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Abstract

This paper applies the method of Lagrange multipliers to solve a model
of dynamic games of Beggs and Klemperer (1992) on price determination of
duopolists facing a market with no consumer switching products. The
consumers are first assumed to be myopic, basing their choice of products on
only current prices, and then allowed to take future prices into account. The
solutions in the two cases illustrate that the method is simpler than dynamic
programming because there are fewer parameters to solve and one saves the
trouble of differentiating the value function in solving the first order condition
for the optimum control function.
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MULTIPERIOD COMPETITION WITH SWITCHING COSTS:
SOLUTION BY LAGRANGE MULTIPLIERS
Gregory C. Chow

This note suggests that the method of Lagrange multipliers is more convenient to use than
dynamic programming in solving problems of dynamic games. It applies the method to solve
the model of Beggs and Klemperer (1992) on price determination of duopolists facing a market
with consumer switching costs.

Let v be the number of new consumers entering the market in each period. The new
consumers’ tastes are distributed uniformly along a line segment [0,1], with duopolists A and
B located at 0 and 1 respectively. If a new consumer with taste ¥ chooses A’s product and is

assumed not to change product in the future, she will have discounted life-time utility

r- ry+zl BZR—E BZpAt
t=

1=0
as she obtains utility r-ty (7 being "transport cost" per unit distance) in the first period and
utility R in each subsequent period with discount factor &, and with firm A4 charging price p »
in period #. Choosing B’s product she will have discounted life-time utility
r - t(l-y +f: 6:R —i: BZth
t=1 =0
I will first assume the consumer to be myopic, i.e., 8, =0, and later drop the assumption to

allow for the effects of future prices on her choice of products. A myopic consumer will be

indifferent between choosing the two products if her taste is
2= QU7 [(ytpp) + 1] = Bl-pyepp + @

Since y is distributed uniformly along /0,1], the above expression is the fraction of new

customers buying A’s product. The remaining fraction B(-py+p,)+a will buy B’s product.




Profit of firm i (i = 4,B) at time ¢ is
1) T, = (p,~c) [xit + VB(‘P;’:*PJ': + v ]

where ¢; is unit cost for firm i, p 4 18 understood to be a function of X4=X, , the number of A’s

old customers, and py, is a function of Xp,=S~X, , § being the constant stock of old customers

in the market. Since only a fraction p of all customers is assumed to remain and become old
customers after one period, x, and x,, evolve according to

@ i1 = 0% + PV [ B(-pytpy) + @ |

xB,t+1 = pr,t + pV[ B(—p& + pAt) ta ]

Both firms are assumed to maximize expected total discounted profits in infinitely many periods
with discount factor § by choosing price Px,) and taking the other firm’s price function pj(xjt)
as given. A problem is to find the equilibrium price functions.

Given py(x,), firm A’s optimization problem can be solved by the method of Lagrange
multipliers as suggested by Chow (1992, 1993). To apply the method we differentiate the

following Lagrangean expression (with A, as Lagrange multiplier)

m X B0 - 8 [y - 0% - v (B(papyS ) + o))

with respect to p . and x, (t = 0,1,2,...), yielding the first-order conditions

~t ageA
0 poal X, + VB(—PA, + Pp (S—xt)) + Vo
3) P ot
VB@ycp) - PVBSEA,, = 0
-t ageA / /
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Similarly, given p 4(%) = p,(S-xp), firm B’s problem can be solved by differentiating a similar

Lagrangean expression &y (with A, as Lagrange multiplier) with respect to pg, and x,, ,

yielding first-order conditions (3B) and (4B) which are identical to (3) and (4) except with

subscripts A and B interchanged. The solution by our method consists of

Px), A(x), p s(xp) and A s(*g) which satisfy the four equations (3), (4), (3B) and (4B), where
Ay = A(x,,,) and ls,m = AB(xB’M) with x , and Xp,.; given by equation (2). In this model,
the transition equation (2) for the state variable x, happens to be nonstochastic. For exposition

of the method which is applicable to stochastic x, we keep the conditional expectation operator E,
in (3).
To solve these equations by the method described in Chow (1993), we assume A and A 2

to be linear, which is equivalent to the corresponding value functions being quadratic:

) A=10+mx; Ap = Uy + myx, .

In (5) ¢=h and m=H in the notation of Chow (1993); ¢ and m agree with the notation of Beggs
and Klemperer (1992) who use quadratic value functions of dynamic programming to solve this

problem. To solve A’s problem using equations (3), (4), and (5), we first use (2) to evaluate
(©6) hap =0+ mx, =0+ mipx, + pv [B(-Pas + Ps 5-x)) + o] } .

Assuming tentatively £ and m to be given, we substitute (6) for EA,,; = A, in (3) and solve
the resulting equation for p,. Simple algebra shows that p,, is a linear function in X, provided
that py(xp) is also linear. Substituting the resulting function Py = P4(x) into (4) and equating
coefficients of A, =0+ mx, , we can find £ and m (h and H in the notation of Chow, 1993).
Given ¢ and m, the function p,(x) is known. Similarly, using (3B) and (4B) we can find
Pp = Pp(xg) and Ap = Gg+myx, .  Note that p4() depends on the parameters of

Pg() and p,() depends on the parameters of p (9. Equilibrium is reached when these




parameters are consistent.

To proceed with our solution, let

Px) =d; + e(x) = dy + ¢S - e Xp,

@)
Pyxp) = dy + ep(¥p) = dp + xS - egX;

Substituting equation (7) for Pg(xg,) in equation (6) we find

® EA, =10+ mpv [B(dp+epS) + ] + mp(1-vBey)x, - mpvBp,,

Substituting equation (8 for E,A,,; in equation (3) and solving for p . yield

Py = [vB(5p*pm - 2)]!
)

X [(l—vBeB)(ﬁpszm—l)xt + VB(dp+epS+a/BY8pPvBm-1) - v + 6pvﬁc]

Equation (3) is used to solve for EA,,, and the result is substituted into equation (4) to obtain

A, = l+mx, = —C4(1-vBey) + (1-vBep)p,, + 6p(1—vBeB)E,At+l
(10)

= -[vB3pZvpm-2)[ (1 “VBep)vB(dy + S + 8p0) + (1 Ve

Equating m to the coefficient of X, on the last line of equation (10), we have a quadratic

equation in m, the solution of which is

an m = (p™8) N1 « [1 - P*8(1-vBe,)]")

We next solve for ¢, which is the coefficient of x, in (9).

- ¢, = [VB(Bppm - 2)] ™! [(1 -VBe ) (8 pzvﬁm—l)]

= OB [A-vBey) - (1-vBey'vpm)




Note that both m and e 4 are functions of e, Substituting (11) for m in (12) one obtains the

following quadratic equation in e 4

13 wpya ~vBeye; -2vp[1-p2%8(1 ~VBeg)’le, +(1 ~vBeg)p?8(1-vBe,)? -2]=0

The identical solution to firm B’s problem yields equation (11B) for m 8 » Which is the same as
equation (11) with « 4 Teplacing e, , equation (12B) for e, , which is the same as (12) with
¢, and m, replacing ¢g and m, and a quadratic equation (13B) in ep > Which is the same as (13)
with e, and e, interchanged. (13) and (13B) provide a pair of equations for e, anci ep.

For the remaining parameters, we solve for £ by equating it to the intercept term of (10,

yielding a linear function in £, givenm. d , is set equal to the intercept term in equation (9),
which depends on dy and ;. Given ¢ 4 and e, the intercepts of (9) and (9B) provide a pair of
equations for d, and d;. Thus the equilibrium price functions p %) = d +ex and
p(x) = dx*“sx can be obtained.

To allow for the fact that consumers take future prices into consideration in choosing

product i, Beggs and Klemperer (BK) assume that the sum W, of the expected discounted

utilities of firm i’s old customers is linear in x;, i.e.,
(14) Wix) =g, + hy,

Hence the marginal new consumer’s distance fromi, Z (p,, P;»X;), satisfies BK’s equation (AS),

with time subscript ¢ suppressed,

(AS) "TZ,' (P,-,Pj,xi) P+ psc u’,'(x,',nl) = —1-'7(1 _Zi (pi:Pj:xi)) ‘pj *p 6,_- I'V](S _x,-’t+1)




and the evolution of x, follows
(15) Yiger = PXy+ PVZ(P,,p,,x,
Profit of firm i at time ¢ is, with Z,, denoting Z( PisPjps%,, ),
(16) T, = (pl.t—c,.)(x,.t+int)

Assuming that firm i maximizes the sum of expected discounted profits subject to the constraint
(15) we form the Lagrangian

17) g, = IV_O:Et{é’nu - Aipalx,. - px, - pvZ,]}
2=

and obtain the first-order conditions

o, oz, oz,
(18) 87— =X, +VZ, + (p, - c)v = . 8pv—E, =0
apit apit apit |
o, oz, oz
(19) 87— = A, + (P, -c)(1 +v ity . 5 1+v—5E . =0
ax't }i4 (plt l) ( axlt p( axlt) t l,t+1

We differentiate (A5) using (14) and (15) to obtain:

ozZ.
(20) 5“ = [pzbcv(hA +hy) - 21]1
it

In equilibrium x, +vZ, = p-! Xieq = PN, + px,) where m; and p are defined by BK’s
equations (A1) and (A2). As before we assume A(x) = I + mx; as given by equation 5).
Substituting (5), the above equilibrium condition and (20) into (18) we can obtain P, as a linear
function of x, with parameters ¢; and d; as given by BK’s equation (A7) -- with the factor 2
in front of p8m, for both e; and d; missing. Given ¢; and d;, we substitute (5), the above

equilibrium condition and its implication 1 +v 0Z,/x, = p/p into (19) and equate coefficients




to obtain the parameters I; and m, of Afx). As compared with the method of dynamic

programming (BK, p. 663), our method saves the trouble of finding the constants k, in the

quadratic value functions and, having found them, the trouble of differentiating the value
functions and ignoring these constants to solve for the parameters of Px) using the first-order
condition (18). For both cases of myopic and forward looking consumers, this note has

demonstrated the usefulness and simplicity of the method of Lagrange multipliers in solving

problems of dynamic games.
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