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ABSTRACT

This paper considers a test for structural change in the coefficients of a polynomial
trend function in a time series of data characterized by an autoregressive noise component.
The specifications analyzed are extensions of a procedure originally proposed by Gardner
(1969) and MacNeill (1978). Our test is valid whether or not the noise component contains
a unit root. The limiting distribution and local asymptotic power function are derived and
appropriate critical values are tabulated. An extensive simulation experiment is performed
to assess the size and power of the test in the case where the polynomial trend function
contains only a constant or a constant and a trend. Interesting non-monotonic power
properties are uncovered. In particular, the power function of the test eventually decreases
to zero as the magnitude of the structural change increases. This feature is likely to be
common to most test procedures for structural change when lagged dependent variables are
included as regressors. We provide an explanation for this phenomenon based on the results
of Perron (1989, 1990a). A modification involving the use of data in differenced form helps
to mitigate this problem for many cases of practical interest. The test is applied to postwar
quarterly real GNP (or GDP) series for the G-7 countries.
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1. INTRODUCTION.

The issue of structural change has attracted, for understandable reasons, a lot of
attention in both the statistics and econometrics literature. Much of the work has focused
on developing procedures to test for structural change under restrictive assumptions. These
restrictions usually involve one or more of the following : i) independently and identically
distributed data, ii) non—trending data , iii) no unit roots in the univariate representation
of each series. For a review of the literature the reader is referred to the annotated
bibliographies of Shaban (1980) and Hackl and Westlund (1989) and the surveys of Zacks
(1983), Krishnaiah and Miao (1988) and Deshayes and Picard (1986).

The nature of most macroeconomic variables is such that none of these restrictions is
appealing given that many variables exhibit both a tendency to increase over time and
strong serial correlation. Furthermore, it has been argued that many macroeconomic time
series are better characterized as having a unit root in their univariate time series
representation (see Nelson and Plosser (1982)). It is therefore of interest to consider testing
procedures that allow a relaxation of these assumptions.

It is only recently that some advances have been made to tackle the issue of structural
change in series where one or more of the above mentioned restrictions are not imposed.
Andrews (1990) considered the Wald, the Likelihood ratio and the Lagrange Multiplier
(LM) statistics for a general regression model involving data that are possibly dependent
and heterogeneously distributed. Hansen (1990a) also considered LM procedures in such a
context. Kramer, Ploberger and Alt (1988) extended the CUSUM test of Brown, Durbin
and Evans (1975) to the case where serial correlation is present. However, none of these
studies provides procedures valid for cases where the data are trending and/or contain a
unit root. Kim and Siegmund (1989) considered the case where the data are trending but
did not permit serial correlation and unit roots. Recent papers by Chu (1989) and Chu and
White (1990) discussed tests that are valid in a univariate context where the variables can

be trended and serially correlated but without a unit root. On the other hand, Banerjee,
" Lumsdaine and Stock (1989) discussed a procedure that is valid for testing for a change in
the slope of the trend function in a time series of data characterized by the presence of a
unit root. A contribution which relaxed many restrictions is that of Hansen (1990b) who
considered testing for structural change in regression models with cointegration.

This paper adds a contribution by proposing and discussing the properties of a
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procedure designed to test for a structural change in the trend function of a univariate time
series allowing for the presence of serial correlation with or without a unit root. This work
is motivated by our recent investigations (Perron (1989), (1990a,b)) where we argued that
many macroeconomic time series are likely to be characterized by stationary fluctuations
around a trend function with a structural change rather than by a unit root process with a
time-invariant drift.

Our approach is in the class of tests for structural change based on the behavior of
cumulative sums introduced by Page (1955). It is an extension of the tests proposed by
Gardner (1969) and extended by MacNeill (1978). More specifically it is based on the
behavior of cumulative sums of estimated residuals in an autoregression where a
polynomial trend function is included. The test procedure to be discussed has some
optimality properties in the case where the series is normal and exhibits no serial
correlation. Indeed, as shown by Gardner and MacNeill, it is the likelihood ratio test where
a Bayesian prior is imposed on the possible structural change. This prior specifies at most
one change (of either sign) in the values of the parameters with uniform prior probabilities
on all possible time periods for the change.

The outline of the paper is as follows. Section 2 describes the model and the test
statistics. Section 3 derives the asymptotic distributions under the hypothesis that a unit
root is present as well as under the hypothesis that it is not present. The different rates of
convergence of the original statistic proposed by MacNeill (1978) with and without a unit
root imply that the statistic is useful only when the presence or absence of a unit root is
known. When no such prior information is available, a modified framework is necessary to
test for a structural change. Section 4 discusses such a transformation and derives the
appropriate limiting distributions. Though the limiting distributions of the statistics are
different with and without a unit root, their rates of convergence are shown to be the same
and proper inference can be carried using the maximal critical values. These are tabulated
for pdlynomia.l trend functions of various order. The local asymptotic power function of the
test is discussed in Section 5.

Section 6 contains an extensive analysis of the finite sample properties of the
procedure for the case of a change in the mean or a change in the slope of the trend
function. Some interesting non—monotonic properties are uncovered. In particular, it is
shown that the power of the test eventually decreases as the magnitude of the change
increases. Sections 7 discusses alternative specifications that alleviate this problem. Section
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8 presents an empirical application for testing for a change in the slope of the trend
function of real GNP (or GDP) series for the G-7 countries analyzed in Campbell and
Mankiw (1989), Banerjee, Lumsdaine and Stock (1990) and Perron (1990b). Finally,
Section 9 contains concluding comments and an appendix contains the proof of the various
theorems stated throughout the text.

Our finding that the power decreases as the magnitude of the structural change
increases may also hold for many testing procedures dealing with data sets that may
exhibit serial correlation over time. An example of interest is the dynamic CUSUM test of
Brown, Durbin and Evans (1975) as extended by Kramer, Ploberger and Alt (1988). The
properties of this procedure, analyzed in Perron (1991), are consistent with our present
findings. These results call for further work concerning the properties of a wide class of
tests for structural change in the context of dynamic models.
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2. THE DATA-GENERATING PROCESS AND THE STATISTICS.
The basic process of interest is the following statistical model describing a given series

{y,} as the sum of a polynomial trend function of order p (N,) and a noise function X,
characterized by an autoregressive process of order k :

yt = Nt + Xt ) (1)
D i
Ny =Z_of b (2)
X, =%_aX,  +e (3)
I ot 2 B o B
We denote the autoregressive polynomial by A(L) = 1 - ol - .. - akLk. It is

assumed throughout that the equation A(z) = 0 contains at most one real valued unit root
and that the remaining roots lie strictly outside the unit circle. The errors {et} are assumed

to bei.i.d. (0, 0’3) with finite fourth moment. The requirement that the noise component be
an autoregressive process of finite order can be relaxed without affecting many of the
results to be presented. We choose to restrict ourselves to this class of processes for ease of
exposition and to keep the technical details of the proofs to a minimum. Note also that we
specify the autoregressive parameters to be time invariant. Some of the procedures
discussed will be consistent against time-varying a.’s but we omit this generalization as we
wish to focus on the properties of the tests under the alternative of a time—varying trend
function.

Under the null hypothesis, the coefficient of the trend function ﬂ are assumed to be
time-invariant, i.e. we have H ﬁ t ﬂi yforallt (i=0, ..., p). Under the alternative
hypothesis the coefficients ﬂ can change at some dates. Though the power and
consistency results of the tests to be presented are valid under a general class of alternative
hypotheses, we shall consider the following special case of a ome time change in the
coefficients at a given date TB which we assume, without loss of generality, to be some
proportion of the sample size T, i.e. TB = AT. Throughout ) is treated as an unknown
variable. For this special case we have :

BY: N, = 5P_o[a41 + 1(t > AT)(t - AT)'4] (i=0, .., p) (4)
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where 1(t > AT) = 1if t > AT and 0 otherwise. The trend function specified by (4) is one
where both segments are joined at the time of break unless 60 # 0. The results are
qualitatively similar if we impose the more usual specification ﬁi,t =B + 1(t > /\T)éi. It is
also useful, for later discussions, to write the model as follows :

=3 R + e, (5)

0711; j=1 Jyt]

The coefficients v, , are functions of the original coefficients £, t and o via the identity :
) } bl

p i_gD i
A(L)2.=0ﬂi’tt _Ei=0'yi’tt. (6)

For example consider the case of a trendless process (p = 0). Under the null hypothesis of
no structural change, A(l)ﬁ0 = 7y In the case of a first~order polynomial in t : 7; =

A(l)ﬁ1 and 7, = A(l)ﬂ0 + ®f; where ¢ = 215=1jaj is the mean lag coefficient. Note that
if a unit root is present then A(1) = 0 and 7 =0. This generalizes since 7 bt = 0 whenever
A(1) = 0. Moreover, when a unit root is present, none of the coefficients % ¢ is a function
of the intercept of the trend function ﬂO,t' These observations will prove useful when
discussing the consistency and power of the tests.

To derive the test statistics consider first the following regression estimated by OLS
using a sample of size T:

_ywb 3.l «

Yy = =0t + 8

ot (t=1,..,T) (7)

where we denote the estimated residuals by ép p to highlight the fact that they are
obtained from a regression involving a polynomiafl in time of order p. The test statistic

considered by Gardner (1969) and MacNeill (1978), denoted by QSr(p) (the Q statistic
from the static regression with a polynomial time trend of order p) is given by :

_ 7252 T——1 ; 12
where ?72 = 12? 163 MacNeill derived the asymptotic distribution of the statistic

QST(p) under the assumption that no serial correlation is present, i.e. a; = 0(i=1,..,k).
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In the next section we consider the limiting behavior of the statistic QST(p) allowing for
the presence of serial correlation in the noise function with and without a unit root and
propose a non—-parametric correction that allows, in the stationary case, valid asymptotic
inference using the critical values tabulated in MacNeill (1978).

An alternative to using the estimated residuals from regression (7) is to consider the
following regression, estimated from a sample of size T + k + 1, where lags of the data are
introduced as regressors : |

= EII)__O'yt + Ek

=184+ €

Dt (t=1,..T). (9)
The test statistic QDT(p) (the Q statistic from the dynamic regression with a polynomial
time trend of order p) is then defined as :

QDp(p) = T 25728 1(st_ e )2

j=1%p,i/ (10)

where, similarly, =T 12? 1*12) The limiting distribution of QDp(p) is considered in

section 4 for both the case where a unit root is present and the case where it is not. Note
that the statistic QDT(p) could have been constructed using a two—step procedure by
detrending the data in the first step. The asymptotic distribution remains identical if there
is no unit root but is different if one is present. Given the simplicity of constructing
QDrp(p) using (9) we shall only consider this version.
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3. THE LIMITING DISTRIBUTION OF QS(p)-

In this Section, we consider the limiting distribution of the statistic QST(p) under the
null hypothesis of no structural change in the coefficients of the polynomial trend function.
We discuss separately the case where the autoregressive polynomial contains a unit root
and the case where it does not. It is useful first to define some notation. Let the (p + 1 by
p + 1) matrix D be defined by :

1 1/2 .. 1/(p+1)]
p=| U2 13 . 1/(p+2)| | (11)
| 1/(p+1) 1/(p+2)  1/(2p+1) |

Note that D is symmetric and that D_1 exists. Note also that D is the limit of the

appropriate normalization of the second moment matrix of the regressors in equation (7)
(see the Appendix for detail). Now define the (p+1) vector of random variables [Zp(O), ey
Zp(p)] by the relation :

[ Z.(0) ] [ w(1)
P 1
?p(l) _pl W(1) —f W(s)ds

| Z,(p) | W(1) - p fgs P W(s)ds |

where W(s) is the unit Wiener process defined on C(0, 1), the space of real-valued
continuous functions on the interval (0, 1). Note that each element W(1)

m f 1m-— 1W(s ds is the limit in distribution of the quantity T_(m+1/ 2)ET_1t e, when e
is a martingale difference process with unit variance. Finally, define the quantity Bp(r) as:

t

B,(r) = W(1) - zli’=0zp(i)ri+1 J(i+1) . (13)

To understand the nature of the process B_(r) it is useful to consider some special
cases. Consider first p = 0, i.e. when only a constant is included as a regressor in equation
(7). Then By(r) = W(r) ~ rW(1), the standard Brownian Bridge. In the case of a
first—order polynomial trend (p = 1), we have (see also Kulperger (1987) and MacNeill



(1978)) :

B,(r) = W(r) + 2[W(1) - 3 f oW(s)ds]r - 3[W(1) - 2 f OW(s)ds]r. (14)

We are now in a position to state the limiting distribution of the statistic QS(p) as T
increases to infinity. In the following theorem, and throughout the text, = denotes weak
convergence in distribution.

THEOREM 1 : Let {yt}%1 be a stochastic process defined by (1) — (3) with By = ﬁi’ and
QS T(p) be defined by (8). Then, if the autoregressive polynomial does not contain a unit
root (i.e. A(1) > 0), we have as T - o0 : :

QS (n) = (hy(0)/2) [ 4B, () %dr

where hz(o) = afA(I )_2 is (2r times) the spectral density function of the process X,

evaluated at frequency zero, and af_ =E(X t)2 is 1ts variance.

Remark 1 : The result of Theorem 1 is valid under more general conditions on the noise
function Xt' Indeed it holds if Xt satisfies "mixing type" conditions such that a weak

convergence result can be applied to their partial sums, i.e. T*l/ 22£Zi]xt =
h (0)1/2W(r) (see, e.g., Herrndorf (1984)). In that case, h_(0) and 02 are defined as h_(0)

= limp, T 'E(S3) where S = 51 _ X,, and o2 = lim 12T

9
t =12 Taco T 23 =1E(X}) -

t

Theorem 1 is an extension of a result of MacNeill (1978) who considered the case
where X, is uncorrelated. In that case, h (0) = 0)2( and the limiting distribution reduces to

f (1)Bp(r)2dr which is free of nuisance parameters. MacNeill (1978) has tabulated the
critical values of this limiting distribution for p = 0, 1, ..., 5 (see also Section 4).

The results of Theorem 1 can also be used to provide an asymptotically valid test for

structural change that relies on the critical values tabulated by MacNeill (1978). Let flx(O)
be a consistent estimator of h_(0). Examples include the autoregressive spectral density
estimators and the nonparametric kernel based estimators which use the estimated
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residuals from (7). In the latter case, the estimator may take the form :

: =iyl 52 —1lym T < =
hx(o) - zt =1 p,t +2T ZT=1w(m’T)zt='r+lep,tep,t—r'

Certain regularity conditions on the window w(m,7) and the rate of increase of the

truncation lag m relative to the sample size T are necessary in order to ensure that ﬁx(O) is
consistent (see Andrews (1991) for a general treatment). For later use, we simply note that
a necessary condition is that m/T - 0 as T - 0o. With such a consistent estimator we have:

S4(p) = (5°/h,(0))QS(p) = [ B, (r)’dr. (15)

We consider now the case where a unit root is presént in the autoregressive polynomial
describing X, i.e. A(1) = 0. For this case, it is easier to adopt a different notation. Let
W’I")(r) be the continuous time residuals from a projection of the Wiener process W(r) on

the functions {1, r, ..., rP}. In the leading cases where p = 0 or 1, we have (e.g., Park and
Phillips (1988)) :

W (r) = W(r) - [ SW(s)ds

Wi(r) = W(r) - 4[ [ SW(s)ds - (3/2) [ (sW(s)ds] + 6r[ f W (s)ds - 2 [ [sW(s)ds] .

Using this notation the result is stated in the following theorem.

THEOREM 2 : Let {yt} 1 be generated by (1) = (8) with B, , = B, and assume that the
autoregressive polynomzal contains a unit root (A(1) = 0). Let QSp (p) be defined by (8),
then as T - 00 :

T Qs ()= [off gw;(s)dsﬁdr /f {,w;(r)?dr.

Remark 2 : The result of Theorem 2 holds under more general conditions than those stated.
Indeed, the same result applies if the first—differences of Xt satisfies the mixing conditions
stated in Remark 1. Note also that the limiting distribution is independent of nuisance
parameters and, hence, appropriate percentage points can be tabulated.



—10 —

The main feature of Theorem 2 is that the statistic QST(p) diverges as T increases.
This implies that when the noise component Xt contains a unit root and the critical values
from the asymptotic distribution under stationarity are used, the statistic could lead to a
rejection of no structural change even if no structural change is present.

It is of interest to note that if a unit root is present the nonparametric transformation
QSH(p) defined by (15) is also unbounded and cannot serve as the basis for tests of

hypotheses. To see this, first note that T_262QST(p) = o° f (1)[ f (I)W*(s)ds]zdr (see the
p

Appendix for detail). Extending a result of Phillips (1991, p. 432), we have, when h_(0) is a

kernel based estimator, that (mT)—lﬁx(O) = Ko f (1)W’I")(r)2dr. The constant « is defined

by k = f _%K(s)ds where K(7/m) = w(m,) is the kernel used in constructing EX(O). For
example, with the Bartlett triangular window w(m,7) = 1 - 7/(m + 1), K(s) =1 - |s| and

k = 1. Combining these results we have (m/T)QS,"I‘,(p) = (m/T)(&z/ﬁx(O))QST(p) =

f (1)[ f (I)Wi")(s)ds]zdr/ K f (1)W’I“)(r)2dr. Since the consistency of flx(O) in the stationary case
requires m/T - 0 as T - oo, this implies that QS,"I‘.(p) diverges as T - co when a unit root is
present.

The above results imply that the statistic QST(p) is useful only if we have prior
knowledge whether a unit root is present or not in the noise component. Note that a
pre-test procedure is not feasible here for the following reason. As documented in Perron
(1989, 1990a), tests for a unit root will be biased (even asymptotically) against
non-rejection of the unit root hypothesis if the trend function of the data exhibits a
structural change. Given that prior knowledge of the presence or absence of a unit root is
rarely, if ever, available there is a need to consider an alternative framework so that the
test will remain valid irrespective of the presence or absence of a unit root. Such a
procedure can be achieved using the statistic QD.(p) defined by (10) which is discussed in
the next section.



—-11 —
4. THE LIMITING DISTRIBUTION OF QDT(p).

In this Section 'we conmsider the limiting distribution of the statistic QDr(p)
constructed using cumulative partial sums of estimated residuals from a regression
involving lags of the data as well as the polynomial trend function. We first consider the
limiting distribution under the hypothesis that the noise function Xt does not contain a
unit root.

THEOREM 3 : Suppose that {yt} T generated by (1) — (8) with B, it = = f,, and assume
that the autoregressive polynomza.l does not contain a unit root (A(1) > 0). Let QDT(p) be

defined by (10), then as T - 00 :

QD ()= [ oBy(r) dr |
where Bp(r) is defined in (13).

Remark 3 : a) The proof of Theorem 3 involves a simple modification and an extension of a
result in Kulperger (1987). It shows that the introduction of lags of the data in the
regression effectively eliminates the dependency of the asymptotic distribution on nuisance
parameters. In fact, the asymptotic distribution of QD.p(p) under the model given by (1) -
(3) is the same as the asymptotic distribution of QS (p) when the data are generated by
(1) and (2) with X, being an ii.d. sequence. b) The conditions under which Theorem 3
holds could presumably be relaxed substantially. It is indeed likely, following the work of
Berk (1974) and Said and Dickey (1984), that the same result would hold if the noise
component X, was a finite order ARMA process if the number of lags in the autoregression
(9) increases at a suitable rate as the sample size increases. The proof of such a theoretical
extension is not undertaken in the present study. c) It is of interest to note that the
asymptotic distribution is the same if the residuals are comstructed using a two step
procedure where the data is first detrended and the residuals are estimated from an
autoregression using these detrended variables.

Percentage points of the limiting distribution in Theorem 3 have been tabulated by
MacNeill (1978) for p = 0, ..., 5. For convenience we reproduce them in Table I. The case
where the noise component X, contains a unit root yields a different result stated in the
following Theorem.
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THEOREM 4 : Suppose that {yt} is generated by (1) — (8) with ﬁ ﬂ, and assume
that the autoregressive polynomzal contazns a unit root (A(1) = 0). Let QDT(p) be defined
by (10), then as T~ o :

QD(p) = [ §[B,(r) + H(p) [ [Wh(s)dsfar

where Bp(r) is as defined in (13), W;(s) is the continuous time residuals from a projection
of a Wiener process W(r) on the functions {1, r, ..., ¥} and H(p) is the limiting
distribution of T(a — 1) where & is the estimate, from (9), of the sum of the autoregressive

coefficients a = Elg___ 1%, More precisely H(p) is defined by :

Hp) = [ Wi(s)aw(s) / [ jws(s)ds.

Remark 4 : a) As in the stationary case the conditions under which the result holds could
be relaxed to allow the noise component Xt to follow a finite order ARMA process if the
number of lags included in regression (9) increases at a suitable rate as the sample size
increases to infinity. b) It is of interest to note that, unlike the stationary case, the
asymptotic distribution is different if the residuals are constructed using a two step
procedure where the data is first detrended and the residuals are estimated from an
autoregression using these detrended variables. c) The limiting distribution stated in
Theorem 4 is a function of the order of the polynomial trend function included as regressors
but is otherwise free of nuisance parameters. Hence, percentage points can be tabulated.

Theorems 3 and 4 show the asymptotic distribution of the statistic QDT(p) to be
different in the cases where a unit root is present and where it is not. Accordingly, the
critical values are different. However, unlike the results conceining the statistic QST(p),
the rates of convergence are the same whether or not there is a unit root. This implies that
when there is no prior information ori whether a unit root is present or absent a valid test
would result by using the larger of the two sets of critical values. The test based on these
maximal critical values will then have an asymptotic size that is no greater than the
prespecified nominal size for both cases and will have an asymptotic size equal to the
nominal size for one of the two cases. ‘

The above mentioned procedure requires knowledge of the critical values of the
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asymptotic distribution stated in Theorem 4. To this effect we used a simulation procedure
based on partial sums of N(0, 1) variables as approximations to the Wiener process.
Integrals are approximated by normalized sums of 1,000 steps and 10,000 replications are
generated to obtain the critical values. The relevant percentage points are presented in
Table II for p = 0, ..., 5. As can be seen by comparing Tables I and II, the maximal critical
values are always those corresponding to the asymptotic distribution under the hypothesis
that a unit root is present in the noise component. This is useful as only one set of critical
values are needed, namely those of Table II.

A comparison of the critical values in Tables I and II also provides a rough guide
about the extent to which the test will be undersized if the data is actually generated by a
process without a unit root but critical values for the unit root case are used. For p = 0,
the test will not be much undersized since the critical values for both cases are quite
similar. When p is larger the extent to which the test will be undersized increases. For
example, when p = 1 and if no unit root is present, a 10% size test will lead to an
asymptotic size of between 2.5 and 5% . The difference is substantial when p = 5. For
example, a 10% size test will lead to an asymptotic size of below 1%. The extent to which
the size is affected in finite samples will be discussed in more detail in Section 6 for cases p
=0and p=1.

It is useful to note that the modification which makes the procedure discussed above
possible is the introduction of at least one lag of the data in the polynomial regression
equation. Indeed not all lags need to be introduced. If only omne lag is included a
nonparametric correction is, however, needed to account for the remaining (stationary)
serial correlation in the residuals. Such a correction is similar to that discussed in Section
3. However, we shall not pursue this approach in more detail in the following discussion.

The statistic QDT(p) offers a simple procedure to test for structural change in the
trend function while allowing a series to be characterized by the presence or absence of a
unit root. Its implementation is particularly simple as it requires only the residuals from
the same regression as one would use to test for a unit root using the Dickey—Fuller (1979)
‘methodology (in the leading cases where p = 0 or 1). The next two sections consider issues
related to power and consistency in both an asymptotic context and in finite samples.
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5. THE LOCAL ASYMPTOTIC POWER FUNCTION OF QDT(p).

In this Section, we study the consistency properties and the local asymptotic power
function of the test statistic QDy(p) under a special class of sequences of local alternatives.
The data—generating process is defined by (1) — (3). For simplicity of exposition and
interpretation, the coefficients ﬁi,t (i=0, ..., p) are assumed to exhibit a change at a single
date Ty = AT. To study consistency, we specifically assume that Nt is generated by (4)
under the alternative hypothesis of a structural change. The analysis can readily be
extended to a more general class of alternative specifications, but this simple case is
sufficient to illustrate the major features of interest. We start with the following Theorem
concerning the issue of consistency.

THEOREM 5 : Let {yt} be generated by (1) — (8) with coefficients B; ¢ (i=0, ..., p)of the
trend function specified by (4). '

(1) If the autoregressive polynomial does not contain a unit root (A(1) > 0), QDT(p) = 00
as T - oo provided §, # 0 for at least any one i (i =0, ..., p). Hence, the statistic is
consistent against a structural change in any of the coefficients of the trend function.

(ii) If the autoregressive polynomial does contain a unit root (A(1) = 0), QDT(p) - 00 if
and only if 62- # 0 for at least one i (1 = 1, ..., p) and the test is then consistent. If the only

. 1
non—zero 6 is 6, QDp(p) = fO [Bp(r) + H(p)fZW;(s)ds]gdr (see Theorem 4) and the
test s not consistent.

Theorem 5 states that if the noise component is stationary QD(p) will be a
consistent test against a structural change in any of the parameters of the trend function.
However, if the noise component contains a unit root, the test will not be consistent
against an alternative hypothesis of a change in intercept. The intuition behind this result
is quite straightforward when looking at the DGP in the framework described by equations
(5) and (6). As we stated earlier none of the coefficients in equation (5) is a function of By
the intercept of the trend function when a unit root is present. Hence, the estimates and
the residuals of regression (9), on which the test is based, will not be affected in large
samples by a change in the intercept. Stated differently, a change in intercept causes only a
one time outlier in the first—difference representation of the data and this outlier will
accordingly not affect the statistic sufficiently to make it diverge and be consistent. This
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point, though straightforward, will prove to be of some importance in analyzing issues of
changes in the level of dynamic time series.

We now turn to the analysis of the local asymptotic power function of the test. To

that effect we still maintain the data—generating process as specified by (1) — (3) with the
trend function now satisfying the following sequence of local alternatives :

HY g i N, =30 ol + 1t > AT)(E - AT g/ T2 (=0, .., p) (16)

To motivate the normalization specified by (16), note that we can then write (3) as :
N, = 3P_ g + P_ 10t > AT)(6/THA)(0/T - A) (17)

Hence, each component (6i/T1/ 2)(1; /T — \)! converges to zero at the rate !/ 2, as is usual

in local asymptotic analyses. To state our result, we need to define additional notation. Let
Z; = [Z;(O), Z;(l), - Z’I‘;(p)] be the vector of random variables defined by :

2% = D_lV; : (18)

where D is defined in (11) and V’I'; is the (p+1) vector [V’I“)(O), Vi‘;(l), - Vi“)(p)] with
typical elements defined by (form =0, ..., p) :

1 m-1 1-A i
Vim) = W(1) - m [ o™ W(s)ds + A _(8/0,) [0+ )T rdr . (19)
Note that V*(m) differs from the typical element on the right hand side of (12) by the

third term only Note also that this last term vanishes as A(1) approaches 0. When p = 0,
we have :

Z85(0) = W(1) + A/ 7)1~ A)

and when p = 1, we have :

7#(0) = (1 /12){2 [ EW(s)ds — 6W(1) + A(1)(8y/7)(1 - A)(1 - 33)/12
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+ AQ)(6, /0 M1 - A)2/12} ,

Z3(1) = (1/12){W(1)/2 ~ [ LW(s)ds + A(1)(fy/a)M1 - /2

+ AQ)(6,/0,)(1 - V(1 + 2A)/12} .

Corresponding to the elements B p(r) defined in (13), we also define the following variable :

BY 4fr) = W(r) - 2B _oz(i)r L6+ 1)
D i+1).
+ 1(r > MA(L)Y _o(6,/0,)(r - AT +1), (20)
where 1(r > A) = 1 if r > A and O otherwise. B¥ b(r) differs from the variable B (r)

discussed in Section 3 by the inclusion of Z’I")(l) 1nstead of Zp(l) and by the last component
which vanishes as A(1) approaches 0. We are now in a position to state the following result
concerning the local asymptotic power function of the test.

THEOREM 6 : Suppose that {y t} is generated by (1) — (3) with coefficients B, , specified by
the sequence of local alternatives (16), then as T - oo : ’

i) If the autoregressive polynomial has no unit root (A(1) > 0) :
1 2
QDp(n) = [ 4By (1) dr
i) If the autoregressive polynomial has a unit root (A(1) = 0) :

@Dp(n)= [ [B,(r) + H(p) f jWi(s)dsFar

where B¥ 5(1') is defined by (20), B (r) by (18) and the variables H(p) and W*(s) are as
defined m Theorem 4.

Theorem 6 has several interesting implications. Consider first the case where the noise
component is stationary. The statistic QDT(p) has a non—degenerate asymptotic local
power function. The power increases as any 6i increases in absolute value. However, for a
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given value of 6i, the local limiting distribution approaches the limiting null distribution as
A(1) approaches zero. We would therefore expect the test to have lower power, in finite
samples, if the noise component corresponds to a more persistent process.

This statement is reinforced by the result concerning the case where a unit root is
present. Here the test has a degenerate asymptotic local power function in the sense that
the limiting distribution under the sequence of alternatives specified by (16) is the same as
the limiting distribution under the null hypothesis. Hence, the asymptotic local power
function of QDT(p) is equal to the size of the test when a unit root is present in the process
generating the data.

Some intuition for the degenerate asymptotic local power function in the unit root case
can be obtained using the following argument. Consider the model (1) — (3) with the
coefficients satisfying the sequence of local alternatives specified by (16). If a unit root is
present, we can write the data—generating process as : |

—1 i 1 3/2 i, gk
y, =2 _omt' + 1(t > AT)ER (/T I3/ -0 + Y0¥t e (21)

where 7, and 7, are defined by the relations (see (6)):
D pid_yP a4
ALE Zofit =T g%t (@)

A@)P_(6/T ) - amy = 30 _ (/T35 - AT (23)

What transpires from equation (21) is that the coefficients on the components of the

trend function converge to the value under the null hypothesis at rate T3/ 2 when there is a

unit root instead of at rate Tl/ 2

in the stationary case. Given the rate of convergence of
the estimates in regression (9), this rate of approach to the null values is too fast to affect

the limiting distribution.

Of course, for this unit root case, one could define a sequénce of local alternatives

different from that in (16) by specifying N, = 21.1)=0[ﬁiti + 1(t > AT)(t - AT)iéi/Ti_l/ 2].
This would allow a non—degenerate local asymptotic distribution unless the only non—zero
non—centrality parameter is 60. This shows again that the test is consistent against changes



in any coefficient of the trend function except the intercept. The derivation of an
asymptotic power function under this modified sequence of alternative is straightforward
adopting the methods used in this paper. We refrain from providing such a generalization
given that our aim is not in obtaining approximations to the power functions but rather to
provide a framework for qualitative comparison of the power functions as the sum of the
autoregressive coefficients varies.

The above discussion suggests the following predictions about the finite sample power
of the statistic QDy(p) against alternatives of a one-time change in some coefficients of
the trend function. First, the test is likely to have respectable power if the noise component
does not exhibit too much persistence, i.e. A(1) is not too close to 0. As A(1) approaches 0
the power will be small against changes in any component of the trend function whether it
be the intercept or any other coefficients (such as the rate of growth in a first—order
polynomial trend function). Secondly, the power will be even lower in the case where a unit
root is present. In that case, the power for a change in any coefficient (except the intercept)
will increase slowly as the sample size increases given that the test is consistent but has
zero local asymptotic power. In the case of a change in intercept the power will not increase
given the inconsistency of the test against such alternatives. These and other features are
documented in the next section which presents a simulation study of the finite sample
properties.
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6. A SIMULATION ANALYSIS OF THE FINITE SAMPLE PROPERTIES.

For the analysis of the finite sample properties of the test QDT(p) we concentrate on
the leading cases where p is 0 or 1. When p = 0, the test is applied to detect a possible
change in the mean of a trendless series, and when p = 1 the test can be used for either a
change in the intercept or the slope of the trend function (or both). We start with a
discussion of the finite sample size of the test. The design of the experiment is as follows.
We generate samples of length 100 from the following special case of model (1) -(3):

yt = ayt—l + et ) (24)

where e, ~ i.i.d. N(0,1) and y; = 0. Model (24) simply specifies an AR(1) with constant
mean 0. There is no loss in generality in specifying the parameters ﬂi to be zero under the
null hypothesis. We generated 10,000 replications of the process (24), and for each one we
calculated the statistics QDp(0) and QD (1) as specified in (10) and (9) with k = 1. The
experiment was performed for 20 values of a, namely a = —0.9,(.1), 1.0. The critical values
used are those corresponding to the asymptotic distribution for the case a = 1 (Table II).

Figure 1 presents the exact size of the test for nominal sizes of 1, 5 and 10% for the
case where p = 0, i.e. when only a mean is estimated. As can be seen from this figure, the
exact size of the test is below the nominal size for all values of a. However, the extent to
which the test is undersized is not severe especially if « is below 0.6. When a is between .7
and .9 the discrepancies are somewhat larger. As expected the exact size of the test shows a
large change from a = 0.9 to & = 1.0. Figure 2 presents similar results for the case where p
= 1, i.e. when QDT(p) is constructed from a regression with a first—order polynomial in t.
Again, the test is conservative for all values of o. However, the extent to which the test is
undersized is more important. When the process is stationary, a test with a 5% nominal
size has an exact size of approximately 1%. This feature is to be expected given the larger
relative discrepancies between the asymptotic distribution of QDT(p) in the stationary and
unit root cases for higher values of p. This reduction in the exact size (for stationary
processes) seems to be a price that one has to pay in order not to impose any a priori
restriction about the presence or absence of a unit root in the noise function.

We now turn to the analysis of the power of the test. Consider first the case where p =
0 and the test is to detect a change in mean. Under the alternative hypothesis the data are
generated by the following special case of the model (1) through (4):



yy = 1(t > AT)é, + X, (t=1,..,T) (25)
X, =oX, | +e, (26)

where e, ~ iid. N(0,1) and X, = 0. The model consisting of (25) and (26) specifies an
autoregressive process with a changing mean at date AT, the magnitude of the change
being 60. We consider only one value of the sample size, namely T = 100. Again we
consider 20 values of @, @ = 0.9, (0.1), 1.0 and the power of the test is evaluated at 20
different values of 60, 50 = 1, (1), 20. For each of these cases 5,000 replications are used
and the experiment is performed for A = 0.25, 0.50 and 0.75. The nominal size of the test is
5% using the critical values from the asymptotic distribution with a unit root (Table II).

The power functions graphed in Figure 3 (a, b and c) are for cases A = 0.25, 0.50 and
0.75 respectively. Several features stand out from these graphs. First, for a given value of
the change in mean, §,, the power is lower when « is closer to 1 (as expected given the
local asymptotic power function derived in the previous section). The increase in power is
rapid going from 60 =0 to 60 = 1, reaching one for negative values of a. This initial
increase is less rapid as a increases, i.e. the slope of the power function at 50 = 0 decreases
as a increases. Again, this feature is well explained by the local asymptotic power result.
When a = 1, the power does not increase as 60 increases in accord with the fact that the
test QD(0) is inconsistent in this case. Also, the power is larger for a change occurring
late in the sample. However, the most striking feature is that for a given value of o the
power eventually decreases to zero as the magnitude of the change in mean (6 0) increases.

The striking feature that the power function eventually decreases to zero as 50
increases is not an implication of any of the asymptotic results discussed previously. Yet
the intuition behind it is quite simple. As documented in Perron (1990a), a change in mean
causes a bias in the least-squares autoregressive estimator obtained from regression (9)
with p = 0. This bias is such that the estimate of « is attracted to the value 1. In the limit,
as 50 increases and with a large sample, the estimator of the autoregressive parameter
converges to one, irrespective of the true value of a (in the range permitted here).
Therefore as 60 increases, the fitted process behaves like a random walk with an outlier at
time AT reflecting the change in mean, in which case the test has no power. It is then clear
that such a change cannot be detected. As seen from the graphs in Figure 3, the power of
the test decreases quite rapidly once 60 reaches a certain level. This threshold level is
smaller and the rate of decrease is greater as « approaches one.
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We now turn to the simulation results concerning the behavior of the statistic QDT(l)
where a first—order polynomial in t is included in the regression (9). We first consider the
power of the test against a change in the intercept of the trend function. For this case, the
setup of the experiment is similar in almost every aspect as the one above. In particular,
the data are again generated by (25) and (26). The only difference is that we consider 14
values of 60, namely 60 =1, (1), 14. The results are presented in Figure 4 (a, b and c) for
the cases A = 0.25, 0.5 and 0.75, respectively. They are qualitatively similar to those for
the statistic QDT(O) discussed above. Again, the power of the test eventually decreases to
zero as the magnitude of the change in mean increases, and, for a given value of 50, the
power is lower as a approaches one. The results again reflect the fact that the statistic is
inconsistent against a change in mean if & = 1 as the test is biased for all values of 50. The
differences from the case where no trend is estimated are that the power is uniformly lower
and that the power seems to be lowest for a change occurring at mid-sample (A = 0.5).

The third simulation experiment concerns the power of the statistic QDT(I) for
detecting a change in the slope of the trend function. Here the data are generated by :

y, = 1(t > AT)(t - AT); + X, , (t=1,..,T) (27)

where X, is again given by (26). The model (27) specifies a joint segmented trend function
with initial slope and mean 0 until time AT after which the slope changes to 51. The
specifications are as above (T = 100, A = 0.25, 0.5, 0.75, a = —0.9, (.1), 1.0 and 5,000
replications) except that 61 takes 10 different values specified by 51 = 0.05, (0.05), 0.5.

The results presented in Figure 5 (a, b and c) are for cases A = 0.25, 0.5 and 0.75,
respectively. They are, somewhat surprising at first sight, similar to the power results for a
change in mean. Again, as expected from the local asymptotic power function derived in
Section 5, the power is lower for a given 61 as a approaches one. Again, for a fixed q, the
power eventually decreases as the magnitude of the change in slope increases. This feature
is not implied by any of the asymptotic results presented earlier. However, these results
can be used to provide an intuitive explanation for this behavior. As documented in Perron
(1989), a change in slope will create a bias in the least-squares estimator of the
autoregressive coefficient in the regression model (9) with p = 1 (and k = 1). This bias is,
again, such that the estimator is attracted to the value one. In fact, for any fixed change in
slope 61, the limit of the estimator of the autoregressive parameter is one as the sample size
increases. In this case the fitted model behaves like a unit root process with a change in
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drift (or slope of the trend function). However, as documented in Theorem 6, the test has a
degenerate asymptotic local power function in that unit root case. Hence, the power should
be low when the change in slope is large (even though the test is consistent).

A final simulation experiment concerning the power of the statistic QDT(l) is
performed to analyze the consistency property of the test against a change in slope when a
= 1. As stated in Theorem 5, QDT(l) is consistent in that case. However, the simulation
results presented in Figure 5 do not seem to support this fact, the power being barely above
the size in the most favorable cases. It is also of interest to see how fast the power
approaches 1 in the case of a consistent test with a degenerate local asymptotic power
function. To this effect we simulated the process (27) with a = 1, A = 0.5 and é; = 0.5.
The experiment was repeated for sample sizes T = 100, 200, 500, 1000, 2000 and 5000. The
results are presented in Table III for tests with size 1, 2.5, 5 and 10%. As can be seen from
the results, the power increases very slowly as the sample size increases. With T = 500, a
5% test has a power of only .12. Even at T = 2000, the power is only .860. It is only when
T = 5000 that the power of the test is one. The slow convergence documented is likely to
hold also for stationary processes with a large autoregressive parameter.

These simulation results have the following implications. For sample size of common
lengths, the test will not be able to detect a change in either the mean or the slope of any
magnitude if the underlying noise component shows some persistence, e.g. a value of a
greater than, say, 0.7. If the process shows less persistence, e.g. a less than 0.7, the test will
be good at detecting small changes in the mean or the slope but not large changes.

These features are particularly troublesome when analyzing macroeconomic data since
in most cases the underlying noise component is likely to exhibit some degree of
persistence, even under the hypothesis that a change in the trend function is present (see,
Perron (1989, 1990b) for examples). This calls for two different further topics of
investigation. First, to see if some modifications are possible to allow greater power when
the noise component is strongly positively correlated and/or the magnitude of the change is
large. When considering a change in mean no such modification appears to be available.
However, in the case of a change in slope, we discuss in the next section a modification
which appears helpful for cases of practical interest. A second topic of investigation is to
find a theoretical framework which can explain this non-monotonic power function and to
provide a better approximation to these finite sample properties. This will be undertaken in
a subsequent study.
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7. TESTING FOR A BREAKING TREND USING FIRST-DIFFERENCED DATA.

In this Section, we consider an alternative specification of the testing procedure that
alleviates, in some ways, the power problems discussed in the last section. The following
analysis is motivated by the fact that for many empirical applications of interest with
macroeconomic data, the noise component is strongly correlated implying that we are in a
region where the statistic QDp(p) has basically no power even if the structural change is
large. Our analysis is specialized to the case of a change in the slope of the trend function.
The data—generating process is assumed to be of the form :

where X, is defined by (2). The null hypothesis specifies that §; , = f§; for all t and we
consider the following alternative hypothesis :

HY* i N, = f + Byt + 1(t > AT)(t - AT)$, . ’ (29)

Consider first the case where a unit root is present in the noise component. We define the
first—differences of the data by dyt =¥, ~ Vi1 With the coefficients a’i‘ defined by the
relation A(L) = (1 — L)A*(L), we have an AR(k-1) in first—differences:

_ k—1 4
dyt - 7Ot E1--1 1dyt 1+ € (30)

where 7, " is defined by the relation A(L)ﬁ1 tt = Tt Hence, by considering the data in
first—differences we transform a case with a unit root into a case where the noise
component is stationary and the change in the slope of Vi corresponds to a change in the
mean of dyt. When the original noise component is stationary we have :

dy—70t+ZJ 1detj+ut’ : . (31)

where u, = e, —e, ; and Tot = A(1)8; + 1(t > AT)A(1)é;. In particular, (31) shows that
if the noise component is stationary, first—differencing the data induces a moving-average
unit root in the residuals. For empirical implementations we consider the following
estimated regression : -



—924 —

. _
= ﬁl + ZJ —1 det . + ut , (32)
and use the estimated residuals 1

¢ to construct the statistic QF(1) (the statistic Q using
first—differenced data applied to test for a change in a first order polynomial trend):

QF (1) = T2 “22:T'“i(2J 1ﬁJ)2 (33)

where o = T l3T f = 1uf We have the following result concerning the asymptotic
distribution of QF (1) under the null hypothesis of no structural change.

THEOREM 7 : Suppose that {y t} is generated by (28) with 1t =, for all t. Consider the
statistic QF (1) defined by (33) constructed using data in ﬁrst differences. Let Bo(r) be
defined by (18). Then as T - oo:

a) if there is a unit root in the noise component (A(1) = 0) : QFT(I) = f Z)Bo(r)gdr :
b) if there is no unit root in the noise component (A(1) > 0) : QFp(1)= 0.

c) if the the largest root of A(L) is modeled as local to unity, t.e. A(L) = (1 - aTL)A*(L)
where a.qp =1 — ¢/T and the parameters of A*(L) do not depend upon T :

QFp(1)= [ ofBy(r) - of [r(s)dsfar,

where J*(r) J (r) f éJc(r)dr, the demeaned version of the Ornstein— Uhlenbeck

diffusion process defined by Jc(r) = fgezp(c(r — 8))dW(s) where W(s) is the Wiener
process defined on C(0,1).

Theorem 7 has the following implications. First if there is a unit root in the noise
component, the asymptotic distribution of QFT(I) is the same as the asymptotic
distribution of QDT(O) in the stationary case. Hence, the appropriate asymptotic critical
values are those of the first column of Table 1. When the noise component is stationary,
the limit of QFT(I) is zero. Hence, in keeping with our earlier approach, an asymptotically
valid test can be constructed using the critical values under the unit root case. This implies
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a test with zero asymptotic size in the stationary case. This shows a discontinuity in the
asymptotic distribution which is not present in the finite sample distribution. Given that
this version of the test procedure is intended to apply to processes with strong correlation
in the noise component, it may be better to consider an asymptotic framework where the
largest root of the autoregressive polynomial A(L) is local to unity. This is done in part (c),
which shows a non—degenerate local asymptotic distribution in the stationary case which
reduces to the limit distribution stated in part (a) when ¢ = 0 (i.e. when a unit root is
present). In this context, the statistic QFT(I) will have a non—zero asymptotic size if the
" critical values from the distribution in the unit root case are used. As before the asymptotic
size under stationarity will be less than the size of the test under a unit root.

The following results consider the behavior of the test under the alternative
hypothesis. We discuss consistency against the alternative specified by (29) and the local
asymptotic power function under a sequence of alternatives defined by (16) withi = 1.

THEOREM 8 : Suppose that {yt} is generated by (28) and consider the statistic QF p(1 )
defined by (83) constructed using data in first—differences. Suppose that the rejection region

is constructed using the critical values of the limiting null distribution in the unit root case
(Theorem 7, part (a)). Then as T - 00:

a) If N, is specified by (29) : QFT(I) = 00 ;

b) If N, is specified by (16) with i = 1 : i) if a unit root is present (A(1) = 0), QFT(I) =

f éB o(r)gdr; i1) QFT( 1) = 0 if a unit root is not present in the autoregressive polynomial
(A(1) > 0); iii) if the the largest root of A(L) is modeled as local to unity, i.e. A(L) = (1 -
aTL)A*(L) where aqp = 1 — ¢/T and the parameters of A*(L) do not depend upon T,

QFT(I) = fé[Bo(r) - cf th(s)ds]?dr, with Bo(r) and J";(r) as defined in Theorem 7.

Part (a) of Theorem 8 applies whether or not the noise component of the process
contains a unit Toot. It states that the test is consistent against a change in the slope of the
trend function (even in the stationary case where the asymptotic size of the test is zero).
Part (b) considers the local asymptotic power function of the test. It shows that it is
degenerate in all cases considered. If no unit root is present the asymptotic local power of
the test is zero, unless the asymptotic framework used is the nearly integrated one. If a unit
root is present the asymptotic local power is equal to the size of the test. This implies that
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we should expect the finite sample power function to be low for small changes in the slope
of the trend but does not have much implications with respect to the finite sample power
for large changes. These finite sample issues are analyzed in the following simulation
experiment.

To allow proper comparisons with the statistic QDT(l) we generated data in exactly
the same way as we did in the last section, namely using (27) as the data—generating
process. Exactly the same specifications were used except that we considered a wider range
of values for 61, namely from 0 to 1.0 (again in steps of .05). The results are presented in
Figure 6 for the three cases corresponding to a change at different points in the sample,
namely, A = 0.25, 0.50 and 0.75.

The results are quite striking. First, as expected from the degenerate local asymptotic
result the power is very low (essentially zero) for low values of 51 , say less than 0.3. This
is contrary to the behavior of the statistic QDT(l) where the power is quite high in that
part of the parameter space if the autoregressive coefficient is not too large. More
interestingly, the power increases rapidly to reach a value of one as 61 is increased further.
This behavior is again the opposite to that of QDp(1). Hence, as the statistic based on
levels of the data, QDT(l), is not able to detect large changes in the slope of the trend
function, the statistic based on data in first—differences, QFT(I), is able to do so even if the
noise component is stationary. Conversely, QDT(l) is, in general, good at detecting small
changes while QFT(l) is not. The only part of the parameter space where neither statistic
is able to detect small to medium changes in the slope of the trend function is when the
autoregressive parameter is large, say greater than 0.7.

The theoretical and simulation analyses described above suggest that, in the case of a
change in the slope of the trend function, the statistics QD (1) and QF (1) should be used
in conjunction as they have complementary properties. If the underlying noise component
contains a strong correlation, only the statistic QFT(l) will be useful and for large change
only. The next section uses the statistic QFT(l) to test for the presence of a change in
slope in several real GNP (or GDP) series.
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8. EMPIRICAL APPLICATIONS.

This Section analyzes an international data set of postwar quarterly real GNP or GDP
series. The type (GNP or GDP) and the sampling period of the series used, listed in Table
IV, were dictated by data availability and a desire to obtain results that are comparable
with previous studies. The countries analyzed are : USA, Canada, Japan, France,
Germany, Italy and the United Kingdom. The series for Canada was obtained from the
Cansim data bank and the series for Japan and France from the IFS data tape. The
remaining series (U.S.A., U.K., Germany and Italy) are from Data Resources Inc. and are
the same as those used in Campbell and Mankiw (1989). All series are seasonally adjusted
and at annual rates, except for the USA and the United Kingdom which are at quarterly
rates. The aim of the analysis is to test whether these series are characterized by the
presence of a change in slope as argued in Perron (1990b).

To apply the test we used a data—dependent method to select the order of the
autoregression. This was done using a sequential t-statistic on the coefficient of the last lag
of the estimated autoregression. We started with a maximum order which we arbitrarily
set at kmax = 8. If the coefficient on the eighth lag is not significant, using a two-tailed
5% test with the critical values from the normal distribution, we estimated an
autoregression of order 7 and repeated the test on the coefficient of its last lag, and so on
until a rejection is found. If none is significant we set k = 0. If k = 8 yields a coefficient on
the last lag which is significant we checked whether the residuals exhibit any remaining
correlation using the Box—Pierce statistic. In no case for which k = 8 was selected was
there evidence of further serial correlation.

We first applied the statistic QDT(l) using the levels of the data and failed to reject
the null hypothesis of no structural change for all series. This result is not surprising given
“that the underlying noise component of the series is most likely to exhibit strong positive
serial correlation. Hence we constructed, for each series, the statistic QFT(l) using data in
first—differences. The test should be able to reject no structural change if the change in
slope is large enough. The results are presented in Table IV. The null hypothesis of no
structural change can be rejected for all countries except the USA. The rejection is at the
10% level for Germany, Japan and the U.K., at the 5% level for Canada, at the 2.5% level
for Italy and at the 1% level for France. Again, these rejections hold irrespective of the
presence or absence of a unit root in the noise component.
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9. CONCLUSIONS.

This paper has considered in detail the behavior of a common test for structural
change introduced by Gardner (1969) and MacNeill (1978). In a first step, we have
extended this testing procedure to the case where serial correlation is possibly present in
the data. In particular, we have allowed for the possibility that the noise component of the
series be characterized by the presence of a unit root. These extensions are such that the
proper testing procedure implies the need to incorporate lags of the data in the regression
defining the residuals on which the test is based. It was shown how the introduction of such
lagged dependent variables induces a peculiar behavior of the power function of the test in
finite samples. More specifically, the power was shown to eventually decrease to zero as the
magnitude of the change in the coefficient increases. In the case of a change in the slope of
the trend function, it was shown how a test based on a regression in first—differences allows
one to partially circumvent such a drawback for cases of practical interest.

This non—monotonic behavior of the power function is likely to be common to most
tests for structural change that permits the possibility of serially correlated data. For
example, the dynamic version of the CUSUM test of Brown, Durbin and Evans (1975) for
the standard linear regression model, as extended by Kramer, Ploberger and Alt (1988),
also share this property (see Perron (1991)). Our conjecture is that all tests that permit the
possibility that the noise component may contain serial correlation of the unit root type
will share this property. If an a priori restriction that the possible serial correlation be of a
stationary nature is imposed, it may be possible to circumvent this problem. However, such
a test would require a correction for serial correlation that is not based on the introduction
of lagged dependent variables in the data. Of course, these conjectures are at this time
highly speculative and we hope to report additional results in the near future. In any event,
this paper has demonstrated that care must be exercised when applying tests for structural
change in a dynamic context.

The test presented in this paper is easy to implement and can be useful, for example,
as a diagnostic in the application of unit root tests of the type proposed by Dickey and
Fuller (1979). However, as our power analysis demonstrated, care must be exercised when

"interpreting the results. In the case where a change in the slope of the trend function is
suspected it would be highly desirable to use both the version of the Q statistic from the
dynamic regression in levels and that from the regression in first—differences.
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APPENDIX : PROOF OF THE THEOREMS

In the proof of the Theorems, we can without loss of generality set ﬂi =0(i=0,..
p). Henceforth we consider, under the null hypothesis, {yt} as a zero mean stationary
AR(k) process as specified by (3), i.e. y, = X,. Throughout, W(r) denotes the standard
Wiener process defined on C[0,1], the space of all real-valued continuous function on the
unit interval. Weak convergence of the associated probability measures is denoted by "=,
and - is used to denote convergence in probability. The strategy of the proofs is as
follows. We construct stochastic processes lying on D[0,1], the space of real-valued
functions on the interval [0,1] that are right continuous and have finite left limit. These are
shown to converge weakly to some random variable lying in C[0,1] using basic functional
central limit theorems for partial sums and the continuous mapping theorem (see, e.g.,
Billingsley (1968), Theorem 5.1). The latter is used frequently and hence references to it
are suppressed. Unless otherwise indicated % denotes the sum from 1 to T.

Proof of Theorem 1 : The proof follows closely that of Kulperger (1987). It is nevertheless
useful to discuss the main steps as they are needed in the proof of other theorems. Under
the null hypothesis of no structural change we have :

s _v _ywP ni
ep,t_xt % _ofit (A.1)

where 'Bi (i=0, ..., p) are defined by the normal equations :

Ao Xy
D .ﬂl - E?Xt

L 'p

5,1 L3ePx,.

with Dy a (p + 1) by (p + 1) matrix defined by :

T %t P 24
5t 52 ... ggPH

D (A.2)

= |: . :
P pPtl ... 2P
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Let D be defined by (11). Asymptotically, the normal equations satisfy :

T2 BT R
. _3/2
plps/2 Byl [T mx,
p+1/2 % --1/2 ¢, P
| pp+1/ Bl LT 5t PX, |

Since X, ia a stationary AR(k) process it satisfies the conditions for the application of a
functlonal central limit theorem allowing dependence. From Lemma 1 (g) of Sims, Stock
and Watson (1990), we have :

(1 2siix. o o(W(1) - i W W) = o f Waw(r) , (=0, .., D) (A-3)

where o = hmT—»ooT—l(EXt)2 = 2f (0) where f,(0) is the spectral density function of X,
evaluated at frequency 0 (in the AR(k) case, 2f (0) = az / A(1)2). Since D is non—singular:

(T28y, .., TPH2R ) = 0(2(0), . 2, (0D, (A4)
as defined in (12). From (A.1), we have :

125t &

1/ p_1i+1/% i '
HRCINE e i S ot (A.5)

j=17j “i=0

Define the following processes on D[0,1] for (j—1)/T <t < j/T : H (r) 1/22[TI]“ ;
and note the following convergence results (for a proof of (A.6) see, e.g., Herrndorf 61984))

H2(r) = TV 2z££§]xj = oW(r) | (A6)
T—IEE'_T__i]f(j/T) = [ i(s)ds, (A7)
provided f([Tr] /Tj = f(r) uniformly. For example, in the case f(j/T) = (j/ T)i we have

B () = T“lzggl(j/T)i =iti+1).G=0,..,p). (A8)



We write :

- -2 T—1 5 141,42
5°QSp(p) = T28; _ (zJ 18 )= 2= [ Hp() dr

12 i 1/22 03 2
- [ YB3 -5 _yr+Y Al (n)]"dr
2 (1 Do dtls L e s 2 1o o2
=0 fO[W(r) —2i=0Zp(1)r [G+1)]dr=o fOBp(r) dr,
using (A.4), (A.6) and (A.8). It remains to show that 52 - ai. We have :

-2 lgs2 -1
ot =T8E) =T XX, X, - 2P Oﬂt)

= 17082 - o1 7sP_ riH/ 2 2y

-1 i4+1/2% mjt1/27 o1 i+j
+ 178 _ ok it/ It / BT 5(t/T) T

=0
=1l5x2 4 0,(1) in view of (A.3), (A.4) and (A.8),

2
-0, .
X

Proof of Theorem 2 : Since the autoregressive polynomial has a unit root, we can write Xt
= X, _; + w, where w, is a stationary AR(k-1) process with autoregressive polynomial (1 -
L)_lA(L). Denote by yIt)i:]l (t=1,..,T; j=0, .., k) the residuals from a projection of Vi
on {1, t, ..., tP}. Under the null hypothesis, yp 0 Xp 0 — & .. Define the stochastic

“p;t

process HT(r) 1/2~p (Td] = T—1/2”p i1 with (j — 1)/T < r < j/T. Using arguments

in Ouliaris, Park and Phillips (1989) we have :

Ha(r) = o, W), (A.9)

where W;(r) is the projection residual of a Wiener process W(r) on the subspace generated

by the polynomial function {1, r, ..., rp} in L2[0,1], the Hilbert space of square integrable
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. 2 . —1a2 T
functions on [0,1}. oo =limp T [SW,T] = 2mf_(0) where SW,T =X _
the spectral density function of LA evaluated at frequency 0. We write :

1 W, and fW(O) is

"42T‘i(zJ . pJ) = (4 Eg(s)ds) = o2 f (] OW*(s)ds) dr,  (A.10)

using (A.9). Consider now the sum of squared residuals :

1 -2
T =T Ee fOHT )2dr = awf )2dr . (A.11)
Theorem 2 follows using (A.10) and (A.11).
Proof of Theorem 3 : We consider the data—generating process written as :

—_yP k
=¥ O'yt +)JJ 19594 J+e (A.12)

(A.12) is equivalent to :

p,0 _ D.j L P
yi E?:lajyt ] + e} (A.13)

Denoting by &j the least-squares estimator of o from (9), the estimated residuals from
that regression can be defined as :

pt_yt = ljytj

_ b0 _ D _ gk (5 _ P,J
yp? -5 aydd - B (a5 oy}

_P_yk s D]
= e} Ejzl(aj aj)yt—j’ (A.14)

using (A.13). Now define the stochastic process H ( )= UzEEi]ép g (for (j-1)/T <
< j/T). From (A.14), we have :

H3(r) = T /25 THleP _gk_ 1/2(a )T “1g{Telyp

j= yt.l



1/24[T
= 1/ 25[Trlep 4 0(1).

since T1/2(aj - aj) = Op(l), and T—lzgzi]y%} -+ 0 (a.s) (see, e.g., Bhat and Chandra
(1988), Lemma 2.2 and Theorem 4.1; see also parts (d) and (e) of Lemma A.1 below).

Using developments exactly analogous to those in Theorem 1 (with e, ~ ii.d. (0, ag)
instead of the AR process Xt)’ we have :

H (1) = 7B (1) (A.15)

The proof follows by noting that : |

_ 20 20Tt o 42 _ a2 (10512 1o (2
QD(p) = 6T By (8518, ) = Sl dr= [B (1,

using (A.15) and the fact the &2 - 02 (a.s), the proof of which is omitted.

Proof of Theorem 4 : We write (A.13) as

p)O — pal k * p).]_l D
i = oyl I odi ATy ey

(A.16)
where a = 21;=1aj, dj = - EIi(zjai (j =2, ..., k) and A* denotes the difference operator
: ; SO «, D1 _ Dl oD
applied to both the subscript and superscript, i.e. A yt—j 41 = yt-j +1 yt—j‘ The
estimated residuals from (9) are defined in terms of the least—squares estimates & =

k . s ok s

A — — A p71 _ k K * p).]_l
Cp =Vt — 0yl —E_odi AT

_p_"_ pal_k A_ -*p7j_1
=ep —(a-1)yy — T _o(d;—d)A%yin, 1

using (A.16) and a = 1 with a unit root. The stochastic process H%(r) is expressed as:

5,y _ m=1/26[Tr]s  _ =1/2 [TrlD s 1vr=3/25[T1]. D)1
HT(r) =T Et:l €t = T 2t=1 e T(a-1)T Et:l Vi
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ko ml/25 14 Tr] g 4. pyj—1
-35_ T2 - )i Ay (A.17)

~1/2 o[T . -3/24[T1]. p,1
"\ 2£=i]e1t)—T(a—1)T /21[;=i]y1t)-1+0p(1)r

1/2

since T (&j - dj) = Op(l) (see Fuller (1976), for the cases p =0, 1) and it can be shown

that T_12£ZE]A*yIt,1§:i 40 (j=2, .., k). Using results from Ouliaris, Park and Phillips

(1989) and Dickey and Fuller (1979) we have :
- 1 | Y
T(a-1)= (1-dg—..—dy) f oWH()AW(s)/ f oWH(s) ds . (A.18)

. 1 0 -3/2¢[Tr]. p,1 4
Using (A9) and y2) = yP° + o (1), T [Z[Trgpl — fTmd(s) + o (Lds =

2 2 -2 . . . .
. f BWE(s)ds. Note that o = ae(l —dy — ... —dy) * in the present notation. Using this
last result, (A.15) and (A.18), we have :

HA(r) = ANOREX f éw;(s)dvv(s) /f })w;(s)%s) S IWA(s)ds (A.19)

The proof of the Theorem follows noting that QSy(p) = &’2’1‘—22’%‘:%(23:1%1) j)2 =

52 f (l)H,‘;\(r)zdr and using (A.19) and the fact that 5 - ag (a.s.), the proof of which
follows arguments similar to those used by Dickey and Fuller (1979) in the case p = 1.

Remark A.1: The proof of Theorem 3 is similar to that of Kulperger (1987) who considers
the case where the series is detrended in a prior step instead of using the regression
equation (9). Our result shows the limiting distribution to be invariant to the detrending
procedure in the stationary case. However, such is not the case when the autoregressive
polynomial contains a unit root. Here the limiting distribution of QDT(p) is different
whether one uses regression (9) or detrend the data prior to estimating the autoregression.

Proof of Theorem 5 : Follows easily from the proof of Theorem 6.

Proof of Theorem 6 (i): Again, without loss of generality, we set B, =0 i=0,..p)and
note, using (1) - (3) and (16), that {y;} can be expressed as :



-y *
yt_z_] =1 Jyt_]+et

where

ef = e, +3P_ At > AT)(6,/TL /21 - A1) (A.20)
or in detrended form as :

k DP.J +D
=197t +e (A.21)

yt 0= 7%

where e’;p (t =1, ..., T) are the residuals from a projection of e’g on {1, t, ..., tP}. From
(A.14) the estimated OLS residuals from (9) are defined as:

O Ek 1.] a.] — e*p Ek

A — _ A 7.]

using (A.21) where &j (j =1, ..., k) are the OLS estimates of o from (9). We organize the
proof of the Theorem starting with a Lemma concerning the limit of various elements.

LEMMA A.1: Let {y,} be generated by (1) — (3) and (16) with A(1) > 0 and, from (9),

denote by ¢ a (j =1, ..., k) the OLS estimates of a, Ep the estimated residuals and o a the
estimate of the variance of the residuals. Let Z*(m) V*(m) (m =0, ... p) and B¥ 5(7‘) be
defined by (18), (19) and (20) respectively.

o) Let €} be defined by (A.20) : T-™" 1/ 22T 1t e* =0 V*(m) (m=0,..,p)

b) Let %z' (i =0, .., p) be the estimated coefficients from an OLS regression of e"i on {1, 1t
P Cml/2 18/2. p+1/2.
o ), then s (TY %3, T/%, ., T P) = 0y (B5(0), Zo(1), -, Zy(D)).

c) Let e’;p be defined by (A.21), then : T_l/%ézgje’;p = aeB; 5(7').

d) Let y’t"_; (=0 ..kt= ., T) be the residuals from a projection of Yg_jon {1, ¢,
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., ), then TY/5ITTIE J=> (0,/A(1)B 5fr).

¢) &t a (in probability) for j =1, ..., k.

b T—I/QE[TT b, = 0B 5(7)

q) 52 4 af (in probability).

The proof of the Theorem follows easily using parts (f) and (g). We have :

2gT—lgt & 32 _ 52 L 1/2Trl; ok (12
QS(p) = & °T 73, (EJ 1ep,J [T B Ydr= [ 0B} fn)dr

as required. The proof of the various parts of the Lemma follows.
Proof of part (a). Using (A.20), we have :

-m-1/2¢T . m _ -m-1/2¢T . m
T Et 1t et-T Et b8

F T M ALY > AT)6(t - AT

t=1

As a special case of (A.3), T—m—1/22’f‘ t™ e, = 0 (W(l) - mfl m= 1W(r)dr). The
second term can be expressed as :

T IgT P AL > AT)6(t - AT

= A4 —1sz AT41(t/T = NI(E/T)™ + o(1)

1- i
= AQ)EP_ 6 [ o+ NP dr,

using (A.7). The results from part (a) then follows.

Proof of part (b). The estimates ’ri (i=0, ..., p) are defined by the normal equations :



roA r * "
.TO Zet
p *
Dy || _| %€ |,
- P
| 7 | Zt¥e} |

where D, is as defined in (A.2). With D defined as in (11), the normal equations
asymptotically satisfy the relations :

rpl/2 o ] T2 ger
o 3/2
/2 | _pa)T ey | (A.23)
TP+1/2 5 TPL/2 5Py
L ' p- L J

The proof of part (b) follows using (A.23) and part (a) of the Lemma.
Proof of part (c) : The residuals etp are defined by the OLS regression :

x _yp .l *P

Then :
-1/2¢[Tr] 4p _ m—1/2¢[Tr P mpl/24i, —1g[Tr i
TS ey =T /E£=1]ef“zi=oT/ 7T E£=1](t/T)

_ m-1/2g[Tr p —-14[Tr i
=171 2%5[Txe 492 _ AT 8T (T )

~sP_ /2 gl Tyl 4 0,(1) (A.25)
= g W(r) + 1(r > NEP_ A(1)6(r - )G+ 1) - aezli’=0z;(i)ri+1/(i +1)

= 0 B% 1),

using (A.6), (A.7), (A.20) and part (b) of the Lemma.
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Proof of part (d). Note first that from (1) and (16) and using the simplifying assumption -
that ﬂi =0(i=0,..,p), y; can be expressed as :

y, = X, + 2P_1(t > a1)(6/T/ ) - (A.26)
Let y t,O be defined by the OLS regression :
¥y = EI;Zszitl + yIt)’O. (A.27)

The estimates Di are given asymptotically by :

0 / t
~ -3/2
/2 ) | By,
_Tp+1/2 Dp- _T—p—1/2 Etpyt_

Now, using (A.26),

-m-1/2¢,m_ _ m-m-1/2¢.m p -14T m i
T 2y, =T BEPX, + P61y g (/T T - )

1 m-1 1-A i
= o(W(1) —m [ ;r™ " W(r)dr) + 2P _ o8 f 7 Nr + A)Pr dr = oV¥(m)
form =0, ..., p, using (A.3) and (A.7), where o = 2 (0) = ag/A(l)z. Hence,
(T2, .., TVHHP5 ) o(22(0), ..., 2(0)) , (A.28)
P P P
where Zi‘;(i) (i=0, .., p)is defined in (18). Using (A.26) and (A.27) :
0 _ 1/2+i i -
20 = x, +2P_ 1t > Am)(6/ T2 ) - amyi - 2P _ ot (A.29)

and
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-1/2¢[Tr].p,0 _ —1/2¢[Tr]
T /2'£=1]Yt =T "5 _1%

~1y[Tr i wp  ml/2+i —1g[TT] i
+3P_ 6T 2£=/\{, L G/T =2 =BT TR TR (/T

= oW(r) + 1 > NEP_ 6, - NG+ 1) - zli’zoz;(i)ri“/(i +1).

= o/ A(L))B, 1),

using (A.3), (A.7) and (A.28), with Zi“)(i) and Bi‘; b(r) defined in (18) and (20). The proof is
exactly analogous for T—l/ 22{2{15’%} (Gi=1, .., k).

s e . . 1T ,
Proof of part (e). Let A = (al, By - ak), A= (al, g, oy ak), Vp=T zt=1WtWt

“1 7 : / 71 7k 1 A —
and Ep = T 3WietP with W| = 72y -~ Yi)- Using (A.21), we have A — A =

VT_lET. The proof can be achieved by showing that T—lz'%‘:lylt):;yfi% G,j=1, .., k),a

typical element of Vo, is bounded and that TIT_ Pl (= 1, ., K), & typical

element of E,, converges to 0. Denote by f/rin the i—-th OLS estimate in a regression of Yi—m
on {1, t, ..., tP}. Using (A.26) we have:

~1yT pal ph]
T %y vt

-1aT . 1/2 . ~i
=TT (X TRl - > AT (6, /T A - AT - i)t - 3B ")

(X + BBl =3 > MD)(6/ TP - AT ) 3R o2 16™)

m=0"m
_ m=1yT —1¢p -1/2-myT—j _y D
=T 8 XXy + T ZpofmT By oA X
—1sp -1/2-ngT—i n
+T 7% 0T By aar+1 (AT X

m=>0 m

t=1 t-i

_mlgp  pl/24n.io-n-1/2¢T  on
T 7% _oT v T Yyt Xt—j
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+17P_xP_ 6 s Tt (4T - nmn
SR St o RN (7 L (T Y
~1IP_ 3R g TR TIET (/T - ) 0,(1)
= T‘lzfﬂxt_ixt_j +0(1).
using (A.3), (A.7) and (A.28). Hence,
T8yl =0, (A-30)
since T_IE,{:lXt—iXt—j = Op(l) (see Fuller (1976)). Consider now a typical element of

Eq. Using (A.29) and (A.24), we have :

13T p,i 4P
T 5y 7158

~1yT . 1/2 . ~1
= T8y _ (X, + 501t —i > AT)(6, /T 24t - AT - )P - 3P _ i ¢)erP

_ 14T £ _m—lpD 1/24m, —-1/2-myT m
=T 2t=1Xt—iet—T Em:OT TmT Elt Xt—i

-15p -1/2-nyT n
+T 7% 6T D =)\T+1(t — AT) e}

_mlgp P 1/24m, 14T m _\n
T En=02m=06nT TmT Et=)\'1‘+1(t/T) (t/T - 2)

tle*

_m=lyp  m1/24n5i—1/2-ngT
T 2n=OT v, T ) H

t=1
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- 0. (A.31)

using (A.3), (A.7), (A.20) (A.28), part (b) of the Lemma and the fact that T_l)]}‘___lxt_let
- 0 (see Fuller (1976)).

Proof of part (f) : From (A.22) we have :

/25T = 1/ 2 TTlerp gk

. — _1/2 [TI‘] p,.]
; J=1(a. aj)T ) Y43 (A.32)

Dt ) .
= 17/25[TlexP 4 0 (1) , using parts (d) and (e),

= aeB; 5(x) as required, using part (c) of the Lemma.

Proof of part (g) : From (A.22) we have :

-2 -1<T .2 -1.T k - 2
Fe=T "%, _,8% =T 2t=1(e’€p—2j=1(aj—a)yp-1)

t=1%p,t = t-]
_pleT  aP\2 _ovk (o 3T lgT  (PajerP
=T 7%, _(ef") 22j=1(aj aj)T 2t=1yt-jet
k ¢k oo - ~1pT PP
+ 3518 (8 o) - )T 8y vy

= T8 _ (D)2 + (1), using part (), (A.30) and (A.31),

—14T 1/24i i A 142 '
= T8, _ (e + PP _(A(L)I(t > AT)(6,/T [2H) (g - ATy - 2P rah)? + 0,(1),

-1/2-4gT
t=AT+1

Comelgp  ml/24Hs mm1/2-0T i
or 8P _ T/ 5T B, _qtle

T 2 om—ly gD P
=T 8, _q ¢ + 2T A% (4T (t —AT)e,

t

gl P D 1/24j. m—1sT j oy
2T A(1)2i=02j=061T 'ro 2t=/\T+1(t/T) (t/T =-X)

+ T AP _ 3P a6 T isT (t/T — A} T

=0"j=0"1"} t=AT+1
-1wp D 1/2+is ml/2+js p=15T it+]
+T 2i=02j=0T 7T TjT By (/T T + op(l)
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1T 2
=T "3, _;€ + op(l)

using a special case of (A.3), (A.7) and part (b) of the Lemma. Hence, 5% - ag.

Remark A.2: It is easy to prove comsistency (Theorem 5 (i)) by noting that if N, =
$P_[Bt! + 1(t > AT)(t - AT)'&], (A.25) becomes :

~1/2a| T &P _
/7T er? -

—1/2¢(Tr P -1/2¢|Tr i
T2 e 4+ 5P_ A()sT / ELA% L1(6=2T)

—p_ /AT Tyt 4 0,(1). (4.33)

Suppose that q is the largest index associated with a non—zero value of 5i’ i.e. 6q # 0 and 6j
= 0 for j > q. Note then that the second term in (A.33) diverges at rate Tq'H/ 2 Hence,

form (A.32), T_l/ 221{2{]%” diverges at rate Tq'H/ 2. This establishes the rate of

T2q+1

divergence of the numerator of QDp(p) as since  QDp(p) =

52 f (1)(T_1/ 2E,Ei]ép,t)2dr. Consider now, the behavior of 2. We have, T“lzrf:léf)’t

~14T k- 2 .
T°% t=1(etp - EJ.=1(01j - aj)yg_%). Let us concentrate on the behavior of

T_lz’le(e’{p)2. We have, using (A.33) :

1T 2 o=1yT i L 0\2
T8y (efP) =T zt=1(et + 30 A()E1(t > AT)(t - AT)' -3 _7it)" + o,(1)-

It is easy to see that the second term dominates the others as T increases. Hence,
~1uT 2 .. ' 1T 2 ..
T %, ___l(etp) diverges at the same rate as T 2t=AT+1(EIi)=OA(1)5i(t — AT)")* which

diverges at rate T%4, Therefore 5 diverges at rate T4, Finally, combining the above
results, QDT(p) diverges at rate T showing consistency.

Proof of Theorem 6 (ii) : From the proof of parts (a), (b) and (c) of Lemma A.1, we obtain
when A(1) =0:
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-1/2q[T
/2% Trlep o, 7B,(1),

where e’%‘p is defined in (A.24) and Bp(r) in (13). From the appropriate modification to
(A.17) :

Y25 Tely g2 5] Teleep iz yr3/25{ Telypt
T H25{Te = 171/2 5[ Tlerd (e - 1)7¥/ 35 TR

_sK

1203 — a1 el Trlp, Po—1
i T =TT AT

.J+
The proof is completed by showing that the limit of T(a - 1), T 3/ 2 [Tr]ylt)’l, &j (=2,

., k)and T 12[TI]A*yIt) 2 _’j are unaffected by specifying ﬂ by (16) instead of B, = ﬂ

for all t. The proof of these assertions is tedious but stralghtforward and basically follows

from the fact that T_m_3/ 22££i]t y; has a limit that is independent of 6, (i=0,..Dp).
To see this note that, from (1) and (16) (assuming again for simplicity that 8, = 0):

T3/ 25{ Trlmy — o325 Trhmse 1> amy(s/ T ) - A1) + x )
= P_oar 2l T oy - a4 73/ 2myl Trlmy

= af(ljrmW(r)dr

using, e.g., Sims, Stock and Watson (1990, Lemma 1(a)) and the fact that the first term
converges to 0 using (A.7). Here o = 2af Ax(0)-

Remark A.3: To prove consistency consider the behavior of the quantity T -1/ 2E[Ti]e’{,

where e} = e + Eli)=0A(L)1(t > AT)é(t - /\T)i. Again, denote by q the integer such that
6q#0and 6j= 0 for j > q. We have :

~1/2¢[T ~1/24[T ~1/24[T .
T / 2£=i]e’€ =T / 2’£=§]et + T / 2£=i]2(il=OA(L)1(t > ’\T)éi(t _ )‘T)l

=127 _ e+ 1283 3lTT) (- 1)A*()6 (- ATY 4 o()
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where A*(L) is defined by the relation A(L) = (1 — L)A*(L) and where transitional effects
from t = AT to t = AT + k are subsumed under the term o(1). Using the fact that (1 -

L)ti =it + o(ti_l), we have :

-1/25[Tr]ex _ p1/2g[Tr qQ . ppel/25[TT]AT i1

If ¢ = 0, we have 11/ 22£Zi]e’,: = ¢W(r) since the second term vanishes. Hence, the test
is not consistent if the change only affects the intercept (a complete proof would show that
the limit of all other terms remain unaffected in that case). On the other hand, if ¢ > 0,

11/ 2E£Z§]e’1’;‘ diverges at rate T4/2 Hence, T 2E£zi]é ; also diverges at rate

T4 /2 and the numerator of QDT(p) diverges at rate T241 (see the proof of Lemma
A.1(c) in particular). In a manner similar to the development in Remark A.2, it can be

shown that &° diverges at rate 72472 and the statistic QDT(p) diverges at rate T and is
therefore consistent provided q > 0.

Proof of Theorem 7 : Part (i) follows from Theorem 3 since dy, is a stationary AR process
of finite order with i.i.d. errors as specified in (30). Since only a constant is estimated, the

case with p = 0 applies. To prove part (ii), we note following the proof of Theorem 3 (see
(A.14)) that :

. ~1xT k - -14T
i, =u, T "8;_ju, Ej_:l(aj—aj)(dyt_j—T 2t=1dyt—j)'

Noting that u, = e, —e, ;, we have:

t

T—I/ZEt[;zli]ﬁt — 112 -1/2

(Te] ™ eg) — 1T e —€p)

-1/2

N RN el AN B VNI A |

1/22[Tr]

Hence, T ¢ = 0 provided (a - a; ) is bounded as T increases. As in the proof of

-1.T ;
Zt 1WtW and

~Lywar/ / J_ 15T
ET =T EW mth Wi = (dyt TR dyt k) where dyt ] =dy, ;- - Et:ldyt—j‘ We

Lemma A.1 (e), let A (&, Oy - ak), (al, g o 0 )y Vp =T
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have A - A = Vi ET The proof can be achieved by showing that T 12}‘ ldyf 1dyP £ (i,
j=1, .., k), a typical element of VT, is bounded and that T IET dyt N u i=1,..,k),

a typical element of Eq, converges to 0. We have T‘lz'f dypl =T 12’5 174 1(e -
1 T

et-—l) 2

now, a typical element of Vo, it is straightforward to show that T—IE'{:ldy dyt_]

-1 1
_1Vi-1(6 — 1) — T (ypy —¥)T “(ex —€y) » 0 as T = co. Consider

2cov ( ) — cov ( H-1) - covy( j-i+1), where cov_(k) denotes the covariance function of y,

at lag k. Hence, ( & a) -0asT-0and T 1/22[ 1] 4, = 0. What remains to be shown

is that &2 has a non—degenerate limit as T increases. We have :

52 _qplyT o2 _ pigT 15T k s ~14T 2
Ty g0y =T By qfu - T 8wy~ B (85— a)(dy, ;=T "%y _,dy; )]

_ 1T 1T . \2 ook s ~14T ~14T
=T 5y (0 =T _uy)” =285 (@5 o) T "By (dyy - T "By _ydyy_ gy

13T vk . ~14T 2
T 2t=1[2j=1(°‘j'"‘j)(dyt—j“T 2t=1dyt—j)] '

It is easy to show that the second and third term converge to zero while the first converges

to 202. Hence, combining the above elements we have QF(1) = 0.

To prove part (iii) we first note that the autoregressive polynomial can be written as
A(L) = (1 - (1 - ¢/T)L)A*(L). Using the simplification f, = 0 (i =0, ..., p), we have :

(1-L)AX(L)y, = ¢, - (¢/T), ; , (A.34)

where J, is a near—integrated process defined by J, = (1-¢/T) {_1 t € Hence, we can
write the data—generating process as :

k—1
dy, = EJ —1 det J+u (‘A.35)
where u, =¢ —(c/T),_;. (A.36)

After some rearrangements using (A.34) and (A.35), we have,
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1/2o[Trl.  wel/20[Tr 1T
T /2£=1]ut=T /E,£=1](ut—T 5T_u,)

R -1/2¢[T1] 1T
-3 _q(af - af)T /2t=1 (dy, ;=T Ty _ydyy )-
~1/24[T -1oT
=12 Ty 1 Tg_qup) +0p(1),

given that af - of (with of = 0) and 71/ 22’££{]dyt—i is bounded (the proof is
straightforward and omitted). Using (A.36),

12 Tr]e _ ol/24[Tr 19T _3/24[ Tt —3/2,T
T /21[;=1]ut_T /Eig:l]et—rT /Etzlet—-c[T /21[;___1]Jt»_1—rT 5_J, ]

= 0 ,[W(r) -tW(1) = c( [ ¢I (s)ds -1 [ (l)JC(s)ds) = 0,[By(r) — c [ (I¥(s)ds],

using (A.3) and Lemma 1(b) of Phillips (1987). The results follows upon verification that

&4 ag, the proof of which is omitted.

Proof of Theorem 8 : Part (a) when a unit root is present follows from Theorem 5 (i). To

prove part (b, i) note that, under (28), dy, = B; + (51/T3/2 + AX, with AX, a stationary
AR(k-1) process. The local asymptotic power function of the test must therefore converge

to the size of the test using Theorem 6 (i), where a normalization by T!/2 is used to obtain

a non—degenerate local asymptotic power function. If the normalization in (28) was Tl/ 2

1 2
we would have QF (1) = f 0B} sn)‘dr

To prove consistency when no unit root is present, note that the data—generating
process can be written in this case as :

dy, = E]i(zlaidyt—i +u, (A.37)
where u, =¢ —e_; + 1(t > AT)A(1)4; . (A.38)

This implies that :
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~1/26[T1]s _ m-1/2 -1/2
T Et=1]ut =T

[e[TI] - eO] -1T [eT - eO]

1/2

N R PR L AR |

+ T2 - TAA)S, -

The first two terms converge to 0 as T - co. By inspection of the third term we note that

T/ 221[;3_]1"]1“1,c diverges at rate T2 14 3 easy to show that under (A.37) 52 is bounded.
Therefore QFT(I) diverges at rate T and the test is consistent.

Consider now the local asymptotic power function of the test under a sequence of
alternatives defined by (28). In the stationary case, dy, is specified by (A.37) with U, =€ —

e,_; +1(t> AT)A(I)Jl/T3/2, and therefore :

-1/2¢|Tr| —-1/2 -1/2
T /2£=i]ut=T /[e —eg) —1T /[eT—e

[T1] ol

-2 (8- a T Py -y ) -7 Py -y )

+ T2 - TA)AQ)6 T2

The last term now converges to zero. Given that T/ 2Y[Tr] = 71/ 2l(t > AT)([T1] -
AT)&I/T?’/ 2, T3/ 2Xt’ we have T_l/ 2y[Tr] -+ 0. Since the first term converges to 0, the

proof is completed by showing that (&j - aj) is bounded, the proof of which is omitted.

Consider now the local asymptotic power function in the near-integrated case. After
some rearrangements, we can write the data—generating process as :

k—1
dy, = 5{_jatdy, ; +u,, (A.39)

u, = e, = (¢/ TN,y ~ (c/TILAX(L)L(t > AT)(t - AT, /T3 (A.40)



As before we have :
-1/24[T1]s: _ m=1/2¢[T1] ~14T
T / Et[;=1]ut =T 2£=1 (ut -T Et =1ut)

15T
i T T dy)

k /- -1/2¢|T
A e U

-1/2x(T -1yT
=1/ E,Ezi](ut -T 2t=1ut) + op(l) ,

since &’i‘ - a’; and T_l/ 22,££i]dyt_i is bounded (the proof is straightforward and omitted).
Using (A.40), T/28{ Tl = o [W(r) - ¢ [ 7, (5)ds] since c6, T35} T T ILAX(L)(t - AT)
-0 as T - co. The proof is completed showing that & - ag under (A.39) and (A.40).
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Table I : Power Function of QDy(1), Unit root and Breaking Trend.

DGP :y, = 1(t > 50)6; +y, ; +e¢, (t = 1,..., 100)
6, = 0.5, ¢, ~N(0,1), y, = 0.

Size
T 0.10 0.05 0.025 0.01
100 .062 .028 .014 .005
200 .086 - .043 .022 .009
500 221 129 .080 .033
1000 .851 414 303 .182
2000 925 .860 791 674
5000 1.000 1.000 1.000 1.000

Note : The number of replications was 5,000 for T = 100, 200, 500 and 1000; 2,000
for T = 2,000; and 1,000 for T = 5,000.



TABLE IV : Empirical Results Using QF.p.(1).

Real GNP (or GDP) series for the G—T7 countries.

Series Sample k QF (1)
USA (GNP) 47:1-86:3 1 0.139
Canada (GDP)  47:1-89:1 8 0.549b
Italy (GDP) 60:1-85:1 1 0.583¢
Germany (GNP)  60:1-86:2 8 0.4062
‘Japan (GNP)  57:1-88:4 7 0.4462
UK. (GDP) 57:1-86:3 8 0.3672
France (GDP)!  65:1-88:3 1 0.893d
France EGDP}z 65:1-88:3 1 0.816d

Notes : a, b, ¢ and d denote significance at the 10, 5, 2.5 and 1% level, respectively. For
France, ! denotes the case where no one—time dummy was included for the May 68 strike
(68:2), while 2 denotes the case where such a dummy was included.
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A =0.25

-(a)

g

Figure 3: Power function of QD(0) against & change in mean, T

5% nominal size.



(b) A = 0.50

g

Figure 4: Power function of QD (1) against a change in mean, T
5% nominal size.



100,

Power function of QD (1) against a changing trend, T

5% nominal Size.

(a) A = 0.25

Figure 3:
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