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Abstract

This paper summarizes recent Bayesian research on unit roots for
the applied macroeconomist in the way Campbell and Perron [9] have
recently summarized the classical unit roots perspective. The ap-
proach to the unit root problem should depend on the focus of a par-
ticular investigation, which I argue to be typically some persistence
property or medium-term forecasting property. Bayesian methods are
therefore especially suitable. The appropriate choice of a prior is dis-
cussed. Recognizing a consensus distaste for explosive roots, I find the
popular Normal-Wishart priors centered at the unit root to be reason-
able provided they are modified by concentrating the prior mass for
the time trend coefficient towards zero as the largest root approaches
unity from below. I discuss that the tails of the predictive density
can be sensitive to the prior treatment of explosive roots. I conclude
that Bayesian methods often deliver more natural answers to macroe-
conomic questions than classical methods.



Bayesians are like the Hare-Krishna types: you get téo close and
you might become one of them. (Jon Faust, 1991)

1 Introduction

Campbell and Perron (9] have recently summarized much of the research on
classical unit root econometrics. Their rules or insights are partly guidelines
~on how to proceed and partly warning signs on what to avoid. This paper
formulates similar insights for the applied macroeconomist from a Bayesian
perspective for two reasons. Firstly, Classical and Bayesian inference on
unit roots can differ substantially. Secondly, a Bayesian perspective delivers
more natural answers by allowing the researcher to state the uncertainty
in answering a particular question without first having to take a stand on
whether the data is integrated or trend stationary. Luckily, my job is easier
than the one undertaken by Campbell and Perron [9], not only because we
can rely on their terminology and because the literature on Bayesian methods
is smaller, but also because Bayesian inference is simpler. At issue is usually
only the choice of a suitable prior. ‘
The method used ought to depend on the question asked. In section 2,
I argue that macroeconomists are typically interested in some particular
persistence property or medium-term forecasting property and that there-
fore Bayesian methods are especially suitable. After a review of Bayesian
- methodology for time series analysis in section 3 I discuss the choice of priors
in section 4. The fragility of some inferences to the prior treatment of explo-
sive roots is discussed. Recognizing a consensus distaste for explosive roots,
the popular Normal-Wishart priors centered at the unit root are found to be
reasonable provided they are modified by concentrating the prior mass for
the time trend coefficient towards zero as the largest root approaches unity
from below. Turning to the persistence issue in section 5, we discuss that
classicists often do not take the uncertainty about the underlying parameter
into account in a satisfactory manner, whereas Bayesian methods naturally
do. I discuss that the tails of the predictive density can be sensitive to the
prior treatment of explosive roots, an issue on which classical methods are
typically mute.
In summary, a Bayesian approach is easy and practical to employ and
often delivers more natural answers to macroeconomic questions.



2 Questions

Most macroeconomic research is aimed at answering some particular ques-
tion. For example a researcher may begin by asking

1. How big will GNP be in the long-run?
What is the effect of monetary policy on output?
Does the expectations theory of interest rates hold?

Is there excess volatility on the stock market?

A

- Is there convergence in per capita output across countries?

The researcher then progresses to answer the question using the methods
available to the modern macroeconomist. Obviously the question ought to
determine the methods used.

Insight 1 Formulate your question.

Econometric tools and formal inference are often helpful for answering
many questions arising in macroeconomics. Broadly speaking, there are two
methodologies: classical and Bayesian! (for a deeper discussion of method-
ological issues, see Hendry and Richard [36], Hendry [37], Leamer [57], Pa-
gan [74], Phillips [78], Sims (98], Berger and Wolpert [5], Poirier [83, 84],
Rust [87], Pagan [75], Geweke [30], Zellner [115], Pagan and Wickens [76]
and Kydland and Prescott [53]). Classical methods view the true parameter
of interest as unknown but fixed and its estimator as random. Bayesian meth-
ods by contrast take the data and estimators computed thereof as given and
regard the true parameter as random. Even though these two methods often
result in similar calculations and conclusions otherwise, they differ sharply
on possibly nonstationary time series? as was pointed out by Sims [100].

!Most researchers use classical methods probably because that method was the first if
not the only one they were taught. Nonetheless they may remember how hard it was at
first to translate rejecting the null hypothesis at a 5 % significance level into thinking “If
the null hypothesis is true, we will do that at most 5 % of the time” rather than “The
null hypothesis is true with a probability of 5 %”. It therefore seems that moet people are
born as Bayesians and converted to Classicists by their first class in statistics.

Recently, Phillips and Ploberger [81, 82] and Elliott and Stock [25] have attempted to
reconcile classical and Bayesian inference in time series models.
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Hence, in order to determine the most suitable method, the question
asked needs to be made operational. The list of questions above, for ex-
ample, is reduced to questions like “Is GNP trend-stationary or difference-
stationary?”, “Are Money and Output cointegrated?”, “Are interest rates of
various horizons cointegrated?”, “Is there a unit root in dividends?”, or “Are
output of country A and output of country .B cointegrated?” or at least it
is claimed that it is necessary to answer these questions first before progress
can be made on the “true” question of interest. While Bayesian posterior
odds ratios provide a suitable tool for performing these tests (see e.g De Jong
and Whiteman [19, 20], Schotman and Van Dijk [89, 91, 92], Phillips [79],
Lubrano [66], Koop and Steel [49], Koop [50]), a classical econometrician
typically reduces the questions even further to “Can we reject the null hy-
pothesis that ... at the significance level of ...” and classical methods win
the contest hands down by assumption. :

These latter questions are only auxiliary, however. A classical econome-
trician needs answers to them in order to investigate the questions on the
first list>. Unfortunately any test of the composite null of difference sta-
tionarity against trend stationarity or vice versa has power no greater than
size in finite samples (see Campbell and Perron [9, Rule 8 and Rule 10] or
Faust [27]), making the decision for either alternative insensible on the basis
of such a test. This leads classical econometricians to conclude that

“for practical purposes it does not really matter if we label a
difference-stationary process with coefficient ha,(0). close to zero
as a trend-stationary process, or if we label a trend-stationary
process with eztremely persistent shocks as a difference-stationary
process. Indeed these kinds of errors may even have practical ad-
vantages.” (Campbell and Perron [9], p. 160).

In other words, Campbell and Perron [9] argue that it is of practical
advantage to reject some particular null hypotheses practically always even
though it is true.

Insight 2 If it is of practical advantage for a classical econometrician to re-
ject some null hypothesis in the majority of cases even though that hypothesis

3This at least seems to be the main rationale for unit root tests put forward by their
proponents. It turns out not to be true in a number of circumstances, see ¢.g Cochrane [14,
15] and Sims, Stock and Watson {102]. We will return to this issue again in section 5.
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is true, then that null hypothesis is not the hypothesis of interest. The null
hypothesis of trend stationarity and the null hypothesis of difference station-
arity are often an ezample for this.

Indeed the issue which interests macroeconomists is typically some per-
sistence property or medium-term forecasting property. An operational way
to phrase the first list of questions should be ' :

1. How big will GNP be in ten years?

2. How sizeable is the effect of a shock in monetary policy on GI - over
the five years following that shock?

3. How much money can the goverment save in 30 years by replacing one
30 year T-Bond by 30 successive 1-year T-Bills*?

4. How much money can an investor make in ten years by investing 10000 $
on the stock market, following a contrarian strategy?

5. How large will the relative difference in per capita GNP between Japan
and the US be in thirty years, say, compared to the relative difference
today?

. Roots near unity are important only insofar they sometimes imply sizable
Persistence of shocks. This point is not new and has been argued before$ by
e.g. Christiano and Eichenbaum (13], Cochrane [14, 15, 16] and Durlauf [24].

Insight 3 For most questions, the issue is not one of trend-stationarity ver-
sus difference-stationarity or one of cointegration. For most questions the
issue i3 some particular persistence property or some medium-term forecast-
ing property of the data.

“The Lucas critique (Lucas (67]) becomes obviously an important issue in attempting
to answer questions phrased in this way. See also Lucas and Stokey [68].

SFor this reason, some endorse comparing the relative sises of the temporary and the
permanent components of a shock rather than testing for the existence of a persistent
component per se (see e.g. Watson [111], Campbell and Mankiw (8], Quah [86]).




Uncertainty about some medium-term forecast arises from three sources:
model uncertainty, which is in general impossible to quantify®, coefficient
uncertainty and uncertainty about future innovations. While both methods,
classical and Bayesian, recognize the uncertainty about future innovations,
the Bayesian approach takes care of the coefficient uncertainty in a more
natural and appealing way. Bayesian methods therefore seem more suitable
to answer macroeconomic questions. We return to this issue-in section 5 after
a review of of Bayesian inference in time series models.

3 Methods

For a more thorough introduction, see e.g. Box and Tiao [3], Zellner [113],
Leamer [54], Judge et al. [41], Berger 4], Broemeling [6], Berger and Wolpert [5],
and West and Harrison [112]. Consider the m-variate model

Y = By)Yir1 + Bg)Ye-a +... + ByYeea + Cy + Cpt + &, (1)

wheret =1,...,T denotes time, where the data vectors Y;, t =1 —k, ... , T
are of size m x 1, where the coefficient matrices By, 1 =1,...,k are of size
m X m, where C(q) and C(y) are of size m x 1, and where ¢,t = 1,..., T, size
m X 1, are independently and normally distributed” according to

&~N(0,8)iid,t=1,..,T. (2)

A time trend should to be included to encompass both trend stationary and
difference stationary possibilities as special cases:

It may appear to some that this shouldn’t be a problem since one could always test for
some extra lag or for that nonlinear term not included originally, at least asymptotically.
Unfortunately, data sets end and so does any such investigation. A Bayesian solution
would be to impose a prior across all possible linear and nonlinear specifications of the
model. Aside from mathematical problems arising from the infinite dimensionality of the
appropriate “parameter” space, agreement on some appropriate prior on this space is
unlikely.

TBayesian Analysis is not restricted to normally distributed errors, of course. For other
types of distributions or non-conjugate priors, numerical integration methods as in e.g.
Kloek and Van Dijk [46], Naylor and Smith [72] and Geweke [29, 33, 34] are available. If
the error distribution is unspecified, Bayesian limited information methods can be used,
- see e.g. Kwan [52], Kim [43].



Insight 4 The model to be analyzed should contain all datq generating pro-
cesses of main interest as special cases.

This rule mirrors rules 1 through 6 in Campbell and Perron [9]. The
rule is not a blank check to include as many lags and nonlinear terms as
possible but simply as a rule not to exclude the most interesting alternatives, .

Formulating the model as an autoregression with some maxima lag length as

survey in Campbell and Perron [9]). An autoregressive representation with
finite lag length is often preferable since it implies rather smooth impulse
response functions, a feature which is attractive a priori®,

What is known at inference time is the data. What is unknown are the
regression coefficients, summarized as B = [B(l) By ... B, C(o) C(I)J ,
and the covariance matrix L or, alternatively, the Precision matrix H = n-1.
A Bayesian first chooses a prior probability density function x(B,H) in B
and H. Multiplying this prior with the likelihood function, one obtains the
posterior

77(B,H) < n(B, H)L(B,H; Y_y4,..., Y:) (3)

with the constant of proportionality so that 7T, integrates to unity. The
posterior is the key tool and used to answer the particular question at hand,
see section 5.

TQ(B,H)KT(B,H)L(B, H, Y-h-{-l,--»-,y:)), (4)

and then calculate the Posterior x7(B, H), using the likelihood function con-
ditional on the intjal observations,

r(B,H) « xo( B, H)L(B, H, Y,,.... Y, | Yok, ..., Yo). (5)

For the model (1), (2), the conditional likelihood function which appears in
(5) turns out to have a Particularly simple form.

8A more general investigation of this issue from a Bayesian perspective should be
interesting. ,




Insight 5 Given the data Y;,t = —k + 1,...,T, the conditional likelihood
function as a function in B and H is proportional to a Normal-Wishart®
density function. This is true regardless of whether there are unit roots,
cointegrating vectors or ezplosive roots.

This insight is the central message in Sims and Uhlig [104]: while the
conditional likelihood function viewed as a function of the data given the
parameters may not be standard (the Classical perspective), the conditional
likelihood function viewed as a function of the parameters given the data
is standard (the Bayesian perspective). This is easy to see for a univariate
AR(1) process and not much harder in general, see appendix B. Crudely
speaking, the nonstationarity is in the data, not in the parameters, and the
data is given at inference time. Conditioning on the covariance matrix ¥ as
well, the shape of the likelihood function is simply proportional to a normal
distribution:

Insight 6 Conventional t and F statistics and their conventional p-values,
which are meaningful in summarizing the shape of the likelihood function
under stationarity assumptions, are equally meaningful in summarizing the
shape of the likelihood function when unit roots or even ezplosive roots are
present. :

- Since the likelihood function is a tool shared by both, classical as well as
Bayesian econometricians, it is reasonable and meaningful to report standard
t-statistics and standard p-values regardless of which kind of econometrics
one adheres to. Just knowing the likelihood function alone already allows
one to compute how much more likely it is that the data was drawn with
parameters (B, H) rather than (B, H), if both are given even prior odds:
-simply compute the likelihood ratio at these two parameter points.

4 Priors
Most macroeconomists may feel uncomfortable applying Bayesian methods

because there seems to be too much choice in specifying the prior. In practice,
however, only a few candidates are actually useful and used. There are up to

9See appendix A for a definition of a Normal-Wishart Distribution.
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four reasons to choose a particular prior: the prior is generally agreed upon
for reporting results, the prior is convenient for calculating results, the prior
expresses “ignorance”, the prior expresses subjective prior beliefs about the
parameters of interest,.

Remarkably enough, in linear models similar to (32) with exogeneous
rather than endogeneous regressors, these four reasons are rarely in conflict
and it has become standard practice to choose a “flat prior”, i.e. a prior
Proportional to | H |~(m+1)/2 (see e.g: Zellner (113, section 8.1]), or, more
generally, a Normal-Wishart prior!® in B and H. The s0sterior will then be
Normal-Wishart as well. This result is still true in the model ( 1), (2), since
Bayesian inference is conditional on the observed data (see appendix B for
the precise formulas). ’

Insight 7 If the prior mo i3 given by a Normal- Wishart density, then the
posterior ¥r 1s given by a Normal- Wishart density as well

This insight explains the popularity of the Normal-Wishart prior. Two
special cases are especially common (see appendix B for details and refer-
ences). The first is the “fat prior” stated above, see e.8. DeJong [17]. The
other is a prior which conditions on ¥, is otherwise normal in the coefficient

longer lags by tightening the prior around a value of zero for their coefficients,
see e.g. the RATS Manual [23).

Unfortunately and in contrast to the situation with -exogeneous regres-
sors, flat priors or, more generally, Normal-Wishart priors can be quite in-
formative about certain properties of the model. This was pointed out by
Phillips [79] and discussed by Koop and Steel [48], Leamer [58], Kim and
Maddala [42], Poirier (85], Schotman and van Dijk [91], Stock [106], DeJong
and Whiteman [19], Sims [105], Phillips (80] and Schotman [93]. Parame-
ter regions, where the data will easily distinguish nearby values are packed
“denser” than others. It is therefore sensible to reparameterize the model
so that the parameter space becomes “evenly packed” as measured by the
data to be observed. In other words, reparameterize the model so that the
Fisher information matrix function I is constant on the new parameter space
and impose a flat prior then. Using calculus, this simply amounts to a prior

19See appendix A for a definition of a Normal-Wishart Distribution.




proportional to | I |'/2, the square root of the determinant of Fisher’s in-
formation matrix in the original parameterization. Such a prior assigns a
lot of weight to parameter regions about which we expect the data to be
very informative. This uninformative prior is called Jeffreys’ prior, see Jef-
freys [39, 40], Box and Tiao [3], Zellner [113], Leamer [54], several of the
authors cited above and section 4.1 below. Jeffreys’ prior has the additional
and sometimes desirable property that it is immune to reparameterizations.

While few endorse the uncritical use of Jeffreys’ prior, it provides at least a
helpful benchmark?!?.

Insight 8 Calculating Jeffreys’ prior is helpful in choosing a suitable prior
and understanding its implications.

4.1 Priors for Univariate Models

The recent debate has centered on the difference between Jeffreys’ prior and
priors like the Normal-Wishart prior in the univariate case, see Phillips [79]
and his discussants!?: this debate is summarized below and extended with
some recent results from Uhlig [110]. The aim here are the reasonableness
and potential modifications of the popular Normal-Wishart prior.

For some univariate versions of (1), (2), Thornber (107], Zellner [113,
section 7.1] and Phillips [79] calculate Jeffreys’ priors. Consider the simple
AR(1) model

Ve=pY1te, e~N(0,0°) idd,t=1,..,T (6)

Conditioning on the initial observation Yo, Phillips finds Jeffreys’ prior or the
“Critics’ prior” (in accordance with Phillips [80]) to be

70,7(p, o) é (C!o(p) + IT—:%T_' (%)z)_lh’ (7

1 Another candidate for priors representing “knowing little” are the maximal data infor-
mation prior (MDIP) distributions, see Zellner (113, 114, 117] and Zellner and Min [119].
They are given by x(8) o exp(:(d)), where «8) = [p(y | 0)log(p(y | 8))dd is Shan-
non’s [95] measure of the information in the data distribution and where p(y | 6) is the
probability density for the data y given the parameter vector §. The MDIP is not invariant
to reparameterisations. .

13For the beginning debate about appropriate priors for multivariate models, see e.g.
Kleibergen and van Dijk [45] and DeJong and Whiteman [21].
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where

1 1-pT
()= 5 (7- 125), ®

and where 7o,s(1,0) and 7o s(—1,c) are given by continuity. The Critics’
prior is defined for all p € R, 0 > 0, is increasing in p > 0 and diverges
quickly for p > 1.

Conditioning on o = 1, figure 1 compares the flat prior to the Critics’

— Insert figure 1 approximately here —

prior with T' = 100 and a few other priors described below. In figure 1, p is
restricted to the interval [0.5;1] and the priors shown all integrate to unity
over that interval. Notice that the difference between the Critics’ prior and
a flat prior is rather small.

Insight 9 Conditional on non-ezplosive roots | p |< 1, the differences be-
tween the Critics prior and a flat prior is small and will usually not matter
in practical applications.

The difference between a flat prior and the Critics’ prior becomes big,
once explosive roots are taken seriously. Figure 2 shows the same priors as

— Insert figure 2 approximately here -

figure 1 but restricted to p € [0.6;1.1] rather than p € [0.5; 1]. Because the
data can distinguish more-easily between p = 1.1 and p = 1.05 than between
p = .75 and p = .7, for example, the Critics’ prior assigns most of its weight
to the explosive region p > 1.

Insight 10 The Critics prior ezhibits an ezplosive behaviour for ezplosive
roots, i.e. roots above one in absolute value. To impose a rather flat or a
declining prior for roots above one or g Normal-Wishart prior centered at the
unit root or to set the prior to zero beyond some 5 > 1 corresponds to a prior
belief that ezplosive roots are unlikely and the more so the more ezplosive
they are.

Most researchers probably wish to impose such a prior belief, see Koop
and Steel [48], Leamer [58], Kim and Maddala [42], Poirier [85], Schotman
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and van Dijk [91], DeJong and Whiteman [19], and Sims [105], but also
Phillips [80]. For example, DeJong and Whiteman [18, 19, 20] and De-
Jong [17] use a flat prior set to zero outside the interval p € [0.55, 1.05].

Insight 11 The prior belief of ezcluding too ezplosive roots reflects a consen-
sus belief of applied researchers and should therefore be employed as bench-
mark when doing and reporting Bayesian analysis of economic time series.

Phillips calculations were based on the conditional likelihood function
rather than the exact likelihood function. Using the latter, Thornber [107]
and Zellner [113] as extended by Uhlig [110] find Jeffreys’ prior to be

201 _ 2 4,3 1/2 '
%'exp (—yO(l £ )) (1 _ppz +2(T + 1)) for |p|<1

70,5,00(P, 0) o - 20* 13 :
o 1 (T+11-p7T
AT 14 ool

(9)
The prior is written as a mo-prior, see equation (4) for notation. This prior
has an integrable singularity of order (1 — p)~%/2 at p = 1, see figures 1
and 2. Starting from this prior, Thornber [107], Zellner®® [113, 114] and
Lubrano [66] propose to use a Beta-Distribution on some interval p € [—3, 5]
as prior 7: Thornber and Zellner suggest 5 = 1 and Lubrano 5 > 1. Berger in
a seminar at Yale (1992) suggests extending the Jeffreys-Thornber-Zellner-
prior “symmetrically” via the transformation 5 = 1/p to the explosive region,
resulting in the prior #(p) = a(1 — p?)~Y/? for | p |< 1 and x(p) = a(p? —
1)"*/2 | p | for | p |> 1, where a is the appropriate integrating constant.
Sampling frequency may be an issue, see Sims [105]. Hartigan in a com-
ment at Yale (1992) therefore suggests to use a sampling-frequency invariant
prior 7o(p) o 1/ (op(—log(p))*) for 0 < p < 1 where a is a free parameter.
Given o, this prior has a non-integrable singularity at' p = 1 for a > 1,
whereas it has a non-integrable singularity at p = 0 for a@ < 1. Since these
singularities will persist into the posterior, a reasonable choice for this prior
may be to restrict p to the interval [0.5;1] and to choose a = .5. Geweke
and Schotman (see Schotman [94]) computed Jeffreys’ prior for a continuous

'3Zellner investigates (8) including a constant: his calculations are easily modified for
(8), however

14This is easy to see with the parameter transformation x = — log(p).
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time process dy = xydt + odW, 0 < ¢ ST,y=0 sampled at time intervals
of h. As A — 0, one obtains for p = exp(—k)

1 1—pT 1/2
e (T ) o

The Maximal Data Information Prior or MDIP (see Zellner (113, 114, 117
and Zellner and Min [119]) for (6), using the exact likelihood function, is given
by 7(p,0) « (1 — P*)?/o and converges to zero as p — 1. If the average
Shannon information per observation of the entire sample i3 used to calculate
the MDIP, one obtajns 7(p,0) o (1 p?)¥ (T43) /5, which converges to a flat
prior as the sample size T grows to infinity.

Overall, the convenijent Normal-Wishart prior does not appear to be a
bad choice for most applications when restricting p to | p I<1.

some questions (see e.g. the Bayesian unit root tests performed by computing
the posterior probability P(p > 1) in DelJong and Whiteman (18, 19, 20] and
Phillips [79] or the predictive densities in sectjon 5.). If feasible one should
therefore follow Leamers [55, 56] suggestion, echoed in Poirier (83]:

Insight 13 Analyze the sensitivity of the conclusions o a possible singularity
at the unit root according to some of the priors discussed above. Likewise
analyze the sensitivity of the conclusions to the prior treatment of ezplosive
roots, if these roots are to be taken seriously,

This is an opportunity rather than a pitfall of Bayesian inference. For
example, Bayesian methods are well-suited to taking explosive roots seriously
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and exploring the fragility of answers to macroeconomic questions due to such
roots. Classical methods by contrast usually consider at most roots above
one which converge to one as the sample size increases to infinity!5.

In most applications, a linear time trend needs to be included. Consider

Ye= +ﬁt+ PYt-1 + €y € N (0,02) i.‘i.d.,t = 1,. . ,T. (11)

with the restriction that B =0 when p =1 in order to exclude a quadratic
time trend when there is a unit root. Phillips {80, equation (8)] calculates that
Jeffreys’ prior (conditional on the initial observation) is well approximated
by

xo,p(1, B8, p,0) x ;ls_ao(p)"’- (12)

A good way to understand (11) is to rewrite it in the form of an unob-
served components model

U = pYi-1 +E¢, €¢ ’VN(O,UJ) i.i.d.,t= 1,...,T. (14)
as suggested by e.g. Sims, Stock and Watson [102], Schotman and Van
Dijk [91], Andrews [1] and Sims [105). In this parameterization, the nature

of the deterministic and the stochastic trend are nicely separated, whereas
they are interdependent!® in (11): since

o = o (15)
p = p :
B (1—p)é
p = (1 -p)+ps,
a fixed value for 8, for example, implies an ever steeper deterministic time
trend as p — 1.
For the unobseived components parameterization, Schotman and Van

Dijk [91] calculate Jeffreys’ prior 7o using the conditional likelihood and
obtain

rso1,6.0) o 501 - (w1 + 125 (227)) " o

p? o

15See however Chow (12, chapter 6]. . _
16See Schotman [93] for a further discussion of such issues.
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The corresponding prior 7, 5(p, B, i, o) for the reduced form (11) is obtained
by multiplying with the determinant (1 — p)-? of the Jacobian of the param-
eter transformation=17 (15). For yo = 7, one obtains again Phillips’ prior
‘N'o'p.

Using the exact rather than the conditional likelihood function for the un-
observed components specification (13), Uhlig [110] calculates Jeffreys’ prior
and finds the corresponding prior g ;4 for the “reduced form” specifica-
tion (11) via the transformation rule; Conditional on (4, p,0), this prior
prescribes a particular normal distribution for B, the coefficient on the time
trend:

8 ~N(o, Za —pf), if o<1, (18)

conditional on (4,0,0). We suggest to modify the commonly used Normal-
Wishart prior for (11) in this way. Further inspection of Jeffreys’ Prior g ;o
yields that this should be done by multiplying with the factor

2 :
18100) = e (58 ) e (19)
rather than the full normal density function from (18).

Calculating the MDIP (see Zellner [113, 114,117] and Zellner and Min [119])
results in x o< (1~ p2)t/ ?/a (respectively in x o (1= 00T+ /5 when the
average Shannon informatjon Per observation of the entire sample is used)
for both specifications, (11) or (13). Thus, applying the transformation rule
to the MDIP for (13) results in the prior * o ((1+ P)/(1 = p)) 251 for
(11), which is quite different from the MDIP calculated directly for (11): the
MDIP is not immune to parameter transformations.

"Strictly'upeaking, the transformation rule is only valid for p# 1._Since we are for
most parts interested in the shape of priors rather than their exact value at p = 1, we
ignore this as a technicality, -
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Insight 14 If a univariate autoregression including a constant and a linear
time trend is to be analyzed and if there is concern about at most one unit root
or ezplosive root, a Normal- Wishart prior as prior 7y is reasonable, provided
it 1s modified by multiplication with the factor f given by equation (19) in
the region where | p |[< 1 ( p denotes the largest root)'s.

Once a prior is chosen, Bayesian tests of the unit root null hypothesis can
be performed. DeJong and Whiteman [18, 19, 20] perform the test for

Ho:p>1 versus Hy: p< 1, (20)

calculating posterior masses for these regions using Normal-Wishart priors.
Phillips [79] critized these tests since they are sensitive to the prior treatment
of explosive roots, see our discussion above. As Schotman and Van Dijk [91]
pointed out, the appropriate test for a unit root!® often is

Hy:p=1 versus H;:|pl< 1, - (22)

however. To perform these tests, Bayesian posterior odd ratios are the ap-
propriate tool. They can be thought of as prior-averaged likelihood ratios.
Care needs to be taken when some parameters are not identified under ei-
ther alternative since that can result in nonsensical infinite integrals for cer-
tain improper priors. For details, see e.g. Zellner [113], Schotman and Van
Dijk [91].

18To calculate the posterior, calculate the posterior first using just the Normal-Wishart
prior with the formulas (37) through (40). The resulting posterior must then be multiplied
with the factor f from equation (19) in the region where | p |< 1 and renormalized to
integrate to one. .

19A continuous prior will assign probability sero to any nullset and therefore probability
zero to the region characterised by the unit root p = 1in'(11). However, using a Beveridge-
Nelson MA-representation instead,

Yt =7 + 6t + aW; + A(L)e,, (21)

where W; = 2;=o ¢j and A(L) is stationary, a continuous posterior over the coefficients
7,6, @ and A(L) will assign probability sero to the trend-stationary subset of the parameter
space since it is characterised by a = 0. The reason for this difference are restrictions on
the spectral density for Ay, introduced by the particular parameterisation. It may be -
interesting to use Bayesian method directly for inference about the mass of the spectral
density of Ay, in some persistence-relevant region [0, v], v small.
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5 Persistence and Forecasts

To provide a simple example for the key issue of persistence and medium-term
forecasting consider again the AR(1) process (6), where just p is assumed
unknown and where o3 = 1.0. Let Yy = {yo,...,yq-}. Both, the classical
and the Bayesian econometrician agree that the impulse response of YT+n to
a shock er of unit size is given by :

With p = 1, a shock persists forever whereas with p = .8 the halflife of a
shock is just n = 3.1, Both also agree that a forecast is given by

ITn=E [yT+n | p, YT] = p"yr (24)
and 1 — o
3 1 29 lfp # 1’
Var [yrin | p, Y7] = P (25)
' no?, if p=

Suppose that for some data set, T = 10, 90 = 0, yr = 4, 5 = 1.0 and
o3 = .04, where

- E¢T=1 Yeye-1
p= 26
Zt:]_. ytz-l ( )
and ,
2 o
= 27
? ZtT=1 Ve~ ( )

Ay = ¢, ¢ ~ N(0,1)i1d, ¢t = 1,...,T. (28)
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For the forecasting exercise, a naive classicist may then conclude that

E[yrsn | Yr] = y1 (29)

and

Var[yrin | Yr] =1 (30)

for this particular sample. The uncertainty about p disappears in the fore-
casting step. The forecast distributions of the naive classicist for yryn are
normal A (4,n) and are plotted in figure 3. A naive classical econometrician

— Insert figure 3 approximately here —

ends up being too sure about his forecast: even though he does not actually
know whether there is a unit root or not, the forecast distribution assumes
that he does and does not take the parameter uncertainty into account.

A sophisticated classical econometrician will surely object to this naive
approach. He could for example construct unbiased estimators and confi-
dence regions for the n-step ahead mean forecast without pretesting for unit
roots first?®. Alternatively he could evaluate the distribution of the n-step
ahead forecast, taking into account the pretesting procedure. However this
is rarely done (see e.g. Campbell and Perron [9], Cochrane [14] and also
Fair [26] and Sampson [88]) and almost never for forecasts many periods into
the future, despite the fact that the informal rational for pretesting for unit
roots is persistence. Even if such an analysis was done more often, the re-
sulting forecast distribution of the sophisticated classicist would depend on
the unknown parameter, which is not known when performing the forecast,
but would not depend on the data, which is known at forecasting time. It
seems more natural to state the uncertainty about a forecast by including
parameter uncertainty, but taking the observed data as given: this is what a
Bayesian approach does.

A Bayesian econometrician naturally recognizes that there is remaining
uncertainty about the parameter p. Consider first a flat prior over p. The

In particular, Andrews [1] has recently argued to correct the LSE so as to obtain a
median-unbiased estimator 5 of p rather than a mean-unbiased estimator. The median-
unbiased impulse response function is then simply given by #(n) = g™,
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posterior® is given by

pr~ N (ﬁ, a':) (31)
As a result there is uncertainty already about YT+n, the expected value of
YT+n given the data and p. The resulting distributions for YT4n or, alter-

natively, the uncertainty about the r(n), the value of the impulse response
function at step n, can be calculated directly?? and are plotted in figure 4.

— Insert figure 4 approximately here —

roots [p| < 1, whereas the taj] arises from the nonzero weight given to explo-
sive roots. Adding the uncertainty about futyre €, one obtains the predictive
densities? for yr,, | Yr. They are plotted in figure 5forn =1, ... , 10 steps

— Insert figure 5 approximately here —

ahead. They are not normal, skewed and quite different? from the distribu-
tions in figure 3. Clearly the mass assigned by the posterior to the region

Afthe prior is fixed and continuous or at least converges to a continuous proper prior in
the limit as the sample sise increases to infinity, the posterior will in fact be asymptotically
normal, as Kim [44] has shown. Thus a normal-shaped posterior is a good benchmark from
which to analyse the forecasting issue. .

Given the posterior *r, the density for the mean forecast is given by

0= (1)) )"

ignoring some difficulties arising from negative #- The distribution for (n), the value of
the impulse response function at step n, is given by substituting yp = 1 in this expression.

33For general results regarding these predictive densities, see Chow {11], who has ex-
plicitely calculated the mean for multivariate autoregressive model predictions if a Norma]-
Wishart prior is used, and Koop, Osiewalskj and Steel [51].

MGiven any posterior, these distributions converge for n — oo to a limit which is given
by the “weighted sum” of all stationary distributions Fy(y) for y drawn from (8) with
[ p 1< 1, where the weight for F, is given by the posterior height at p, as well ag a mass
concentrated at +oo equal to the mass assigned by the posterior to explosive roots | p > 1.
The median of these distributions is given by yp, where # is the median of the posterior;
this is analogous to Andrews [1] analysis,
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p>1 matters for evaluating the uncertainty about the n-step ahead fore-
casts.

Predictive densities using any of the other priors discussed in the previous
section can be created similarly: figure 6 and figure 7 shows five of them and

— Insert figure 6 approximately here -

— Insert figure 7 approximately here -

the resulting posteriors together for comparison. Figure 8 and .9 shows the
forecast distribution for y, using the Critics prior To,7 given in equation (7) as
calculated by Phillips. In figure 8, we restricted the prior (and thus the pos-

— Insert figure 8 approximately here —

terior) to p € [0;2.0], whereas we restricted the prior to p € [0;1.1] in figure

— Insert figure 9 approximately here —

9. In particular the tails (and thus for example the posterior probabilities for
specific events like a downturn in GNP, see Zellner, Hong and Gulati [116])
depend on this restriction. In figure 10 the prior To,J,c0 §iven in equation (9)

— Insert figure 10 approximately here —

is used to calculate the distributions for the values of the impulse response
function r(n), n = 1,...,10. This figure is therefore similar in construction
to figure 4. There is a spike at the unit root which persists into the posterior.
Figure 11 is similar to figure 5 and shows the forecast distribution for YT +n,

— Insert figure 11 approximately here —
when the prior 7o,54 is used and restricted to [0;2]. Figure 12 shows the
— Insert figure 12 approximately here —

same as figure 11 except that the prior 7y, 1, is now restricted to [0;1]. The
singularity at p = 1 of the prior 70,J,00 does not matter much when calcu-

lating the forecast distributions rather than impulse response functions as in
figure 10, but the particular exclusion of explosive roots does.
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Insight 15 The predictive density and in particular its tails can be sensi-
tive to the prior treatment of ezplosive roots. Sensitivity analysis should be
performed, if these roots are to be taken seriously.

There is more uncertainty about the forecast remaining in any of these
figures than in figure 3, since the Bayesian takes into account the uncertainty
about the underlying coefficient whereas a classicist often does not when
using unit root tests as a pretesting device.

Insight 16 Pretesting for unit roots or trend stationarity and proceeding as if
one i3 sure about the conclusion of this pretest can be misleading in calculating
the uncertainty with regard to n-step ahead forecasts in particular and in
answering macroeconomic questions in general.

It may therefore be advisable for calculating predictive densitities in prac-
tice to start with a reasonably general model and to stick with it. (for a
Bayesian critic of this position, see e.g. Zellner [118]. Sometimes, of course,
the goal is a parsimonious, “stylized” description of the data itself). Do
not pretest for unit roots or cointegrating relationships. Do not pretest for
lag length either, but rather downweigh the importance of lagged variables
by imposing tight priors around a value of zero for the coefficients on these
variables (see appendix B for references).

6 Extensions

Much remains to be done. A Bayesian analysis of persistence measures as
surveyed by e.g. Durlauf [24, pp. 72-77) is desirable. Some have claimed that
the broad features of major macroeconomic time series can be explained by
breaks in trends rather than unit roots (see e.g. Perron [77]): the Bayesian
analysis of this issue should be extended (see e.g. Broemeling and Tsurumi (7]
and Zivot and Phillips [120]). ARCHuess is considered to be important by
many and may interact with possible nonstationarities (see e.g. Geweke (31,
32] and Uhlig [109] for a Bayesian treatment of ARCHness). It may be that
fractionally integrated processes are more suitable for evaluating persistence
properties, see e.g. Lo [65]: a Bayesian analysis of this issue is desirable.
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7 Conclusions

In this paper, we summarized the recent literature on the Bayesian treatment
of unit roots into practical insights for applied macroeconomists. We argued
that macroeconomists are typically interested in some persistence property
or medium-run forecasting property and that therefore Bayesian methods are
especially suitable.

We reviewed Bayesian methodology for time series analysis in section 3
and discussed the choice of priors in section 4. We summarized and extended
the recent discussion about appropriate choices of priors. Recognizing a
consensus distaste for explosive roots, we find the popular Normal-Wishart
priors centered at the unit root reasonable provided they are modified by
concentrating the prior mass for the time trend coefficient towards zero as
the largest root approaches unity from below.

As for persistence and medium-term forecasting, we discussed that clas-
sical methods often do not take the uncertainty about the underlying pa-
rameter into account in a satisfactory manner, whereas Bayesian methods
naturally do. We discussed that the tails of the predictive densities can be
sensitive to the prior treatment of explosive roots and noted that classical
methods are typically mute on this issue.

In summary, a Bayesian approach is easy and practical to employ using
the insights in this paper. Such an approach often delivers more natural
answers to questions that macroeconomists are interested in.
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Appendix

A Some distributions and theijr properties.

More information about the distributions described below can be found e.g.
in Muirhead [71] or Zellner [113]. A Wishart distribution Wa(Q,v),v>m
specifies the following density for the m(m + 1)/2 distinct elements of a
positive definite m x m random matrix X:

‘ X ,(u-m—l)/z

fw (X |Q,v) = 21T, (2) | Q 73

exp (—%tr (Q’IX)) ,

where Ty, is the multivariate gamma function, defined in Muirhead [11],
Definition 2.1.10. If X ~ Wm (Q,v), then E[X] = 9. Note that Wi(1,v) =
x3, the chi-squared distribution with v degrees of freedom. :

Let I > 1 be an integer: in the main text we usually have ! = km + 2.
Let N be I x I and positive definite, let § be m x m and positive definite,
let Bbealx m-dimensional matrix and let » 2 m. The Normal-Wishart
distribution ¢nw(B,H | B, N, S,v) for a I x m-dimensional matrix B and a
M X m matrix H is given by the density

¢Nw(B,H, B,N,S,V) =
K(Ny Sx y,m) IH ,‘/2
exp (-—%vec(B ~ BY [H ® N] ved B — B))
| H [(e=m=1)/2 oypy (—%u trHS)

where x(N, S, s, m) is the appropriate integrating constant. The Normal-
Wishart distribution specifies, that H follows a Wishart distribution W, (S-1/,, v)
with mean®® §-! and that conditional on H, the matrix B ip its vectorized
form veq B) follows a Normal Distribution A (Vec(E), H'g N“).

*In the main text, H = B! is the precision matrix and e.g. § = £. Thus, perhaps
more suggestively E[D-1]-1 = §
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B Rewriting the Likelihood Function.

Write B = [B(l) By ... By Clo) C(l)]' and let 8 = vec( B) be its column-
wise vectorization. Let X, = [Y;’_ Y, Y t]' and stack the obser-

vations viaY = [¥; ... Y7, X =[X; ... Xr] and e = [ ... er]. We
can then rewrite equation (1) as 7

Y=XB+e (32)

Conditional on the initial observations Y;, ¢ = 1 — k,...,0, the likelihood
function in the coefficient matrix B (or coefficient vector §) and the precision
matrix H = £~! can be written as

LB.H|Y) = (@n)™ | H " exp (-6 - BY [H  X'X] (8 - )
exp (—%trHS) , (33)
where
B = ved B), B = (X'X)"'X'Y (34)

(with vec(-) denoting columnwise vectorization) and
$ = %(Y ~XBY(Y - XB) (35)

are the MLE’s for 8 or B and I (see e.g. Zellner [113, section 8.1]). Thus, as

a function in B and H, the likelihood function is proportional to a Normal-
Wishart density?® ¢NW(B H|B,N,(T/v)&,v) withv =T = (k— 1)m — 1.
Given any prior 7o(B, H) over the pa.ra.meters B and H, conditional on the
initial observations ¥;, t = 1—k,...,0, equation (5) to calculate the posterior
can therefore be written as

(B, H) < 7o(B, H)¢nw(B, H | B, N,(T/v)Z,v), (36)

where the constant of proportionality is determined in such a way that x¢
integrates out to unity. Sometimes it is desirable to describe the posterior as a
function in B and X rather than in B and H. This is easy to do: replace H in

38See appendix A for a definition of a Normal-Wishart Distribution.
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the formulas for the densities by £~! and multiply the right hand side of (36)
by | & |=(™+1) the Jacobian of the transformation £=! — . One obtains
an inverted Normal-Wishart rather than a Normal-Wishart distribution, see
Zellner [113, section 8.1].

As pointed out in section 4, the posterior 77 is easy to calculate, if 7, is
a Normal-Wishart prior. The following proposition is a straightforward and
well-known generalization of Leamer [54, Theorem 3.9: -

Proposition 1 If the prior 7o is given by a Normal- Wishart density
¢nw (B, H | B,, No, So, 1),

then the posterior xp is given by a Normal- Wishart density
¢nw (B, H | Br, Nr, Sr,vr)

as well, where

vr = T+, (37)

NT = N0+X'X, . (38)

Br = N;'(NoBo+X'XB) (39)
T .

Sro= L5+ (40)
vy v

— (B - Bo) Nodixx (-8

Proof: Adapt the proof of Leamer [54, Theorem 3.9]. o

In particular, a “fat prior” is sometimes used (see e.g. DeJong [17],
Broemeling (6], Broemeling and Tsurumj [7] and Koop [47]): By is chosen
arbitrarily, Ny = 0, S, is chosen arbitrarily and vy = —{ (It is my opinion
that ¥ = 0 is a more logical choice for a “fat” prior). The “fat” prior
is simply proportional to | H [~(™+1/3 and one obtajns a Normal-Wishart
posterior with vp = 7" — l, Np = X'X, Br =B and Sr=3.

Alternatively, a Normal-density prior for ved(B), wh " is a Normal-
Wishart prior with a fixed covariance matrix £ = §, = | d vy - o0 is
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popular in practice. It is commonly centered around the random walk mean
and lagged variables are “softly” excluded by tightening the prior around
the value of zero for their coeficients, see e.g. Sims [96, 97, 99, 101], Litter-
man [60, 61, 62, 63, 64], Doan, Litterman and Sims [22], Highfield [38], the
RATS manual [23], Litkepohl [69], Canova [10], and Uhlig [109]. This prior
is sometimes referred to as the “Minnesota prior”. The Software RATS [23]-
performs the required calculations. .

One can understand these calculations (at least when conditioning on H)
as signal extraction: the prior corresponds to some imprecise, normally dis-
tributed signal about the unknown parameters and so does the data. When
combining these two, one obtains a posterior corresponding to just one signal
centered at a weighted sum of the centers with a precision equal to the sum
of the precisions. In applications it is sensible to choose priors which are
much more “imprecise” than the data about the important aspects of the
parameters.
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