THE LAGRANGE METHOD OF OPTIMIZATION IN FINANCE

GREGORY C. CHOwW*
PRINCETON UNIVERSITY

Econometric Research Program
Research Memorandum No. 369

March 1994

Abstract

A method of Lagrange multipliers is presented for solving dynamic optimization
problems involving stochastic differential equations. It is an alternative to dynamic
programming. As a generalization of Pontryagin’s maximum principle to stochastic models
it avoids having to solve the Bellman equation for the value function. Its analytical
advantages are illustrated by applications to classic problems of finance and

investment. Its computational advantages are pointed out by presenting a numerical
method for dynamic optimization in continuous time.

*The author would like to thank Avinash Dixit for helpful comments.

Econometric Research Program
Princeton University
203 Fisher Hall
Princeton, NJ 08544-1021, USA



THE LAGRANGE METHOD OF OPTIMIZATION IN FINANCE

Gregory C. Chow

It is generally believed that to solve dynamic optimization problems in continuous time, if the model
is deterministic, one has the choice of using Pontryagin’s maximum principle or the method of dynamic
programming. The former is essentially an application of the method of Lagrange multipliers. An excellent
exposition of both methods can be found in Dixit (1990, chapters 10 and 11). However, if the model is
stochastic, dynamic programming is considered the only option. A main purpose of this paper is to show that
in the stochastic case, the method of Lagrange multipliers is not only applicable but in certain
circumstances analytically simpl-- and computationally more accurate than dynamic programming. Section [
presents the method. Section rovides a classic example of finance using the well-known optimum
consumption and portfolio selecti... models of Merton (1969, 1970 and 1973). Section III applies the method
to an example of investment decision with irreversibility as surveyed by Pindyck (1991), Dixit (1992) and
Dixit and Pindyck (1994). Section IV provides a numerical method for solving dynamic optimization problem
in continuous time and points out that this method would be very difficult, if not impossible, to implement
in the framework of dynamic programming.

The basic idea of the method is that the dynamic model of a stochastic optimization problem can be
viewed as a constraint on the state and control variables in adjacent time points and hence the optimization
problem can be solved by the method of Lagrange multipliers. This idea is the basis of Pontryagin’s maximum
principle for deterministic models. When the model is stoct-stic, the appropriate Lagrange expression is a
mathematical expectation of the sur ver many periods of me objective functions and the products of the
(vector) Lagrange multiplier and the . ector) dynamic model. To apply the method, one simply dir* rentiates
the Lagrange expression with respect to the control variables and the state variables which are subject to
the constraint of the dynamic model. The differentiation yields two first-order conditions which can be
solved for the optimal control function and the Lagrange multiplier, both being functions of the vector
state variable. This is a natural and efficient way of solving the problem for the static case when time is
not involved as well as the dynamic case when the state variables evolve through time as specified by a
dynamic model. In the static case, such as the problem of a consumer maximizing a differentiable utility
function of quantities of consumption goods subject to a budget constraint, one nafurally applies the method
of Lagrange multipliers to find the optimal demand functions for the consumption goods. Solving the Bellman
equation for the value function would correspond to finding the indirect utility function in this case.
Although solving for the indirect utility function is one way of obtaining the demand functions, it is often
more difficult than the method of Lagrange multipliers.




The principle of optimality of dynamic programming has two components. The ﬁrét is that when a
decision for the control variable at time ¢ is made, it is assumed that all future control variables shall
be optimally chosen. This leads to solving the optimization problem backward in time, with the decision at
time r+1 solved before the decision at time #, etc. The second component is the relation between the value
function at time ¢ and the value function at time #+1 as summarized by the Bellman equation. The principle
of optimality in the context of the method of Lagrange multipliers has two corresponding components. The
first is the same as for dynamic programming. The second is a relation between the Lagrange function at
time ¢ and the Lagrange function at time f+1 as summarized by the second first-order condition which is
derived by differentiating the Lagrangean expression with respect to the state variables. This relation can
also be obtained by differentiating the Bellman equation with respect to the state variables. If so one
might ask what the advantage is in using the second first-order condition obtained by the method of Lagrange
multipliers. In finding the optimal control function if one is willing to forget about the value function
and works only with the vector of its derivatives, one would be applying the same method as the Lagrange
method. However, if one tries to find the value function in the process of obtaining the optimal control
function as is typically done in practice, one fails to exploit an important first-order condition for
obtaining the optimum.

To illustrate this point let us consider the problem of finding the values of the control variables 4
and Uy for the periods 1 and 2 when the state variable X, is given and Xy is a function f(xl, ul) of x and

u,. Let the objective function be

r(xl, ul) + Br(xz, u2)

where B is a discount factor. By dynamic programming one first maximizes Pr(x.,, u2) with respect to Uy and
obtains the optimum Uy = g2(x2) as a function of x,. The value function for period 2 is r(x., gz(xz)) =

2
Vz(xz). To find u, one maximizes

1
r(xl, ul) + ﬁVz(xz) = r(xl, ul) + BVZ(/(xl, ul))

and calls the result Vl(xl). If instead we form the Lagrange expression

f = r(xly ul) + B[r(xzv uz) = sz 'f(xlv ul))]

and differentiates with respect to Uy Xy and u; we obtain three first-order. conditions. In seeking the
value function the method of dynamic programming fails to exploit an important first-order condition 6;76x2



= 0. The same point applies to the case of a stochastic model for x p and also in continuous time as the

next section demonstrates. Using dynamic programming if one finds Uy by differentiation, the first-order

condition is

ar(xy, uy) . dVy(xs) Aftxy, uyp) _

aul dx2 aul

Hence only knowledge of k ‘=dV ( )/dx and not Vz( ) itself is required. Solving the Bellman equation
for the value function V is not necessary and often more difficult than finding A. Even if it were not, one

always needs to find A = dV/dx by either method of dynamic programming or Lagrange multipliers.

L. Solution of . :ntinuous-u. e Optimization Problem by Lagrange Multipliers
Let x(f) be a px1 vector of state variables and u(f) be a gx1 vector of control variables at time .

The argument ¢ is suppressed when it is understood. The stochastic model is assumed to be
dx = flx, w)dt + S(x, u)dz 4y}

where dx(f) = x(t+df) - x(f), and z(t) is an nx1 vector Wiener process with covariance matrix Cov(dz) = dadr,
The covariance matrix Cov(Sdz) = S®S’ dr will be denoted by Xdr. Let r(x, u) be the rate of flow of return
or utility and the objective be to maximize the expectation

E J e-ﬁ tr(x, wdt @

To solve this problem by the Lagrange method, we form a Lagrangean expression based on the objective
function (2) and the constraint of the stochastic differential equation (1) using a p-component vector A(x)

of Lagrange multipliers as follows.

L=

Qb 8

E, {e“"r(x, W) de - & B+, (e+dD)[x(t+dr) - x() - flx, wydt - S(x, u)dz]} ®

where the conditional expectation E is Jusufied by the statement of the problem that when the control u(r)
is determined the information at nmc t including the value x(f) is given, and where we have changed the
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as;
P gxf - 3— deh + e -Bdt]g A(rdt) + 3 f' EA(t+dndt + B Az’ = [X (++df)} 6
i l

= dt -A. + (1-Bdt) A, + EdA +-a£-3\dt+Edz’ E(?»+d7‘.) + o(dD)
~ ox, i P oTe Bxi t Bxi i
H

as; &

ar; 2.
; 1 N Tllar + af’ Adt + tr|z— 67\:, S dt + o(dr) = =1, .., p
: i

,
o PN g S

dx

Equations (5) and (6) are iwo first-order conditions for the optimum control u and the Lagrange multiplier
A. To insure that the solution of (5) and (6) achieves a maximum, one has to examine the second-order
conditions for the method of Lagrange multipliers which are discussed in Chow (1994, section 2.5) for the
analogous stochastic optimization problem in discrete time.

If the model is nonstochastic S and £ = S®S’ are zero. All the trace terms in the last lines (5) and
(6) vanish. "Our solution reduces to the well-known solution of the corresponding nonstochastic optimal.

control problem in continuous time with the dynamics given by
dx = flx, u)dt

In the above solution we assume A to be a function of x only and 1ot of t. If we relax this assumption,

aA;
equation (4) for a')\, will have a term a_t' inside the square brackets. The same term will appear inside the

square brackets multiplying dt after the last equality sign of (6), yielding the following partial
differential equation for A.

A aA af"
at At

i A =0 )
Equation (7) and equation (5) with the trace terms omitted, or

3j' |
au A=0 )




provide a pair of equations for 4 and A. These equations can be derived from the well-known Pontryagin’s
maximum principle for solving nonstochastic optimal control problem in continuous time.

To apply Pontryagin’s maximum principle to our nonstochastic control problem, we form the Hamiltonian

H = r(x, 4) + e P i, ) )
and set
8H
% =0 (10)
“Bdt
o™ eH -
Sy e (1
and
dx aH
dx _ (12)
dt a(e-@tk)

Equations (10) and (11) are identical with the first-order conditions (8) and (7) respectively, while
equation (12) gives the differential equation for the dynamics of the state variable. Note that we have
written this differential equation as drx = fdt rather than dx/dt = f because in the stochastic version of
our problem, the derivative dx/dt does not exist. dx has a term dz which is of order (dt)l/ 2. Hence dz/dt
is of order (dt)'l/ 2 which approachés infinity as dt approaches zero.

The well-known problem of this section was studied by Merton (1969, 1971), and its discrete-time
version by Samuelson (1969). At time ¢, the individual chooses his rate of consumption c¢(f) per unit time
during period ¢ (between ¢ and ft+df) and the number Ni(t) of shares to be invested in asset i during period
t, given his initial wealth W({) = ZJ;Ni(t-dt)Pi(t) and the prices Pi(t) per share of the assets. To

simplify exposition we assume the prices to follow a geometric Brownian motion.



4Pi ‘ (13
T"; = ccidt + Sidzi )

where z; are components of a multivariate Wiener process, with E(dz) = 0, var(dz) =1 and E(dz dz) =
If there is no wage income and all incomes are derived from capital gains (dividends being mcluded in

changes in asset prices), it can be shown that the change in wealth from ¢ to r+dr satisfies the budget

constraint
n
dw =} N'.(t)dPi - ¢(dt (14)
1
Let w(p) = N.(t)Pi(t)/W(t) be the fraction of wealth invested in asset i, with Ziw‘. = 1. We \itute
3 i
(13) for dP,. in (14) to obtain
n n
dW =} wWadt - cdt + ¥ wWs.dz, 1s
[ i LR

If we assume the nth asset to be risk-free, i.e., s = 0, and denote the instantaneous rate of return a of

this asset by r, we can write (15) as, with m = n-l

m m
dW =} wi(a.i-r)Wdt +(W-c)dt+ Y wiWsidzi (16)
1 1

The state variable of this problem is W which is govemed by the stochastic differential equation (15). The

control variables are ¢ and w = (wl,...,wn)’ , with }.‘.'1' w, = 1. The problem is to maximize

w

E I P ")
0

This model assumes that assets are traded continuously in time and that there are no transaction costs in
trading.

The Lagrangean expression for this optimization problem is




y Bt -B(r+do) z z V N T
P= .[Et{ e Pucydr - e A (trd[dW - (W }13 WL - ot - W % wsdz] + € hlL ;1; wi]dt} an

]

n

Noting flix,u) = (W L we, - ¢) in this case, with W as the state variable and c and w' = (Wl"“’wn) as the
1

control variables, we can write the first-order condition (5) where the matrix S is now the row vector

W(wls1 wnsn) as

u'@)-A=0 (18)
o ] .
1 P2 Pin
2 ls Py 1 P
Wai).. + Wor (|5 ’/\.w[wls1 wnsn] }-n (19)
: I T
LO |l n2 ]
) n
=WoA+ WA ¥ wo.-u=0 i=1l, ., n
i wj___1 J i

where we have denoted dA/dW by A_ and ss.p.. by .. The first-order condition (6) implies, with A
) w 11y iy ww
denoting 8“A/6W ",

n n
1 2
BA = ( ‘L; wioci)l +).w(W 21: we, - c) + 3 lww - W E Wiwjoij + xww E wiwjoij 20)

Without solving for A using (20), we can define the inverse function G = [u’ (c)]'1 and solve (18) for
the optimal consumption function 2 = G(A). To obtain the optimal portfolio w, we divide (19) by Wzkw,
denote -uj(W2 2.”) by u.*, and write the resulting equations together with Zwi = 1 in matrix form as

G4y Op3 « Opp 1 wJ -a;

= _w—&—v il U (21)
On1 Oz = O, 1 W:z oy
LRI 1]



Partitioning the coefficient matrix of (21) into four blocks and finding the partioned inverse we obtain the

first n rows of the inverse as

- - . by s . 1 y
| (e @)oY ... zatize™) . B’
Y , Y| (22)

;
) -
Ea)@e”) @a¥)Es") .. ma)za™) 55"

(o

where (Gij ) denotes the matrix inverse (<:rl:i)'1 and y = Elzjclj. Premultiplying (21) by (22) we obtain the
well-known optimal portfolio rules of Merton (1969, 1971):

A er k-l Kol A -1 ki
W= Jo Y @NEI] g oy + v 2o (23)

= y'l):ckj - [Eckla - y'lzok]):tha]
WA NS %Y Roriiae,
w J

= hk + m(Wy) - 8y k=1,...n,
where we have defined
h =¥ 26" 24)
J
mWy) = T.A' 25
= - (25)

!

- o g
8, =" (@ -y XZo o] (26)

J

implying E':hk = 1 and Z':gk = 0. ,

In deriving the above well-known optimum consumption and portfolio selection functions & and #, we have

demonstrated that the Lagrange method is casy to apply and that the optimum control functions depend on A =

dV/ax and not on the value function V itself. The Lagrange method would be superior in situations where the
first-order condition (6) or




ar O ap 1| a2y , 8s;
mi—a;+c_3x_’f+r_9};;‘+§"ax3xl S®S +tr6_xi 37 SO 27N
is easier to solve than the Bellman equation
av 1 82y
V=r+f —+5r{ Y .S08’ (28)
P f 9x 2 5xax’ ,

which can be differentiated to obtain (27).

A well-known case is when f{x,4) is linear, say equal to Ax+Cu, S is a constant matrix and r(x,u) is
quadratic, say equal to (1/2)x’ Rlx + (1/2)u’ R2u +x’ R12u + a’lx + aéu. In this case V is quadratic and A is
linear, say equal to Hx+h. Since the second derivatives of A’i are zero and 68’/3xi is also zero, only the

first three terms on the right side of equation (27) remain. In vector form equation (27) becomes

BA = Hx+h = a1+R1x+R12u + H(Ax+Cu) + A’ (Hx+h) ' 29)

The first-order condition (5) becomes

a, + R2u + R12x + C'(Hxth) = 0 30)
implying
- 1 ’ ’ - 1 ’ =
u= -R2 (C'H + Rlz)x - R2 (C h+a2) = Gx+g a3n

Substituting (31) for u in (29) and equating coefficients would give two equations for H and 4. These are
the well-known matrix Recatti equations for solving the unknown parameters of the linear function A. Once H
and h are determined, the linear function u is found by (31). Other examples favoring the Lagrange method
can be found in Chow (1994). Possible computational advantages of using the Lagrange method will be
discussed in section IV.

Returning to problems of finance, it is useful to point out that the capital asset pricing model of
Merton (1973) introduces additional state variables [xl(t)...xN(t)] = x(f) which follow the stochastic

10




differential equations

dxi = f‘.(x)dt + gi(x)dqi i=l, ., N

with dq. correlated with dzj of equation (13). The optimization problem can be solved and the results of
1 .
Merton (1973) obtained by adding to the Lagrange expression (17) the following constraint

N .
Bieedn) L Afrrdilds, - f(ddt - g (x)dg ]

i=1
and differentiating  a respect to these additional s°  variables.

III. Investment as Exercising .. imeversible Option to Invest
Let us consider a model for the investment decision of a firm which treats the decision as exercising
an option to invest. Once the option is taken or exercised, itl cannot be reversed. Such theories of
investment are surveyed and discussed in Pindyck (1991), Dixit (1992) and Pindyck and Dixit (1993). In the
simplest case assume that to exercise the option, it would cost the firm I dollars. The present value v(f)
of the investment project at time ¢ is assumed to vary through time according to the stochastic differential
equation

dv = owdt + ovdz _ (32)

where z is a Wiener process - 1 var(d=" = df. The blem is to determine the optimum time T to invest or

to exercise the option. When ne option is exerciscy, the firm gains v(T) - I but loses the opportunity to
invest in a future time T+s when v(T+s) may be larger than w(T).

We formulate this optimization problem starting from time O using the Lagrangean expression

T
L= Eoe'BT(v(T)-I)u - I Ete‘ﬁ tl(t+dt)[v(t+dt) - V(1) - oav()(1-w)dt - ov(H(1-u)dz(n)] (33)
0

The state variable is v(f). The control function u(v) could be viewed as a step function, with u(v) = 1
meaning to understake the investment when v reaches wT) = v* and u(v) = 0 meaning not to undertake the
investment when v < v*. To maximize (33) we consider the two cases u = 0 and u = 1. Keeping « iixed, we

first find a first-order condition by differentiating the Lagrangean expression with respect to the state

11




variable v. We will then find a second condition to determine v,
To find the function A(v) we set the derivative of eBtf with respect to the state variable v = v(f)
equal to zero. To obtain §_#/3v we need to evaluate dA by Ito’s lemma.

5 @ t3 — dt + p ovdz (34)

dk:[dk 1ix zz] )

Using (34) we find

el3 a—f -E M:-l—dt)[-l - adt - ¢dz] - eBd AL (35)

= Et[x(t) + dAMO)[1 + adt + adz] - (1 +BdOAE) + o(dr)

= M0) + aADde + dA(D) + B dMiodz(r) - M) - BA()dt + o(df)

1 22d%

i dv2

+ (a+oz)v + (a-P)A |t + o(dt) = 0

Setting to zero the expression in curly brackets in (35) provides a second-order differential equation for
A

A solution to this differential equation is

A=avl (36)

Substituting (36) and its first and second derivatives in the above differential equation yields a second-

degree equation in the unknown parameter vy, the solution of which is

12
2
Y= -a/c" - % + { (o:/cr2 + %] - 2(oz-ﬁ)/s':r2 } <))

Since at time T when the value of the option equals to v(T)-I, the rate of change of the option value .#
with respect to v, or A(W(?)), equals 1. We have A(v*) = av*) = 1, yielding a = v*"" and

12



A= Y (38)

The solution is complete once we can find v*. To do so we observe that the value of the option at time T
evaluated by the Lagrangean expression is v*-I. Since the value of the option is SA(v)dv which equals

| . . -1 .
@D VN by (38). This value when v = v* is (pr1) ¥, Equating (r+1)"v" to v™I we obtain

v = (DI (39)

The decision rule is to undertake the investment project when v(r) reaches v* given by (39). Since a
negative v* cannot be the optimum ¥y cannot be negati~ - and we take the larger of the two roots of y given by
@37.

The above example is the most basic example in the theory of investment when undertaking an investment
project is considered an irreversible decision as surveyed by Pindyck (1991). Pindyck (pp. 1122 and 1145-
1146) solves this problem by dynamic programming. The value function F(v) for the option to invest is

solved by using the Bellman equation which is a second-order differential equation in F:

LR20F O )

av

Differentiating (40) with respect to v and setting 8F/8v = * would yield our differential equation from
(35). In this example the differential equation for A = v is of the same form as t- rferen:
equation for F. In circumstances where the value function i. -asy to find by solving the Bellm..1 equatici,
one should by all means find it as it contains much useful information. Dixit and Pindyck (1993) provide
examples of such circumstances.

IV. A Numerical Method by Locally Quadratic Approximations to the Lagrangé Function
As numerical solution of the Bellman equation for the value function V has been an active area of

research for over three decades, numerical solution of the first-order conditions (6) or (27) for the
Lagrange multiplier A is an important area of research if one wishes to solve dynamic optimization problems
numerically. A well-known but crude nume--al method is to approximate the function f by a linear function
and the function r by a quadratic functia wnd to solve the resulting linear-cuadratic control problem,
yielding a linear control function and a quadratic value function. Since the _agrange function is the

13




vector of derivatives of the value function, it is linear. Below equations (29) and (30) we have discussed
the numerical solution for A as a linear function.

In Chow (1993a, 1993b), locally rather than globally linear functions for the optimal control 1 and the
Lagrange multiplier A have been suggested and implemented. Since u and A need to be evaiuated for any given
x, we can solve the approximate linear-quadratic optimal control problem by approximately f, 8r/8x and 3r/du
linearly about any given x, yielding locally linear control function u and Lagrange function A. In this
section we recommend locally quadratic approximations for A.

If one compares the first-order condition (6) or (27) for A with the Bellman equation (28) for the
value function V, one realizes that because a quadratic approximation of V using (28) will yield only a
linear approximation of A = dV/dx, a quadratic approximation of A using (27) will improve upon this linear
approximation and provide a more accurate approximation of u by. solving equation (5) which requires both A
and dA/6x’. In other words, solving the Bellman equation (28) by a locally quadratic approximation of the
value function V at any required value of x amounts to a locally linear approximation of A and is therefore
inferior to a quadratic approximation of A for the purpose of solving equation (5).

To solve equations (5) and (6) for any given Xp let A(x) be approximated locally about x, by a
quadratic function. Denoting 8 ljaxax or Nax dx’ evaluated at x, by Q we can write

e @ )

Alx) = k(xr) + P (x- xt) + 3 : 4n
(x-x r)l th (x-xt)

‘ xt,Q x,tht lelt
- M) - g o | |brea] s |
xtl pt tth X th
1 X'Q" lel
Eht+H’x+§ : x=h+Hx+% ;| x
’th x'Qp

where the subscript ¢ of h, H and Qi (i=1, ..., p) is omitted when understood. In view of the fact that the
ith component ki(x) of Mx) is the partial derivative of the value function with respect to X many
elements of the matrices Qi (i=1, .., p) are equal. Qijk’ the j-k element of the matrix Qi’ is the third

14



partial of the value function with respect to X xj and X5 it is equal to all elements with the same three
subscripts regardless of order. One way to list the distinct elements of the Q matrices is to start with a
symmetric Ql matrix, omit the first row of a symmetric Q2 matrix as all derivatives of the value function
with respect to x, have been counted, omit the first two rows of a symmetric Q3, etc., until only Qppp of Qp
is specified. The suggested iterative method for solving (5) and (6) consists of two steps. First, given
h, H, Qi (i=1, ..., p), solve (5) for u as a linear function g+Gx of x. Second, given g, G, h, H and Qi
from Step 1, revise A, H and Qi by equating coefficients on both sides of equation (6) or (27).
The approximation of A(x) near x, by the quadratic function (41) implies

x’'Q
t<1 2

A _ ) . r _ 46

aw = HY| b Ear =Y @2
xtQp

As in (41), we further approximate (with the subscripts ¢+ and « of all coefficients omitted as all

derivatives are understood to be evaluated at x A and some tentative value u, for u)

x’P x+ u'P u.
3 ) 1x 1u
r
'é; = kl + le + Klzu + ‘2- : (43)
. x'P x+ u'P u

px . pu

- -
x’S x+u'S u
1X 1w

-a-£=k + K.u+K .vc+l

au -tk 2181 3 (44

x’S x+u'S u
qx qu

f=Ax+Cu+b @5)

We denote by d2 the gx1 vector with its ith element equal to the trace term of (5) and by d1 the px1 vector
with its ith element equal to the trace term of (6). In the first step we substitute (44), (45), (41) and

d2 into (5) and solve for w.

15



‘'S x +u'S u x’
1x lu le

l ’ 7 1 4 . -
K2+K21x+K2u+-2- : +C'h+ C'Hx +5C : +d,=0 (46)
xS x +u'S u , ‘Qx
qx qu P

Linearizing the quadratic terms in (46) about x, and u, and solving the resulting equation for u, we obtain

u=Gx+g @7
where
u’ -1 ’ ’
* lU xtslx X Q1
G=-K2+ 15 K21+ ,E +C'[H + ,E : 48)
u*squ xtsqx xtQp
_1 ( A
ws,, S T Sk Q%
1 | R ] ’
g—-K2+ s <k2-5 , , -EC 5 +Ch+d2> 49
* qu o’ gx't % qu x xtprt
J

In the second step, given G and g, we can revise the parameters of A by substituting (43), (45), (41),
and d1 into (6) or (27) to yield, , letting A+CG = R and b+Cg = c,

x’ le
/ 1 . =
BI - AY) h+Hx+§ ,(:2 -k1+Klzg+(K1+Kl2G)x (50)
x'Q x
P
* (Plx +G PluG)x g 'Plu J Plug
+ -;— : + : Gx + % :
x (pr +G PpuG)x 2 Ppu 2 Pp ¥4
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x'Q, mQ,x)
+|H+ : (Rx+c)+d1+% :
! QX
Qp r(Qp )
Equating coefficients of (50) one obtains
’ L z
1 1 g Plug 1 "(Ql )
=PI -A) k1+Klzg+§ : +Hc+d1+§ : (51)
' ‘P r(Q X
& P8 r(Qp )
lex g'p 1u
H=@- A" (K + K,G+HR+| : [+] : |G (52)
’ IP
<l [P
P »
BQi = Pix + G PiuG + ZQ'R + j=21 ainj (=1, ..., p) (53)

where aﬁ denotes the j-i clement of A = affax’
The parameters of A as revised by (51)-(53) can be used to solve equation (5) for u in step 1 of the

iterative method. This new value of u will replace u in the evaluation of all required derivatives in the

next round‘of steps 1 and 2 until convergence. When the function A is assumed to be linear Chow (1993b) has
reported on computational experience with fairly rapidly converging iterations based on the discrete-time

version of equations (5) and (6). To start the two-step iterative procedure, I recommend using as “, the

solution ﬁ(x{) of the optimization problem based on locally linear épproximations of 3r/dx, 8r/du, f and A,
i.e., on the above algorithm with all matrices Q‘., Pix’ Piu’ Six and Siu set equal to zero. Such a value of
u*(x r) will be used together with x, to obtain all required derivatives in (41)-(45) to start the

iterations. We await further research to report on computational experience of this numerical method,

V. Conclusion
In this paper, the method of Lagrange multipliers is presented for solving dynamic optimization
problems where the state variables follow a system of stochastic differential equations. The method
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presented is an alternative to dynamic programming. It has been applied to solve the well-known problems of
optimum consumption and portfolio selection of Merton (1969, 1970) and of irreversible investment as
surveyed by Pindyck (1991) and Dixit (1992). The method is a generalization of Pontryagin’s maximum
principle to stochastic models in continuous time. It avoids solving the Bellman equation for the value
function. In certain circumstances, including the common example of solving optimal control problems with a
linear dynamic model and a quadratic objective function, it is analytically simpler than dynamic
programming. Other such examples for nonlinear models in discrete time can be founded in Chow (1994). It
is numerically more accurate to the extent that a quadratic approximation of the Lagrangean function is
better than a linear approximation. The latter amounts to a quadratic approximation the value function,
whereas a cubic approximation of the value function of many state variables is very difficult if not
impossible. In conclusion, the Lagrange method is recommended to students and researchers in finance. Just
as Pontryagin’s maximum principle is widely used to solve dynamic optimization problems under certainty, the

Lagrange method will be found convenient to use for solving dynamic optimization problems under uncertainty.
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