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STATISTICAL ESTIMATION AND TESTING OF A REAL BUSINESS CYCLE MODEL

Gregory C. Chow

ABSTRACT

This paper demonstrates that real business cycle models can and should be estimated
and tested by classical econometric methods rather than by calibration. It presents a
method of dynamic optimization and of maximum likelihood estimation that works f of such
models of optimizing agents. It provides empirical evidence unfavorable to a baseline
real business cycle model which is uncovered by classical statistical methods but remains

unnoticed through calibration.

1. INTRODUCTION

The purpose of this paper is threefold. First, contrary to the opinion of some
researchers on real business cycle (RBC) models cited below who use calibration, this
paper demonstrates that standard statistical methods can and should be used to estimate
and test such models. Second, it presents a method of statistical estimation which is
applicable to other economic models of a representative agent who is assumed to solve a
dynamic optimization problem. Such an estimation problem is considered difficult in the
literature. Third, it provides statistical evidence concerning an otherwise well-
analyzed baseline RBC model which shows obvious flaws for the model not revealed by
calibration.

In an RBC model, the behavioral (control) equations for the representative
economic agent are derived by maximizing the expected value of a multiperiod objective
function with respect to the control variables sub ject to the constraint of a stochastic

model describing the dynamic process for the state variables. Given the parameters of




the objective function and the dynamic model, control theory is applied to solve the
optimization problem, yielding the required optimal control equations. One would expect
the researcher to apply standard statistical techniques for the estimation and testing of
such a model which includes the dynamic model for the state variables and the optimal
control equations describing economic behavior, as described in Chow (1983, Chapter 12)
for example. A major argument against using the standard approach is that the optimal
control equations derived from dynamic optimization are nonstochastic. These equations
cannot fit the data without error terms added to them. Some proponents of RBC models are
unwil'ling to make additional statistical assumptions concerning these error terms (see,
for example, Kydland and Prescott, 1982, King and Watson, 1991, and Watson, 1990). They .
argue, somewhat convincingly, that the model is intended to capture certain important,
but no all, aspects of reality and that the researcher should not be forced to make
arbitrary assumptions concerning the unexplained parts (the errors) of the model
generating fhe economic data, such as statistical independence between the explained and
the unexplained parts of the data. A main point of this paper is that such independence
assumptions (as made in Altug, 1989, and Chow, 1983, for example) are not required for
the estimation and testing of RBC models by standard statistical methods. This point is
demonstrated in section 2 using the baseline RBC model discussed by King, Plosser and
Rebelo (1988) and analyzed by Watson (1990). It is shown that standard statistical
estimation and testing methods are applicable to this model without making the assumption
of independence for the errors in the optimal linear control equations.

As a second objective, this paper advocates and applies a more effective method
than dynamic programming for solving optimal control equations in dynamic optimization.
Section 3 explains how this method can be applied to obtaiﬁ optimal linear control
equations for the model of section 2. This method of optimization is imbedded in a
maximum likelihood algorithm for estimating the parameters of the model. A third

objective is to perform an empirical analysis for a baseline RBC model using quarterly



data for the United States and to evaluate its performance using standard statistical
methods. Results of estimation without imposing the optimization constraints will be
presented in section 4. Section 5 imposes the constraints in estimating the baseline

RBC model. Section 6 concludes this paper.

2. STANDARD STATISTICAL ANALYSIS APPLICABLE TO A REAL BUSINESS CYCLE MODEL

The problem facing the representative economic agent of an RBC model is

® 0
{ut}t=0 t=0

oAt
(1) max E Y Br‘(st,ut)

subject to

(2) L= f(st,ut) + e

St+ t+1
where s, is a vector of p state variables, u, is a vector of q control variables, B is

the discount factor, €41 is a vector of random shocks to the economy, E_ is expectation

t
conditioned on information at time t and for convenience r and f are assumed to be
differentiable. The solution takes the form of optimal control equations ut=gt(st).

For the purpose of statistical analysis, by standard or other methods, a common practice

is to approximate gt(st) by a time-invariant linear control equation

(3) u =Gs, +g

For the derivation of such a linear control equation see Chow (1975, Chapter 12),
Kydland and Prescott (1982), King, Plosser and Rebelo (1989), and Chow (1992) for
example. (3) is said to explain only a part of the real world. To fit the observed

data for U, @ vector €isl of errors has to be added to (3), yielding for period t+1

(4) u . =Gs, . +g+e

t+1 t+1 t+1

One is not justified to assume the statistical independence of €41 and st+1, but there

is no need to. A justifiable assumption is that e 41 is uncorrelated with S, and u, in



equation (2). If €y IS correlated with €41 it is also correlated with Sisl through

(2), violating the independence assumption. A main point of this paper is to show that
there is no need to assume €41 to be independent of €t+1 and st+1 for the estimation and
testing of the model consisting of (2) and (4) by standard statistical methods. This

point is illustrated using the baseline RBC model presented by King, Plosser and Rebelo
(1988).

The model consists of two control variables U and Uy representing consumption
and labor input respectively, and two state variables Sit and Sot denoting respectively
logAt and capital stock at the beginning of period t, where At represents technology in
)

the production function <:1,c=s;oc(Atu2t The dynamic process is

St TV S T E

(5)
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The first equation assumes slt=logAt to be a random walk with a drift 7, €, being a
random shock to technology. The second equation gives the evolution of capital stock
Sot0 with & denoting the rate of depreciation and investment being the difference
between output %_; given by the production function and consumption u . The

1,t-1
utility function r is assumed to be

(6) r = log u, + Blog (1-u,,)

1t 2t

where 1—u2t denotes leisure.
One can solve the optimal control problem for the representative economic agent to

yield approximately optimal linear control equations of the form

Y1t T 8S1e t 8pSy Y 8 ey
(7)

Yot T BpiSip t 8ppSp t 8y ey




where e and €t have been added to account for the deviations of the observed
consumption ult and labor input u2t from their partially explained values derived from
an incomplete theory. Given time-series data on ult’ u2t, slt and SZt’ the
econometrician wishes to estimate and test this RBC model.

To demonstrate our point we assume that the state of technology Slt=1°gAt can be
observed. This assumption is relevant because RBC researchers have used the Solow
residuals from a Cobb-Douglas production function as observations on Sit (see Plosser,
1989). (There must exist models involving optimizing agents in which some parameters
cannot be identified, but identification is a problem for standard simultaneous
equations models also.) Given this assumption, we have a model consisting of four

simultaneous equations (5) and (7) for four endogenous variables s , U, and u...

2t "1t 2t

Note that the second equation for capital stock Sot is nonstochastic and can be excluded

i S
from the system of simultaneous equations for the purpose of statistical analysis. It is
a part of the deeper structure as the representative consumer-worker has utilized it,
together with the utility function and the first equation of (5), in deriving the

optimal control equations (7), thus imposing cross-equations restrictions on the
parameters of the three remaining simultaneous stochastic equations. Since s.. is

2t

capital stock at the beginning of the period and is a function of only lagged variables,

it is a predetermined variable in the system.

The three remaining simultaneous equations can be written in matrix form as

10 0]s, ¥ 10 075, ., 0 e,
(8) g1 L Oflwye| =g |+]|0 00O Y-l | Y| 812 [Sot Y| eqt
8 O 1 [] uy g, 000y, €0 ot

Allowing the covariance matrix of the three residuals et, elt and e2t to be of full rank,

all parameters of the system (8) can be identif ied. The parameters include 7




coefficients and 6 elements of the residual covariance matrix. The 7 coefficients of (8)
are derived through dynamic optimization from 5 deep parameters of the optimization
process, including the discount factor B, @ of the utility function (6), ¥, 8 and « of

(5). The 6 elements of the residual covariance matrix are common between the derived
model (8) and the optimization model appended by two error terms €4 and e2t. The 6 deep
parameters including var‘(st) are related to thé 8 parameters including 7 coefficients

plus var‘(et) in (8). The latter eight parameters from (8) can be consistently estimated.
They can be used to identif y the six deep parameters. Given an optimal control algorithm
to derive eight of the parameters of (8) from the six deep parameters, one can estimate
the latter by maximizing a likelihood f unction using normal residuals (as in Chow, 1983,
Chapter 12). The remaining 5 variances and covariances can also be estimated as we do
not assume the independence ‘of € and €t from g, Using this example, we have shown
that there is no reason to abandon standard statistical inference in the estimation and
testing of RBC models, and there is no need to assume the errors of the control equations

to be uncorrelated with the state variables in these equations.

3. SOLUTION FOR THE CONTROL EQUATIONS BY LAGRANGE MULTIPLIERS

In this section, I derive a well-known approximate solution to the optimal control
equations by the method of Chow (1992) using Lagrange multipliers. To solve the
constrained maximization problem (1)-(2), the method introduces a px1 vector At of

Lagrange multipliers and sets to zero the derivatives of the Lagrangean expression

T

- t _ Rttl, _ _
(9) ¢ = EO t)=jo {B r(st,ut) B At+1[st+1 f(st,ut) 8t+1]}

with respect to u,, s, and At (t = T,T-1,...,0). Denoting the gxl vector 8r/d8u by r

t 2

the gxp matrix 8f’/8u by fz,etc., and setting to zero 6..‘2/8ut, 8.%/65,c and 62/67\t




respectively yield

(10) . r'z(st,ut) + sz(st,ut)Et?\Hl =0
(11) At = r‘l(st,ut) + Bfl(st,ut)Et?\t+1
and (2).

To justify the above method of solution, I make four observations. First, if the
problem were nonstochastic, i.e., if EO were absent and €t+1 were constants, the use of
Lagrange multipliers is justified since variables in different time periods are simply
treated as different variables and the constraint St+1_f (st,ut)—et+1=0 for each period
requires a separate (vector) multiplier Btﬂhtﬂ,»the scaling factor Bt+l being harmless
but convenient. Second, if the problem were stochastic but unconstrained, the procedure
is also justified because the expectation to be maximized is a function of the variables
u, S, and At, and first-order conditions can be obtained by differentiation with respect
to these variables, with the order of diff erentiation and taking expectation interchanged
under suitable regularity conditions. Third, the method of Lagrange multipliers is to
convert a constrained maximization problem to an unconstrained one by introducing the
additional variables At as is done above. Fourth, note that the problem is not to choose
Uy ul,...,uT all at once in an open-loop policy, but to choose u, sequentially given the
information S at time t in a closed-loop policy. Since 8, is in the information set
when u, is to be determined, the expectations in equations (10) and (11) for the
determination of u, and }‘t at period t are Et and not EO' (Ir s, is not in the
information set, the standard practice in the control theory literature is to estimate it
by a Kalman filter; see Chow, 1975, Chapter -8, and Kydland and Prescott, 1982.)

We solve equations (10) and (11) using (2) to obtain the solution. The value
function Vt(st) and the Bellman equation in dynamic programming are not used. Equations
(10) and (11) are similar to the result from applying Pontryagin’s maximum principle

except for the stochastic aspect. The above extension to the stochastic case appears




obvious once pointed out. More credit should go to Lagrange than to Pontryagin. The
method is better than dynamic programming both analytically and computationally because
it avoids the need to solve (analytically or computationally) the value function V in the
Bellman equation. The solution for V is unnecessary and is often too difficult, although
V is useful if it can be obtained.

If we are interested in optimal linear control equations of the form (3), we will

approximate the dynamic process (5) by a linear model of the form

(12) Sty = As,c + Cut + b+ €ie1

We will approximate the vectors At+1’ r'l(st,ut) and rz(st,ut) by linear functions

(13) At+1 = Hst+1 *h
(14) rl(st,ut) = Klst + K12ut + k1
(15) rz(st,ut) = Kzu,C + KZISt + k2

Equations (12) and (13) imply

(16) EtAt+1 e H[ Ast + Cut +b ] +h

(15) and (16) can be substituted into (10) to yield

rz(st,ut) + BC EtAt+1 =

(17) Kzut + Klet + kz + BC H(Ast + Cut +b) +BC'h =0
When (17) is solved for u, we obtain

(18) ut = Gst + g

where




Vi -1 ’
(19) G = - (K, + BC'HC) (K,, + BC’HA)
(20) g =- (K, + BC'HO) [k, + BC’ (Hb + h)]
(18) and (14) imply

(21) r'l(st,ut) = (K1 + K12G)St + Klzg + k1

Substitution of (18), (21) and (16) in (11), with f 1=A’ from (12), gives

A, = [Kl + K12G + BA’H(A + CG)] s, + (K12 + BA’HC)g + k1 + BA’(Hb + h)

t
(22) = Hs,c +h
implying
(23) H = K1 + KlZG + BA“H(A + CG)
(24) h = (K12 + BA’HC)g + k1 + BA’(Hb + h)

Equations (19), and (23) can be solved for G and H. Given G and H, (20) and (24) can be
solved for g and h. Hence the parameters G and g in the optimal linear control function
ut=Gst+g are derived from the deep parameters of the stochastic optimization problem.
The above method of finding a linear optimal control function ut=Gst+g, to be called
method I, employs a globally linear function Hs+h to approximate the Lagrange function
A(s) and may introduce sizeable errors. One can improve the accuracy of the solution by
employing a locally linear function Hts+ht to approximate At=7\(st) and At+1=?\(st+1) in

equation (10) and (i1) for a given S;- When we solve (10) and (11) for a given s, we

t,
linearize f, r and r, as given by (12), (14) and (15) about s, and some trial value uj'c‘
for u, and solve (19), (23), (20) and (24) to obtain Gt’ Ht’ g, and ht associated with
the given value of 8, We replace ujéE by Gtst+gt to perform the linearization of f » T

and r, again and iterate until convergence. For different values of St’ we solve the

optimal control problem as described above, obtaining a nonlinear optimal control




function g(s) which is built up by the above locally linear optimal control functions.
This method will be called method II. Both methods I and II will be applied to estimate

the model in Section 5.

4. UNCONSTRAINED ESTIMATION OF THE BASELINE RBC MODEL

In this section I present estimates of the parameters of equation (8) without
imposing the optimization constraints on the coeff icients g and gij (i, j=1,2).
Quarterly data for the United States in the Citybank data file citibase.rat from 1951.1
to 1988.4 are used, except for capital stock which I have constructed f ollowing the
second equation in (5) for Soit By definition of this equation, the real output variable
is per capital real gross national product excluding government expenditures and private
residential investment. U, is per capita consumption expenditures (in 1982 dollars).
Uy, is per capita total number of hours worked, adjusted by a constant to make it a
fraction around .22 to .24. as . is the difference between log per capita real gross
national product and the sum of (1-«) times log per capita real non-residential f ixed
private capital Sot and « times log per capita total number of hours worked, with a=.70.
Real private capital stock k is constructed by kt='9775kt—1 + quarterly gross private
non-residential investmentt_1 with starting value for the first quarter of each year
given by the net capital stock figure reported in the Ywwey of Guwrent Business (October
1986, p. 33). The equation for Sit in (5) is estimated using the "Solow" residuals as
constructed above for the sample period 1951.2 to 1988.4. Using Sl, t-1 @S an instrument
variable for S;pr we estimated the equations for per capita real consumption U, and for
per capita total number of hours worked Uy given by (7), treating beginning-of-quarter

capital stock S, @s predetermined. The results from estimating these three equations

are

10




S;p = 004283 + 5 R = .997
(.00092) DW = 2,178
2
U = - 0.1681 + 0.4229 5 + .1251 Sy, R® = .990
(.0447)  (.0483) (.00336) DW = .0857
= .2564 - .4229 s._ + .00984 s R = 795
Yoy = - . 1t 2t =

(.00689) (.00745) (.00052) DW = .123

Although the Rz’s for the consumption and hours worked equations are high, the very
low Durbin-Watson statistics indicate very strong positive serial correlations in the
residuals. As alternative hypotheses to this RBC model one considers the introduction

of lagged consumption in the equation for U, and lagged number of hours worked in the

equation for u2t. The results of estimation using s1 t-1 as an instrumental variable
are
— — 2 —
ult = .0424 + .0608 slt + .0056 SZt + .9436 ul,t-l R = ,9986
(.0169) (.02137) (.0041) (.0306) ‘ DW = 1.795
— 2 —
u2t = .0027 + .0014 S t .0002 SZt + .9681 uz’t_1 R = ,9754
(.0081) (.0038) (.0003) (.02952) DW = 1.945

The own lagged variables help reduce the positive serial correlations in the residuals

and dominate the remaining variables St and Sot provided by the RBC theory. The own
lagged variables are important variables used in VAR’s and in simultaneous-equation

models of the Cowles Commission type. Although these models are sometimes considered ad
foc by RBC model builders, they fit the data so much better than the baseline RBC model,
as the last two estimated equations demonstrate. Builders of RBC models need to come up
with theories to explain the distributed lag relations found in time series data.

By using classical statistical methods we have shown that the two state variables

selected by the baseline RBC model simply cannot explain the lag structures of

11




consumption and labor supply. Such evidence is unnoticed by calibration. In the next
section, we will present results from estimating the three equations by imposing the
restrictions from dynamic optimization. However, even without imposing the constraints
from the dynamic optimization theory, one finds that the data already strongly reject the
model. Hence the main purpose of the next section is to present a workable method of

maximum likelihood estimation for the deep parameters in a dynamic optimization model.

5. CONSTRAINED ESTIMATION OF THE BASELINE RBC MODEL

To estimate the baseline RBC model sub ject to the optimization constraints, we apply
the method of maximum likelihood (see Chow, 1983, Chapter 12). Methods I and II of

Section 3 require a linearized version of the model for the evolution of st=(slt,52t)’ as

given in (12). Method I linearizes the equation for capital stock S5 141 given by (5)

about the means 51, 52, ﬁl and 62 of the sample period (1951.1-1988.4). Denoting

exp(oc§1) §é_a ﬁ;a by q, we obtain the parameters of (12).

1 0 0 0 Y €
(25) A

]
O
]
o
Il
©
]

aq l—6+(1—oc)(i/§2 -1  aq/u

to yield the

1

-1 -1]" . . - -
The vector r —[ul 0 -9(1—u2t) ] can be linearized about v and u2

following parameters for (14) and (15)

K1 =0 K12 =0 k1=

-1
-0 2 0 2u,

) - -1 - -2 -
0] ~6(1—u2) -6[(1—u2) - (l-uz) u2]

Method II performs similar linearizations about each s and a trial value ui‘c‘, the latter

set equal to Gtst+gt at each iteration until convergence.

12




We first estimated model (8) by Method I with G and g derived from equations (19),
(20), (23) and (24). Note that three of the deep parameters ¥, « and & are imbedded in
the matrices A, C and b of the dynamic model. There is only one deep parameter 6 in the
utility function, affecting K2 and k2 in (26). Including the discount factor B, these
five deep parameters appear in equations (19), (20), (23) and (24) for deriving G and g
in the optimal linear control equation.

Using a standard simultaneous-equations notation, we rewrite (8) as

(27) By, + Ix, = e,

- 4 : ° .
where A (slt u, u2t) » X, 1s a column vector consisting of S|t-1° ul,t—l’ u2,t—1’ Syt

and 1, and
1 0 0 -1 0 0 0 -y St
28 B = - 1 0 = - - =
(28) g1 r 0O 0 o g, g, e, €t
- 0 - -
&1 1 © 0 0 -g, -g ot

n observations of (27) can be written as
BY'+ TX’ = E/

where Y’ is 3xn, X’ is 5xn and E’ is 3xn.

Assuming normal and serially uncorrelated et with covariance matrix Z, the

concentrated log-likelihood function (see Chow, 1983, pp. 170-171) is well-known to be
(29) log L = const + n log |B| - % log ln—l(BY’ + ITX')(YB’ + XT’)]|

with the maximum likelihood estimate of T given by

-~

(30) T = n"XBY’ + rx*)ys’ + Xr’)

13




To obtain maximum likelihood estimates of the five deep parameters by iterations, each
iteration takes three steps: (a) given initial values of the deep parameters, compute G
and g by solving (19)-(23) iteratively and (20)-(24) iteratively; (b) evaluate log L

using (29) and the results of step (a); and (c) apply a maximization algorithm to revise
the initial values of the deep parameters.

I report below the results obtained by using for step (c) a version of the Corana
simulated annealing algorithm as implemented by Goffe, Ferrier and Rogers (1992) and
translated into Gauss by Ron Miller and Chunsheng Zhou of Princeton University. The
maximum likelihood estimates of o (labor coeff icient in the Cobb-Douglas production
function), B (discount factor), y (drift in the random walk for the Solow residual), &
(depreciation rate for capital stock) and @ (relative coefficient of log leisure in the
utility function) are 0.7309, 0.9732, 0.002636, 0.02207 and 2.7948, respectively. The
algorithm has yielded a set of sensible estimates for all five parameters, results not
often found in the estimation of dynamic optimization models. The computations took
about two hours on a 486/25C personal computer.

The above deep parameters imply, through dynamic optimization, the f ollowing optimal
linear control rules

U, = 1.1379 + '380951t + .007387 So¢

U, = 0.5065 - .1629 s ¢ " .003159 s

1 2t

To compare the model with these restricted coeff icients based on 5 deep parameters with

the model with 6 unconstrained coeff icients in the equations for u,, and u, reported in

1t

section 4 plus a common 7%, one may compute the log likelihood of the constrained model

t

(27)-(28) minus the log likelihood of the model with the unconstrained coefficients given

in section 4, with the first equation of (28) being that of the constrained model in both
cases. Minus twice this log likelihood ratio turns out to be . Since the

unconstrained model has two extra parameters, with y=.004283 common in both, one may test

the null hypothesis of the constrained model being correct by a x2(2) test, rejecting it

14




at a very low level of significance. However, this test is questionable as it is based
on the incorrect assumption that both models have serially uncorrelated residuals.

When Method II was applied, the log likelihood value increased to 9.38 from 8.6737
for Method 1. Thé five parameters are estimated to be 0.6368, 0.8453, 0.003041,
1.770><10_9 and 3.5198, taking about eight hours of a 486/25C computer. Note that local
linearization was performed for only 19 values of the vector of state variables in a
sample of 152 quarterly observations, each being average values of eight consecutive
quarters. Table 1 gives the parameters (g G) of the optimal control function obtained by
Method II corresponding to the 19 values of the state variables and shows how poor a
globally linear optimal control function is.

Much progress has been made in performing maximum likelihood estimation of the deep
parameters of models of a representative agent who is assumed to solve a dynamic
optimization problem since the early work of Blanchard (1983). From the methodological
point of view, this paper has provided two useful algorithms to perform maximum
likelihood estimation. It would be interesting to compare our Method II with the method
of Christiano and Eichenbaum (1992). After using logs and detrending by the
nonstationary Si¢? they produce a deterministic version of their model which has a
steady-state solution about which they approximate the loss function by a quadratic
function and apply linear-quadratic control theory to obtain optimal decision rules.

Their method implies a globally linear approximation (though about the important
steady-state values) to the Lagrangean function iﬁ our terminology, for all values of the
state variables which may be different from the steady-state values. Furthermore, their
statistical method of estimation differs from ours. From the substantive point of view,
this paper has provided further evidence on a baseline RBC model. Even without exXamining
the estimates of the coefficients of the optimal decision rules in equation (7), one can
conclude from the estimates obtained from unconstrained maximization of the last section

that the baseline real business cycles model is highly inconsistent with the data.
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Optimal Control

Table 1

Variables Corresponding to Selected

State Variables

g1 &2 Gy Giz Ga1 Gz
1. 0.7406 0.5018 0.2843 0.0142 -0.1761 -0.0088
2. 0.8204 0.5111 0.2720 0.0129 -0.1724 -0.0082
3. 0.8374 0.5392 0.2870 0.0131 -0.1750 -0.0080
4. 0.9810 0.4965 0.2573 0.0112 -0.1645 -0.0072
5. 1.0031 0.5121 0.2643 0.0113 -0.1648 -0.0070
6. 1.0603 0.5161 0.2590 0.0108 -0.1631 -0.0068
7. 1.0554 0.5584 0.2818 0.0114 -0.1681 -0.0068
8. 1.0203 0.6191 0.3282 0.0125 -0.1777 -0.0068
9. 1.0731 0.5937 0.3501 0.0123 -0.1738 -0.0061
10. 1.1408 0.5767 0.3668 0.0119 -0.1708 -0.0056
11. 1.2059 0.5613 0.3784 0.0117 -0.1670 -0.0052
12. 1.1654 0.5663 0.4214 0.0122 -0.1704 -0.0049
13. 1.3174 0.5092 0.4059 0.0112 -0.1598 -0.0044
14, 1.0648 0.5736 0.5061 0.0135 -0.1719 -0.0046
15. 1.0943 0.5480 0.5259 0.0133 -0.1699 -0.0043
16. 1.3564 0.4849 0.4726 0.0114 -0.1590 -0.0038
17. 1.2316 0.5207 0.5327 0.0126 -0.1636 -0.0039
18. 0.9721 0.5692 0.6409 0.0145 -0.1720 -0.0039
19. 0.7933 0.5791 0.7198 0.0158 -0.1744 -0.0038
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Perhaps Robert Solow (1988, page 311) was too generous to say that "E. Prescott’s theory
is hard to refute...." The limited statistical analysis of this paper seems to have

refuted strongly a baseline RBC model.

6. CONCLUSION

Pursuant of its objectives, this paper reaches three conclusions. F irst, there is
no excuse for not applying standard econometric methods to estimate and test real
business cycle models. Second, two methods have been suggested for computing maximum
likelihood estimates of the deep parameters of a model based on a representative agent
acting as if she/he is solving a dynamic optimization problem. We have implemented both
methods. Third, empirical evidence obtained by classical statistical analysis has
revealed weaknesses in the dynamics of a baseline RBC model which have not been evident

from calibration analysis.
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