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Abstract

This paper introduces Bayesian vector autoregressions with time-
varying error covariances (BVARTEC). The method uses an unob-
served components version of modelling ARCHness, where the shock
to the error-precision matrix is drawn from a multivariate beta distri-
bution. Extending the standard Kalman Filter analysis to the non-
linear filtering problem at hand, simple closed-form exact updating
formulas for the posterior are derived. These formulas turn out to
be similar to the formulas for a multivariate IGARCH(1,1) specifica-
tion without an intercept. The method is easy to use and particularly
suitable for applications in macroeconomics and finance.



1 Introduction

This paper introduces Bayesian vector autoregressions with time-varying er-
ror covariances (BVARTEC). The idea in this paper is to extend Bayesian
vector autoregressions by allowing for time-variation in the error variance-
covariance matrix. Rather than using a multivariate version of the popular
ARCH specification, we model the error precision matrix as an unobserved
component with idiosynchratic shocks drawn from a multivariate beta dis-
tribution. Such a setup allows to interpret a sudden large movement in the
data as the result of a draw from a distribution with a randomly increased
but unobserved variance, rather than the traditional ARCH-interpretation of
an unusually large draw from a distribution with a presently small variance.

The calculations are analytically tractable, exploiting a conjugacy be-
tween Wishart distributions and beta distributions, which has recently been
established in Uhlig (1992c) for the singular beta distributions needed in
this paper. Building on and extending the usual Kalman-Filter analysis to
the nonlinear filtering problem at hand, closed-form, exact updating for-
mulas for the posterior are obtained, providing an easy-to-use generaliza- -
tion of Bayesian vector autoregressions as well as an useful analytic bench-
mark against which other Bayesian versions of ARCHness can be compared.
The updating formulas turn out to resemble the formulas for a multivariate
IGARCH(1,1) specification without intercept, except that the covariances of
the one-step ahead forecast errors themselves rather than the true, but un-
observable errors are used to compute the prior mean error precision matrix
for the innovations of the next step. The speed of time variation is treated
as a hyperparameter. The difficulty in determining that parameter by a
quasi-maximum posterior procedure are explained. The method is applied
to a four-variable system of US time series, consisting of stock prices, federal
funds rates, real GNP and a price index. Mean impulse response functions as
well as mean forecasts up to 1996 are constructed with error bands reflecting
the possible skewness of the posterior distributions.

Bayesian vector autoregressions have been studied and popularized by
Litterman (1979,1980,1981,1984a,1984b,1985), Doan Litterman and Sims (1984),



Doan’s RATS Manual (1990), Sims (1986,1987,1989) and Todd (1988), see
also the reviews in Liitkepohl (1990) and Canova (1991), and have recently
been reexamined in slightly different form in the context of the unit root de-
bate, see Koop (1990), DeJong (1992) and Kleibergen and Van Dijk (1992).
ARCH models have been introduced by Engle (1982) and have generated a
huge literature, see the review in Bollerslev, Chou and Kroner (1992). Rather
than build on multivariate ARCH-models as in Engle (1987b), Baba, Engle,
Kraft and Kroner (1987), Baillie and Bollersley (1990), Bollerslev, Engle and
Wooldridge (1988), Diebold and Nerlove (1990), Engel and Rodrigues (1989),
Engle, Ito and Lin (1990), Engle, Ng and Rothschild (1990b) and Lin, Engle
and Ito (1991), we proceed similarly to the literature on stochastic vari-
ance as in Harvey, Ruiz and Shephard (1992), Harvey and Shephard (1992),
Watanabe (1992) and in particular Shephard (1990), who uses a setup like
the one proposed here in a univariate, non-Bayesian context. In contrast
to previous attempts at building ARCHness into Bayesian vectorautoregres-
sions, see Geweke (1988,1989), Sims (1989) and West and Harrison (1989),
chapter 10.8, our method results in exact closed-form updating formulas for
the posterior.

Section 2 derives some intuition in a simple univariate case. Section 3
introduces the multivariate model and the exact updating formulas. Sec-
tion 4 suggests and discusses reasonable priors. Section 5 discusses a method
for determining the hyperparameter governing the degree of time variation.
Section 6 derives interesting variations, including a method for tracking time-
varying covariances only suitable for applications in finance, and compares
the general method to standard BVAR methodology. Section 8 Section 9
concludes. The appendix A lists some of the distributions and their proper-
ties, which are used in the main body of the text. Appendix B contains the
proofs for all theorems. '

2 A Simple Case

Consider the following simple version of the model studied in this paper:

Ye = Bye-1 + €, - (1)
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& ~N (O:Utz) ? (2)

Oi = P02y, ue ~ By (v/2, 1/2), (3)

with the u’s and €,’s drawn independently, where t = 1,. .. , T denotes time,

ye € R, =0,...,T is data and observable, 1) > 0, v > 0 are parameters

and B; (p, q) denotes the (one-dimensional) beta-distribution on the interval
[0,1].

Equation (3) specifies the unobserved precision o;? to be time-varying.

The model captures autocorellated heteroskedasticity, a feature often found

especially in financial data series. Another popular specification to do so are

the ARCH-models. An IGARCH(1,1) model, for example, replaces (3) with
oo = t+ (1= Ao + e, (4)

where ¢ and ) are parameters, and thus ties the innovation in the variance
to the size of the current shock ¢,. While an unusually large ¢ in (3) is
interpreted as a large draw from a distribution with a randomly increased o,
the more traditional IGARCH-interpretation according to (4) just interprets
it as an unusually large draw. In both specifications will one expect increased
variance later on. In other words, both models are capable of explaining
persistent high or low volatility, but the unobserved components specification
(3) has a somewhat better chance explaining sudden large movements in the

data without resorting to fat tails (see e.g. the discussion of the stock market
crash in Nelson (1991)).

Nonetheless, there is a tight connection bétween these two specifications.
Adapting the Bayesian updating formulas (16), ( 17) and (18) derived below
in section 3 to the simple model considered above with 3 = (v+1)/v results
in

ne=neq 4 Y7, (5)
B = (B-1necs + veyer) /e (6)
8= (1= Nty + 26 (1 —yly/mi), (7
where A = 1/(v + 1) and
| e = Y¢ — be-1ye1, : (8)
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delivering the Normal-Gamma! posterior fNG(ﬂ:U:_-& | b1, nr, s}, v) for the
Normal-Gamma prior fyg(8,07? | bo, no, 52, v), b € R, nq, 83 > 0 (the
hyperparameter v is treated as fixed in the computation of the posterior).
The updating equation (7) for the inverse mean precision s? turns out to
resemble equation (4) with the one-step ahead prediction error e, replacing
the true innovation €, with a degrees-of-freedom correction and with ¢ = 0.
For 4 = (v +1)/v, the precision ;% is a martingale E{o;}] = E[0;? on
the positive part of the real axis, since E [u]] = v/(v+1). As Shephard (1990)
remarked, it follows that o;? — (a.s. for similar reasons as in Nelson (1990).
Shephard, using essentially the same model, therefore suggests to set 1 = e,

where
r = — Ellog wu,]. (9)

As a result, log(o;) becomes a random walk and the “Nelson-Problem” is
removed. In the context of the Bayesian analysis performed here, we will not
use this modification, however, for the following robustness reason. Modify-
ing (7) to allow for arbitrary % results in

= T (= sty e (1= /m)) (10)

Consider now the possibility that (3) is misspecified and that 07?2 (as well
as y;) is actually stationary with 32 = E [€?] unconditionally. For large ¢,
Yt-1/n¢ becomes negligble and 5, — B, so that upon taking expectations on
both sides of (10), one gets approximately

v+1
Yv

For ¥ = (v 4+ 1)/v and X # 0, s; will therefore fluctuate around its true,
stationary value 32, whereas for any other value of 4, s? will either diverge
or converge to zero. From the perspective of robustness of the Bayesian
estimation focussed on in this paper, it is therefore sensible and desirable
to choose ¥ = (v + 1)/v rather than ¥ = € for our purposes here despite
the “Nelson-Problem”. If forward simulation of long time series is the issue,

E[s}] = (1= 2)EB[s2,] + 2. (11)

1See Appendix A for the definition of a Normal-Gamma distribution.
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however, Shephards (1990) specification with ¢ = e" is superior to the one
chosen here.

Figure 1 shows the densities for the multiplicative disturbance ((v +
1)/v)u, for various choices of v for the precision o; 2, whereas figure 2 plots
the corresponding densities for /(v + 1)1/u,, which are the multiplicative
disturbances to the variance o?. Figure 3 and 4 compare our BVARTEC
model to the corresponding IGARCH specification: figure 3 uses v = 9 and
the corresponding A = .1, whereas figure 4 uses v = 19 and ) = 0.05. The
top row in each of these figures shows a realization of length 200 for the
standard deviations o, arising from equation (3) with ¢ = (v 4 1)/v as well
as a time series of shocks ¢; ~ N (0,07). The bottom row uses the IGARCH
specification (4) with « = .001. In each figure, we have used the same stan-
dard normal draws for both specification as the basis to calculate the ¢’s.
Note in particular that the two time series for the ¢, in figure 4 look rather
similar since o, does not fluctuate a lot (in fact, for v = 99, the two pictures
would look practically identical). Inspection of simulations like these may
give some intuition on how suitable these processes are for describing e.g.
stock return data.

3 The General Model

Consider the VAR(k)-model with time-varying error precision matrices

Y: = B(o)Ct + ByYi-1 + Bp)Yecz + ... + By Yok + &, (12)
e« ~N(0,HY), (13)
v+1
HH-I = y u(Ht),Qtu(Ht)) Qt ~ Bm (V/2, 1/2) ) (14)
where ¢t = 1,...,T denotes time, ¥;,t =1 —k,...,T, size m x 1, is observ-

able data, C}, size ¢ x 1, denotes deterministic regressors such as a constant
and a time trend, the coefficient matrix Byg) is of size m x c, the coefficient’
matrices B(;), 1 = 1,...,k are of size m X m?, v > m — 1 is a constant and

3Time-varying coefficients were not considered, since they do not seem to improve
things much in standard BVARs, see Doan, Litterman and Sims (1984). It is not hard to
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all ,t = 1,...,T, size m x 1, and Q,t = 1,...,T, size m X m are inde-
pendently distributed. U(H) denotes the upper Cholesky factor of a positive
definite matrix H and B, (p,q) denotes the multivariate beta-distribution
on the m(m + 1)/2 distinct parameters of positive definite m x m matrices.
The distribution By, (p,q) is traditionally only defined for p > (m —1)/2
and g > (m — 1)/2, see Muirhead (1982). The usual definition is extended
in Uhlig (1992c) to allow for values ¢ = n/2 for any integer n > 1, see
appendix A for the details pertinent to this paper. The process (14) is de-
scribed in terms of the precision matrix H; rather than the more familiar
error variance-covariance matrix ¥; = H; ! to streamline the notation and
the analysis. Equation (14) is one of two rather natural generalization of
the multiplication of two real numbers in equation (3) in order to guarantee
the symmetry of the resulting matrix Hy,,. The other natural generalization
switches H; and Q; in (14): it turns out that only (14) works for the proof
of the updating formulas.

Stack the system as follows. Let X, = [Ct Y,.,Y.,.. .Y, ]l and B =

[B(o) By Bz) ... By, ] - Rewrite the first equation (12) more concisely as
K = BXg + € (15)

Define A = 1/(v + 1). Consider the following algorithm, which generalizes
the Kalman Filter to the nonlinear filtering problem at hand by including an
exact updating formula for the mean precision matrix.

Method 1 (General BVARTEC)

1. Choose a mx (c+km)-matriz By, a positive definite (c+km)x (c+km)-
matriz Ny and a positive definite m X m-matriz So. These parameters
fiz the prior.

2. Foreacht=1,...,T calculate

Nt = Nt—'l -+ XtX: (16)

introduce them, however.



Bt = (Bg_th_l + Y;th) Nt_l (17)

Se=(1=A)Ser+ - (18)
A(Y - BiaX,) (1- XIN7'X) (Y3 - Bi.X,) .

3. Keep Br, Nt and St as result.

(Note that N;™! can be computed numerically cheaply via
Nt—l = Nt_-ll - Nt_—llXtthNt--—ll/(Xt’Nt_—IIXt +1), (19)

as can be verified directly or with rule (T8), p. 324 in Leamer (1978).) Treat-
ing v as a hyperparameter (see section 5) and taking the initial observations
Y,,t =1—k,...,0 as given (see the discussion in Uhlig (1992a)), this method
finds the Normal-Wishart posterior3

fnw(B, Hry1 | B, Nr, S7,v)
in B and Hr,, for the Normal-Wishart prior
fnw(B, Hy | Bo, No, So,v).

The proof for this assertion follows directly from the two theorems below with
1 = 1. Key to the proof is a conjugacy between the Wishart distribution and
the multivariate beta-distribution. This conjugacy, which is well known for
beta distributions defined for the usual parameter range, has recently been
established as well for the singular beta distributions B, (v/2,1/2) needed
here in Uhlig (1992c), see appendix A.

Given a prior mo with a density of the form ®(B)fyw(B, Hy | Bo, Ny, So, v),
the posterior is proportional to $(B)fyw(B, Hr41 | Br, Nt, St,v), so that
treating explosive roots or roots near unity differently from small roots can
be done in this framework as well, cmp. Uhlig (1992a).

See Appendix A for the definition of a Normal-Wishart distribution.



Theorem 1 Let a prior for the m X (¢ + km) coefficient matriz B and the
m(m+1)/2 distinct elements of the precision matriz H be given by a Normal-
Wishart distribution with density fyw(B,H | B, N, S,v), where N and S are
positive definite. Suppbse additionally, that there is one observation of data
X and Y (where X is (c+ km) X 1 and Y is m X 1), obeying the equation

Y=BX+ee~N(0,H) (20)

Then the posterior for B and H is given by a Normal-Wishart distribution
with density fyw(B,H | B,N,5,7), where N and S are positive definite and

where

N=N+XX' (21)

B=(BN+YX) N~ (22)

v=v+1 (23)

§= Y g4t (v-Bx)(1-X'N"'X) (Y- BX)  (24)

v+1 v+1

The proof is in appendix B.

Theorem 2 Let a prior for the m X (¢ + km) coefficier.; matriz B and the
m(m+1)/2 distinct elements of the precision matriz H be given by a Normal-
Wishart distribution with density fyw(B,H | B,N,S,v 4+ p), v > m — 1,
K a positive integer or p > m — 1. Suppose additionally, that there is one
unobserved shock to the precision matriz obeying the equation

v+ u

B = Y BUHYQUE), @ ~ B (v/2,4/2), (25)

where Bm (p,q) is the multivariate beta-distribution, see appendiz A. Then
the posterior for B and H is given by a Normal-Wishart distribution with
density faw(B, H | B, N, S, l/).

The proof is in appendix B.



4 Prior Selection

The selection of a prior is always an issue in Bayesian time series analysis and
has recently been subject to much debate, see Phillips’ (1991) critic of Sims
and Uhlig (1991), his discussants and the summary in Uhlig (1992a). For
the analysis of macroeconomic time series we suggest the following choice,
modelled after the “Minnesota prior” in Doan,Litterman and Sims (1984) or
Doan’s RATS manual (1990). Use logarithms of the levels of the time series
except for series expressed in percent (like interest rates), which are used in
its raw form. Include a constant and a time trend, C; = [1 ]’ and ¢ = 2. Let
So be the diagonal matrix of the MLEs of the residual variances for AR(1)
univariate regressions for each included data series?. Include between one
and two years of lags (e.g. 6 lags for quarterly data). Let By be the random
walk prior .
Bo=[0m2 In O ... 0]. (26)

Choose Nj to be block diagonal. The first block is of size 2 x 2 with

No(1,1) No(1,2) ] _ [ G —¢3/2 ]
N0(271) N0(2’2) "'432/2 ::33/3 .

The second block is of size (km) x (km) and diagonal with

(27)

No(2+m(lI-1)41,24m(I-1)+i) = YZ,G1%, i = 1,...,m, I = 1,... k. (28)

Here, {; > 0, {( > 0 and (3 > 0 are hyperparameters. The motivation for
this particular form of the prior can be seen from the updating equation (16)
for N, and from the role N, plays in equation (56) given in appendix A for
the Normal-Wishart posterior: N, is the precision “along the rows” of B.
(1 and (; determine the overall level of tightness and the increase in the
prior precision for lagged coefficients. Heuristically, (; gives the number of
earlier data observation one would need to have in order to arrive from a
flat prior at a similarly precise prior before analyzing the rest of the data

4This, of course, amounts to a first pass through the data, which, strictly speaking, is
not legitimate. However, this “loss of m(m + 1)/2 degrees of freedom” should not be big
for coming up with a reasonable starting point Sy in most practical applications.
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Yi,...,Yr. (2 > 0is a “soft” way to impose exclusion restrictions: the prior
is increasingly tightened around a value of zero for coefficients on variables
with increasingly higher lags. ¢, = 5 and (2 = 2 seem to be reasonable
choices®. (3 corresponds roughly to the number of time periods of observing
data regressed on the constant and the time trend for ¢ — —(a,...,0 one
would need to arrive at the prior given above from a flat prior. We chose
(3 = 8. Our choices for the hyperparameters are quite weak except perhaps
for (3 (see the discussion below), since the prior imposed that way is swamped
in the first few observations, see equation (56) in appendix A.

Rescaling of a time series is automatically taken care of with this prior
in practice. Suppose, an interest rate of 3.1% is denoted by 0.031 rather
than 3.1. Upon inspection of equations (12), (16) and the Normal-Wishart
density, the appropriate rescaling is generally achieved by multiplying all
By-coefficients on the interest rate in the equations for the other variables
by 100, dividing all By-coefficients on other variables in the equation for
the interest rate by 100, dividing the entries in N, which correspond to the
interest rate coefficients by 10000 and dividing all rows and columns of So,
which measure covariances with the interest rate innovation, by 100 (and
therefore dividing the variance of the interest rate innovation itelf by 10000).
The prior recommended above takes care of that automatically, unless the
date-0 observation on the interest rate happens to be exactly zero.

It is important to note that e.g. a flat prior over the coefficients (N =0)
does not represent ignorance as was pointed out by Phillips (1991) and that
therefore the prior above imposes the prior view of downweighing explosive
roots. While this is a desirable feature of the prior, a more problematic issue
is the specification of the prior with regard to the constant and the trend
term, see Schotman and Van Dijk (1991). Essentially the same time trend
coefficient implies quite a different behaviour for the underlying time series
depending on whether the largest root of the autoregressive part is small
or large. In particular at a unit root, a nonzero coefficient on the constant

®Note, that we have 2 =2> 0 here in seeming contrast to standard BVAR methodol-
ogy as in Doan, Litterman and Sims (1984), since the elements of N denote precision, not
variance.
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generates a linear time trend and a nonzero coefficient on the time trend
generates a quadratic. To take care of this problem, Uhlig (1992a,1992b)
suggests in a simple univariate context to modify the Normal-Wishart prior
by premultiplying it with a factor driving the time trend coefficient to zero as
the largest root approaches unity from below. The appropriate modification
in the context of a VAR is still subject to research and not taken up in this
paper. Another approach is to exclude the time-trend as a regressor: while
this may lead to misspecification, it also seems to result in a more robust
behaviour of the method. As a practical intermediate solution, we suggest
to force the constant and the time trend close to zero a priori through the
somewhat high value of (3 = 8 or an even higher choice.

5 Inference about the hyperparameter v.

The degree of time variation v > m — 1 or, equivalently, A = 1 /(v +1) has
been treated as a constant so far. To subject it to inference as well, one ought
to specify a prior over v and proceed to calculate a posterior. Practically this
is difficult and a good prior for v hard to come by. We suggest instead to
treat v as a hyperparameter (see e.g. Doan, Litterman and Sims (1984) or
Leamer (1978)) and choose that value for v which permits the best one-step
ahead forecasts, given the prior, rather than integrating over or maximizing
the joint posterior in all unobserved variables. This is a quasi-maximum
posterior procedure. As we will point out, even this procedure yields some
puzzling results, which merit further investigation.

Note that conditional on information up to date t, the predictive den-
sity, i.e. the density for the one-step ahead prediction error e,y = Yy, —
B:X:+1 has a multivariate Student t-distribution® with parameters 4 = 0,
Si_1 (1 +X{+1Nt‘1X,+1) and v + 1 — m: this follows easily from Leam-
ers (1978) Theorem on p. 338 upon noting that in that theorem, the multi-
variate Student distribution parameter S/((v + 1 —k)T') has been misprinted
as S/T. Rather than performing the difficult calculation of the exact joint

6For a definition of the multivariate Student t-distribution, see Leamer (1978), p. 336.
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posterior in all variables and v, we suggest to calculate the following log-
quasi-posterior ¢r(v) for the benchmark prior 7(¢) = 1. The idea is to use
the predictive density for the one-step ahead prediction errors and the den-
sity of the multivariate beta distribution for that matrix Q., which would

explain the actual update of the mean precision. All the calculations are
done in logs.

1. Select v. Set § = v +1 —m and .

¢o,da.ta. =0 (29)
¢o,beta (30)

il

2. Ateacht=1,...,T,
(a) Calculate the one-step ahead prediction error
ee =Y, — B, X, (31)

its log-likelihood, given the predictive density,

8°12T((8 + m)/2) e ~1/2
l;,da.ta. = log ( 7™ (§/2) det (St-l (1 + XgN,_llXt)) )

+log ((6 + e (St—l (1 + Xt'Nt—_IIXt))"l et) (5+m)/z) 3)

as well as the inverted upper Cholesky-Factor U,_, = (L{ (574 )) -
of the mean precision §;7}."

(b) Update to N, B, and S,

(c) Calculate the beta-distributed shock necessary to explain the up-
date of the mean precisions as

= v _
Qt—l' == y_‘*_-IUt'—ISt 1(]‘.1- (33)
Calculate its log-likelihood via
'lg,beta, = log (AM/sz,m,u/2.1/2 (Qt—l)) ) (34)
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where fg m./2,1/2 1s the density of beta-distributed m x m-matrices
Q ~ B (v/2,1/2), for which I, — @ is of rank 1 as calculated in
Uhlig (1992c), see appendix A. For the extra factor A™/2, see the
discussion below.

(d) Calculate

¢t,data. = ¢t—1,data.+lt,da.ta. (35)
¢t,beta. = ¢t—1,beta+lt,beta' (36)

3. The result is ¢7(v) = ¢T,data. + ¢T,beta'

It then seems reasonable to choose v which maximizes ¢r(v). However,
complications in doing so seem to arise due to the singularity of the beta-
distribution. The density (54) for X ~ B,, (v/2,1/2) contains a factor L~™/2,
where L is the (only) positive eigenvalue of I, — X. For the eigenvalue L,_,
of I, — Q¢-1, a short calculation, aided by rule (T8) in Leamer (1978), p.
324, shows that

X -1
(1 - XN X, (elSite) M(1 - A)) |

Ly = (1 + (37)

Approximating 1 — X{N; !X, by 1, its limit as ¢ — oo, and Sile by 1,
its expectation, yields that L,_; =~ A. Thus, the likelihood of Q._; will
be of the order A~™/2, diverging to infinity as A — 0. Since this is an
artifact of the likelihood function rather than a feature of the data, we have
included the factor A™/? in equation (34) as compensation. In application,
this turns out not to be enough quite yet and ér.beta(v) often still diverges in
applications as v — oo, see section 8. Avoiding the beta-density alltogether,
a practical solution may be to select the maximizer of $1 data(v) or a value
which is somewhat higher and therefore a somewhat more conservative choice.
Clearly, further research on a reasonable way for determining v is warranted.
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6 Variations

Useful variations of the general method are easily obtained. We will show how
to perform the updating, when the time variation of the variance-covariance
matrix is given by a single factor in subsection 6.1, and when the only un-
certainty is the uncertainty about the time-varying precision matrix itself in
subsection 6.2. We compare our method to standard approaches for calcu-
lating Bayesian vectorautoregressions (BVARSs) i+ subsection 2.3,

6.1 Time-Variation in the Generai Level « Volatility

Suppose the variance-covariance matrix is known a priori exczpt for a multi-
plicative factor, which varies over time. Let ¥ be of size m x m and positive
definite. With the notation of section 3, the mode] 1s described by

},t = BXt + et: (38)
e~ N (0, alz), (39)
O = T o e~ By (u)2,m)2). (40)

where all ¢ and V¢ are independent,.

Define A = 1/(» +m) (rather than ) = | /(v+1)as before). The method
for updating the prior takes the following form.

Method 2 (Time-Varying Level of Volatility)

1. Choose amx (c+km)-matriz By, o positive definite (c+km)x (c+km)-
matriz No and a positive number s2. These parameters fiz the prior.

2. For each time t = 1 1o+ I calculate

Ne = Ne_y + X, X! (41)
By = (ByaN,y + Y.X;) N7t (42)
st =(1-)s? + (43)

Atr (2-1 (Y- BeaXy) (1- XIN7X,) (Y - B,_lxt)') .
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8. Keep Br, Nt and s2 as result..
With v fixed, this method finds the Normal-Gamma posterior’
fne(B,0%34, | Br,Nr,s%,v)
in B and 0% for a Normal-Gamma prior
fne(B, o} | Bo, No, s3,v).

This follows formally from theorem 2 applied for 4 = m together with the
following variation of theorem 1.

Theorem 3 Let a prior for the m X (¢ + km) coefficient matriz B and the
precision level 072 be given by a Normal-Gamma distribution with density
fne(B,o7? | B,N,s?,v), where N is positive define. Suppose additionally,
that there is one observation of data X and Y (where X is (c + km) x 1 and
Y is m X 1), obeying the equation

Y=BX+ee~N (0,022) (44)

Then the posterior for B and o~? is given by a Normal-Gamma distribution
with density fyg(B,0~%| B, N, s%, ), where N is positive definite and where

N=N+XX | - (45)
B=(BN+YX )N~ (46)
P=v+m (47)
2_ _V
3= y_}_ms + (48)
1

tr (2—1 (Y - BX) (1 - X'N7'X) (Y - BX) ') :

v+m

The proof is in appendix B.

"See Appendix A for the definition of a Normal-Gamma distribution.
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6.2 Tracking a time-varying variance-covariance ma-
trix

The efficient market hypothesis states that stock-returns follow a random
walk, so that the coefficient matrix B in a VAR in logs of several stock-prices
should be treated as known and equal to the right hand side of equation (26).
With B fixed and just the time-variation of the variance covariance matrix
at issue, the updating formulas for the model given by (1%), (13) and (14)
with A = 1/(v + 1) are as follows.

Method 3 (Tracking a Variance-Covariance Matrix
1. Choose a positive definite m x m- matriz S, , fizing the prior.

2. Foreacht=1,...,T calculate

St = (1 =281+ A(Y: — Biy Xi) (Ye — By X' (49)

3. Keep St as result.
With v fixed, this method finds the Wishart posterior
Hra ~ W (v, 571 /v)

for a Wishart prior
H ~W, (u, So_l/u) .

The formal proof for this assertion is obtained from the general BVARTEC
method for N = nN,n — oo.

6.3 Relationship to Standard BVAR Methodology.

By eliminating the time-variation in the precision matrix H, the method
reduces to the usual Kalman-Filter updating formulas for the parameters of
‘a Normal-Wishart prior or, with H known a priori, a Normal prior. Consider
the model
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Y: = BX, + ¢, (50)
& ~N(0,H™) iid.. (51)

For the case where H is treated as unknown, choose some vp > m — 1 in
addition to the matrices chosen in step 1 of method 1. Equations (16) and
(17) of step 2 of that method together with the equations

Vg = Vg1 + 1 (52)

and

Sg = V—:l:£St—1+ (53)
t
2 (%= BisXe) (1 - XINFIX) (Y = BooaX)'

Vg

provide the recursive formulas for updating a Normal-Wishart prior fyw(B, H |
By, Ny, So, v5) to obtain the final posterior fvw(B,H | Br, Nr, St, vr). The
formal justification is theorem 1. An improper, “flat” prior as in Koop (1990)
or De Jong (1992) is obtained for Ny = 0 and vy = 0 (see the discussion in
appendix 2 in Uhlig (1992a)).

For the case where ¥ = H™! is treated as known, choose only Np and B,
as in step 1 of method 1. Equations (16) and (17) of step 2 of that method
deliver the recursive updating formulas to obtain the final Normal posterior
given by ‘

ved B') ~ N (VCC(B,T), I® N{-l)

for the Normal prior
ved By ~ N (Vec(B:)), Z® No_l) .

This version of a BVAR is a special case of the general form of BVARs
typically used for example in Doan, Litterman and Sims (1984) or the RATS
Manual by Doan (1990). It is special, since veq B’) is assumed to have a
variance-covariance matrix of the form £® Ng?! in the prior. Once, this form
is assumed, the posterior will have the same form as well. Via Np, this prior
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allows complete freedom in the choice of the variance-covariance structure
for the coefficients of exactly one equation. The covariance structure across
equations is then fixed by X and No. For a diagonal %, for example, coef-
ficients of different equations are uncorrelated and the covariances between
the coefficients in one equation are the covariances of the corresponding coef-
ficients of another equation multiplied by the ratio of the two error variances
of these equations as given by the diagonal elements in X. In particular, it
is not possible to follow the procedure in Doan-Litterman-Sims (1984) and
tighten the prior uncertainty about the coefficients in the stock market equa-
tion, say, to a random walk prior independently from the other equations:
in fact, given the usual volatility of stock market data, the method here will
probably generate higher uncertainty about the coefficients of that equation
than most other equations of such a system. Further research should inves-
tigate the possibilities for equation-individual tightening. The restriction to
the special priors here may be regarded as an advantage since fewer prior
choices have to be made by the researcher.

7 An Experiment with Artificial Data

To get some feeling for how well this method behaves, artificial data hag
been generated and the estimation procedure applied. The data consists of

m = 2 independent random walks for t = —2,..., 200 with standard normal
innovations, i.e the data variance does not change over time. The starting

point is drawn from a standard normal distribution as well. We used £ = 3
lags and the random walk prior speciﬁed in section 4 with 61 =5, =2and
(3 =8. We fixed A = 3/(m+1) = .1. The initial variance-covariance matrix
So was estimated from the realized first differences of the data and should
therefore be close to the identity matrix. Thus, the prior is actually (close
to) the true data-generating process except for the fact that it assumes the
variance to be time-varying. The results are in the four figures starting with
the one labelled “Artificial Data”. The matrices characterizing the posterior
are available from the author upon request. Impulse response functions are
produced by Cholesky-decomposing draws from the posterior Wishart distri-
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bution, thereby assuming a lower triangular shape for the matrix translating
orthogonal innovations into the innovations for each individual variable. This
follows the usual BVAR-procedure, see e.g. Sims (1986), except that we do
not compute the impulse responses directly at the posterior mean but rather
from an average over 100 draws from the posterior distribution. For these
100 draws, we also calculated the variance and the skewness. The two dotted
lines in each picture are mean + standard-deviation * (skewness +/- 1). The
figures demonstrate that the asymmetry is quite substantial. It may possibly
be due to the interaction of the time trend coefficient with the roots in the
system. We proceeded similarly for the forecasts. In order to highlight just
the posterior coefficient uncertainty, the error bands in the forecast figures
reflect the coefficient uncertainty for calculating expected values of the fu-
ture variables, not the randomness of the future variable itself.As can be seen
there, the model reproduces well the random walk forecast for series 2, but
does less well for series 1. Again, the skewness in the forecast distribution
matters quite a lot: a topic that warrants more research.

8 An Application to a 4-variable forecasting
model for the US

We have applied the general method to a 4-variable vector autoregression,
using quarterly US time series data. The data series we used are obtained
from CitiBase:

1. FPS6US is a monthly stock price index for 500 common stocks (1967
= 100),NSA ' '

2. FYFF is the monthly federal funds rate in percent per annum,NSA
3. GNP82 is quarterly GNP in 1982 Dollars with 1982=100,

4. GDC is the implicit price deflator for personal consumption expendi-
tures as quarterly data.
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The choice of these variables results in a simple yet interesting system to
study the interactions of monetary policy, characterized by the federal funds
rate, aggregate output and inflation, cmp. SIms ( 1980,1986,1987). To obtain
quarterly data, the monthly data has been time-averaged for the three month
making up a quarter. The logarithm of all variables except the federal funds
rate has been taken. That way, first differences can be interpreted as percent
increases: this is what we have done in all the graphs. All the data has been
cut to the time interval 1955:1 to 1991:2, since more data was not available
on the federal funds rate. Thus, the length of the data is T = 146. We
estimated S; znd choose By as well as N, as specified in section 4. We fixed
the number of lags k = 5 and applied the general BVARTEC method.

Results can be found in the six figures starting with the one labelled “The
Data”. The matrices characterizing the posterior can be obtained from the
author upon request. In addition to the figures produced for the experiment
with artificial data, we have followed the procedure in section 5 to calculate

of the two parts d’T,da.ta. and ¢T,beta. in the next figure reveals, that based on
the predictive density for the forecast errors alone, one would favor a value
of A & 0.1, and that it is the ¢T,beta-piece which diverges as A — 0.

For all further calculations we selected the somewhat conservative “guess”
A =0.05 corresponding to v = 19, Impulse response functions are again com-
puted as averages over 100 draws from the final distribution, where we used
each time the Cholesky-Decomposition to decompose the contemporaneous
vector of innovations into orthogonal components in the manner commeon in
standard BVAR research, see e.g. Sims (1986). The ordering of the vari-
ables used is the ordering given above. We plotted both the mean impulse
response as well as error bands given by the mean + standard deviation *
(skewness + /- 1). As in the experiment with artificial data, asymmetry is
clearly important.

Similarly, forecasts have been obtained for the next 4 years, using draws
from the posterior. Again the error bands reflect the coefficient uncertainty
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for calculating expected values of the future variables, not the randomness of
the future variable itself. The values in these forecast figures are differences
between future and current values multiplied by 100 for the logarithmized
variables: this can be interpreted as cumulative growth in percent. Thus, the
graph for real GNP, for example, shows the forecasted cumulative growth over
the current level in percent over the next 4 years, whereas the graph for the
federal funds rate forecast shows the absolute level of that rate forecasted for
this time span. _

The last plot compares the calculated predicted time-varying forecast
standard deviations (defined as the inverse square root of the appropriate
mean precision diagonal element) with the first difference as well as the one-
step ahead prediction error, which it is meant to track.

9 Conclusion

This paper introduced Bayesian vector autoregressions with time-varying er-
ror covariances (BVARTEC). More precisely, a nonlinear generalization of the
Kalman-Filter was used to derive in closed form the Bayesian posterior for the
coefficients as well as for the error precision matrix in a vector-autoregressive
model, when that error precision matrix is stochastically time-varying. Along
with current, advanced ARCH methods,this provides for a method to deal
with time varying error variances and covariances in a multivariate context.

It turns out, that the Kalman Filter formula resemble closely those used to
describe the evolution of heteroskedasticity in GARCH(1,1)-models, except
that the one-step-ahead forecast error, rather than the true underlying, but
unobservable disturbance is used. The method was compared to standard
BVAR procedures. Two useful variations were derived: especially the method
tracking a time-varying precision matrix when the regression coefficients are
known should prove useful for applications in finance.
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Appendix

A Some distributions and thejr properties

This appendix has the purpose to fix the notation and gather some usefu]
facts. More information on the distributions used in this paper can be found
in Zellner (1971), Leamer (1978), Muirhead (1982) and Uhlig (1992c). A
Wishart distribution W, (v, ), v > m specifies the following density for the
m(m +1)/2 distinct elements of a positive definite m x m random matrix X:

‘ fX '(u—m-—-l)/z ( 1 1 )
X|Qv)= exp|—sir (Q7'X) ),

where Iy, is the multivariate gamma function, defined in Muirhead (28], Defi-
nition 2.1.10. If X ~ W, (v, 2), then E[X] = vQ. Note that Wi(v,s72/v) =
I'(s%,v) and W, (v,1) = X2, where T'(s?, v) denotes the gamma distribution
with mean s72 and » degrees of freedorn and where x2 denotes the chi-squared
distribution with v degrees of freedom. The multivariate beta distribution
Bm(p,9), p > (m — 1)/2, ¢ > (m —1)/2, for the m(m + 1)/2 distinct ele-
ments of a positive definite m x m random matrix X, where I, — X is positive
definite as well, has the density

_ Fm(p + 9) p—(m+1)/2 _ g—(m+1)/2
fB.m.p.q(X)—leI [ Im — X | .

In this paper, singular multivariate beta distributions B, (p, n/2) are
needed, where 0 < n < m is an integer. These distributions are defined
in general in Uhlig (1992b). For the special case n = 1, which is particularly
relevant here, the density for the positive definite m X m random matrix
X ~ Bn(p,1/2), where I, — X is positive semidefinite and of rank 1 s given
in Uhlig (1992b) as

(- Pm(p+1/2) _ 5
— p(~-m+1)/2 m/2 p—(m+1)/2
fBmp1ja(X) == -_h_kP(l/2)I‘m(p)L det(X) (54)
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with respect to the volume element of the m distinct entries in I,, — X ,
where L € R is given by the decomposition I,, — X = HyLH], |Hy|| =1. If
X ~ Bm(p,q), then E[X] = p/(p + q)Im: this is shown in Corollary 1 below.
As priors and posteriors, Normal-Gamma distributions and Normal-Wishart
distributions are used. Let [ > 1 be an integer, let N be [ x | and positive
definite, let X be m Xm and positive definite, let B be a m x I-dimensional ma-
trix and let » > 0. The Normal-Gamma distribution for a m x I-dimensional
coefficient matrix B and a one-dimensional precision 0~2 is given by the
density

fne(B,o7%| B, N, s?, v) = -
m2
""'(N, SZ,V,m, 1,2) | pX l—km/z (a‘z)k /2

exp (—% (Vec(B') - VCC(B,))’ [0“22—1 ® N] (Vec(B') — Vec(B')))

ov/?-1 exp (—%u 320"2)

where (N, s?,v,m,l, ) is the appropriate integrating constant and vec(-)
denotes columnwise vectorization. The Normal-Gamma distribution speci-
fies, that the precision o~ follows a Gamma distribution I'(s?, v) and that,
conditional on 072, the coefficient vector veq( B’) follows a Normal distribu-
tion N (Vec(f)"), L ® N'l).

In the Normal-Wishart distribution, all entries of 3 are random individ-
ually. Let [ > 1 be an integer: in the main text we usually have ! = ¢ + km.
Let N be I x [ and positive definite, let § be m x m and positive definite, let
B be a m x l-dimensional matrix and let v > m. The Normal-Wishart dis-
tribution for a m x I-dimensional coefficient matrix B and a m X m precision
matrix H is given by the density

fyw(B,HIB,N,S,V)= (56)
(N, S, v,m) | H |l/2

exp (—% (vec(B’) - vec(B’))' [H ® N] (VCC(BI)A - vec(B')))
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| H [(v-m-1)/2 exp (—%u trHS)

where x(N,S,v,m) is the appropriate integrating constant. The Normal-
Wishart distribution specifies, that the precision matrix H = 5! follows a
Wishart distribution W, (v, 57} /v) with (E[Z71])™" = S, and that, condi-
tional on H, the coefficient matrix B in its vectorized form ved(B’) follows
a Normal Distribution A (VGC(BI),H 1N "1). This definition is a slight
generalization of Leamer (1978). The Normal-Wishart distribution is popular
in traditional Bayesian multivariate regression analysis, see Zellner (1971).

The key ingredient for our method is based on the following theorem
about the conjugacy between Wishart distributions and multivariate beta
distributions. For nonsingular beta distributions, this theorem is a restate-
ment of Muirhead (28], theorem 3.3.1. For singular beta distributions (the
case needed in this paper, except in subsection 6.1), this theorem is shown
in Uhlig (1992b).

Theorem 4 (The Conjugacy of Wishart- and Beta Distributions. )
Let m > 0 be an integer and eithern > m—~1 orn > 0 an integer. Let

v>m-—1. Let H~ Wy (v+n,%) and Q ~ B, (p/2,n/2) be mdependent
Then

G =U(HYQU(H) ~ Wn (1, ).

As a corollary, we can compute the mean of multivariate beta distribu-
tions.

Corollary 1 Let X ~ By, (p,q). Then

EX] = —1I,.
P + q

Proof: Choose some positive definite & of size m x m and obtain its
‘Cholesky-decomposition & = U'U. Let v = 2p,n = 2q and choose H, Q
and G as in the previous theorem. Let Z = E[Q] and T = E[U(H)]. Then
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vU'U = E[G] = T'ZT, since H and Q are independent, and (v + n)U'U =
E[H] = T'T. Since the Cholesky decomposition is unique, /v + nU = T
and thus Z = vT'""'U'UT ' =v/(v + n)],,. e

It is easy to draw from these distributions, as long as the most common
univariate distributions are available, by exploiting theorems 3.2.5 and 3.3.1
in Muirhead (1982) to generate draws from a Wishart distribution, and the
definition in Uhlig (1992c) to draw from a multivariate singular beta distri-
bution. A program in MATHEMATICA [27), version 2.0, is available from
the author upon request.

B Proofs

Proof: Proof of Theorem 1. The proof proceeds by directly calculating
the densities. Note first, that N and § are indeed positive definite. Further,
recall that the likelihood function for the observatmn is given by

L(B,H | X,Y) ~| H [V exp (—-§(Y _ BXYH(Y - BX)) . (5T)
Rewrite the Normal-Wishart density more conveniently as

fNW(BrHIB;N’S)V): (58)
#(N, S,v,m) | H |'/2 (59)

exp (~3trH (B~ B) N (B~ B))
| H |~m™-1/2 exp (—%u trHS)v ,

Thus, using the properties of the trace-operator, we have for the posterior

(B, H)
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f(B,H)~ | H |'?exp(-LtrH(Y — BX)(Y — BXY)
| H (2 exp (<3tr H (B - B) N (B - 5))
| H |(v=m=1)/2 gypy (-—%u trHS)
= | H [cHhm)/2 gy (- sirH (B~ B) N (B - B) ')
| H |(#-m=1)/2 exp (-—%17 trHS')
exp (-—% trH¢(B)) ,

where

#B)= (B-B)N(5-B5)
+Y - BX)(Y - BxY
-(B-B)~(B-B)
=(Y-BX) (1-x'N"'x) (v - Bx)'

It remains to show that $(B) = 0 or, equivalently, the
Claim:

1. ¢(B) =0 and
0 ..
2. =0 f .
a—% 0 or a.ll 1,)

Calculate, that

(B—é)N(B—")' |
= (BN -BN)N™ (BN - BiV)

= (Bxx'- YX) N (Bxx' - vx')’
= (v-BXx)x'N'x (v - Bx)".

It follows that
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=
L
I

(Y — BX)(Y — BX)

- (B-B) N (B-B)

- (¥ -Bx) (1-x'8"'X) (v - BX)'
= 0,

proving the first part of the claim. For the second part, let E;; be the

m X (c + km)-matrix with a 1 as its (i,j)-entry and zeros everywhere else.
Using the definition of N as well as the fact, that BN = BN +Y X', we have

(63)

5%%(3) = E;N(B-B) +(B-B)NE,

—E;X (Y — BX) - (Y - BX) X'E};
~E;N (B~ B)' + (B~ B) NE,

= —E;NB' - BNE, (64)
—E;XY' ~ YX'E’
+E;NB + BN E,

= 0.

This finishes the proof. e

Proof: Proof of Theorem 2. For notation see appendix A. All that

is needed to show is that if H follows a Wishart Wy, (v + p, S7Y /(v + 1)) ,

then H follows a Wishart W,, (v, S~1/v) or, equivalently, that
G=v/(v+p)H = U(H)QU(H)

follows a Wishart Wy, (v, S~'/(v + p)) distribution. But this is just theo-
remé4. o

Proof: Proof of Theorem 3. The theorem follows directly from equa-
tion (60) and ¢(B) = 0 in the proof above for theorem 1, when H is replaced
by 0=2L! etc., using the usual rules for calculating with determinants. e
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Artificial Data

(Two independent random walks with standard normal innovations.)
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Impulse Response Functions

Response to innovation one standard deviation in size,
using Cholesky-decomposition. Values in Level of Series.
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Artificial Data: Forecast

The dotted lines represent the posterior coefficient uncertainty.
Forecast is in level.
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First Differences, Realized Forecast Errors
and Predicted Standard Deviations.

The rather smooth line in each graph is thte predicted
standard deviation for the one-step ahead forecast error.
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Function ®(v) for the hyperparameter v
(four-variable US BVARTEC).
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Impulse Response Functions

Response to innovation one standard deviation in Size,

Iinnovation
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Forecast

The dotted lines represent the posterior coefficient uncertainty.
Everything is in cumulative Percent, except the Federal Funds Rate.
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First Differences, Realized Forecast Errors
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