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Abstract

This paper recommends against solving the Bellman partial
differential equation for the value function in optimal control problems
involving stochastic differential or difference equations. It
recommends solving for the vector Lagrange multiplier associated with a
first-order condition for maximum. The method is preferable to
Bellman's in exploiting this first-order condition and in solving only
algebraic equations in the control variable and Lagrange multiplier and
its derivatives rather than a functional equation. The solution
requires no global approximation of the value function and is exact for
continuous-time models and nearly exact for discrete-time models.
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OPTIMAL CONTROL WITHOUT SOLVING THE BELLMAN EQUATION

Gregory C. Chow

Since the 1950’s the method of dynamic programming suggested by Richard Bellman
(1957) has been considered the main tool for solving optimal control problems where the
dynamics is governed by a system of stochastic differential or difference equations.
The approach has been to solve for the value function in a partial differential equation
known as the Bellman Equation. This paper suggests that solving such a partial
differential equation is unnecessary and for most applications unwise. To maximize a
concave differentiable function subject to differentiable constraints a standard method
is to use Lagrange multipliers and to solve the first-order conditions for maximum.
Solving for the value function is contrary to the spirit of this method and fails to
exploit the first-order conditions. Given the value of the vector x(t) of state
variables, one needs only to find the value of the vector u(t) of control variables to
maximize a multiperiod objective function, but to find the value u(t) it is unnecessary
to know the value function, which gives the maximum values of the ob jective function for
all conceivable states x(t). We will show that the method of Lagrnge multipliers can be
extended to solve dynamic and stochastic optimization problems as well as static
maximization problems. Ih the case of a consumer maximizing a differentiable utility
function of quantities of consumption goods sub ject to budget constraints, _the Bellman
approach amounts to abandoning the algebraic method of Lagrange multipliers and
attempting to solve a partial differential equation for the indirect utility function.

In Chow (1992), the use of Lagrange multipliers without solving for the value
function is suggested for solving stochastic control problems in discrete time. This
paper is concerned also with continuous-time models in the form of a system of

stochastic differential equations. Like the previous paper, it exploits the first-order



conditions as suggested by the method of Lagrange multipliers without seeking the value
function. Furthermore, by solving algebraic equations rather than functional equations
globally it provides a simpler and more accurate method for exploiting the first-order
conditions in computing the optimal control function. Section 1 reviews the method of
dynamic programming for solving a stochastic control problem in continuous time and
points out the main characteristic of our approach. Section 2 provides a method to
implement our approach in obtaining the optimal control function and the associated
value function without solving Bellman’s partial differential equation. Section 3

applies the same method for solving an analogous control problem in discrete time.
Section 4 concludes by pointing out the essence of our approach and the weakness of the

Bellman approach.

1. Dynamic Programming for a Continuous-Time Model

The problem is

0

max E, J ¢ Blr-t) r[x(t),u(t)]dr = V(x(t)) (1)
u
1

subject to
dx = f(x,u)dt + S(x,u)dw (2)

where x(t) is a pxl vector of state variables, u(t) is a gxl vector of control

variables, B is a discount rate, Et is the conditional expectation operator given

information at time t which includes x(t), w(t) is a vector Wiener process with

covariance matrix cov(dw)=&dt, r(x,u) is a differentiable and concave utility function,

both f and S in the stochastic differential equation (2) are differentiable, the

covariance matrix of Sdw is S$S’dt=Zdt, and V(x) is the value function def ined by (1).
By considering the problem of finding the optimal control u(t) in a small

time interval from t to t+dt, one can write




V(x(t)) = max Et[ r[x(t),u(t)] dt + e_BdtV[x(Hdt)]]

u
= max { r[x(t),u(t)] dt + Et(l—Bdt)[V(x(t)) + dV(x(t))]} (3)
u
implying
BV(x(t)) = m:x { r(x,u) + % Eth(X(t))} | (4)

where dV(x(t)) is defined as V(x(t+dt)) - V(x(t)) and can be evaluated by Ito’s lemma

given the stochastic differential equation (2) for dx
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Using (5) to evaluate Eth and substituting into (4) one obtains the Bellman equation

2
, 0V 1 a~v
BV(x) = mix r(x,u) + f x '3 tr‘[ 3x%a%” Y ] (6)
A standard approach to solve this optimal control problem using dynamic programming
consists of two steps. First, assuming the value function V(x) to be known, find the
optimum u by solving the maximization problem of (6). For differentiable functions, one

may use the first-order condition obtained by differentiation with respect to u,.

2
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Denote the solution to the q equations by the vector u’ = (u ..,uq). If there are

side conditions g(x,u) = 0, they can be imposed at this stage. Second, given the
solution u(x) from (7), solve for the value function V(x) using (6), namely, solve the

following partial differential equation for V(x)

~ ~ 2 -
BV(x) = r‘[x,u(x)] + f’ [x,u(x)] ov . L tr oV [x,u(x)]

ox 2 oxax’ ) (8)




The approach suggested in this paper does not seek the value function V(x) in

obtaining u(x). Denoting v by the vector A(x), we rewrite (7) as

ax
ar _ af’ 1 A oz ) _ o
a_ui + %; A+ z tr‘[&—? a—ui ] =0 1 = 1)'-'»q (9)

First, we obtain from (9) a solution u which can be considered a function of X, A and the

’ ~ .
matrix %?(7 = %— Second, given u and assuming the existence of the third derivative of

the value function we differentiate (8) with respect to X, to obtain

8 - a , ~ an’ -
Bhi = 3% r(x,u) + a—)?i- f’ (x,u)A + aXl f(x,u)
1 8 ( aa 1. [ 8 . L
t5 tr[ _axi [ Fr ] Y ] s tr[ T _axi Z(x,u)] i=1,..,p (10)

It is suggested that equations (9) and (10) be used to obtain u without solving the

partial differential equation (8) for the value function V.

2. An Algebraic Method for Finding the Optimal Control Function
Using (9) and (10) the problem is to find an optimal control function u(x). For

any value x, one seeks a method to compute the value u of the optimal control which

satisfies (9) and (10). These equations involve the variables u, X, A, g;—,, and

% [%], i=1,..p. To find u given x, we first assume the two sets of derivatives
i

oA a oA . . -

a7 and =—— (=—1, i = 1,...,p, to be given, and solve (9) and (10) for u and A. In the

ax Bxi ax

~

second stage, given u and A, we will find the two sets of derivatives satisfying (9) and
(10).

In the first stage, we treat all derivatives of A as given and find 1: and A by
solving (9) and (10). In the second stage, we evaluate the derivatives of A, given :1

and A. To do so; we take the total differential of (9) and (10) treating u, A and x as




variables and the derivatives of A as fixed. Noting r, f and £ to be functions of x and

u, we obtain the differential of (9) as

q b
2 2 2 af .
d°r a7 f’ 1 aA 8~z j

) 6u.6u.+6u.6u.h+ztr[ ax”’ m] duj+26_u.dkj
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The differential of (10) is (with aij denoting the Kronecker delta)

q 2 2 2
» a°r + T’ A+8>\’ af+ltr 8 (8a 6Z+6A.62 du

dx.0u., 0x,0u, * ax. du, 2 dx. |8x‘) 8u. 8x’ 8x.4u, j
i i i 7] i J i J i 7]

Proar, p
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1 8 (A ) 85  aan 8%
*3 t‘"[ %, (ax'} 5% tax 'axiaxj ] dxj i=le.p (12)

Equations (11) and (12) can be written as
du

A + Bdx =0 (13)
da

where A is a g+p by q+p matrix and B is a q*+p by p matrix. The solution of (13) is

du -
= - A "Bdx (14)
da
da |8 . . - -1 . .
To evaluate 3% lax7|" 1 = 1,...,p, we differentiate -A B partially with respect
i

to X, Differentiating the identity AA_1=I partially with respect to X, yields

- -1
8A -1 oA _ . 8l 18A -1
8_)(i AT +A ax, 03 Bx - 8x




Applying the above identity and treating the derivatives of A as f ixed, one obtains

a -1 -1 4B -1 8A ,-1
a_xi(_A B) = -A 3?i+A &;AB (15)

The first q rows of (15) are the second partials of u with respect to x and X, while the
last p rows are the second partials of A.

We repeat this two-stage procedure iteratively until u, A, 8A/8x’ and 6—2— (8Aa/06x’),
i

i=1,..,p, satisfy (9) and (10). If any u is required to be nonnegative, then the
ith equation in (9) will be replaced by an inequality <O for ui=0, with the equality
holding for ui>0 as in standard treatment of the method of Lagrange multipliers with
nonnegative decision variables (see Dixit, 1990, p. 28). In the case of ui=0, dui
disappears from equations (11), (12) and (13). This method using equations (8)-(15) can
also provide analytical solutions to \;, A, 8A/8x’, 62}\/6xi6x' and V(x) if analytical
solutions exist. For example, I have solved the problem of Abel (1983) analytically by
this method.

For the first stage a good initial value for the matrix S (8A/8x’) of second

ax,
i

partials of A is the zero matrix, which is correct if the value function is locally
quadratic near x so that A = 8V/8x is linear. To find a good initial value for 8Ar/8x’,
consider the nonstochastic control problem by letting S = = = 0. The Bellman equation
is

BV(xX) = max { r(x,u) + f’ v } (16)

8x
u

Equation (9) for u and equation (10) for A become respectively

or _ af’ . _ o
ErR T A=0 i=1,..,q (17)
1 1
s} ~ IS} ; - an’ ~ .
B;\i = 6—xi F(X,u) + &; f (X,U)A + K f(X,u) 1=1,..,p (18)




As the second partials of A are not involved, we can apply the two-stage iterative
method to find G, A and dA/8x’, using O for the initial value of 8A/8x’ in the first
stage. This is the solution for the deterministic cc;ntrol problem. It provides a good
initial value for 1:, A, and 9A/0x’ required in the first stage of our iterative method
for solving the stochastic control problem.

The above iterative method computes an optimal value l'; of the control variable for
any value x of the state variable. The solution is exact in the sense that the
first-order conditions are satisfied except for rounding errors. No approximation of
the value function is required. In fact, after 1?1, A and OA/8x’ are known for a given x,
we can substitute them into (8) to evaluate V(x). Thus the value function is computed
exactly point by point.

When the optimal control function a(x) can be so computed, we can study the

dynamics of the system under optimal control by substituting u(x) for u in equation (2),

yielding
dx = f‘(x,tAl(x))dt + S(x,;(x))dw (19)

The dynamics of the costate variables A can be readily obtained by using Ito’s lemma and
(10). By Ito’s lemma,

My 1 5 (3 9,
dAi = &_, f + z tr [a_xi [EX_I] ‘Z] dt + 6—){,- Sdw (l = 1,...,p) (20)

where axi/ax = a;\/axi. To eliminate the second partials of A, we replace the sum of the

two terms in curly brackets by the four remaining terms of (10} to obtain

_ (a8 .~ 8 " 1. [ar o ~ ol
d?\i = {axi r{x,u(x)) + gx—l f’ (x,ulx)r + 5 tr[ T%7 a—xl Z(x,u(x))] BAi}dt
axi
* o Sdw (i=1,...,p) (21)




In the literature, equations (10) and (21) are known. For example, a version of (10)

can bé found in Benveniste and Scheinkman (1979) and is referred to by Sargent (1987, p.
21). A discrete-time version of (10) can be found in Chow (1975, pp. 158 and 281). A
version of (21) can be found in Malliaris and Brock (1982, p. 112). However, equation
(10) has not been treated as an essential component in obtaining the optimal control
function a(x). The standard procedure using dynamic programming has been to solve the
partial differential equation (8) for the value function V(x). This paper suggests that
CI(X) can be obtained directly by exploiting only the first-order conditions (9) and (10)
without having to solve for the value function. Our computations yield a(x), V(x), the
shadow price vector A(x), and the matrices of first and second partials of 1/.\1 and A as
given in stage two.

In this section, I have used the value function of dynamic programming to give an
exposition of our method as most readers are familiar with dynamic programming. In the
next section on discrete-time models, I will abandon the concepts of value function and
the principle of optimality of dynamic programming completely and derive our method by
using Lagrange multipliers to begin with. The first-order conditions (9) and (10) will
become apparent. The reader will recognize that the stochastic nature of the problem
does not present much additional complication as long as one can differentiate under the
expectation operator. Using our method one does not encounter the curse of
dimensionality which often occurs in solving_‘phe Bellman equation for the value

function in dynamic programming.

3. Solution for Discrete-Time Models
For discrete-time models, the problem analogous to (1) and (2) is

-t
max Eof I Br(xt,ut) (22)

[o4]
{ut}t=0 t=0



subject to

X = f(xt,ut) + € (23)

t+1 t+1

where €41 is an i.i.d. random vector with mean zero and covariance matrix . Chow
(1992) solves this problem by introducing the px1 vector At of Lagrange multipliers and
setting to zero the derivatives of the Lagrangean expression

0

t , _ _
L = EO t§o {B r'(xt,ut) {3 At+l[ X f(xt,ut) €t+1]} (24)

with respect to u, and X, (t=0,1,2,...). The first-order conditions analogous to (9)

and (10) are

d ’
a—ir(x )+ B o £ (xu )E A (26)
t - axt e 7t te

To justify the above method of solution, four observations can be made. First, if
the problem were nonstochastic, i.e. if EO were absent and €t+1 were constants, the use
of Lagrange multipliers is Jjustified since variables in different time periods are
simply treated as different variables and the constraint X, +1—f‘ (xt,ut)-et +1=O for each
period required a separate (vector) multiplier Bt+17\t+1, the scaling factor Bt+1 being
harmless but convenient. Second, if the problem were stochastic but unconstrained, the
procedure is also justified because the expectation to be maximized is a function of the
variables ut, xt and ht, and first-order conditions can be obtained by differentiation
with respect to these variables, with the order of differentiation and taking
expectation interchanged under suitable regularity conditions. Third, the method of
Lagrange multipliers is to convert a constrained maximization problem to an
unconstrained one by introducing the additional variables At as is done above. Fourth,
note that the problem is not to choose UypUysee all at once in an open-loop policy, but

to choose u, sequentially given the information X, at time t in a closed-loop policy.




Since X, is in the information set when u, is to be determined, the expectations in
equations (25) and (26) for the determination of u, and At at period t are Et and not

EO.

Chow (1992) suggests using equation (26) instead of the Bellman equation to obtain
an optimal control function G(Xt), but still recommends some global approximation to the
Lagrange function ?t(xt) in the process of obtaining the optimal control function. The
present paper recommends doing away with such a global approximation as it is a poor
strategy for finding at and At satisfying the first-order conditions (25) and (26) given

a specific Xx_. Only a local approximation of A(Xt) near x, is r‘eqﬁir‘ed. This is

t t

accomplished by a second-order Taylor expansion of At+1=7t(xt +1) in the evaluation of

Et>\’t+l'
o, . o
Mo T M) = ASD * g xyyx) 4 5 tr[ axax” Xta1 X Kpay %) ]

o, . o,
=2t e [h(Xt’ut) * et] *3 tr[ Fxaxr (hrey,)he ) ] @7

where we have defined -

h(xt,ut) = f(xt,ut) - X, (28) -
Hence
67\i 1 6}\i
- = - ’
Etxi,t+l = At g h(xt,ut) * 5 tr[ 5%5x7 (hh +Z)] : (29)
Substitution for Etki 41 in (25) and (26), with the time subscript t omitted,
gives
P 3 67\J. 1 627\J.
a—ui r‘(x,u) + B 6—11]: i: fJ(X,u){AJ + a—x,- h(X,u) + z tr‘[ W (hh +Z)]}
i=1,...,q (30)




5 5 oA | s
A, = —X—l- I"(X,u) + B —6?1 i.: fJ(X,u){A.J + 3%’ h(X,u) + z tl"[ -6XTXI (hh +2)]}

i=1...,p (31)

Applying an analogous two-stage procedure as specified in section 2, one can solve (30)

~ g 32Ai 8
and (31) for u, A, 3% and %" - ax'axi’ i=1,...,p for any given x. I have applied

this procedure to solve the optimal control problem associated with the baseline real
business cycle model discussed in Chow (1992). With consumption and labor supply as two
control variables and technology (Solow residual) and capital stock as two state

variables, equations (30) -and (31) are four equations for u A, and A, which

r 2N 2
involve Aij = aai/axj (i,j = 1,2) if we use only a first-order Taylor expansion for Ai.
Taking total differentials of (30) and (31) gives 4 equations in dul, duz, dAl, d?\z, dx1
and dx2 written as (13). The second and third rows of the 4x2 matrix —A_lB provide
estimates of Aij (i,j = 1,2) to be used in the second stage of our iterative procedure.
The procedure has been found to converge rapidly.

This procedure has an advantage over the procedure recommended by Chow (1992) in
not having to approximate the (vector) function A(x) globally in finding a global
optimal control function \;=G(X). We employ only a local approximation of Mxt+1) around
X, for which the value of optimal control a(xt) has to be computed for a given X,, and
not a global approximation of A for all X, A quadratic approximation to A amounts to a
cubic approximation to the value function V. Hence it is better to solve for A using
the first-order conditions than for V using the Bellman equation. Furthermore, this
paper avoids the possibly large errors introduced in a global approximation to A or V in
finding the value 1: of optimal control associated with a particular x. By using a
quadratic approximation for A locally for a given x in evaluating a particular point

N

u(x) of the optimal control function, one allows the control f unction, the global
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Lagrange function A(x) and the value function V(x) to take almost any form. In fact,
even a linear approximation for A locally, by dropping the second-order terms of (30)
and (31), can yield a global A(x) better than a quadratic or’ a cubic global
approximation. To sum up, seeking a global approximation for the value function in
computing a global control function is a poor strategy in two important respects. A
better function to seek is the Lagrange function. Much error is introduced by forcing a
global approximation of A or V in computing the value for the optimal control 1:
associated with any speéif‘ic value x of the state, as it occurs in practice when the

method of dynamic programming is applied.

4. Conclusion - Why Not To Seek the Value Function Globally

The logic of seeking the value function in dynamic programming becomes apparent if
one considers the problem of maximizing r(x,u) with respect to vector u sub ject to a
vector constraint x = f(u). By the method of Lagrange multipliers, one differentiates

the Lagrange expression r-A’(x-f) with respect to u, X and A to obtain three first-order

conditions

ar af’ dr
%*'%;\—O, ﬁ_l—oy x-f=0

which provide three equations for the variables u, x and A. However, if one ignores the
second first-order condition and solves the first first-order condition for u as a

function of x and A, one may substitute the result in the function r to be maximized to

yield
V(x) = rix,u(x,A))

This is the value function. It satisfies the above partial differential equation with
A=dV/3x. Bellman recommends that we solve this partial differential equation for the

value function V. This paper suggests that we return the problem to one of solving
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algebraic equations by including the second first-order condition and including A as a
varjable. It is obviously much better than ignoring this condition and solving a

partial differential equation for the value function globally, except for very special
examples. In fact, after 1; is obtained for a given X, we can substitute it in r to
evaluate the value function at x. Thus both the control function and the value function

can be obtained exactly point by point.
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