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Abstract

This note addresses a problem in the routine application of nonlinear two-stage least squares or
generalized method-of-moment estimation methods to the Box-Cox regression model - namely,
existence of an inconsistent minimizer at infinity when the dependent variable always exceeds (or is
exceeded by) one. The proposed solution is to rescale the minimand for the estimation criterion by a
power of the geometric mean of the dependent variable, which corresponds to rescaling the dependent
variable by its geometric mean in a reparametrization of the model. This rescaling of the estimation
criterion eliminates the root at infinity except for pathological configurations of the data, but does not
affect the asymptotic distribution of a consistent root of the minimization problem.
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This note suggests a simple modification to the GMM criterion to help ensure that the
minimizers are interior points of the parameter space. The modification is similar in
spirit to the réscaling of the Box-Cox transformation by a Jacobian term, as proposed by
Box and Cox (1964) and Hinkley and Runger (1984). The suggested rescaling of the GMM
criterion typically eliminates the pathological behavior of the minimization problem, but
this is purely a global effect; the local properties of the consistent minimizer of the

rescaled criterion are the same as for the {unscaled) GMM estimator.

2. The Model and Proposed Estimator
The Box-Cox regression model analyzed here is the same as was studied in Amemiya and
Powell (1981); given the (p-dimensional) regression vector X, and scalar error term

€, the dependent variable Y; satisfies the relation

z(yi, AO) = x’iBO * €, i=1, ..., n (2.1)

where BO and AO are unknown parameters and z(u, A) is the Box-Cox transformation

(Box and Cox (1964)), defined as
20y, ) = 1 = AT N = 1)+ 1A = 0)-logly) . (2.2)

[The symbol "I(A)" denotes the indicator function of the statement "A".] Thus, the

dependent variable is generated as

y; = h(xiBo * e, AO) , i=1, ..., n, (2.3)

where h(:) is the inverse transform

1/A

hiu, A) = (A = 0)-(1 + Au) + (A = 0)-explu) . (2.4)

Estimation of the unknown parameters BO and Ao for this model traditionally
proceeds by assuming the error terms e are i.i.d. and Gaussian; the conditional

likelihood for the {y} can then be obtained from (2.3). However, assumption of
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n
1 p
mn(B» A) = Fl Z (Z(yi, A) - XiB)'wi, (2.6)

1=1
a generalized method-of-moments (GMM) estimator of BO and AO can be defined to

minimize the quadratic form
Sn(B, A) = [mn(B, A)I’An[mn(B, Al (2.7)

Under suitable regularity cbnditions (discussed below), this estimator will be consistent
ifv An converges in probability to a positive definite matrix. Amemiya and Powell (1981)
considered the special case An = n_1 Zi wiw’i, which yields the nonlinear two-stage least
squares (NL2S) estimator proposed by Amemiya (1974). This choice would be appropriate if
the error terms happened to be homoskedastic, but as Hansen (1982) has noted, a more
efficient estimator is obtained if An converges in probability to the inverse 6f the
covariance matrix of €W, which is not proportional to n_1 Zi wiw’i in general.

Consistency of the estimator minimizing (2.7) is established by verification of three
conditions: compactness of the parameter space; convergence in probability of the
minimand Sn to its expected value, uniformly in B8 and A;‘ and uniqueness of the
solutions BO and 7\0 satisfying the moment condition (2.5). While the uniform
convergence condition can be established with relatively weak regularity conditions, the
compactness and identification requirements turn out to be mucﬁ more important in this
case, due to a peculiarity of the transformation function z(y, A). As pointed out by
Khazzoom (1989), if y > 1, z(y, A) > 0 as A » —» (similarly, for y < 1, z(y, A) > O
as A » ). This implies that compactness of the parameter space plays a crucial role in
uniqueness of the solution of (2.5), since

Pr‘(yi >Iy=1 == lim E[z(yi, A) - x’iB] =0, (2.8)
A>—w, B0

with an analogous result if Pr(yi < 1} = 1. Put differently, each residual
€, = z(yi, A) - x’iB can be set to zero by setting A = —w and B = O if each ¥ > 1.

1

This identification issue did not arise in the theoretical calculations in Amemiya
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The rescaled GMM criterion function Qn(-) is clearly less likely than Sn(-) be
minimized by values on the boundary of the parameter space. If, for example, Y; > 1 for
all i, the value of Sn(B, A) can be made arbitrarily small by letting A tend to —w;
in this case, though, y also exceeds one, so the denominator of Qn(~) also tends to
zero as A tends to —w. Since Iz(yi, A)I/)}A > o if either A = ® and Iyil > y or
if A 5 -» and Iyil <y, it follows that ”rh(B, A)| > », and thus Qn(B, A) > ®, as
IAl » », as long as the regressors X and instruments w, are sufficiently variable and
the fraction of observations with lyil >y is not too close to either zero or one.

Unfortunately, the rescaling of the original GMM function Sn(B, A) by 3'1-2;\ cannot
guarantee that a unique and finite minimizing value A will exist. Consider the special
case when there are no regressors (i.e., B, = O is known) and (2.5) is satisfied for
some scalar sequence W that is, for some finite value of Ao’ E[z(yi, AO)-wi] = 0.

(For example, y; may be uniformly distributed on (0, 2) and independent of w., so
this moment condition wiil hold uniquely for 7\0 =1 if E[Wi] #.0.) In this case, the

rescaled function Qn(O, A)  will be minimized by any A which solves

z(yi, A)

—_—w, = 0. (2.13)
<A i

1 y .

A
e~ o

i
However, suppose it happens that w, = 0 for all observations for which Iyil < y
(which could occur, with positive probability, if W, were Bernoulli and independent of
yi). In this case, since z(yi, A)/)./A +0 as A -« if Iyil <y, Qn(O, A) » 0 as
A > o similarly, if w, = O whenever Iyil >y, Qn(O,V A) >0 as A > —w.

Though such aberrant behavior of the criterion Qn(B, A) is possible, it ‘only occurs

for pathélogical configurations of the instruments wi (and, in general, of the
regressors Xi)' In the foregoing example, if the (yi, i =1 ..., n} are distinct,
which occurs with probability one if they are continuously distributed, then Qn(O, A) > w
as A > ® (A5 —w) unless w, = 0 whenever y; < y (yi > y). While it is difficult to
give more general conditions to ensure that Qn(B, A) > © as |A| » o, it seems evident

that this would be virtually assured in practice.




A A

the minimizing values £ = B(A) can be obtained by the usual GMM formula,

3 - ‘ -1 : - 1
B = (DnAnDn) DnAnZn(A), for Zn(A) ® =

i wizi(yi, A (3.6)

1

N~ o

Given the close relation between the original and rescaled GMM minimization problems,
it is not surprising that the rescaling of the criterion does not affect the first-order
asymptotic behavior of the estimators of AO and BO. Because asn(/s, A)/8B s

proportional to aQn(B, A)/8B, the only difference in the first-order conditions for the

two minimization problems appears in the condition for the transformation parameter A,

with
8Q_(B, A) 3S (B, A) . .
L N In(y)-S_(8, A) (72N (3.7)
A A

But if B and A are root-n-consistent estimators (which follows from imposition of the

regularity conditions given in, say, Amemiya, 1974), then Sn(B, A) = Op(n_l), since it

is a quadratic form in sample moment functions (evaluated at consistent estimators) which

are converging to zero at a root-n rate. Hence, when evaluated at the consistent roots,
aQn(B, A) _ ‘asn(fs, A)

= + 0 (n
A aA P

), (3.8)

which implies that the (consistent) minimizers of Sn(') and Qn(') have the same
asymptotic distribution by the usual Taylor’s series expansions. This means that the
standard formulae for the asymptotic distribution and asymptotic covariance matrix
estimators for GMM estimators apply directly to the minimizers of tl’;e rescaled criterion
Qn(B, A), and that any large-sample distributional formulae for unscaled GMM estimators
of the Box-Cox regression model (such as those given in Amemiya and Powell, 198]) are
still valid even if the rescaled criterion is used to obtain estimators which are not on

the boundary of the parameter space.
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This note suggests a simple modification to the GMM criterion to help ensure that the
minimizers are interior points of the parameter space. The modification is similar in
spirit to the rescaling of the Box-Cox transformation by a Jacobian term, as proposed by
Box and Cox (1964) and Hinkley and Runger (1984). The suggested rescaling of the GMM
criterion typically eliminates the pathological behavior of the mihimization problem, but
this is purely a global effect; the local properties of the consistent minimizer of the

rescaled criterion are the same as for the (unscaled) GMM estimator.

- 2. The Model and Proposed Estimator
The Box-Cox regression model analyzed here is the same as was studied in Amemiya and
Powell (1981); given the (p-dimensional) regression vector X and scalar error term

€, the dependent variable Y satisfies the relation

Z(Yi’ AO) = x’iBO * €, i=1, ..., n (2.1)

where Bo and Ao are unknown parameters and z(u, A) is the Box-Cox transformation

(Box and Cox (1964)), defined as
20y, A) = 1 = 0 A~ ™ — 1) + 1 = 0)-logly) . (2.2)

[The symbol "I(A)" denotes the indicator function of the statement "A".] Thus, the

dependent variable is generated as
y; = h(xiBo + e, 7\0) , i=1, .., n, (2.3)

where h(:) is the inverse transform

h(u, A) = 1A = 0)-(1 + AW + 1d = 0)-explu) . (2.4)

Estimation of the unknown parameters Bo and AO for this model traditionally
proceeds by assuming the error terms €, are i.i.d. and Gaussian; the conditional

likelihood for the (yi) can then be obtained from (2.3). However, assumption of

-2-



mn(B, A) =

S

n
L (2ly, A - xiR)wy, (2.6)

1=1
a generalized method-of-moments (GMM) estimator of Bo and Ao can be defined to

minimize the quadratic form
Sn(B, A) = [mn(B, A)]’An[mn(B, Al (2.7)

Under suitable regularity conditions (discussed below), this estimator will be consistent
ift An converges in probability to a positive definite matrix. Amemiya and Powell (1981)
considered the special case An = n_l Zi wiw’i, which yields the nonlinear two-stage least
squares (NL2S) estimator proposed by Amemiya (1974). This choice would be appropriate if
the error terms happened to be homoskedastic, but as Hansen (1982) has noted, a more
efficient estimator is obtained if An -converges in probability to the inverse of the
covariance matrix of g W, which is not proportional to n-l ):i wiw’i in general.

Consistency of the estimator minimizing (2.7) is established by verification of three
conditions: compactness of the parameter space; convergence in probability of the
minimand Sn to its expected value, uniformly in B and A; and uniqueness of the
solutions Bo and AO satisfying the moment condition (2.5). | While the uniform
convergence condition can be established with relatively weak regularity conditions, the
compactness and identification requirements turn out to be much more important in this
case, due to a peculiarity of the transformation function z(y, A). As pointed out by
Khazzoom (1989), if y > 1, z2(y, A) >0 as A 5 - (similérly, for y <1, z{y, A) > 0
as A » «). This irﬁplies that compactness of the parameter space plays a crucial role in
uniqueness of the solution of {2.5), since

Pr(yi >1}=1 == lim E[z(yi, A) — x’iB] = 0, (2.8)
A>—m, B-0

with an analogous result if Pr(yi <1} =1 Put differentl);, each residual
ei = z(yi, A) - x’iB can be set to zero by setting A = —w and B = 0 if each yi > L

This identification issue did not arise in the theoretical calculations in Amemiya
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The rescaled GMM criterion functjon Q,(*) is clearly less likely than S () be
minimized by values on the boundary of the parameter space. If, for example, Y; > 1 for
all i, the value of Sn(B, A) can be made arbitrarily small by letting A tend to —w;
in this case, though, y also exceeds one, so the denominator of Qn(-) also tends to
zero as A tends to -—w. Since Iz(yi, A)l/j/?L » o if either A > » and Iyil > y or
if A 5 -» and Iyil <y, it follows that []rh(B, A » », and thus Qn(B’ A) 5 ®, as
Al 5 », as long as the regressors X; and instruments w, are sufficiently variable and
the fraction of observations with Iyil > y Is not too close to either zero or one.

Unfortunately, the rescaling of the original GMM function Sn(B, A) by 3"_27\ cannot
guarantee that a unique and finite minimizing value A will exist. Consider the special
case when there are no regressors (i.e., BO = 0 is known) and (2.5) is satisfied for
some scalar sequence wi; that is, for some finite value of AO, E[z(yi, Ao)-wi] = 0.

(For example, y; may be uniformly distributed on (0, 2) and independent of Wi, SO

this moment condition will hold uniquely for Ao =1 if E[wi] #.0.) In this case, the

rescaled function Qn(O, A)  will be minimized by any A which solves

L D z(yi, A)
i=1 y .

However, suppose it happens that w, = O for all observations for which lyil < y
(which could occur, with positive probability, if wi were Bernoulli and independent of
yi). In this case, since z(yi, h)/j'A >0 as A ) @ if Iyil <y, Qn(_O, A) > 0 as
A 5 «o; similarly, if W= O whenever lyil >y, Qn(O,‘ A} >0 as A > —.

Though such aberrant behavior of the criterion QA(B, A) is possible, it only occurs
for pathological configurations of the instruments wi (and, in general, of the
regressors xi). In the foregoing example, if the (yi, i =1, .., n are distinct,
which occurs with probability ane if they are continuously distributed, then Qn(O, Al >
as A ->w (A -5 —w) unless wi = O whenever yi < y (yi > 5'1), While it is difficult to
give more general conditions to ensure that Qn(B, A) > » as |Al » o, it seems evident

that this would be virtually assured in practice.




~ A A

the minimizing values B8 = B(A) can be obtained by the usual GMM formula,

- ) —1 -
B = (DnAnDn) DnAnZn(?\), for Zn(A) wizi(yi’ A). (3.6)

1
ti=1

ne~1o

i
Given the close relation between the original and rescaled GMM minimization problems,
it is not surprising that the rescaling of the criterion does not affect the first-order
asymptotic behavior of the estimators of AO and [30. Because BSn(B, A)/8B s
proportional to aQn(B, A)/8B, the only difference in the first-order conditions for the
two minimization problems appears in the condition for the transformation parameter A,
with
aQn(B, A) _ 8Sn(l3, A)

- - 2 In(y)-S_(B, A) |-(5)
3 A

—2A (3.7)

But if B and A are root-n-consistent estimators (which follows from imposition of the
regularity conditions given in, say, Amemiya, 1974), then Sn(B, A) = Op(n-l), since it

is a quadratic form in sample moment functions (evaluated at consistent estimators) which

are converging to zero at a root-n rate. Hence, when evaluated at the consistent roots,

80 (B, A)  8S_(B, A) i
£ - " 0 _(n 1), (3.8)
N B P
which implies that the (consistent) minimizers of Sn(-) and Qn(-) have the same

asymptotic distribution by the usual Taylor’'s series expansions. This means that the
standard formulae for the asymptotic distribution and asymptotic covariance matrix
estimators for GMM estimators apply directly to the minimizers of the rescaled criterion
Qn(B, A), and that any large-sample distributional formulae for unscaled GMM estimators
of the Box-Cox regression model (such as those given in Amemiya and Powell, 1981) are
still valid even if the rescaled criteljion is used to obtain estimators which are not on

the boundary of the parameter space.
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This note suggests a simple modification to the GMM criterion to help ensure that the
minimizers are interior points of the parameter space. The modification is similar in
spirit to the rescaling of the Box-Cox transformation by a Jacobian term, as proposed by
Box and Cox (1964) and Hinkley and Runger (1984). The suggested rescaling of the GMM
criterion typically eliminates the pathological behavior of the minimization problem, but
this is purely a global effect; the local properties of the consistenf minimizer of the

rescaled criterion are the same as for the (unscaled) GMM estimator.

2. The Model and Proposed Estimator
The Box-Cox regression model analyzed here is the same as was studied in Amemiya and
Powell (1981); given the (p-dimensional) regression vector X, and scalar error term

€, the dependent variable Y satisfies the relation

z(yi, AO) = x’iBO * e, i=1, ..., n, (2.1)

where Bo and Ao are unknown parameters and 2z{u, A) is the Box-Cox transformation

(Box and Cox (1964)), defined as

I, A

z(y, A) = 1A # 0)-A (y" — 1) + 1(x = 0)-logly) . (2.2)

[The symbol "I(A)" denotes the indicator function of the statement "A".] Thus, the

dependent variable is generated as ’

y; = h(xiBo + €5 7\0) , i=1, ..., n, (2.3)

~ where h(-) is the inverse transform
/A
h(u, A) = 1(A # 0)-(1 + Au) + (A = 0)-exp(u) . (2.4)

Estimation of the unknown parameters Bo and AO for this model traditionally
proceeds by assuming the error terms € are i.i.d. and Gaussian; the conditional

likelihood for the (yi) can then be obtained from (2.3). However, assumption of
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n
m_(B, A) = ) (z(y,, A) - X}B)'Wi, (2.6)

1=]

1
n

a generalized method-of-moments (GMM) estimator of Bo and Ao can be defined to

minimize the quadratic form
S8, A) = [m (8, M)A [m (B, A)l. (2.7)

Under suitable regularity conditions (discussed below), this estimator will be consistent
ift An converges in probability to a positive definite matrix. Amemiya and Powell (1981)
considered the special case An = n-1 Zi wiw’i, which yields the nonlinear two-stage least
squares (NL2S) estimator proposed by Amemiya (1974). This choice would be appropriate if
the error terms happened to be homoskedastic, but as Hansen (1982) has noted, a more
efficient estimator is obtained if An converges in probability to the inverse of the
covariance matrix of g, "W, which is not proportional to n-1 Zi wiw’i in general.

Consistency of the estimator minimizing (2.7) is established by verification of three
conditions: compactness of the parameter space; convergence in probability of the
minimand Sn to its expected value, uniformly in 8 and A; and uniqueness of the
solutions BO and AO satisfying the moment condition (2.5). While the uniform
convergence. condition can be established with relatively weak regularity conditions, the
compactness and identification requirements turn out to be much more important in this
case, due to a peculiarity of the transformation function z(y, A). "As pointed out by
Khazzoom (1989), if y > I, z(y, A) 30 as A 5 —o (similarly, for y < 1, z(y, A) > O
as A » »). This implies that compactness of the parameter space plays a crucial role in
uniqueness of the solution of (2.5), since

Pr(yi >I)=1 ==> lim E[z(yi, A) - x’iB] = 0, (2.8)
A>—w, (-0

with an analogous result if Pr‘{yi < 1} = 1. Put differently, each résidual
si = z(yi, A) — x’iB can be set to zero By setting A = —w and B = O if each Y > 1.

This identification issue did not arise in the theoretical calculations in Amemiya
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The rescaled GMM criterion function Qn(') is clearly less likely than Sn(°) be
minimized by values on the boundary of the parameter space. If, for example, ¥ >1 for
all i, the value of Sn(B, A) can be made arbitrarily small by letting A tend to —w;
in this case, though, y also exceeds one, so the denominator of Qn(-) also tends to
zero as A tends to -w. Since Iz(yi, 7\)|/)'1A 2 o if either A 5 » and lyil > y or
if A>-w and |y| <y, it follows that [m(g, A)| + », and thus Q (B, A) » ®, as
[A] > », as long as the regressors X, and instruments w. are sufficiently variable and
the fraction of observations with Iyil > y is not too close to either Zero or one.

Unfortunately, the rescaling of the original GMM function Sn(B, A) by 5]—2A cannot
guarantee that a unique and finite minimizing value A will exist. - Consider the special
case when there are no regressors (i.e., BO = 0 is known) and (2.5) is satisfied for
some scalar sequence W that is, for some finite value of AO, E[z(yi, AO)-wi] = 0.

(For exafnple, yi may be uniformly distributed on (0, 2) and independent of w., so
this moment condition will hold uniquely for Ao =1 if E[Wi] #.0.) In this case, the

rescaled function Qn(O, A)  will be minimized by any A which solves

z(yi, A)

_w. = 0. (2.13)
- A i

1 y .

=R
I~ 0

i
However, suppose it happens that w, = 0 for all observations for which Iyil < y
{which could occur, with positive probability, if wi were Bernoulli and independent of
yi). In this case, since z(yi, A)/&A >0 as A >« if Iin <y, Qn(O, A) > 0 as
A > «o; similarly, if W, = 0 wheﬁever Iyil >y, Qn(O,_ A))> 0 as A > -,

Though such aberrant behavior of the criterion Qn(B, A} is possible, it only occurs

for pathollogical configurations of the instruments w, (and, in general, of the
regressors xi). In the foregoing example, if the (yi, i=1, ..., n} are distinct,
which occurs with probability one if they are continuously distributed, then Qn(O, Al >
as A > o (A - —) unless w, = 0 whenever Y <y (yi > y). While it is difficult to
give more general conditions to ensure that Qn(B; A) > ® as |A|l » o, it seems evident

that this would be virtually assured in practice.




~ A A

the minimizing values B = B(A) can be obtained by the usual GMM formula,

A

B =(D'AD b A Z (), for Z (A) =
nnn

1
nnn n o wizi(yi, A). (3.6)

1

LN ag =]

i

Given the close relation between the original and rescaled GMM minimization problems

»

it is not surprising that-the rescaling of the criterion does not affect the first-order
asymptotic behavior of the estimators of Ao and Bo' Because BSn(B, A)/8B s
proportional to aQn(B, A)/8B, the only difference in the first-order conditions for the
two minimization problems appears in the condition for the transformation parameter A,
| with

aQn({s, A) asn(ﬁ, A) _2A

= -2 In(y)-s_(B, A) |-(y)™°™ (3.7)
A EN n

But if B and A are root-n-consistent estimators (which follows from imposition of the
regularity conditions given in, say, Amemiya, 1974), then Sn(B, Al = Op(n-l), since it
is a quadratic form in sample moment functions (evaluated at consistent estimators) which

are converging to zero at a root-n rate. Hence, when evaluated at the consistent roots,
aQn(B, A) aSn(B, A)
= + 0 (n
A EN P

) (3.8)

which implies that the (consistent) minimizers of Sn(') and Qn(-) have the same
asymptotic distribution by the usual Taylor’'s series expansions. This means that the
standard formulae for the ésymptotic distribution and asymptotic covariance matrix
estimators for GMM estimators apply directly to the minimizers of the rescaled criterion
Qn(B, A), and that any large-sample distributional formulae for unscaled GMM estimators
of the Box-Cox regression model (such as those given in Amemiya and Powlell, 1981) are
still valid even if the rescaled criterion is used to obtain estimators which are not on

the boundary of the parameter space. .
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This note suggests a simple modification to the GMM criterion to help ensure that the
minimizers are interior points of the parameter space. The modification is similar in
spirit to the rescaling of the Box-Cox transformation by a Jacobian term, as proposed by
Box and Cox (1964) and Hinkley and Runger (1984). The suggested rescaling of the GMM
criterion typically eliminates the pathological behavior of the minimization problem, but
this is purely a global effect; the local properties of the consisterﬁ minimizer of the

rescaled criterion are the same as for the (unscaled) GMM estimator.

2. The Model and Proposed Estimator
The Box-Cox regression model analyzed here is the same as was studied in Amemiya and
Powell (1981); given the (p-dimensional) regression vector X, and scalar error term

€, the dependent variable Yi satisfies the relation

z(yi, AO) = x’iBo * e, i=1, ..., n (2.1)

where BO and AO are unknown parameters and z(u, A) is the Box-Cox transformation

(Box and Cox (1964)}, defined as

-1, A

2y, A) = 1A # 00 ATy = 1) + 1A = 0)-log(y) . (2.2)

[The symbol "l{A)" denotes the indicator function of the statement "A".] Thus, the

dependent variable is generated as

y; = h(xiB0 + g, Ao) , i=1, ..., n, (2.3)

where h(-) is the inverse transform
1/A
h(u, A) = (A # 0)-(1 + Au) + I{A = 0)-exp(u) . (2.4)

Estimation of the unknown parameters Bo and 7\0 for this model traditionally
proceeds by assuming the error terms € are i.l.d. and Gaussian; the conditional

likelihood for the (yi) can then be obtained from (2.3). However, assumption of
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n
m (B A) = = T (aly, A) - X{B)w, (2.6)

1=1

S

a generalized method-of-moments (GMM) estimator of BO and Ao can be defined to

minimize the quadratic form
Sn(B, A) = imn(B, A)]’An[mn(B, Al (2.7)

Under suitable regularity conditions (discussed below), this estimator will be consistent
ift An converges in probability to a positive definite matrix. Amemiya and Powell (1981)
considered the special case An = n-1 Zi wiw’i, which yields the nonlinear two-stage least
squares (NL2S) estimator proposed by Amemiya (1974). This choice would be appropriate if
the error terms happened to be homoskedastic, but as Hansen (1982) has noted, a more
efficient estimator is obtained if An converges in probability to the inverse of the
covariance matrix of €W, which is not proportional to n_1 Zi wiw’i in'gener‘al.

Consistency of the estimator minimizing (2.7) is established by verification of three
conditions: compactness of the parameter space; convergence in probability of the
minimand Sn to its expected value, uniformly in B8 and A; and uniqueness of the
solutions BO and Ao satisfying the moment condition (2.5). While the uniform
convergence condition can be established with rélatively weak regularity conditions, the
compactness and identification requirements turn out to be much more important in this
case, due to a peculiarity of the transformation function 2z(y, A). As pointed out by
Khazzoom (1989), if y > 1, z(y, A) > O as A 5 —» (similarly, for y < 1, z(y, A) » O
as A > «). This implies that compactness of the parameter space plays a crucial role in
uniqueness of the solution of (2.5), since

Pr(yi >Iy=1 == lim E[z(yi, A) - x’iB] = 0, (Z.é)
A>—», -0

with an analogous result if Pr(yi < 1} = 1. Put differently, each revsidual
g = z(yi, A) - x'iB can be set to zero by setting A = —» and B = O if each ¥ > 1.

This identification issue did not arise in the theoretical calculations in Amemiya
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The rescaled;GMM criterion function Qn(') is clearly less likely than Sn(') be
minimized by values on the boundary of the parameter space. If, for example, ¥ > 1 for
all i, the value of Sn(B, A} can be made arbitrarily small by letting A tend to —;
in this case, though, y also exceeds one, so the denominator of Qn(') also tends to
zero as A tends to —w. Since Iz(yi, mw* - o if either A » ® and Iyil > y or
if 2> -o and |y <y, it follows that [|m(B, A)|| » =, and thus Q (B, A) » ®, as
IAl > o, as long as the regressors X, and instruments w, are sufficiently variable and
the fraction of observations with Iyil > y is not too close to either zero or one.

Unfortunately, the rescaling of the original GMM function Sn(B, A) by 9'” cannot
guarantee that a unique and finite minimizing value A will exist.  Consider the special
case when there are no regressors (i.e., [30 = 0 is known) and (2.5) is satisfied for
some scalar sequence Wi that is, for some finite value of A E[z(yi, Ao)-wi] = 0.

(For exafnple, y; may be uniformly distributed on (0, 2) and independent of w., SO
this moment condition will hold uniquely for AO =1 if E{wi] # 0.) In this case, the
rescaled function Qn(O, A)  will be minimized by any A which solves

z(yi, A)

oy h

(2.13)

o)
Il 2
3
0
o

i
However, suppose it happens that w, = O for all observations for which Iyil < y
(which could occur, with positive probability, if w, were Bernoulli and independent of
yi). In this case, since Z(Yi’ A)/yh 20 as A9 o if Iyil < y, Qn(O, A) > 0 as
A > o; similarly, if W= 0 wheﬁever Iyil >y, Qn(O,_ A) > 0 as A > —o.

Though such aberrant behavior of the criterion Qn(B, A) is possible, it only occurs

for patho*ogical configurations of the instruments w, (and, in general, of the
regressors xi). In the foregoing example, if the (yi, i =1, .., n} are distinct,
which occurs with probability one if they are continuously distributed, then Qn(O, Al o w
as A > ® (A > —w) unless w; = O whenever y, < y (y, > y). While it is difficult to
give more general conditions to ensure that Qn(B; A) » » as |A| - w, it seems evident

that this would be virtually assured in practice.




~ ~

the minimizing values B = B(A) can be obtained by the usual GMM formula,

- . -1 > -
B = (DnAnDn) DnAnZn(}\), for Z (A) =

n wizi(yi, A). (3.6)

l

5

10

i
Given the close relation between the original and rescaled GMM minimization problems,
it is not surprising that the rescaling of the criterion does not affect the first-order |
asymptotic behavior of the estimators of Ao and BO. Because BSD(B, A)/8B is
proportional to BQn(B, A)/8B, the only difference in the first-order conditions for the
two minimization problems appears in the condition for the transformation parameter A,
with

8Q_(B, A) 3as_(B, A) . .
n = n -2 In(y)-s (8 ) |17 (3.7)

A A
But if [% and i gre root-n-consistent estimators (which follows from imposition of the
regularity conditions given in, say, Amemiya, 1974), then Sn({;, i) = Op(n—l), since it
is a quadratic form in sample moment functions (evaluated at consistent estimators) which
are converging to zero at a root-n rate. Hence, when evaluated at the consistent roots,
8Q (B, A) ) 5S_(B, A)

= —— + 0 (n
a E P

), (3.8)
which implies that the (consistent) minimizers of Sn(') and Qn(-) have the same
asymptotic distribution by the usual Taylor's series expansions. This means that the
standard formulae for the asymptotic distribution and asymptotic covariance matrix
estimators for GMM estimators apply directly to the minimizers of the rescaled criterion
Qn(B, A), and that any large-sample distributional formulae for unscaled GMM estimators
of the Box-Cox regression model (such as those given in Amemiya and Powell, 1981) are

still valid even if the rescaled criterion is used to obtain estimators which are not on

the boundary of the parameter space.




