0.50 -16.62 -25.48 -35.25 -52.53 -56.27
(-11.13) (-16.76) (-22.25) (-29.71)  (-32.20
2.0 -0.90 -17.17 -28.60 —45.37 -107.63 -141.02 —-206.18
(-13.82) (-23.96) (-36.64) (-101.14) (-133.57) (-183.44)
-0.70 -8.10 -11.41 -15.10 —22.56 -24.51
(-6.89)  (-0.41) (-12.45) (-18.06)  (-19.61)
-0.50 -4.73 -6.07 -7.29 -9.0 -9.39
(-3.80) (4.46) (-5.23) (-6.09) (-6.31)
B: Variance
c 0 T=25 T=50 T=100 T=>500 T=1000 T=5000
0.0 -0.90 5.20 46.22 326.00 11380.04 34048.96 167052.12
(37.34) (119.64) (482.88) (11573.26) (33716.06) (158516.00)
-0.70 28.73 116.25 361.89  1928.47 2796.55
(52.61) (142.37) (352.78) (1347.55) (1882.63)
-0.50 26.66 73.38  157.03 405.98 475.96
| (36.21)  (66.38) (111.29) (192.09)  (258.00)
-5.0 -0.90 0.10 1.44 18.27 3071.33  16813.96 213117.59
(22.11)  (48.76) (119.51) (3965.71) (19248.78) (235949.10)
-0.70 3.44 28.38 164.09 2358.53 4302.75
(28.73)  (82.83) (257.62) (1882.48) (3257.43)
-0.50 8.73 43.03 144.62 677.08 901.64
(32.35)  (74.40) (150.83) (349.85)  (450.90)
2.0 -0.90 35.76 185.27 796.71 11931.33  28353.66 103245.87
(82.30) (263.61) (904.97) (11469.52) (27448.45) (92427.60)
-0.70 43.31 127.07 310.54 1205.10 1634.98
(56.21) (126.45) (279.97) (843.09) (1129.94)
-0.50 25.74 57.56  106.55 235.49 260.28
(29.59)  (46.39) (75.04) (116.79)  (133.04)
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