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1. Introduction.

The purpose of this paper is to present a complete description of
various bargaining sets for n-person games, in which the set of permissible
coalitions consists of the 1, n-1, and n-person coalitions. These games can
be regarded as special (n-1)-quota games (see definitions in Section 3), and
it turns out that the forms the bargaining sets take depend on whether or
not the (n-1)-quota is non-negative.

Theoretically, the bargaining sets can always be computed as solu-
tions of certain systems of linear inequalities in the payoff space, connected
by the words "and" and "or." (See R. J. Aumann and M. Maschler, [1].) In
fact, the computation of the bargaining set u”( in our case was carried out
(in [1]) for n =3, 4 . 1In general, however, the computation is very
difficult unless some short-cuts can be found. In this paper we used the
method of "deleting" "weak players" from the original geme, thus being able
to obtain a very simple inductive method for constructing the bargaining sets.

It turns out that the various bargaining sets happen to be the
same for the games treated here, except that, if the game has an empty core,

outcomes of the form (xl, Xps eves X501, 2 .. n) occur only in some of

the bargaining sets.
For the sake of completeness we repeat the necessary definitions.

These first appeared in [1].

2. Preliminary notations and definitions.

We are concerned with an n-person cooperative game T' , given by
aset N={1,2, ..., n} of n players, a set {B} of non-empty subsets

of N , called permissible coalitions, and a real valued characteristic

function v(B) defined for the elements B of (B}
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For the sake of simplicity and for normalization purposes, we

assume thatl
(2.1) ie{Bl, v(i) =0 foreach i, ieN.

(2.2) v(B) >0 for each B, B e (B} .

An outcome of a game in which the players are partitioned into
disjoint permissible coalitions Bl’ B2, ceny Bm s where each coalition
shares its value among its members, will be described by a "payoff config-

uration" (p.c.):

> B)

(2.3) (23B) = (x5 % «evs % 5B, By vuny B

Here,
m

(2.4) BJ.(—:{B}, Bjan=4> for j +k, UBJ,=1\T, b k=1,2, ..., n,
j=1

and X5 1s a real number which represents the payoff to player i,1=1, 2, ...,

‘and therefore

(2.5) T x. =v(B.) .
iij L J

'265]3

1’ B

Y AEIED Bm will be called the coalition structure and

Z = (xl, Xoy eees xn) will be referred to as the payoff.

Let K Dbe a non-empty set of players. If the players in K want
to get their shares in (z‘;Zg) » they need only the consent of the players
in those coalitions which intersect K . The members of these coalitions
will be called the partners of K in (1-;29) » and the set of the partners

will be denoted by P[K ; (= ;8)] . Thus

(2.6) PIK; (x3B)1=1{i]ice Bj ; BJ(W K $ 4} .

lIn Section 4 we shall encounter a case where the normalization
v(i) =0, i=1,2, ..., n, will not occur. Nothing in the definitions in
this section should be changed if the game is not normalized.

n
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Note that in this terminology, K(C PIK ; (z;B)] . If 8 is
a subset of a coalition B , we shall refer to the players in the complement
of S with respect to B as the associates of 8§ in B .

We shall be interested in "stable" payoff configurations, which

will later be defined. One of the demands which we shall impose on them is

that they should be coalitionally rational, in the sense that no subcoali-
tion of an already existing coalition could alone make more. Accordingly,

we make the following

Definition 2.1 A p.c. (2.3) for a game I will be called coalitionally

rational (c.r.p.c.) if

(2.7) . v(B) forall B, B(CB,, j=1,2, ..., m, B e {B} .

1€B J
A c.r.p.c. is certainly individually rational, but x in (x ;:B)
does not have to belong to the core of the game, because (2.7) has to be

satisfied only for each permissible B , B C:Bj sy J =1, 2, o0, m .

Definition 2.2 Let (x ;B) be a c.r.p.c. (2.3), for a game T , and let

K and L Dbe two non-empty disjoint subsets of a coalition Bj which occurs
in CZ;QB) H
(2.8) K, L¥d, KNL=¢, K, L.C By, L<i<m.

An objection of K against L in (x;B) is a c.r.p.c.

(2=9) (?;f) = (Yl; y2: soey yn H Clﬂ 02: 2oy Cp) )

for which

(2.10) PIK ; (;zszf>] NL=4¢,

(2.11) y. >x, for all i

L > , 1ieXx,

(2.12) y, >x, forall i, 1ieP[K; (?;;1f)] :



.

Thus, in an objection (}L;Zf) , the players in K claim that
they can get more ((2.11)) without the aid of the players L ((2.10)) s
and the new situation is reasonable, because (;L;Zf) is a c.r.p.c. in

which the partners of K get not less than they got in (x;8) ((2.12)).

Definition 2.3 Let (x';ze) be a c.r.p.c. (2.3) in a game I, and let

(;‘;Zf) be an objection of a set K against a set L in («x;B) .

K, L satisfy (2.8). A counter objection of L against K is a c.r.p.c.

(2.13) (},-.,25) = (Zl’ Zoy wevs Zg 3 Diy Doy oweey Dq) 5

for which

(2.10) PIL 5 (550)] DX,

(2.15) z, 2%, forall i, ieP[L; (};,6)] )

(2.16) z, >y, forall i, ieP[L; (};,Zj)]/)P[K; (?;zf)] .

In their counter objection (;;;a5) , the players in L claim that
they can protect their share ((2.15)) by giving their partners at least what
they had before ((2.15)), and if they need the consent of some of the part-
ners of K who were included in the objecfion, they can offer them not less
than what they were offered in the objection ((2.16)). The members of . L
are allowed to use the tactics of "divide and rule," by taking some members
of K as partners, but they may not take all the members of K as part-

ners ((2.14)).

Definition 2.4 A c.r.p.c. (x;B) in a game I is called stable, if for

each objection of a set K against a set L in (z‘ng) there: is a coun-

ter objection of L against K .

The set uﬂ( of all the stable p.c.'s in a game T will be called

the bargaining set of I' . This bargaining set was defined and some of its




properties were explored in R. J. Aumann - M. Maschler [1].

5. Effective coalitions.

Definition 3.1 Let B* De a permissible coalition in a game I' . B*¥

will be called an effective coalition if there exists a payoff {xi} B

i e B*¥ , such that

(3.1) L ox = v(B¥),
ieB*
(3.2) % x, >v(B) forall B, BCB*, Be (B) .
1€B

Discussion. A coalition is effective if and only if #ts value can be shared
among its members in such a way that no permissible subcoalition is able

alone to make more. Such a share will be called an effective share. It

follows from Definition 2.1 that only effective coalitions appear in a c.r.p.

and the payoff of a c.r.p.c. induces an effective share in each one of its
coalitions. Therefore, a non-effective coalition can never enter a stable
p.c., nor can it be used for objections or counter objections. Accordingly,

the bargaining set of a game T will not change if one declares the non-

effective coalitions of I' as not permissible.

i

Theorem 3.1 Let B* be a permissible k-person coalition, k >2 , in a

game I' . Suppose also that any permissible subcoalition of B¥* which con-

tains at most k - 2 players has a zero value. Let. B(D) denote the

coalition B¥* - {v} , {v} € B¥ , and let w0 2 V(B(D)) if p(v) is a

(v)

permissible coalition, and V(D) =0 if B is not permissible.l A

necesgsary and sufficient condition for the coalition B¥ +to be effective is:

Coy

(3.3) v(B*) z'v(u) for all v, veB*,
(3.4) (k-1) v(B%) > 5 &),
ieB*

lThe bargaining set is not changed essentially if we replace the
non-permissible coalitions in a game by permissible coalitions having a zero

value.
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Proof: If B* 1is effective, let [xi} ; 1 € B¥ , be an effective share of
its value among its‘members. Certainly X, >0 forall 1, i€ B*.
Applying (3.2) to the coalitions B(D) , U € B¥ , we obtain, in view of (3.1),
the condition (3.3). Summing up the same inequalities (3.2) and dividing
both sides by k-1 , we obtain (3.4). The conditions (3.3) and (3.4) are
therefore necessary.

If (5.3) and (3.4) hold, it is possible to choose numbers W(D) s

v € B¥ , which satisfy

(5.5) | (k-1) v(B*) = 5 wii)

ieB*
(3.6) v(B¥) > w(®) eor a11 v , V€ B¥
(3.7) wlo) 5 (o) for all v, v e B¥ ,

(v),

Indeed, we increase continuously the v s one by one so as not to exceed

v(B¥) , until the sum of the new V(D)fs becomes equal to (k-1) v(B*) .

(v)

We then denote these new v (D)'s .

's by w We shall certainly reach the
required sums because of (3.4) and because k v(B*)’Z (k-1) v(B*) . We now

choose the payoffs [XD] to be:

(5.8) | x, = v(B¥) - (o) , ve B .

By (3.6), x,20 forall v, veB*. Also, by (3.8), (3.5) and (3.6),

we get for each v , v € B¥

(3.9) iiB(U) x; = (k1) v(B¥) - iEB(D) wli) o (o) 5 (o)

In addition, by (3.8) and (3.5),

(3.10) 5 ox, =k v(E*) - 5wt oy .
, ieB* T ' ieB*

This shows that [XD) , U € B¥ , is an effective share of v(B¥) among the
members of B¥ , hence B¥ is effective. The conditions (3.3) and (3.4)

are therefore sufficient.



Corollary 3.1 It is easy to check that if

(3.11) (k-1) v(D).g 5 v 1) por a1 v , Ve B%,
iep*

then condition (3.L4) implies condition (3.3). If, however, condition (3.11)

is not satisfied, then condition (3.3) implies condition (3.L4).

Corollary 3.2 We shall call the conditions (3.11) generalized triangle

inequalities, because of the following interesting properties:
First, they reduce to the triangle inequalities if k = 3 .
Secondly, if these conditions are satisfied, and B** 1s any sub-
set of B¥* , containing r members, then the numbers v(i) s 1 € B¥*
also satisfy the generalized triangle inequalities. (In particular, any

(v),

three distinct numbers among the v s satisfy the triangle inequalities.)

Proof: By finite induction, it is sufficient to prove that any k-1 dis-
tinct numbers among the V(D)'S satisfy the generalized triangle inequali-

ties. Let B* 'be a subset of B¥ containing k-1 elements, and let

0, belong to B* - B¥* ; j.e., B¥* =B . We may write the inequality
(3.11), for v = O, s in the form
(v) .
(3.12) (x-2) v © < = (o) ey
iep ©

Multiplying the remaining inequalities of (3.11) by (k-2) and substituting
(v)
(3.12) for (k-2) v , we obtain

(3.13) (k-1) (k-2) v\®) < (-2) %y ) I () w1
ieB ieB

for all v, v + Y, 2 VE B* . Therefore,

(3.14) (k-2) V(D)_S s v ) eorann v, V€ B,

ieB**



Corollary 3.3 1T the generalized triangle inequalities (3.11) do not all:

held, and if

(3.15) v © = Max v s
VEB¥*
then
(v) .
(3.16) (k=1) v ° > 5 3
ieB¥*
Proof: It
(v,) .
(3.17) (k-1) v T > » (&)
1eB¥
and (D )
(k-1) v © < =z v(l) 5
ieB*
then certainly
(Dl) (02)
v > v .

4. n-Person, (n-1)-quota games.

Following L. S. Shapley [4], G. K. Kalisch [2], we introduce the

following

Definition 4.1  An n-person game T ;0 >5, is an m-quota game, if

2 <m<n, if all the m-person coalitions are permissible and if there

exist real numbers @5 Wy ++ey; @ such that™?®
(h.1) v(B) = & o forall B, |B] =m .
ieB

The vector (“js Pys wees wn) will be called the m-guota (or

simply the quota) of the game I s and the number aﬁ will be referred to

as the gquota of player i , 1 =1, 2, ..., n . A player whose quota is

negative (where the game is normalized by (2.1)) will be called a weak player.

If the order of the quota is unclear from the contents, we shall say that

= |B| denotes the number of players in B .

Our definition is somewhat more general than the definitions given

in [2], [4].



the m-quota "contains" a weak player, or that a certain player is weak in
q b )

the game with respect to the m-quota.

Lemma 4.1 There are at most m-1 weak players in an m-guota game.

Proof: This follows immediately from (2.2) and (L4.1).

Lemma 4.2 The m-guota of a game, if such exists, is unique.

Proof: Choose an arbitrary (m+l)=personlsubset E of N . (E exists
because m <n ). Consider the m + 1 m-=person subsets of E and apply
to them the equations (4.1). The resulting linear equations in the

wi's » 1 € B, will have a unique solution. Thus, any m + 1 &E'S are

uniquely determined, hence the quota is unique.

Lemma 4.3  An n-person game, n >3 , in which the (n-1)-person coalitions

are permissible, is an (n-1)-guota game. The quota is

(1) (2) (n) {v)
(k.2) w, = v_*v ¢ — f X - (o=1)v s V=1,2, c0o, n,
where
(k.3) v(i) EV(N(i)) 5 N(i) =N-{i} , 1 =1,2, ceo, n
Proof: Equations (4.1) are satisfied.

Lemma 4.4  An n-person game, regarded as an (n-1)-quota geme, has no weak

(1)

player, if and only if the values v s 1=1,2, ..., n, defined by (L4.3),

satisfy the generalized triangle inequalities:

(4.h) (n-1) V(D) < v(l) + v(g) T oees + v(n) sy V=1,2, ov., nn

(See Corollary 3.2.)

The proof follows'immediately from (L4.2).
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In this section we shall analyze n-person games in which the sets
of the permissible coalitions consist of the 1, n-1, and n-person coalitions.

We shall characterize completely the bargaining sets for these games.

Theorem 4.1 ILet I' be an n=-person game in which the set of the permissible

coslitions consists of the 1, n-1, and n-person coalitions. A p.c. of the

form

(k.5) (x; N) = (xl, K.y eoey X 3 N)

27 n

is stable if and only if N 1s an effective coalition and x 1is an effec~

tive share of v(N) among the players.

Proof: A necessary and sufficient condition that (x; N) is a c.r.p.c.
is that N 1is effective and X is an effective share of v(N) among the
players. A necessary condition that (Xx; N) is stable is that it is a
c.r.p.c. This condition is also sufficient, because if (X ; N) is a

C.r.p.C., no objections are possible.

Corollary 4.1 If n > 2 , then Theorem 5.1 gives a necessary and suffi-

cient condition for N to be effective, namely:

(4.6) (n-1) v(W) >

i

nMs
<
1
[
=
=
vV
<
o
-
=
il
[
-
no
¥
-
[a}
‘o

(1)

where v is defined by (4.3).

The value of v(N) and the fact that it is permissible or not
have no effect on the stability or instability of p.c.'s of the form (1’325) P
where 25 + N , because by (2.10) and (2.14), the coalition N cannot be
formed in any objection or any counter objection.

Obviously, the p.c. (O, O,‘,..; 031, 2, «.., n) is always

stable. We have yet to find the stable p.c.'s of the form (x; N - {j}, Jj) -
L

of the form" will mean in this paper "having the chosen coalition
structure."
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It will turn out that the occurrence or non-occurrence of a weak player in

the (n-1)-quota plays an important role in the result.

Theorem 4.2 ILet T be an n-person game, n >3 , in which the set of the

permissible coalitions consists of the 1, n-1, and n-person coalitions.

Let “ﬁ: Wy ey ah be the (n—l)—guota of T'. If no player is weak,

then a p.c. of the form (x ; J, N(J)) , where N(J) =N - {j} , is stable

if and only if

1) (zs g, 89y = ntd))

cnl, coz, seey (Dj_l, 0, ®j+l’ sees O Js
Remark. The quota: is given by (4.2). Necessary and sufficient conditions
that no player is weak are given in Lemma L4.4. This theorem asserts that
if the numbers V(Nj) » =1, 2, «e., n, satisfy the generalized triangle
inequalities, then the stable p.c.'s are such that each player gets his

quota if he is a member of an (n-1)-person coalition.
Proof': Being an (n—l)=quota, the w&'s satisfy

(4.8) N Oy ) F Oy g F e F O =v(‘]), =12, ..., n,

where v(j) = V(N(J)) - The quota for each player is non-negative, hence
(4.7) is & c.r.p.c. To show that it is stable, we observe that in any pos-

()

sible objection in (L.7), if anyl, a coalition N -is formed, 4 4 j
Such an objection is an objection of a set K against player {,, where K
is a non-empty subset of some players, each different from player j , who

receive in the cobjection more than thelr quotas. The objection must there-

fore be of the form:
1
(4.9) (?_; ’ﬁ, N( )) = ((bl O, By Qs ey ®p 1+ 5 0, Wy, 19 enes

2

o +a ; 4, N(qo’))
n n

lNo objection is possible if ab =0 .
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where Q, >0 for i+/ﬁ,j,ai>0 for ieK,%,j#K,wJ_+ozjgo
and al + a2 + oo + q%—l + q%+l.+ cve + Q@ =0 . (The last inequality follows
from (4.8), where j 1is replaced by 4 .) Thus aj <0 .

Let u be a player in the objecting K ; then au >0 . A counter
objection can now be formed as followsl:

N(H))

= (a)l O, W, H Oy e, Wp o+ Y o, W + &

(k.10) (},; W,
N(H))

°

®ﬁ+l' + q&+1? coey wu-l + au-l’ o, wu+l + au+1? veey wn + an; My
Evidently, ;L.E O coordinatewise. Also, the sum of its coordinates is
V(“) (see (4.8)). Hence (4.10) is a c.r.p.c. It is a counter objection
because au >0 . We have proved that (4.7) is stable.

Suppose now that

(b.11) (z;8)

i

(Xl’ Xny eees Xj—l’ 0, Xj+1? crey X Js N(J)) € o/%ZJ
and suppose that XH < &h s M % J +« Then, there exists at least one player
L , such that X, > wb . Let € Dbe a positive number, smaller than X" ab ;

2
then player u can object against player v by

(h.12) (xl, Koy wees X 95 X+ €, X

Here, by (4.8),

o () -
(4.13) yj = v - ; X, - €= (wl O, ke b - &5) -
1%310
(0, +0, F e FD -, -X )= E=W, +X_ -® -€>wn, >0,
1 2 n J v J v 0 J—

Therefore, (4.13) is an objection.

Player v has no counter objection. Indéed, he cannot counter cbject by

lDespite the notation in (4.10), we do not assume u >4 . However,

w it L.

2Despite the notation in (4.12), we assume no order relation among
the numbers W, v, J , except that they are distinct.
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playing as a l-perscn coalition, because xD.> mD.Z O . He cannot appeal to

the coalition N because of the restriction (2.14). By (2.14) he can only

try to object by participating in the coalition N(M)

; but, summing up the
minimum amounts that the members of this coalition must be paid in a counter

objection, we obtain by (4.8), (4.11), and (4.13):

Xp b Xp b B X g HX g F e +Xj-l Y +Xj+l+ cee A X kX
oo = { ' ;.. - - } - - >
Xt +x (col + @y + + o o, x“) + (a)j LE LT €)
(w) =+ (n)
> - ; - - = - - >
(a)l +®, + + o (Du> + (xD @, €) = v + (xD @, €) > v

)

This sum is greater than the amount the coalition N(M can make, hence a
counter objection is not possible.
We have proved that (x';Z3) is not stable, contrary to the

assumption (4.11), hence each player in (z ;&) must receive at least, and

therefore exactly, his quota. This completes the proof of the theorem.

If a weak player is present in the (n-1)-quota, we shall see that
the game is essentially reduced to a similar (n-1)-person game. To this

effect, we shall now explain how to "delete" players from our games.

Definition 4.2. Let T be an n-person game, n >3 , in which the set of

the permissible coalitions consists of the 1, n-l, and n-person coalitions.

A game PD is said to result from game ‘I' by deleting player v , if:

(i) The players in r, form the set N - {v} .
(ii) The set of permissible coalitions in I, consists of the 1, n-2,
and (n-1)-person coalitions.
(iii) The characteristic function VD(B) of PD satisfies
(4.14) v 30%) = v (),
(v) _

whenever B is an (n-1)-person coalition in T’ and B =B - {v}., and, if

n>5%,
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(4.15) v,(1) =0 forall i,ieN- (v} .

(v)

Discussion: Note that B =B if v 4 B . In deleting player v Irom
the game T , we ignored the n-person coalition, and from each (n-1)-person
coalition which contained player v we made an (n~2)-person coalition by
removing this player from the coalition without altering the value of the
coalition. The (n-1)-person coaiition which did not include player vu

remained unchanged. If n = 3 , it may well happen that the characteristic

function does not satisfy the normalization (2.1).

Lemma 4.5 If {wi} ,1=1,2, ..., n is the (n-l)-quota of T , then

{mi + o / (n-2)} , i=1,2, veuy, =1, 041, ..., n is the (n-2)-quota of

r .
©

The proof is immediate.

Corollary 4.2 If we order the players by their quotas, then deleting a

player from the game will not change the order relation for the rest of the
players. In particular, if we delete a weak player, the remaining weak
players (if such exist) will remain weak, some previously non-weak players
may now become weak, but their new qﬁotas will be greater than the new

quotas of the previously weak players.

Lemma 4.6 Tet I' be an n-person game, in which the set of the permissible

coalitions consists of the 1, n-1l, and n-person coalitions. Let

(4.16) (x; Js N(J)) = (Xl’ Koy cevy Xj-l’ 0, Xj—'rl’ coey an J, W= {3})

be a c.r.p.c. in I' . Then:

(i) An objection of the form

(L.17) (?: 'P/: N({)) (yl’ Jos eeey y/P/-l’ 0, y’bl—l’ ceay yn:' ’P/; N - {’P/})

existsl if and only if 1 + J and

;By (2.10) and (2.11), any possible objection must be of this form.



(4.18) S ox,
iy, Lt

(i1) If an objection of the form (L.17) exists, for a fixed 4 , 4 4 j ,

then each objection of this form can be countered, if and only if

(k.19) xp =0 or v gy >y

+ Xp for all k , k + J

Here V(D) = V(N(D)) viN - {v}), v=1,2, 0., n .

Proof: The necessity and sufficiency of condition (4.18) follows immedi-
ately from Definition 2.2. Suppose that (L4.18) is satisfied, and that any
objection of the form (4.17) can be countered, for a fixed 4 . Each objec-
tion of this form must be regarded as an objection of a set K against
player {,, where K 1is a non-empty subset of the set consisting of those
players, different from player j, for which vy > X; e In particular, for
each fixed player k , k € N - (&} - {j} , we can distribute the amount v({J
in such a way that Ve = % + € , where € 1is an arbitrarily chosen small
enough positive number, and make this distribution an objection of player k
against player 1. Player L can counter object in at most two ways: either
by playing as a l-person coalition, which is possible if and only if Xp = 0

(k)

or by Joining the coalition N s> which is possible if and only if

(4.20) v(k) - xp > v(%) -x - €

Thus, either xp = 0 must hold or (4.20), for each sma}l enough positive e .
We have therefore proved that (4.19) is a necessary condition.

Conversely, if Xp = o, player-& can always counter object by
playing as a l-person coalition. If (4.19) is satisfied, but xp >0, let

(),

(;LS {, N be any objection of K against L. Certainly, K is a
non-empty subset of N - {£} - {j} . Let k be a player in K , then
Yk > X, We claim that player'% has a counter objection against K , of

the forml

;Despite the notation in (4.21), 4 1is not necesgsarily greater than

3
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k)v =
(b.21) (23 k, N( )) = (y., Vn, voey V72 00 Fqs cees TP qs Zps Tp 4 s
1’ 72 k-1 k+1 -1 " Yl

yn5 k, N(k)) ’

where
(k)
(4.22) = - = .
S i;lk,%yl
Indeed, because of (4.19),
(k.23) zp = V(k) - V(ﬁ) +y > v(k) - VQ&) x> xp .

This completes the proof.

Theorem 4.3 ILet TI' be an n-person game, n >3 , in which the set of the

permissible coalitions consists of the 1, n-1, and n-person coalitions.

Suppose that the (n-1)-quota of the game contains a weak player, and let v

be the player having the smallest quota. Let FD be the (n-1)-person game

which results by deleting player v from T . Under these conditions:

(i) A p.c. of the form

(h.2h) (x; v, N(D)) = (Xl’ Koy ooy Xu—l’ 0, ceey X500 N - {v})

X
v+1?

is stable in TI' , if and only if

cooy X 3 N = {v})

(h.25) (x5 0lY) = (xps %9 woes Xy 10 X n

is stable in FD « Such stable p.c.'s always exist.

(ii) A p.c. of the form

(4°26) (Z:' :j) N(J)) = (Xl’ Xg} ey xj_lﬁ O} xj_l_l’ MRS | Xl’l; j? N - {J}) 5

<j+D:

is stable in T if and only ifl X, = 0 and
. Vs J -
(h27) (x5 5, W) = (x5 gy ey X 05 X

INEEREREY Xj—l’ 0, xj+l’ ooy X5

i, M- (v} - {3})

lDespite the notation.in (4.27), v is not necessarily smaller than j
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is stable in FD .

Proof: (1) Player © has the smallest quota; hence, by (4.1) and (k.14),
(4.28) v_ = V(D) = Max v(i)lf Max v<i) = Max VD(1> s
© ieN ieN- (v} ieN- ()

where the following notation is used for the characteristic function VD(B)

of T' :
0

(k.29) voEv - (ol , v sy - (o) - (1)) for 14

1Y) (Y] 0

By corollary 3.3,

~ () (1) _ (1)
(4.30) (n—l)VD = (-1)v270 > i?m ! A iﬁN-[D} "o °
Therefore,
(h3) (n=-2)v_ > % v (1)
ieN-{v} °

Corollary 4.1, applied to the game L (L.28) and (4.31) insure the effec-
tiveness_ of the coalition N - {v} in PD . Thus, by Theorem 4.1, stable
p.c.'s for the game I, » of the form (4.25) always exist.

If (4.25) is stable in the game FD , then certainly (4.24) is a
c.r.p.c., because Ve T V(D) » and because X ¥ > 0 coordinatewise. We know
already that 1 and n-person coalitions cannot be used in any objection to
(b.2h). The p.c. (4.25), being stable in FD , induces by Theorem 4.1 an

effective share of v, among the players of N - {v} . This means that

()

(4.32) X, >V =, for each 4, L v .

=
i+o;& tov
Lemma 4.6, part (i), now implies that no objections are possible in (4.24),
with respect to the game TI' . Therefore (4.24) is stable in T .
Conversely, if (4.25) is not stable in PD , but (L.24k) is stable

2
in T, then, by Theorem k.1, X * is not an effective share of v, among

lEven if n =3, where (2.1) does not necessarily hold for PD .

2Even in the case n = 3 , where the assumption (2.1) does not
necessarily hold for FD .
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1

the players in T’ . Therefore, there exists a coalition N(D’ ) > D +‘£ ;
v

for which

ORI

(4.33) iibf& X, <V, =v .

Lemma 4.6, part (i), now asserts that there exists an objection of the form
(4.17) in (Lk.24), with respect to the game TI' . If we show that (4.19) is
not satisfied, then, by Lemma 4.6, part (ii), (4.25) would not be stable in

I' , whence a contradiction. This is indeed the case, because if Xp = 0,

then (4.33) would imply Vi < v(&) , contradicting (4.28). If for each k ,

k 40, v(k) +x E vcﬁ) + xp , then (4.33) would imply

(k.3k) V(k) +x > . ox. + xp = % x, = V(D) .
ido, 4 * ifo *

Summing up these inequalities for k =1, 2, ..., V=1, v+l ..., n , we
obtain

(k.35) ; W) (n-l)v(b) .
i=1

This contradicts (4.30).

(ii) Consider the expressions (4.26), with X, = 0, and (Lk.27),
with respect to the games T' and I‘D ; respectively. Certainly, :i;f one of
them is a p.c. in its game, so is the other. Also, they are simultaneocusly
coalitionally or nen-coalitionally rational in their respective games.l jWe
can therefore assume that (4.26) and (4.27) are both c.r.p.c. in their
respective games. Applying Lemma 4.6 to the game T' , we find that the p.c.

(4.26) with x_=0 1is stable in I' if and only if for each £+ , L 4 j ,
IY) .

(L.36) x> v(&) or xp =0 or v(k)+ X, > vcﬁ)+ xp for all k , k £
1¥d,
Applying the same Lemma to game PD , and taking (4.14) into account, we find

that the p.c. (4.27) is stable in I, 1if and only if for each L, E 50,

lOne has to check especially the case n = 3 , when the assumption
(2.1) does not necessarily hold for FD o
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k) (1)

(4.37) 2 x> v(&) or xp =0 or v( +x, 2v '+ x forall k,
i+j,{,u
k+j).u°
Certainly, (4.36) implies (4.37), because X, = O . We shall show that the
converse is also true! Indeed, (L4.36) is always satisfied for 4 = v .

Thus, if (4.37) is satisfied but (4.36) does not hold, then a player {,)

1 * Jsv exists, for which

(4.38) 5 x, < v(&) » % >0, and V(D) +x < v(£)+ Xp -
i+j,’&”l v
Using again the fact that X, = 0 , we find that
(4.39) V(D) < VG&) +xp < v(k) +x  for all k, k $ 3,0 .
Summing up these inequalities for k # J,v , we obtain
(4.50) m2)rl® < 5z 1)L p x5 D) ,
i$3,0 id3 T idv
or
(v) _ = (1)
(4.41) (n-1)v < T v
i=1

¢

This contradicts (4.30).

We have proved that the p.c.'s (4.26) with x, =0, and (k.27)
are simultaneously stable or unstable in their respective games. It remains
to be shown that the p.c. (4.26) is never stable ifl xD >0 . We shall

show that then (4.36) is not satisfied for 4 = v .

It follows from (4.28) that

(k.k2) 5 ox, = v(j) -x < v(j) < V(D)
i+<jJD * © -
It
(L.b43) V) X, > Vo) x, for all k , k 3,

lIt is certainly unstable if X < 0 , because then (L4.26) is
not c.r.
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then, replacing x_ in (L.43) by O and summing these inequalities, we
obtain

(b 1) R LA C) S C R WO I
i%j ‘ i=

This contradicts (4.30). Thus, (4.26) cannot be stable if % > 0 , which

brings the proof of the theorem to its end.

Conclusion. The procedure for obtaining the bargaining set for the games
described in this section is set by Theorems 4.1, 4.2, and 4.3, as follows:

The p.c. (0, 0, «v., 0; 1, 2, ..., n) is always stable.

Theorem 4.1 and Corollary 4.1 provide the stable p.c.'s of the form (x; N).
These exist if and only if the game has a non-empty core, and the payoffs in
the stable p.c.'s form exactly the core of the game.

If the generalized triangle inequalities (4.4) hold for the values
of the (n-1)-person coalition, i.e., if no weak player exists in the (n-1)-
quota, then Theorem 4.2Iprovides us with all the stable‘p.c.'s of the form
(x5 J, N-{31) .

If there is a weak player in the game, we delete the weakest
player v (i.e., the player with the smallest quota) and reduce the game to
an (n-1)-person game with the 1, n-2, and (n-1)-person coalitions as permis-
sible. The new game has a non-empty core. The stable p.c. of the form
(x*35 3, N={j}-{v)) in the new géme are in 1-1 correspondence to those stable
in the original game, of the form (X ; j, N) . To obtain a stable pPe.C. in
the original game, we pick a stable p.c. in the reduced game, we add the weak
player with a O payoff, and change the coalition structure in an obvious
way .

If, by deleting the weakest players, one at a time, we finally
arrive at an m-person game, m > 3 , with no weak player in the (m-1)-quota,

we calculate by Theorems 4.1 and 4.2 its bargaining set, from which we can
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successively return to the original game, each time by using Theorem 4.1.
If we arrive at a 3-person game, which still contains a weak
player, then reducing once more we arrive at a 2-person game of the

players, say, k and {,, with the characteristic function

(%.45) vik) =a, v(i£) =b , v(kl) = ¢, c>a+1 .

ObviouSly, the bargaining set for this game consists of the p.c.'s:

(4.46) (a, b; k, ), (a +a, b +8; k), B>0,x+B=c-a-b

From this bargaining set we go back, as before, to the stable p.c.'s of the
form (x; j, N-{j}) in the original game.

Two features should be stressed:

(1) For any coalition-structure of the form j, N-{j} , there
always corresponds a payoff X such that (x; Js, N-{3}) is stable. The
game holds true for the coalition-structure N , if and only if N is an
effective coalition.

(2) The game has a discrete bargaining set if and only if its
(n=-1)-quota contains no weak player and the n-person coalition is either
ineffective or its value is exactly equal to the sum of the quotas of the

players.

5. Other kinds of bargaining sets.

The bargaining set 04( represents possible outcomes of a game,
assuming that the players wish to end up with that kind of stability which
is implied by the definition of VJZ, Such a wish may sometimes cause
iﬁconvenience to the players: It may happen, for example, that the n-person
coalition is not effective, yet its value is greater than the value of any

other coalition.l One may argue that the players might be willing to relax

this happens, e.g., in essential constant-sum games (with a
superadditive characteristic function).
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their stability requirements somewhat, in order to take advantage of form-
ing the n-person coalition.

Taking another point of view, one may argue that an outcame in c/%{
is only protected against threats within an existing coalition, but not
against objections raised by members in several existing coalitions against
other players in these same coaliticns.

In R. J. Aumann and M. Maschler [1], several possible modifica-
tions of the theory are suggested for coping with such situations. In this
section, we shall examine how some of these modifications affect the bargain-

ing set for the games which were treated in the previous section.

Definition 5.1 A c.r.p.c. (x ;) will be called J{O—stable, if it

satisfies Definition 2.4, where objections and counter objections are given

by Definitions 2.2 and 2.3, except that (2.8) is now replaced by
(5.1) K,L+¢,KﬂL=¢,KﬂBj%d;@ﬁ-LﬂBj=¢>, for Bjeﬁ,,

Verbally, we are now dropping the restriction that K and I belong
to one coalition Bj s requiring instead that K and L intersect the‘gg@g
coalitions in 5@3 .

The set of all the vjz;msiable p.c.'s will be called the bargaining
set M, -

Certainly, °A4Z C:Ujé and this inclusion may indeed be strict
(see [1], [3]).

In this section, in order to be specific, we shall refer to p.c.'s

in VA{ as 04{—stable p.C.'s.

Theorem 5.1 Let I' be an n-person game, in which the set of the permis-

i

sible coalitions consists of the’i, n-1, and n-person coalitions. The

bargaining sets 04{'and DAQS for T' are equal.
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Proof: In any possible coalition~-structure B » there occurs at most one
coalition which contains more than one player. By (5.1), neither K nor L
may contain a l-person coalitipn of 2 s Whence, in our games, condition

(5.1) is equivalent to condition (2.8).

Definition 5.2 A c.r.p.c. (x ;;28) will be called 04{1=stableﬁ if for
each objection of a set K against a set L , there is at least one player
in L who can counter-cbject. (Objections and counter objections are being
taken as inl Definitions 2.2 and 2.3.)

The set of all the u/{

1
ing set ‘/¢Zl .

Since an objection of a set K against a set L may be regarded

=stable p.c.'s will be called the bargain-

also as an objection of K against any particular member of L s the condi-
tion for o”%lmstability 1s equivalent to requiring that each player in L
is able himself to counter-object (although the players in L may find it
impossible to counter-object collectively). Thus, 04((: VJ{i , and this
inclusion may indeed be strict (see [1]). We further note that any objec=
tion of a set of players K against a single player 1 may be regarded as
an objection of a single player k in X , against player*& o« In view of
(2.14), one observes that Definition 5.2 is equivalent to Definition 2.k,
when restricting K and L , in the latter case, to containing only one

player .

Theorem 5.2 Let I' be an n-person game, in which the set of the permis-

sible coalitions consists of the 1, n=1, and n-person coalitions. The

bargaining sets u¢{ and u/(l are the same for I' .

Proof: It is sufficient to prove that 0471(: 04T'for our games.

;Although Theorem 5.2 will remain valid of we replace (2.8) by
(5.1).
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Certainly, there is only one p.c. with the coalition structure

1, 2, «..; n, and it is UA{l as well as QJQ:stable.
If (Xl, Xos coes X3 N) is uA%;-stable, then it is a fortiori
a c.r.p.c., and hence, by Theorem 4.1, it is also v/zlstablen

Suppose that (x; J, N(j)) = (xl, Xpy wees X5 35 N - {3}) is
u/y(l-stablem Let (3¢;Zf) be an objection of a set K against a set L ,
in (x; j, N(j)) . Clearly, ¢ K, L and therefore zﬁ must be of the

form ({3 N({J) B {,+ J - Thus L consists of one player, namely player‘& P

and by aj?;—stability, the objection can indeed be countered.

Definitions 5.3, 5.4, 5.5 The bargaining sets ujﬁ(i), ujfg(i) and UA{l(i)

are defined exactly as u¢{; vﬁé , and o/{i s respectively, except that the
coalitional rationality restriction imposed on the p«C.'s is replaced every-

where by the requirement that the p.c.'s are individually rational. I.e.,

we replace (2.7) by the weaker requirementl:
(5.2) Xi.f O for alli, i1=1,2, ..., n.

Clearly, ‘/hé(l>(: ,A{ﬁl)(: DA{;(l) . An example in2 [3] shows that the
first inclusion may indeed be strict. The following example will show that

also the second inclusion may be strict.

Example 5.15 n==4, (B} = (i, ij, 123} , v(i) =0, v(ij) = 10 , v(123) = 18
for all 1,j where 1i,j =1, 2, 3, 4 and i 4 j . Clearly, (6, 6, 6, O; 123,4)
belongs to udfi(i) but not to‘oA{(i) .

We shall see laterlL that each of the bargaining sets 04%;(1), vd{(l)

lIf (2.1) is not assumed, we require X, 2 v(i) for all i .

2Example 5.1. In this example coalitional rationality coincides
with individual rationality.

3

A similar example was suggested to me by H. Kesten, in a different
context.

Two examples of thig kind were indicated also in [1].
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and oj{i(i) may be different from LJ%;’ OJ{ and UJZL o

Theorem 5.3% Let I' be an n-person game, in which the set of the permis-

sible coalitions consists of the 1, n-1, and n-person coalitions. The

bargaining sets JM;(l), v4{(l), and u”{i(l) are the same for I' . More-

over, the p.c.'s in these bargaining sets which are not of the form

(x; N) coincide with those in UJZQ

Proof: Any i.r.p.c. not of the form (x; N) must be also coalitionally
rational. P.c.'s of the form (x ; N) never enter into obJjections or counter
objections. This, and the fact that on; = VA{ = U4(l » assures the last
assertion.

Any objection in (x ; N), in any of the above definitions, must
be of the form (x’;‘ﬂ, NC&)) s and any counter objection to such an objec-
tion, in any of the above definitions, must either satisfy Xp = O or be
of the form (z; k, N(k)) » where player k belongs to the objecting K .
Thus, one sees easily that conditions that (X ; N) is zA%Z(i), u/((i),

u%(l(i)—stable are equivalent. This completes the proof.

We realize that the only new p.c.'s which might appear in oj{(i)
and not in u&( are p.c.'s of the form (2:; N) . We shall see that this
will actually happen. It is remarkable, however, that uA{(i)—stable D.Co's
of the form (x ; N) which are not 04(=stable, occur if and only if N is
not an effective coalition. In other words, as long as odf—stable P.C.'8
of the form (z; N) exist, all the bargaining sets considered here are
identical for our games. If no u%cstable p.c. of this form exists, the
players may relax their stability requirements, by replacing the coalitional
rationality requirement by individua; rationality restriction. Doing so,
they will always find an aJ{(i)—stable p.c. of the form (x; N) .

In order to prove this and.analyze the new p.c.'s, we shall Tirst



-26-

establish the following:

Lemma 5.1 Let I' be the game described in Theorem 5.3. A p.c. of the form

(x; N) is tf%(l) stable, if and only if for each player £ , 4 =1, 2, ..., n,

VK{J or xp = 0 cor v(k) + Xk > v(£o + Xp for all k .

(5.3)

X,

v

2
ifH -
Here, v ©) = V(N(D)) =v(N-{v), v=1,2, «eo, n .

The proof of this lemma is similar to the proof of Lemma 4.6, and

will therefore be omitted.

Theorem 5.4 ITet I’ be an n-person game, n > 2 , in which the set of per-

missible coalitions consists of the 1, n-l, and n-person coalitions. If N

is an effective coalition, then a p.c. of the form (x; N) is uﬂ{(l)-stable

if and only if it is UA{—stable.

Proof: If (x; N) is uA(Lstable, then it is a c.r.p.c., and the first
inequality in (5.3) holds for each 4 . Hence (xX; N) 1is also uAf;stable,
Conversely, suppose that (x; N) is c/Myl)=stable. This means

that (5.3) holds. If there exists a player pu for which

(5.4) zox, < V(H) and X, = 0,
i+u
then
S ()
(5.5) v(iN) = = x, = = x, <v'"* .,
i=1 t it

By Corollary 4.1, N is not an effective coalition, contrary to our assump-

tion. If there exists a player u for which

(5.6) I ox, < v<u) and v(k) + x> V(H) +x for all k ,
i+u + K
then
' - (1) (k)
(5.7) v(N) = & x. <v'M? 4x <vw +x for all k .
i=1 * i k

Summing up these inequalities for k =1, 2, ..., n » we obtain:



(5.8) (n-L)v(N) < = v .

Again, by Corollary M.l,: N is not an effective coalition, contrary to our
assumption. Thus, the first inequality in (5.3) must hold for each 4 ,

whence, by Theorem 4.1, (x; N) is ad(?stable. This completes the proof.

The situation is more complicated if N is not an effective coali-

tion. BSeveral cases will be distinguished.

Theorem 5.5. Let I' be an n-person game, n 2> 3 , in which the set of the

permissible coalitions consists of the 1, n-1, and n-person coalitions. Let

N be a non-effective coalition. If the p.c.

(5.9) (wl-c,‘wg—c, ooy O -C; N) ,
where

W, + W, + ee. +0 - v(N)
(5.10) ¢ =42 1 ,

n

is individually rationall, then this p.c. is aA1(l)—stable, and no other p.c.

of the form (x ; N) is UA{(I)wstable. In particular, (5.9) is always

individually rational if the characteristic function of the game I' is super-

additive.”

Proof': Case A. Suppose that

(5.11) v(N) > v(N - {v})= V(D) for each v, v=1,2, ..., n .

By Corollary 4.l, since N is not an effective coalition, we cbtain:

2 (1)

(5.12) (n-1)v(N) < = v .
i=1
Therefore,
(v) . & (1)
(5.13) (n-1)v'7 < = v for all v, V=1, 2, ..., 0,
i=1
1 .
T.e., 1if @, = ¢c>0 foreach v, v=1, 2, «v., n .

2I.e., if (5.11) holds.
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which, by (4.8), implies

n n

(5.1k4) (n-1) = o, < 2 2 o, =(n1l)2 o,

. i 0, e . i

ifv i=1 j#i i=1
We see that @, >0 forall v, v=1, 2, ..., n ; hence,

nw 4+ v(N) = 0. = 0. = ceu = O (n-1)o  + v(N) - V(D)
(5.15) w - c=—2 L2 2 - 0 >0 .
v n n

This proves that (5.9) is indeed an i.r.p.c. . Since (5.9) is an i.r.p.c.,

then, by (5.3), it is u”((l)-stable, because for each k and 4 ,

(5.16) V(k) + (wk‘c) = igl w - c = VC%) +6(Qﬁ-c).

Conversely, let (x; N) be an ol{(i)-stable p.c. for I', then
(5.3) is satisfied. Since, by Theorem 4.1, the géme has an empty core, there
exists a player L = b , for which the first inequality of (5.3) does not
hold. We know that (5.4) implies (5.5), which is contrary to (5.11), hence

we must conclude that Xu >0 , and that

(5.17) v + x> V(H) +x for all k , S ox. < V(H) .
M i+u 1

If, for some player.p we had

(p)

(5.18) Zox, 2w s
i+p
we would obtain '
2 (p) (1) -
(5.19) viN) = = x. >v +x >v +x > X x, =v(N),
i=1 T 7 P AR P

which is a manifest contradiction. Thus, (5.18) never holds, xD > 0 for

each player v ; and hence, by (5.3)

(5.20) V(k) + X = v(%) +%p ; X, = v(I)
i=1

holds for each k and 4 . Equations (5.20) have a unique solution; there-

fore (a; N) is the p.c. (5.9).
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Case B. We now suppose that (5.11) does not hold. The fact that

(5.9) is an i.r.p.c. is by (4.2) and (5.15) equivalent to
(5.21) v(N) + = V(1) >n 0 por a11 Vo, V=12, cvayn

As before, (5.9) is certainly «/%(1)-stable because (5.16) holds.
Let (x; N) be an uj(hj-stable p.c. for T, then (5.3) is sat~

isfied. Let S %be the set of indices v , for which

(5.22) 5 x, < yt0) ,

ifo *

and let R =N -8 . 8 is not empty, because the game has an empty core.

Obviously,
2 (v)

(5.23) viN) = = x, <v +x,  for each v, veSs,
i=1
- (1)

(5.24) v(N) = = X, 2V +x, for each v, v e R .
i=1

I. We shall examine now the case in which X, O foreach v, ves.

In this case v(N) < V(D) for each v, vesS. et IR| 40, we can sum
up the inequalities (5.24), and we obtain
(5.25) ( R[] ='1) v(w) > = S

ieR

(a) (1) _(2) (n>>

Let v =Mex (v'7/, v*°/, ..., v . Certainly, @ € S , because

v(a) >v(N) . From (5.21) we now obtain

(5.26) o <)+ oz vy (|R]-1) v(1) < |B|] v(w) + || +\%) |
ies
which implies v(a).f v(N) . This, however, cannot happen, because we are
dealing with the case in which (5.ii) does not hold.
Thus, R =4 , hence v(N) =0 . In this case, (x; N) must be
(0, 0, «+.y, 05 N) . We shall show that it must be equal to the p.c. (5.9).

This follows easily from (5.10) and from the fact that (5.9) is an individually

l|PI denotes the number of elements in a set P .
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rational p.c.

II. Suppose that there exists a player p , p € S » for which xp + 0.

Certainly, v(N) >0 . By (5.3), then

(5.27) ) v(k) + x> v(p) +x, foreach k, k= 1, 2, veu, 1

Again, R = b » since otherwise, for a player ¢ in R we would have obtained

by (5.23), (5.24) and (5.27) the impossible inequalitys:

(5.28) v(N) > V(G) + X > v(p) + X > v(N) .

Thus, S =N . Let P %be the set of players T for which X, = 0,

and let V(a> = Max (V(l)’ V(E) v(n))

3 evey . Let Q be the set of players
o for which X >0 . We know that Q § ¢ and that (5.27) holds for each

0, P € Q ; hence

(5.29) V(T) > v(p) +x, whenever T eP , peq.

Summing up these relations for all the p's in Q , we obtain

(5.30) |Q v(T)‘E x it + v(N) whenever T € P
ieq

2

which implies

(5.31) v+ oz vy s ) g ) g ) (@)
ieq 1P ieP

By (5.21) we realize that this situation can happen only. if V(T) = V(a) for

each T , T € P , and if
(5.32) vl) + = v(l) = nv(T) whenever x_ =0 .

It follows that a% - ¢ = 0 whenever X, = 0 . The inequalities (5.20),
restricted to all k, {,, where k,'ﬁ € Q , determine uniquely Xp for each

P, P €Q, hence (x; N) is the p.c. (5.9). This completes the proof of

the theorem.
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If (5.9) is not an i.r.p.c., it cannot be u&?l)—stable. In order
to get the stable p.c.'s in this case, one has to refer to some sort of

"deleting" of players from the game. This will be established as follows:

Lemma 5.2 Let T' De a game ag described in Theorem 5.5, except that (5,9)

‘ any
be no longer individually rational. ILet « be|one of the players having

the smallest quota, and let (x; N) %be an o/Jy(l)—stablegqc. Under these

conditionsz %, = o .

Proof: We know that in this case the characteristic function of the game
is not superadditive (see end of Theorem 5.5). Certainly %1 - ¢ <0

If x, >0, then, by (5.3),

(5.33) either X x, > v(a) or v(k) +x > v(a) +x, for each k .

By (k.2), v(a) = Max (v(l)j v(e), cves V(n)) ; hence the first inequality in

(5.33) implies v(N) > v(%) 4 x> @)

, which is impossible because (5.11)

does not hold, and the second inequality in (5.33) implies

(5.34) g v(i)
i=1

+ v(N) > nv(a) + X, > nv(a) 5

which is again impossible because it implies (see (5.21)) @, - c>0

Therefore Xa =0 .

Theorem 5.6 Let T be an n-person game, n >3 , in which the set of

permissible coalitions consists of the 1, n-l, and n-person coalitions. Let

@ be & player having the smallest quota, and let W, - ¢ <0 , where c¢

is defined by (5.10). ILet T% be an (n-1)-person game which results from

I' by deleting the player < and assigning the remaining players the follow-

ing characteristic function:
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o~

‘v(B U {@}) whenever B =N - {a}-{v}, v=1,2, ..., n, v % a,

]

(5.35)  v*¥(B) = < +v(I) for B=N- {a},

1l

1, 2, eeey @=1, Q4+, v.., 1 .

LO for B

Under these conditions,

(5.36) (z; W) = (Xl’ Xny eeey Xn:' N)

is <ﬂ{(l>-stable with respect to I', if and only if Xy =0 and

(5.37) (z *; %) = (xl, Xor wees Xg 95 Xggs eeey X3 N - (0))

is 04((1)-stable with respect to T¥

Proof: We know already that X, = O is a necessary condition for (= ; N)

to be-ujt(l)-stable with respect to T , hence (5.3) reduces to

(5.38) = X, > V(D) or x =0 or v(k) +x > v( +x _ for each k ,
i+0,a ©

which are to be satisfied for each v , ©» + &, v=1,2, ..., n . The cor-
regponding conditions for (x ¥; N¥) +to be UA%(l)—stable with respect to

I* are the same inequalities (5.58), except that k 1is not required to

cover player & . The theorem will be proved if we can show that no player

¢ exists, for which

(5.39) v(k) +x o > v($) * X, for each k , k + a , v(a) + x, < V(@) Xy
if (x; N) is an i.r.p.c. with respect to T'. Indeed, otherwise, we
obtain
(5.40) V(k) + x> v(a) for each k , k & ,
and hence
(5.41) g v(i) + v(N) > nv(a) .

i=1

This contradicts the fact that @, -c<O (see (5.21)).
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Discussion.

The u}{Ki)-stable p.c.'s of the form (x ; N) are the core of
the game, provided that the core is not empty. If the core is empty but
(5.9) is an i.r.p.c., it is also the unique 04((i>—stable p.c. of this form.
If this is not the case, in order to obtain the cjy(i)—stable p.c. of the
form (x; N) , one "deletes" the "weakest" players one at a time, as
explained in Theorem 5.6, until one arrives at a game for which the
uﬂf(i)-stable p.c.'s are known. The players which are deleted would get a
zero payoff anyway, and the payoff for the others is determined to be their
payoffs in the oﬁ((i)fstable p.c.'s in the reduced game. Our analysis will
be completed if we list the t/%gi>-stable psc.'s for the 3=-person game with

an empty core, for which (5.9) is not individually rational:

Theorem 5.7 Let T' be a 3-person game, the characteristic function of

which satisfies

(5.42) v(l)‘z V(Q).Z V(5) s v(N) < v(l) , v(N) + v(g) + V(B) < 2v(l) 5
where v(i) =v(N - {i} , i =1, 2, > . The following are the necessary

and sufficient conditions for a p.c. (x ; N) = (xl, Xpy X35 123) to be

ujz(l)nstable with respect to T :

> V(B), X, > v(2) and

(1) It V(N)Zv(g) +v(5) then x 5 2 and

=0, x

1 2

)

(i1) If v(m) < v(

+v(3) but v (I) w3 gv(g) and v(N) + (2 EV(5)
= %(V(N) + V(B) - v(e)),‘x5 = %(V(N) + V(E) _ V(B))..

2
(111) It (@) ++v2) - v <0 ) then x, =%, = 0, x, = v(N)

i
O

then xl

X
)

The proof follows immediately from analyzing the inequalities (5.3).

Corollary 5.1  For our games, there always exists an UAZ(l)—stable p.c. of

the form (xz ; N)
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Corollary 5.2 The procedure described in Section M,Of deleting a weak

player from the game in order to find the VA{Lstable p.c.'s of the form

(x; Js N(J)) » 1s the same procedure for finding the VAQ?I)-stable p.c.'s

of the same form. In other words, when we treat the reduced game, we may

look for the QA{(l)-stable p.c.'s for this game, and forget about the

Lﬁ%istability theory. This is a consequence of the fact that the reduced

game always has a non-empty core (see end of case (1) in Theorem 4.3 and

the conclusion at the end of Section 4). For games with a non-empty core,
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