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1. Ihtrodu‘ction

1.1 Over;vtew

Semiparametric modelling is, as its name suggests, a hybrid of the parametric and
nonparaﬁxetric axsproaches to construction, f itting, and validation of statistical models.
To place semiparametric methods in context, it is useful to review the way these other
approaches are used to address a generic microeconometric problem -- namely, determination
of the relationship of a dependent variable (or variables) y to a set of conditioning
variables x given a random sample (zi = (yi, xi),, i =1..N} of observations on y
and x. Tﬁis would be considered a "micro-"econometric problem because the observations
are mutually independent and the dimension of the conditioning variables x is f inite and
fixed. In a "macr‘o-"econometrié application using time series data, the analysis must
also account for possible serial dependence in the observations, which is usually |
straightforward, and a growing or infinite number of conditioning variablés, e.g., past
values of the dependent variable y, which may be more difficult to accommodate. Even
for microeconometric analyses of cross-sectional data, distributional heterogeneity and
dependence due to clustering and stratification must often be considered; still, while
the random sampling assumption may not be typical, it is a useful simplification, and
adaptation of statistical methods to non-random sampling is usually straightforward.

In the classical parametric approach to this problem, it is typically assumed that
the dependent variable is functionally dependent on the conditioning variables
("regressors") and’ unobservable "error;s" according to a fixed structural relation of ‘the

form
1.y y=g(x,a0,e),

where the structural funétion g(+) is known but the finite-dimensional parameter vector
@, € RP and the error term € are unobserved. The form of g(:) is chosen to
give a class of simple and interpretable data generating mechanisms which embody the

relevant restrictions imposed by the characteristics of the data (e.g., g() is



dichotomous if Y is binary) and/or economic theory (monotonieity, homotheticity, et
cetera). The error terms e are introduced to account for the lack of perfect fit of

| (1.1) for any f ixed value of %y and ¢, and are variously interpreted as expectational
or optimization error's, measurement errors, unobserved differences in tastes or
technology, or other omitted or unobserved conditioning variables; their interpretation
influences the way they are incorporated into the structural function g(-).

To prevent (1.1) from holding tautologically for any value of @y the stochastic
behavior of the error.terms must be restricted. The parametric approach takes the error
distribution to belong to a finite-dimensional family of distributions.'

12)  Pr(e s Alx) - J‘l folulxmg) du_,
where f(-) is a known density (with respect to the dominating measure He ) except fer
an unknown, finite dimensional "nuisance" parameter Ny Given the assumed structural
model (1.1) and the conditional error distribution (1.2), the conditional distributioh
of y given x can be derived,
Pr{y = A|x) = J“A Ky s A)-f (ulx,@ ,n.) du_,_,
o y|x 070" y|x
for some parametric conditional density f'ylx(-). Of course, it is usually possible to
posit this conditiona] distribution of y given x directly, without recourse to
unobservable "error" terms, but the adequacy of an assumed functional form is generally
assessed with ref‘erence to an 1mphc1t structural model. In any case,.with this
conditional density, the unknown parameters | %5 ahd Ny can be estimated b& maximizing
the average conditional log-likelihood
: ) N '
Lylemn) = < .Z-‘Ln fylx(yilxi’a’",)

over a and 7.
This fully parametric modelling strategy has a number of well~-known optimality

properties. If the specifications of the structural equation (1.1) and error




distribution (1.2) are cdrrect (and other mild regularity conditions hold)), the maximum
likelihood estimators of @ and L will converge to the true parameters at the rate of
the inverse square root of the sample size ("root- -N-consistent") and will be

asymptotically normally distributed, with asymptotxc covariance matrix which is no larger
than that of any other regular root- N-con51stent estlmator‘ Moreover, the parameter
estxmates yield a precise estimator of the con_ditional distribution of the dependent
variable give'.n the regressors, which might be used to predict y for values of x which
fall outside the observed support of the regressors. The drawback to parametric modelling
is the requirement that both the str;uctixral model and the error distribution are correctly |
specified. Correct specification may be particularly difficult for the error

distribution, which represents the unpredictable component of the relation of y to x.
Unfortunately, if g(x,a,e) is f undamentally nonlinear in €. - that is, it is

noninvertible in € or has Jacobian that depends on the unknown parameters a - then
misspecification of the functional form of the error distribution f (e|x,'n) generally

yields inconsistency of the MLE and inconsistent estimates of the conditional distribution
of y given =x.

At the other extreme, a fully nonparametric approach to modelling the relation
between' y and X would define any such "relation" as a characteristic of the joint
distribution of y and: X, which would be the primjtive object of interest. "A
"causal" or predictive relation from the regressors to the dependent variable would be

given as a particular functional of the conditional distribution of y give_r_l X,
(1L3)  gx) = T(F_, ),
g y ! X

where Fy,x is the joint 'and Fy[x is the conditional distribution. Usually the
functional T(:) is a location measure, in which case the relation between y and x
vhas a representation anaiogous to (1.1) and (1.2), bL_xt with unknown f unctionalv'f orms
for f(-) and g(-). For example, if g(x) is the mean regression function

(T(Fylx) = E[y]x]), then y can be written as



y = g(x) + g,

with € defined to have conditional density f e|x assunied to satisfy only the
normalization EIeIXI 0. In this approach the interpretation of the error term e is
different than for the parametric approach; its stochastic properties derive from its
definition in terms of the functional g(+) rather than a prior behavioral assumption..

Estimation of the function g(-) ijs straightforward once a suitable estimator l;y x
of the conditional distribution of y given x is obtained;  if the functional T(+) in
(1.3) is wel]ébehaved (i.e., continuous over the space of possible' Fy'x)' a natural

-~ ~

Thus the problem of estimating the "relationshii:” g(+) reducés to the problem of
estimating the conditional distribution function, which generally requires some smoothing
across adjacent observations of the regressors X when some components are continuously
distributed (see, e.g., Prakasa Rao (1983), Silverman (1986), Bierens (1987), Hardle(1990)).
In some cases, the functional T(-) inight he a well--2fined functional of the empirical
¢ . of the data (for example, g(x) might be the best linear projection of y on x,
which depends only on the covariance métrix of the data); in these cases smoothing -of the
empirical c¢.d.f. will not be required. An alternative estimation strategy would
- approximate g(x) " and the cdnditionﬁ distribution of ¢ in (1.6) by a sequence of
parametric models with the number of parameters expanding as the sample size mcreases,
this approach._ termed thc. "method of sieves" by Grenander (1981), is closely related to the
"seminonparametxfic" modelling approach of Gallant (1981,1987),,_Elbadawi, Gallant, and Souza .
(1983), -and Gallant and Nychka (1987).

The advantages and disadvantages of the nonparametric approach are the opposite of
those for parametric modelling. Nonparametric modelling typically imposes few

restrictions on the form of the Joint distribution of the data (like smoothness or




monotonicity), éo there is little room for misspecif‘ ication, and consistency of an

estimator of g(k) is established under much more general conditions than for parametric
modelling. On the other hand, the precxslon of estimators which impose only nonparametric
restrictions is often poor: when estimation of g(x) requires smoothing of the empirical
c.d.f. of the data, the convergence rate of the estimator is usually slower than the
parametric rate (square root of the sample size), due to the bjas caused by the smoothing
(see the chapter by Hirdle in this volume). And, although some prior economic
restrictions like homotheticity and monotonicity can be incorporated into the

nonparametric approach (as described by in the chapter by Matzkin in this volume), the
definition of the "relation" is statistical, not economic. Extrapolatlon of the

relationship outside the observed support of the regressors is not generally possible with

a nonparametric model, which is analogous to a "reduced f orm" in the classical terminology
of simultaneous.e_quations modelling.

The semiparametric approach, the subject of this chapter, distinguishes between the
"parameters of interest," which are finite dimensional, and infinite dimensional "nuisance
parameters," Which are treated nonparametrically. In a typical paraxhetric model, the
parameters of interest, aO, appear only in a structural equation analogue to (1.1),
while the conditional error distribution is treated as a nuisance parameter, sub ject to
certain prior restrictions. More generally, unknown nuisance. functions may also appear in

the structural equation. Semiparametric analogues to equations (1.1) and (1.2) are

(1.4) y = g(x,ao,e,'to(-')),

(Ls) Pr{e = A]x) J Ku s a)f (u|x)du ,

where,l as before, ao is unknown but known to lie in a f inite~dimensional Euclidean

subspace, and where the unknown nuisance parameter is

ng = (Tg(e), £(00.




As with the parametric approach, prior economic reasoning and interpl;etational convenjence
is used to determine the functional form of g(-) in (1.4), while ger. -al regularity

and identification restrictions are imposed on the nuisance parameters Ng» as in the
nonparametric abproach.

As a hybrid of the parametric and nonparametric approaches, semiparametric modelling
shares the advantages and disadvantages of each. Because it allows a more general
specification of the nuisance parameters, estixﬁators of the parameters of interest for
semiparametric models are consistent under a broader range of conditions than for
parametric models, and these estimators are. usually more preéise (converging to the true
values at the squai'e root of the sample ‘size) than their ndnparametric counterparts. Or
the other hand, estimators for semiparametric models are generally leés efficient than
maximum likelihood estimators for a correctly-specified.parametric model, and are still
sensitive to misspecification of the structural function or other parametrié components of
the model.

This chapter will survey the econometric literature on semiparametric estimation,
with emphasis on a Particular class of models, nonlinear latent variable models, which
have been the focus of most of the attention in this literature. The remainder of this
section more pr:cisely defines the "semiparametric" Categorization, briefly lists the
structural functions and error distributions to be considered and reviews the techniques
for obtaining Iarge-sample approxxmatxons to the distributions of vanous types of
estimators for semiparametric models. The next sectxon discusses how each of the
semlparametmc restrictions on the behavior of the error terms can be used to construct
estimators for certain classes of structural f unctions. Section 3 then surveys existing
results in the econometric literature for several groups of latent variable models, with a-
variety of error restrictions for each group of structural models A concluding section
summanzes this literature and sugg -sts topics for further work.

The coverage of the large lit  ture on semiparametric estimation in this chapter

will necessarily be incomplete; f Ortunately, other general references on the subject are



available. A f Qrthcoming monograph by Bickel, Klaussen, Ritdv, and Wellner (1992)

discusses much of the work on semiparametrics in the -statistical literature, with special
attention to construction of efficient estimators; a recent monograph by Manski ('1988b)
discusses the anélogous econometric literature. Other surveys of the econometric

literature include those by Robinson (1988a) and Stoker (1991), the latter giving an

extensive treatment of estimation based upon index restrictions, as described in section

2.7 below. Newey (1990) surveys the econometric literature on semiparametric efficiency
bounds, which is not covered extensively in this chapter. Finally, given the close
cérmection bétween the semiparametric approach and parametric and nonparametric
approaches, the chapters by Andrews, Hérdle and Linton, Manski, Matzkin, and Newey in this

volume provide more details on much of the material in the present chapter.

1.2 Def inition of "Semiparametric”

The characterization of semiparametric models as having a f inite-dimensionél
parameter of interest (the "parametric component") and an infinite dimensional nuisance
parameter (the "nonparametric‘component") was given by Begun, Hall, ‘Huang, and Wellner
(1983), who attribute the term to Oakes (1981). Although this distinction is a defining
characteristic of semiparametric modelling, alone it appears to be too inclusive: many
problems which would traditionally be viewed as "nonparametr'jic" or "parametric” might well
be classified as "semiparametric" along these lines. For example, the best linear
predictor of y given x lies in a finite-dimensional space (indexed by the vector of
projection coefficients), but fh‘is object is more closely analogous to the' condiﬁonal
mean of y given x (a "nonparametric" relation) than to a traditional structural
relation of the form given in (1.1). - This example suggests that.the "dimension_ality" of
unknown components of a .model is not sufficient to charactérize it as nonparametric or
semiparametric; instead, this distinction must depend somehow on the "size" of the space
of nuisance parameters for the model - that is, on the generality of the restrictions

imposed on Mg At the other ektreme, for the.typical parametric model with ancillary



rﬁight exploit the distinction between "just-" and ."over-identif ication" introduced in the
simultaneous ‘équations literature, In a nonparametric model, the parameters of interest
can be said to be "just-Identified," in that they are defined by a unique functional of
the joint distribution of the data. That is, if a. = T(Fy,x) defines the parameter of
interest as a characteristic of the joint- distribut;  of y and X, then a mode} might
be defined to be nonparametric ** the functional T jg unique whenever jt is
well-defined. In contrast, a semiparametric model would restrict the space of permissible
Jjoint distributjon functions so that more than one functional would yield the same value
of the parametef of interest: a, = T+(Fy,x)' where T(GO) ® T+(Go) for some possible
distribution function GO of y and x for which either side s well-defined. For
example, in a nonparametric model ao could be the mean of the dependent variable y,
whose marginal distribution is otherwise unrestricted, while a semiparametric mode] might
restrict the distribution of Y to be symmetric abouyt the constant @q»  Which could then
be recovered as the mean,‘ mecian, or any number of possible locations measures for Fy.
In a nonparametric setting, the only scope for differences in estimators of «s in a
nonparametric model would be through dif ferences in estimates of the distribution f unction
Fy'.x of the data (due, say, to different methods and degrees of "smoothing" of the
empirical c.d.f.), while estimation of a semiparaxﬁetric model would require an additional
choice of the particular functional T‘ upon which to base the estimates.

On a releted point, While it is common to refer to"'semi*:arametric‘ estimation" and
"seﬁiperametric estimators,” this is misleading terminology. Though certain estimators
would be hard to interpret in a parametric or nonparametric context, in general the term

"'semiparametric." like “parametric” or "nonparametric,” more Properly refers to classes of

structural models and stochastic restrictions, and not to a particular statistic. In many




cases, the same estimator can be viewed as parametric, nonparametric, or semiparametric,

depending on the assumptions of the model. For example, for the classical linear model
Y =X, + g

the least-squares estimator of the unknown coefficients BO‘

n N -1
B = [i-.zl xixi] X.y.,

11

n~-1z

i=1
would be considered a. "parametric” estimator when the error terms are assumed to be
Gaussian with zero mean and distributed independently of the regressors x. With these
assumptions é is the maximum likelihood estimator of BO, and thus is_ asymptdtically
efficient relative to all. regular estimators of BO.

Alternatively, the least squares estimator arises in the context of a linear

prediction problem, where the error term ¢ has a density which» is assumed to satisfy the

unconditional moment restriction
Ele-x] = 0.

This restriction yields a unique representation for BO in terms of the joint

distribution of the data,
B, = (Elx-x' D™ Elx-y,

so.estir‘nation of BO in this context would be considered a "nonparam'etr.icf' problem by the
criteria given above. Though other, less precise estimators of the moments E[x-x’] and
Elx-y] (say, 'based only oﬁ a subset of the observations) -might be used to define
alternative eétimators, the claésical least squares estimator é is, almost by default,
an "ef f icient" estimator of BO in this model (as Levit () mékes more'precise).

Finally, the least squares estima‘tor é can be viewed as a special case of the
broader class of weighted least squares estimators of BO when the error terms ¢ in

(1.21) are assumed to have conditional mean zero,



E[eilxi] =0 a.s.

The model defined by (2.6) and (2.10) would be considered "semiparametrig,” since BO
is overidentified; whijle the least squares estimator B is fN-consistent and
asymptotically normal for this model (assuming the relevant second moments are finite), it

is inefficient in general, with an efficient estimator being based on the representation

_ _ -2 ,1-1 -2
BO = T.(Fy,x) = {E[a- (xi)xixi] } E[a' (xi)xiyi]

of the parameters of interest, where 0"2(x) = Var‘(&:.]x.) (as discussed in section 2.2
below.) The least-squares statistic é is a "semiparametric” estimator in this context,
due to the restrictions imposed on the model, not on the form of the estimator.

Two categories of estimators which are related to "semiparametric:estimators, J but
logically distinct, are "robust" ahd "adaptive" estimators. The term "robustness” is used
informally to denote statistical procedures which are well-behaved for slight
misspecifications of the model; more formally, a robust estimator ; = T(Ey.x) can be
defined as one for which T(F) is a continuous f unctional at the true model (e.g., Manski
(1988b)), or whose asymptotic distribution is continuous at the truth ("quantitative
robustness," as defined by Huber (1981)). While "semiparametric estimators" are designed
to be well-behaved under weak conditions on the error distribution and other nuisance
parameters (which are assumed to be correct), robust estimators are designed to be
relatively efficient for correctly-specified models but also relatively insensi;cive to
’;'slight" model misspecification. As noted in section 1.4 below, robustness of an
estimator is relate& to the boundedness A(and continuitY) of its influence function, |
defined in section 1.4 below; whether a particular semnparametmc mode] adrmts a robust
estimator depends upon the particular restrictions imposed. For example, for conditional
mean restrictions descnbed in section 2.2 below, the influence functions for
semlparametnc estimators will be linear (and ‘thus unbounded) functions of the error

terms, so robust estimation is infeasible under thlS restriction. On the other hand, the:

10
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influence function f or estimators under conditional quantile restrictions depends upon the
sign of the err;or terms, so quantile estimators are generally "robust”" (at least with
respect to outlying errors) as well ag "semiparametric.”

"Adaptive" estimators are efficient estimators of certain semiparametric models for -
which the best attainable eff iciency for estimation of the parameters of interest does not
depend upon prior knowledge of a parametric form for time nuisance parameters. That is,
adaptive estimators are consistent under the semiparametric restrictions but as
efficient (asymptotically) as a maximum likelihood estimator when the (infinite
di.mensional). nuisance parameter is known to lie in a f inite-dimensional parametric family.
Adaptive estimation is possiblg only if the semiparametric information bound for
attainable efficiency for the parameters of interest is equal to the analogous Cr‘amér-Ra§
bound for any feasible parametric specification of the nuisance parameter. Adaptive
estimators, which are described in more detail by Bickel, et. al. (1993) aﬂd Manski
(1988b), involve explicit estimation of (nonparametric) nuisance parameters, as do

efficient estimators for semiparametric models more generally.

1.3 Stochastic Restrictions and Structural Models

As discussed above, a semiparametric model for the relationship between y and x-
will be determined by the parametric form of the structural function g(-) of (1.9)
and the restrxcnons imposed on the error distribution and any other 1nf1mte- dimensional
component of the model. The f ollowmg sectlons of this chapter group semxparametnc
models bby the restrictions imposed on the error distr‘ibut‘ion, describing éStimation under
these restrictions for a number of different structural quels. A brief description of
the resfrictions to be considered; followed by a discussion of the structural mpdéls, is
given in this section.

A sémibarametric restriction on € which is quite familiar in econometric theory and

practice is a (constant) conditional mean restriction, where it is assumed that

11



(1.6) E(e]x) =

for some unknown constant ""0' which is usuaily normalized to zero to ensure
identification of an intercept term. (Here and throughout, all conditional expectations
are assumed to hold for a set of regressors x with probability one.) This restriction
is the basis for much of the large-sample theory for least-squares and method of moment
estimation, and estimators derived for assumed Gaussian distributions of € (or, more
generally, for error distributions in an exponential family) are often well-behaved under
this weaker ‘restriction. \

A restriction which is less familiar but gaining increasing attention in econometmc

practice is a (constant) conditional quantx.le restriction, under which a scalar error term

€ is assumed to satisfy
(1.7) Pr{c s nolx) =

for some fixed proportion =n € (0,1) and constant 170 = 'no(n); a conditional median
restriction is the (leading) special case with n = 1/2, 'Rewriting the conditional
probability in (1.7) as the conditional expectation of an indicator function, the
quantile restriction can be expressed as Elm - 1{e = no}l x] = 0, which specializes to
Elsgn{e - no)lx] = 0 for a conditional median restriction. As discussed in secnon 2.3
below, conditional quantile restmctxons are useful for 1dent1fy1ng the parameters of
interest for structural models which are monotonic in the error term.

For scalar error terms, both conditional mean and conditional quan-tile re#trictions
are themselves special cases of a constant conditional location restriction, in which, for

some constant u0 the error terms satxsfy

(1.8) Elq(e - vollxl = 9,

where the function q(u) is nonpositive for U < 0 and nonnegative otherwise. Often the

constant term Vy can be expressed as the solution to a conditional minimization problem,

12




Vo = argminb Elr(e - b)|x], where r(u) is an antiderivative of -q(u); this
representation is often used as the basis for construction of estimators under these
restrictions. In a limiting case, if r(u) is taken to be minus the the Dirac delta
function, this corresponds to a conditional mode restriction, which asserts constancy of
V. = max f (u]x). where f is the conditional Jdensity of the errors. This

0 u elx e|x

restriction is useful for identification of the parameters of certain semiparametric
models involving truncation.

A stronger condition which implies both the conditional mean (when it exists) and

conditional median restrictions is a conditional symmetry restriction, under which
(1.9) Pr{(e - vo') s u|x} = Pr((vo - €) = u|x}

for some constant Yo and any conformable u. Again' for scalar errors, this restriction
implies (1.6) and (1.7) hold (when the expectations are well-defined) whenever q(u)

is an odd function of u, which may also depend upon the regressors x in general; here
the value Yo is constant across different choices of q(:). A different restriction

which is equivalent to imposition of all poséible conditional location restrictions is an

independence restriction:
(1.10) Pr{e = u|x} = Pr{e s v}

for all conformable u. Estimators based upon conditional mean or median restrictions
will also be weli-béhaved under conditional symmetry or independence restrictions, but
efficient estimation: will generally require other choices for q(u) in (1.8) than
q(u) = u or q(u) = sgn(u).

Finally, a class of stochastic restrictions which can be viewed as generalizations of
constant conditional mean or independence of the errors and regressors are index
restrictions. A "strong” -or distributional index restriction on the error terms is an

assumption that

13



(L11) Pr{e s u|x) = Pr{e = u|v(x))

for some "index" function v(x) with dim{v(x)} < dim{x}; a “weak” or mean index

restrictibn asseri:s a similar property only for the conditional expectation --
(L12)  Ele[x] = Ele]v(x)].

For different structurai models, the index function v(X) might be assumed to be a known
function of x, or known up to a finite number of unknown parameters, or an unknown .
function of known dimensionality (in which case some extra restriction(s) will be needed
to identify the index). As a special case, the function v(x) may be trivial, which
yields the independence or conditional mean restrictions as specia.l cases; more
generally, v(x) ~ might be a known subvector X, of the regressors x, in which case
(1.11) and (1.12) are strong and weak forms of an exclusion restriction, otherwise
known as conditional independence and conditional mean independence of & and x given
X|» respectively. When the index f unction is unknown, it is often assumed to be linear in
the regressors, with coefficients that are related to unknown parameters of interest in
the structural model.

The following diagram summarizes the hierarchy of the stochastic restrictions to be.
discussed in the following sections -of this chapter, with declining level of generality

from top to bottom:

14




NONPARAMETRIC

- WEAK |INDEX

WEAK EXcLusION

CONDITIONAL LOCATION

STRONG |INDEX - - MEAN MEDIAN:
L |

STRONG EXxcrLuUs 0N -

INDEPENDENCE COND'I TIONAL SYMMETRY

PARAMETRIC

Turning now to a description of some structural models treated in the semiparametric
literature, an important class of parametric forms for the structural functions is the
class of linear latent variable models, in which the dependent variable y is assumed to

be generated as some transformation
3 -
(1.13) y = tly; Ao, ‘ro(-))
: ) » :
of some unobservable variable y , which itself has a linear regression representation
. »
{1.14) y = x'BO + .

Here the regression coefficients BO and the finite-dimensional parameters AO of the

transformation function are the parameters of interest, while the error distribution and

15



any ntharametric component 'ro( ) of the transformation mak: up the nonparametric
component of the model. general y and y. may be ve r-valued, and restrictions
bon the coefficient matrix BO may be imposed to ensure identification of the remaining
parameters. This class of models, which inciudes the classical linear model as a special
case, might be broadened to permit a nonlinear (but parametric) regression function for
the latent variable y‘, as long as the additivity of the error terms in (3.13) is
maintained. - |

| One category of latent variable models, parametric transformation models, takes the
transformation function t(y.; AO) to have no nonparametric nuisance component - ' -)

. *
and to be invertible in y for all possible values of A A well-known example o a

o

pParametric transformation model is the Box-Cox regression model (Box and Cox (1964)),
which has y = t(x’BO + g; Ao) for

A
7l 0 = L2 10000 + 1nty)-100=0,
This transformation, which includes linear and log-linear (in y) regression models as
-
special cases, requires the support of the latent variable y to be bounded from below

(by -1/A0) for non-integer values of A but has been extended by Bickel and Doksum

o’
(1981) to unbounded y.. Since the error term ¢ can be expressed as a known function of
the observable variables and unknown parameters for these models, a stochastic restriction
on € (like a conditional mean restriction, d.ef' ined below) translates directly into a
restric.tion on y, X, BO' and AO which can be ‘used to construct estimators.

Another category, limited dependent variable models, includes latent variable models
in which the transformation function t(y.) which doesbnot depen'd upon unknown
parameters, but which is non-invertible, mapping intervals of possible »y“h values into
single valﬁes of y. Scalar versions of theée models have received much of the attention

in the econometric literature on semiparametric estimation, owing to their relative

simplicity and the fact that parametric methods generally yield inconsistent estimators
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for BO wheh_the functional form of the error distribution is misspecified. The simplest
non-trivial transformation in this category is an indicator for positivity of the latent

»
variable y , which yields the binary response model

(115 y=1x'By + e > 0),

which is commonly used in econometric applications to model dichotomous choice problems.
For this model, in which the parameters can be identified at most up to a scale
porma_lization on BO or g, the only point of variation of the function t(y‘)

oécurs at y“l = 0, which makes identification of BO particularly difficult. A model
which shares much of the structure of the binary response model is the ordered response

#*
model, with the latent variable y s only known to fall in one of J+1 ordered

intervals {(-o, c0], (co, 01], ey (Cy w)}; that is,
J
(1.16) y = Z {x [30 +e> cj) .
=1
Here the thresholds (cj) are assumed unknown (apart from a normalization like Cy = 0),

and must be estimated along with BO; the grouped dependent variable model is a variation
with known values of (cj), where the values of y might correspond to prespecified
income intervals.

A structural function for which the transformation funétion is more "informative"
about BO is the. censored regressio_n model, also known in econometrics as the censored
Tobit model (after Tobin (1956)). Here the observable dependent variable is assumed to be

subject to a nonnegativity constraint, so that
(1.17)  y = max({0, X'By + €k

this 'structural function is often used as a model of individual demand or supply for some
good when a fraction of individuals do not participate in that market. A variation on
this model, the accelerated failure time model with fixed censoring, can be‘ used as a

model for duration data when some durations are incomplete. Here

17



(1.18) y = mm(xlBO + e, xz),

where y is the logarithm of the observable duration time (e.g., an unemployment spell),
and X, .is the logarithm of the duration oflthe experiment (following which the time to
cbmpletion for any ongoing spells is unobserved); | the "fixed" qualifier denotes models

in which both X, and X, are observable (and may be functionally related).

These univariate limited dependent variable models have multivariate analogues which
have also been considered in the semiparametric literature. - One multivariate
generalization of the binary response model is the multinomial respon.sé model, for which
the dependent variable is a J-dimensional vector of indicators, y = vec(yj, i=1 ..,

5}, with

*

»
(1.19) .= Iy, 2
Y; (yJ Yk

»
for k # .j)-l(y‘i > 0}
»
and with each latent variable yj generated by a linear model

| _ral i J
(1.20) yj =X BO + eJ., BO = [BO, oo BO’ veer Bol.

Another bivariate model which combines the binary response and censored regression models
is the censored sample selection model, which has one binary response variable y1 and

one quantitative dependent variable yz' which is obsgrved only when y1 = 1: .
1
— 7
(1.21) y, = I(XIBO teg > 0)
and
(1.22) Y, =Yy -[x';32 + e.]
) 2 1 710 - T2v

' . 1 _ 2
This model includes the censored regression model as a special case, with Bo = BO = ﬁo.
and g =g, = ¢£. A closely related model | :he dis. Juilibrium regression model with
observed regime, for which only the smaller .. two latent variables is observed, and it is

known which variable is observed:
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_ il . 102
(1.23) v = 1(x BO e <x BO + 82)_
and
(1.24) y =rnin(x";31 + € x’Bz+e )=y'[x’B1 +e]+(1-y)-[x‘BZ+e |
' 2 L T U R A (S 1 o 2"

A special case of this model, the randomly censored regression model, imposes the
restriction Bg = 0, and is a variant of the duration model (1.18) in which the

observable censoring threshold X, ‘is.replaced by a random threshold e. which is

2
unobserved for completed spells.

A class of limited dependent variable models which does not neatly fit into the
foregoing latent variable framework is the class of truncated dépendent variable models,
which includes the truncated regression and truncated sample selection models. In these
models, an observable dependent variable y is constructed from latent Qariables drawn

from a particular subset of their support. For the truncated regression model, the

* *
dependent variable y has the distribution of y = x’BO + £ conditional on y > O:
(1.25) y = x’BO + v,
with
(1.26) Pr{uv s c|x} = Pr{e = clx, € > -x’BO).

f‘or the truncated selection model, thé dependent variable y is generéted in the same way
as yzv in (1.24), conditionally on y, = 1. ;I'runcafed models are vafiant’s of censored
models for which no information on the conditioning variables X is available when the
latent variable 'y. cannot be observed; since truncafed samples can bé constructed from
their censored counterparts by deleting censored observations, identification and

estimation of the parameters of interjest is more challenging for truncated data.
An- important class of multivariate latent dependent variable moedels arises in the

analysis of panel data, where the dimensionality of the dependent variable y is
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proportional to the number of time periods each individual! is observed. For concreteness,
consider the special case in which a scalar dependent variable is olﬁserved for two time
periods, with subscripts on y and «x denoting time period; then a la;ent variable
analogue of the standard linear "fixed effects" model for panel data\_ has

Y =t + x(8y + e p7p)
(1.27)

y=tly + X8 + €5:Tp)
where t(:) is any of the transformation func-ions disci:zsed above and « is an
unobservable error term which is constant acr time periods (unlike the time-specific
errors £ and 82_) but may .depend in an arbitrary way on the regressors X and X5
Consistent estimatioﬁ of the parameters of interest BO for such models is a very
_challenging problem; while "time-diff‘erencing" or "deviation from cell rheans" elimin’é\tes
the fixed effect for linear models, these techniques are not applicable to nonlinear
models, except in certain special cases (as discussed by Chamberlain (1984)). Even when
the joint dist;ibution of the error terms s:1 and 82 is known pafametrically, maximum
likelihood estimators for BO, Ty and the distril_:utional parameters will be
inconsistent in general if the unknown values of ¥ are treated as individual-specific
intercept terms (as noted by Heckman and MaCurdy (1980)), so semiparametric methods wiij
be useful even when the distribution of the fixed effécts is the only nuisance parameter
of the model.

The sf;ructural functions considered so far have been assumed known uﬁ to a

finite-dimensional parameter. This is not the case for the generalized regression rpodel,

which has
(1.28) y = ro(x BO + e)‘,

for some transformation function 'ro(-) which is of unknown parametric form, but which is
restricted either to be monotonic (as assumed. by Han (1987a)), or smooth {or both).

Formally, this model includes the univariate limited dependent variable and parametric
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transformation models as special cases; however, it is gener'ally easier to identify and
estimate the parameters of interest when the form of the transformation unction t(-) is
(parametrically) known. '

Another mokdel which at first glance has a nonparametric component in the structural
component is the partially linear or semilinear regression model proposed by Engel,
Granger, Rice, and Weiss (1986), who labelled it the "serﬁiparametric regression model;"
estimation of this model was also considered by Robinson (1988). Here the regression
function is a nonparametric function of a subset x

1 of the regressors, and a linear

function of the rest:
(1.29) ¥y = XZBO + )O(xl) + g,

where AO(-) is unknown but smooth. By defining a new error term e. = Ao(xl) + € a
constant conditional mean assumption on the original error term & tranélates into a mean
exclusion restriction on the error terms in an otherwise-standard linear model.

Yet another class of models with a nonparametric component are generated regressor
models, in which the regressors x appear in the structural equation for y indirectly,

through the conditional mean of some other observable variable w given x:

(1.30) y

h(Elw|x],x ,e) = g(x,ao,GO(-)?e).

with 6O(x) Elw|x]). These models arise when modelling individual behavior under
uncertainty, when ‘actions depend upoﬁ predictions (here, conditional expectations) of
unobser;ved outcomes, as in the large literature on "rational expectationé." Fofmally. the
nonparametric component in the structural function can bg absorbed into an unobservable
error term satisfying a conditional mean restriction; that is, defining 7 = w - Elw|x]:
(so that Eln|x] = 0), the model (1.30) with nonparametrically-generated regressors can be
rewritten'aé y = g(w-n,ao.e).> with a conditional mean restriction on the extra error

term 7. In practice, this alternative representation is difficult to manipulate unless

g(+) is linear, and estimators are more easily constructed using the original formulation
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(1.30).

Although the models described above have received much of the attention in the
econometric literature on semiparametrics, they by no means exhaust the set of models with
parametric and rionpara,metric components which are used in econometric applications. One
group of semiparametric models, not considered here, include the proportional hazards
model proposed and analyzed by Cox (1972, 1975) for duration data, and duratien models
more generally; these are discussed by Lancaster (1990), among many others. Another
class of semiparametric models which is not considered here are choice-based or
response-based s -pling models; these are similar to truncated sampling models, in that
the observations a: drawn from sub-populations with restricted ranges of the dependent
variable,. eliminating the anciliarity of the regreseors x. These models are discussed by

Manski and McFadden (1981), and, more recently, by Imbens (1992).

1.4 Objectives and Techniques of Asymptotic Theory

Because of the generality of the restrictions imposed on the error terms for
semiparametric models, it is very difficult to obtain f inite-sample results for the
distribution of estimators except for special cases. Therefore, analysis of
semiparametric models is based on large-sample theory, using classical limit theorems to -
approximate the sampling distribution of estimators. The goals and methods to derive this
asymptotic distribution theory, brief ly described here, e.re discussed in mueh more detail .
in the chapter by f\]ewey in this volume.

As mentioned earlier, the first steh in ihe staiisti(:al analysis of a. semiperametric

model is to demonstrate identification of the parameters «_. of interest; though

0]

logically distinct, identif ication is often the first step in construction of an estimator

of « To identify do, at least one function T(:) must be found‘that yvields

o
T(FO) = &5, where Fo is the true joint distribution function of 2z = (y,x) (as in
(1.3) above). This functional may be implicit: for example, ®, may be shown to uniquely

solve some functional equation T(Fo,ao) =0, (e.g., E[m(y,x,ao)] = 0, for some

22




m(-)).. Given the functional T(-) and a random sample (zi = (yi,xi), i=1,...,N} of

observations on the data vector 2z, a natural estimator of e is

(1.31) « = T(F),

where F is a suitable estimator of the joint distributjon function FO. Consistency of
« (i.e., a > % in probability as N - ) is often demonstrated by invoking a law of

large numbers after approximating the estimator as a sample average:
- 1 N
(L32)  a=g i;lqu(yi.xi) + 0 (1),

where E[qu(y,x)] > In other settings, consistency is demonstrated by showing that
the estimator maximizes a random function which converges uniformly and almost surely to a

limiting function with a unique maximum at the true value « As noted below,

o
establishing (1.31) can be difficult if construction of & involves explicit
nonparametric estimators (through smoothing of the empirical distribution function).
Once consistency of the estimator is established, the next step is to determine its
rate of convergence, i.e., the steepest function h(N) such that h(N)(;-ao) = Op(l).
For regular parametric models, h(N) = VN,  so this is a ‘maximal rate under weaker
semipaéﬁetric restrictions. If the estimator ; has h(N) = ¥N (in which case it is

said to be root-N-consistent), then it is usually possible to find conditions under which

the estimator has an asymptotically linear representation:
‘ - : 1 X ;
(1.33) « = a +- N 121 W(yi,xi) + op(l/m).

where the "influence function"” Y(-) has E[y(y,x)] = 0 and finite second moments. The

Lindeberg-Levy central limit thecrem then yields asymptotic normality of the estimator,
(1.34)  VRa - o) N K(O,V,),

where VO = EW(y,x)-[¥(y,x)]’}. With a consistent estimator of V0 (formed as the

sample covariance matrix of some consistent estimator n/;(yi,xi) of the influence



function), confidence regions and test statis- can be ¢ :structed with
coverage/rejection probabilities which are appioximately correct in large samples.

For semiparametric models, as defined above, there will be other functionals TV (F)-
which can be used to construct estimators of the parameters of interest. The asymptotic
efficiency of a particular estimator « can be established by showing that its asymptotic -
covariance matrix V in (1.34) is equal to the semiparametric analogue to the
Cramér-Rao bound for estimation of %y- This semiparametric efficiency bound is obtamed
as the smallest of all effj iciency bounds for parametmc models which satisf y the
semiparametric restrictions. The representation %, T (F ) which yields an ef- ient
estimator generally depends on some component & ( *) of the unknown, infinite-dimensional
nuisance parameter 1;0( ), i.e‘., T*(-) = T -,60), so construcfion of an efficient o
estimator requires explicit nonparametric estimation of some characteristics. of the
nuisance parameter.

Demonstration of (root-N) consistency and asymptotic normality of an estiniator
depends on the complexity of the asymptotic linearity representation (1.33), which in turn
depends on the complexity of the estimator. In the simplest case, where the estimator can P

be written in a closed form as a smooth function of sample averages,

(1.35) . a = (I:IZ (yx)J
the so-called "delta method" yields an influence function ¢ of the form
(1.36)  y(y,x) = [aa(uo)/au]- [m(y,x) - “o]'

where Ky = Elm(y,x)). Unfortunately, except for the classical linear model with
a conditional- mean restriction, estimators for semiparametric models are not _of':this

simple form. Some estimators for models with weak index or exclusion rec ~ictions on the

errors can be written in closed f orm as functions of bivariate U-statistics,
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~ . N _1 N-l N . A
(1.37) @ =a [ ] Z Z pN(zi,zJ.) a(UN),
i=l j=i+l
with "kernel" function Py that has pN(Zi,Zj) = pN(zJ.,zi) for z, = (yi, xi); under
conditions given by Powell, Stock, and Stoker (1989), the representation (4.3) for such
an estimator has influence function Y of the same form as in (4.6), where now
(1.38) m(y,x) = lim Elp (z,z)|z.=(y,x)], n, = Elm(y,x)].
N 1§ ' 0]

, N> :

A consistent estimator of the asymptotic covariance matric of « of (4.7) is the sample

second moment matrix of

-~ A~ 1 ~
(1.39) w(yi,xi) = [6a(UN)/ap] [ —_ Z pN(Zi,Zj) - UN].
, N-1 .7,
. j#i
In most cases, the estimator « will not have a closed-form expression like in
(1.35) or (1.37), but instead will be defined implicitly as a minimizer of some sample
criterion function or a solution of estimating equations. Some (inefficient) estimators
based on conditional location or symmetry restrictions are "M-estimators,"” defined as
minimizers of an empirical process
(1.40) a = argmin N Z p(yi,xi,a)' = argmin S (a)
aed i=1 aeB

and/or solutions of estimating equations

N
- 1 " = m N
(1.41) 0= N i; m(yi,xi,a) = mN(a).

for some functions p(-). and m(-), With dim{u(-)) = dim(d). When p(y,x,a) .(or
m(y,;x,a)) is a ﬁniformly continuous function in the parameters over the entire parameter
space 8 (with probability one), a standard uniform law of large numbers can be used to
AAensure that normalized versions of these criteria converge to their expectations unif ormly
on the parameter space. This, along with an ‘identification condition ~- namely,

uniqueness of @y as a minimizer of Elp(y,x,a)] or solution to 0 = Elm(y,x,a)] over
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« € 8 --ensures consistency of the estimator ; defined by (4.10) or (4.11). When

p(-) (or m(-)) is discontinuous in the parameters, uniform convergence of the empirical
processes SN(a) or I;IN(G.) can usually be obtained by exploiting the special structure
of p(+) or m(:), using the results by Huber (1967), Pollard (1985), and Pakes and
Pollard (1989) described in the chapters on asymptotic theory iﬁ this volume. Under the
regularity conditions imposed in these papers, the M-estimatorj ; will have an asymptotic

linearity representation (1.33), with influence f unction

(L42)  ylyx) = -[aE[m(y.x.a)]/aa’

-1
] *m(y.x,ao).
x=a

where m(:) = 8p(+)/8a for the estimator defined by (4.10). ’More generally, the
functions p{-) and m(-) may vary with the sample size N, in which case
m(-) = lim mN(-) = lim apN(-)/aa.

One variation on the M-estimator exploits moment restrictions E[m(y.x.ao)l = 0 when
dim{m(-)} > dim(«). A generalized method of moments (GMM) estimator is defined as
(1.43) « = argmin [m_(«)}‘A [m (a)],

N NN
aed
where ﬂmN(a) is defined in (4.11) and AN is a sequence of positive semi-definite
matrices converging in probability to some matrix AO. Estimators based on conditional
mean restrictions are generally of this form: Under similar regularity conditions as for
M-estimators, GMM estimators will be consistent and asymptotically linear, with influence

function

. -1
(1.44) - uly,x) = -[M(’)AOMO] -M(')Aom(y,x,ao),

where

(1.45) 'MO = JE[m(y,x,a))/da’ ‘
a=a

(¢} ' .

As pointed out by Hansen (1982), the asymptotic variance of the GMM estimator is minimized

by choosing AN so that its probability limit ‘AO is proportional to the inverse of the
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covariance matrix E[m(y,x,ao)m'(y,x,ao)] of the moment functions.
Another variation of the M-estimator of (1.40) defines the estimator « as a

minimizer of a bivariate U-process,

(1.46) ; = argmin [ J Z z Py (z z ,a) = argmin UN(a),

aed i=1 j=i+l aed

 where 'the kernel PN () has the same Symmetry property as stated for (1.37) above; such
estlmators arise for models with independence or index restrictions on the error terms
Results by Nolan and Pollard (1987,1988), Sherman (1992), and Honoré and Powell (1992) can
be used to establish the consistency and asymptotic normality of this estimator, which
will have influence function of the form (1.42) when
(1.47) m(y,x,x) = lim aE[pN(zi,zJ..a)]yi=y,xi=x]/aa.
b d ]

A more difficult class of estimators to analyze are those termed "semipararhetric
M-estimators" by Horowitz (1988a), for which the estimating equations in (1.41) also
depend upon an estimator of a nonparametric component 60(-); that is, & solves

1 N A a - Aa

(1.48) 0=g igl m{y;, %;e,8(+)) = m (@,8(+))

for some nonparametric estimator & of s This condition might arise as a f irst-order

o
condition for minimization of an empirical loss function that depends on 3,
(1.49) ;= argmin % Z p(yi,xi,a,3(°)),

aehB i=l-
as considered by Andrews (1989), As noted above, ‘an efficient estimator for any A
semiparametric model is genera‘ll'y of this form, and estimators for models w1th
independence or index restmctxons are often: in this class. To derive the influence
function for an estimator satisfying (1.48), a functional mean-value expansion of
ElN(;,gl around § = 8, can be used to deter'mme the effect on of estimation of 3y
Formally, condition (1.48) yields
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(1.50) 0 =m(«38(-)) = mN(a,6O(-)) + Lo(a(') B 60( i+ opu/m)

for some linear functional_ LO; then, with an influence function representation of this .

second term
~ . 1 N
(1.51) Lo(3(+) - 8,()) = 5 i;l £ly,x,) + opu/m)

(with E[E(y,k)] = 0), the form of the influence function for a semiparametric M-estimator

is

(1.52) wiy,x) = [aE[m(y,x,a,ao)]/aa'

-1
] -[m(y,x,ao,ao) + E(y,x)].
a=a
To illustrate, suppose 60 is finite-dimensional, 60 € _IRk; theri the linear
functional in (1.50) would be a matrix product,
(1.53) LO(S(-) - 60(-)) = LO-(S - 60) s [aE[m(y,x,a,G)/aa l

].(3 -5,
(0]
a-ao,a-so

and the additional component € of the influence function in (1.52) would be the
product of the matrix LO with the influence function of the preliminary estimator .

When 60 is infinite~dimensional, calculation of the linear functional L0 and the

associated influence function € depends on the nature of the nuisance parameter 60 and

how it enters the moment function m(y,X,a,8). One important case has & equal to the

0

conditional expectation of some function s(y,x) of the data given some other function

v(x) of the regressors, with m(-) a function only of the fitted values of this

expectation; that is,

(L54) -+ 5, = 8o(v(x)) = Els(y,x)| v(x)]
and |

. (1.55) m(y,x,e,8(-)) = m(y,x,ea,5(v(x))),

with m/88 well-defined. For instance, this is the structure of efficient estimators

28




for conditional location restrictions. For this case, Newey (1989) has shown that the
adjustment term £(y,x) to the influence function of a semiparametric M-estimator « is

of the form

(1.56) €(y,x) = [BE'[m(y,x,a,S)lv(x)]/aa’ ] [s(y,x) - So(v(x))].

a=a
In some cases the leading matrix in this expression is identically zero, so the asymptotic
distribution of the semiparametric M-estimator is the same as if 60(-) were known;
Andrews (1989) considered this and other settings for which the adjustment term € is
identically zero, giving regularity conditions for validity of the expansion (1.50) in

such cases. General f ormulae for the influence functions 6t‘ more complicated
semiparametric M-estimators are derived by Newey (1990, 1991), and are summarized in

Andrews’ and Newey’s chapters in this volume.

2. Stochastic Restrictions

This section discusses how various combinations of structural equations and stochastic .
restrictions on the unobservable errors imply restrictions on the Joint distribution of the
observable data, and presents general estimation methods for the parameters of interest
which exploxt these restrictions on observables The classification scheme here is the same
as introduced in the monograph by Manski (1988b) (and also in Manski's chapte'r in this
volume), although the discussion here puts more empha51s on estimation techniques and
propertxes Readers who are familiar with this material, or who are intérésted in a
particular structural form,' may wish to skip ahead to section 3 (bwhich reviews the

literature for particular models), referring back to this section when necessary.
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2.1 Conditional Mean Restriction
As discussed in section 1.3 above, the class of constant conditional location

restrictions for the error distribution assert constancy of
(2.1) Vo = ar‘gminb Elr(e - b)|x],

for some function r(-) which is nonincreasing for nega;tive arguments and nondecreasing
for positive arguments; this implies a moment condition Elq(e - po)lx] = 0,

for q(u) = dr(u)/du. When the loss function of (2.1) is taken to be quadratic,

r(u) = u’u, the corresponding conditional location restriction imposes constancy of the

conditional mean of the error terms,

(2.2) E(e|x) = o .

for some Hor By appropriate definition of the dependent variable(s) y and "exogenous"
variables x, this restriction may be applied to models with "endogenous” regressors.
This restriction is useful for identification of the parameters of interest for

structural functions g(x,«,e) that are invertible in the error terms- €; that is,
(2.3) y = gix ‘Y.O.e) <=> € = e(y,x.ao)

for some function e(:), so that the mean restriction (2.1) can be rewritten
(2.3) Ele(y,x,,«;) - Bolx,] =0 = Elely;, x;,20)]x,],

where the latter equality imposes the normalization By = 0 (i.e., the mean Ho is
éppended to the vector a of parameters of inter,est_).

;Conditional mean restrictions are useful :for some models that are not completely
specified - that is, for models in which some components of the structural function g(-) ,
are unknown or unspecified. In many cases it is more natural to specify the function
‘e(+) characterizing a subsét of the error terms than the structural function g(-) for

the dependent variable; for example, the parameters of interest may be coefficients of a




single equation from a simultaneous equations system, and it is often possible to specify
the function e(-) without specifying the remaining equations of the model. However,
conditional mean restrictions generally are insufficient to identify the parameters of
interest m nonin;’ertible limited dependent variable models, as Manski (19885) illustrates
for the binary response model.

The conditional moment condition (2.3) immediately jrields an unconditional moment
equation of the form
(2.4) 0= E[d(x)-e(y,x,ao)],
where d(x) is some conformable matrix with at least as many rows as the dimension of %y
For a given function d(:), the sample analogue of the right-hand side of (2.8) can be |
used to construct a method-of -moments or generalized method of moments estimator, as
described in section 1.4; the columns of the matrix d(x) are "instrumeﬁtal variables" for
the corresponding rows of the error vector e. More generally, the function d(-) may

depend on the parameters of interest, « and a (possibly) infinite-dimensional nuisance

0’
parameter 50(-), so a semiparametric M-estimator for- a« may be defined to solve

1 N

N &

(2.5) 0 d(xi,a,g)-e(yi,xi,a),

-

where dim(d(-)) = dim(a) x dim(e) and ;?= 8( ) is a consistent estimator of the
nuisance f unction 60(~). For example, these sample moment equations arise as the
- first-order conditions for the GMM minimization given in (1.43), where the moment _
f‘unctioﬁs take the form m(y,x,a) = c(x)-e(y,x,a), for a matrix c(x) of fixed functions
of x with numbe_r of rows greater than or equal to the'number components of a. Then,

assuming differentiability of e(-), the GMM estimator solves (2.5) with

(2.6) dix,a,8) = { % 121 [a_e(yi,x'i,oc)/aa’]’[c(xi)]'}-AN-c(x),

where 'AN is the weight matrix given in in (1.43).

Since the function d(:) depends on the data only through the conditioning variable
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x, it is simplg to derive the form of the asymptot:- distribution for the estimator «

which solves (2.5) using the results stated in section 1.4:
@7  We-a) -5 ¥fo, MV !
. 0 ? 0 0 0 ]

where

=9 - .8
MO - a_a7 E[d(x,a,ao) e(y,x,u)] = d(x’a,ao) {3? E[e(thla)lxi] }
o= o=«
(0] o
and
= { . ol erl?
V0 E-d.x,ao,ao) e(y,x,ao) e (y,x,ao) d (x,ao,ao)]
- E[d(xag8,)-500-4 (xi,ao,ao)].
In this expression, Z(x) is the conditional covariance matrix of the error te‘rms,
I(x) = E[e(y.x.ao)-e’ (y.x,ao)]x] = E[e-e’ Ix]
Also, the expectation and differentiation in the definition of M0 can often be
interchanged, but the order given above is often well-defined even if d(-) or e(+) is
not smooth in a.
A simple extension of the Gauss-..arkov argument can be used to show that an ef{ nt

.
choice of instrumental variable matrix d (x) is of the form

. . . ; v | , -1;.
(2.8) d (x) =d (x,ao,ao) = {53, E[e(y,x,a)lxi]__ } [2(x)]) ;. |

a=a0

~n
the resulting efficient estimator « will have

(2.9) m[&' - ao] 9, xo.vm,  with

| » -1 * . -1
ve = {E[d x)- 1260172 [d _(x)]’]} .

»
under suitable regularity conditions. Chamberlain (1987) showed that V is the
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semiparametric efficiency bound for any “regular” estimator of «_. when only the

0
conditional moment restriction (2.3) is imposed. oOf course, the optimal matrix d'(x) of
instrumental variables depends upon the conditional distribution of y given X, an
infinite dimensional nuisance parameter, so dxrect substitution of d (x) in (2.5) is not
f‘ easxble Construction of a feasible efficient estlmator' f‘ or %5 generally uses
nonparametnc regression and a preliminary mefﬁment GMM estimator of ao to construct
estimates of the components of d (x), the conditional mean of de(y,x, @, )/8a’ and the
conditional covariance matrix of ely,x, @, ). this is the approach taken by Carroll (1982),
Robinson (1988b), and Delgado (1992), among others. Alternatively, a "nearly" efficient
sequence of estimators can be generated as a sequence of GMM estimators w1th moment
functions of the form m(y,x,a) = c(x)-ely,x,a), where_lthe number of rows of c(x) (i.e.,
the number of “instrumental variables") increases slowly as the sample size increases;

Newey (1988a) shows that if linear combinations of ¢(x) can be used to approximate d’(x)’
to an arbitrarily high degree as the size of c(x) increases, then the asymptotic variance
of the corresponding sequence of GMM estimators equals V*.

For the linear mode]
y=x'By+e

with scalar dependent variable y, the form of the optimal instrumental variable matrix

* N
d (x) simplifies to the vector
» ' -
d (x) = [o2(x)]"!

where u*z(x) is the conditional variance of the error term €. As noted in section
1.2 above, efficient estimator for BO would be a weighted least squares estimator, with

weights proportional to a nonparametric estimator of [crz(x)l-l.. as considered by Robinson
(1988b).

2.2 Conditional Quantile Restrictions

33




ves th o
In its most general form, the conditional & quantile of a scalar error term
defined to be any function ‘x;n) for which the conditional distribution of e has

least probability @ to the ieft and probability 1 - m to the right of nn(x):
(2.10) Pr{e s n(x;n)|x} z n and Pr{e =z n(x;n)|x} = 1-n.

A conditional quantile restriction is the assumption that, for some =n € (0,1), this

conditional quantile is independent of X,
(2.11) nx;n) = no(n) z ‘no, a.s.

Usually the corditional distribution of & is further restricted to have no point mas
its conditional quantile (Pr{ec = 'no} = 0), which with (3.1) implies the conditional

moment restricti(on

(2.12) Eln - I{e < Nt Xl =0 = Eln - (e < N} [x],

€ is

at

s at

where again the normalization My = 0 is imposed (absorbing 5. as a component of ).
0 0 0

To ensure uniqueness of the solution Ny = 0 to this moment condition, the conditional

error distri- :tion is usually assumed to be absolutely continuous with non-negative density

in some ne:::zorhood of zero. Althouz:. it is possible in princic  to treat the propo
T as an unknown parameter, it is generally assumed that w is known in advance;.

attention is paid to the special case = = 172 (i.e., a conditional median restriction)

regressors or conditional symmetry of the errors about a constant.
A condltional quantlle restriction can be used to identif y. parameters of interest
models in which the dependent variable y and the error term € are both scalar,

structural function g(-' of (1.9) is nondecreasing in € for all possible @, and

almost all x:

(2.13) uy su, = gx, o ul) s g(x, o uz), a.s.(x).

2
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(Of course, nomncreasmg structural functions can be accommodated with a sign change on
the dependent variable ¥.) This monotonicity and the quantile restriction (2.11) imply

that the conditional nth quantile of y given x is g(x,aO,O); since .
€=0 or €20 => y = glx, ao,e) g(xa ,0) or yag(x,ao,o),

it follows that

v

(2.14) Pr{y = g(x,ao,O)]x) Prie = 0|x} =z n and

v

Pr{y = g(x,a,,0)[x} = Pr{c = O|x}z 1 - m.

Unlike a conditional mean restnctlon a conditional quantile restmctlon is usefu]
for identification of- %o even when the structural function g(x,a,e) is not invertible
in e. Moreover, the equivariance of quantiles to monotonic transformatlons means that,
when it is convement a transformation {(y) might be analyzed instead of the
original dependent variable Y, since the conditional quantile of &y) is h(g(x,ao.O))
if &) is nondecreasing. (Note, though, that application of a non-invertible
transformation may well make the parameters ®y more difficult to identif y.)

The main drawback with the use of quantile restrictions to identif y % is tha§ the
approach is apparently restricted to models with a scalar error term €, because of their.
lack of additivity (i.e., quantiles of convolutions are not generally the sums of the
corresponding quantiles) as well as the ambxgmty of a monotomcxty restriction on the
structural function in a multivariate setting. Estimators based upon quantlle
restrictions have been proposed for the linear regression, parametric’transf ormation,
binary response, ordered response, and qensored regression models, as described in_ section
3 below. |

-F‘gr values of x for which g(x,ao,e) is strictly increasing and dif‘ferent.iable at
€ = 0, the moment restriction given in (2.12) and monotonicity restriction (2.13) can be
‘combined to obtain a conditional moment restriction for the observable data and unknown

parameter ao. Let . »
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(2.15)  bx,@) = K3 g(x,a,0),/80 < 8" g(x,,0)/0¢ dg(x,2,0)/8e > oy,

then (2.12) immediately implies
(2.16) | E[b(x,ao)-[n - Ky < g(x,aO,O))][x] s E[m(y,x,qo)IXI = 0.

In pi*inciple, this conditiona] moment condition might be used directly to define a method
of moments estimator for ao; however, theré are two drawbacks to this approach. First,
the moment function m(+) defined above is necessarily a discontinuous f unction of the
unknown parameters, complicating the asym}atotic theoxjy. More importantly, this moment
condition is substahtially weaker than the derjved quantile vrestriction (2.14), since.
observations for which g(x,ao,u) is not strictly iAncreasing at u = 0 may stiil be useful
in identifying the unknown parameters, As an extreme example, the.binary response model has
t(x,ao) = 0 with probability one under standard conditions, yet (2.14) can sufficient to
identify the parameters of interest even in this case (as discussed below).

An alternative approach to estimation of %, can be based on a characterization of the
nth conditional quantile as the solution to a particular expected loss minimization

problem. Define
(2.17) R(b,x;m) = E{pn(y - b) - pn(y)lx],;
where

P (u) = g-[n - l(u < O)];

since lpn(u - b) - P.lu)| = [b]|, this minimand is well-defined irrespective of the
existence of moments of the data. It is straightforward to show that Q(b,x) is minimized
at b. = g(x,ao,o) when (2.14) holds (more generally, Q{b,x) Wi be minimized at anyv
conditionai nth quantile of y given x, és notegl by Ferguson (1967). Theref ore, the

true parameter vector «, will minimize
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(2.18) Q(a;W('-),n) = E[w(x)-R[g(x,a,O),x;n” = E[w(x)'[pn(y - g(x,a,0)) - Pn(}')l]

over the parameter space, where w(x) is any scalar, nonnegative function of x

which has E[w(x): lg(x,a,O)]] < w. For a particular structural function g(-), then, the
unknown parameters will be identified if conditions on the error distribution, regressors,
and weight function w(x) are imposed which ensure the uniqueness of the minimizer of
Qla;w(+),m) in (2.18). Sufficient conditions are uniqueness of the nth conditional
quantile ny = 0 of the error distribution and Priw(x) > 0, g(x,a,) # g(x,ao,O)) >0
Whenever a # &y -

Given a sample ((yi,xi), i =1, .., N of observations on y and Xx, the sample

analogue of the minimand in (2.18) is
1 N
(2.19) Qulesw(-)m) = & i; wix) p (y. - g(x,,2,0)),

where an additive constant which does not affect the minimization problem has been
deleted. In general, the weight function w(x) may be allowed to depend upon nuisance

parameters, w(x) = w(x, 60), so a feasible weighted quantile estimator of «. might be ,

0

defined to minimize SN(oc,n,w(-);n), with w(x) = w(x, 8) for some preliminary estimator

d of 60. In the special case of a conditional median restriction (n = 1/72), minimization

of QN is equivalent to minimization of a weighted sum of éybsolute deviations criterion
, . . N
- (2.20) SN(a;w(;)) = 2-QN(¢;W(-),1/2) =N izl w(xi)- 'yi - g(xi,a,O)I.

which, with w(x) = 1, is the usual starting point for estimation of thé parti;:ular

models considered in the literature cited below. - When the structural f unction g(-) is
of the latent variéble form g(x,a,e) = t(x’B+e,7)), the estimator ; which ,mi_nimizes
QN(a-;v:r,u) will typically solve an approximate first-or‘def condition,

. dg(x ,a,0)

N _
1 -~ ~
_(2.21) X i; w(x.)-[n - Iy, < g(x;,%,0)]- b(x,,)-

x Q,
da

where b(x,a) is defined in (2.15) and 3 g(-)/8a denotes the vector of left derivatives.
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at zero and

(The equality is only approximate due to the nondifferentiability of pn(u)
at- ;; the symbol "2" in (2.21) means the left-hand

possible nondif‘ferentiability of g(-)
These equations are of the form

side converges to zero at an appropriate rate.)

m(yi,xi,a)-d(xi,a,é) g 0,

~12

1
N i=1
where the moment function m(-) is def ined in (2.16) and

~n o~ - " ag(xi.a,O)
d(x,a,8) = W(xi'a)'b(xi'“)' .

du
Thus the quantile minimization problem yields an analogue to the unconditional moment

0,60)] = 0, which follows from (2.16).

. restriction E[m(y,x,qo)-d(x,a
As outlined in section 1.4 above, under certain regularity conditions (given by

Powell (1991)) the quantile estimator « will be asymptotically normal,

d -1 -l
- ao) — N(O.Mo VO(MO) ].

(2.22) VN
where now
ag(x,aO,O) ag(x,ao,o)
My =E f(Ofx)-w(x.ao)-b(x,ao)- e R
and
2 ' ag(x,ao,o) ag(x.aO,O)
V0 =El n(l - n)-w (x,ao)-b(x,ao)- £ . G ,

residual” y - g(x,ao.o) at zero. The

for f(O|x) being the conditional density of the "
o’ which is identically

c_:dnditions include invertibility of the matrix M

"regularity"
as shown by Kim and Pollard (1990), the

zero for the binary and ordered response models;
is slower than VN for these models.

rate of convergence of the estimator «
an efficient choice of weight function wi(x) for this problem is

When (2.22) holds,

38




(2.23) w*(x) « f(0|x),
~ ¥
for which the corresponding estimator « has
. ~ N d »
(2.24) VNle - @y) — #(0,V ),

with

6g(x,ao,0).6g(x,ao,0) -1

da da’

Vet -mdE 120 %) bi(x,a):

The matrix ‘V* was shown by Newey and Powell (1990) td be the semiparametric eff iciency
bound for the linear and censored regression models with a condi'tional quantile
restriction, and this is likely to be the case for a more general class of structufal
models. |

For the linear regression model g(x,ao,e) = x’Bo + €, estimation of the true
coefficients Bo using a least absolute deviations criterion dates f rom Boscovitch (1760)
and Laplace (1793); the extension to other quantile restrictions was proposed by Koenker
and Bassett (1976). In this case b(x,a) = 1 and og(x,a,€)/8c = x, which simplifies the

asymptotic variance formulae. In the special case in which the conditional density of

€=y - x’BO at zero is constant -- f(0|x) = f o~ the asymptotic covariance matrix of the

quantile estimator B further simplifies to

V= nl - e 172 e L

(Of course, imposition of Athe additional restriction of a c_onstan't conditional density at

zero may affect the semiparametric information bound for estimation of | BO') The monograph
by Bloomfield and Steiger (1983) gives a detailed discussion of the historical

‘developmeht. theoretical properties, and comvputational implementation of quantile

estimators for linear models.

As noted in section 1.3, conditional mean and median / quantile restrictions do not
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exhaust the set of conditional location restrictions appearing in the semiparametric
literature. For example, M. Lee (1989) considers estimation based upon a conditional mode
restriction, which imposes constancy of the maximizer of the conditional density of the

error terms,

r

max f’elx(e]x) = v,
For the linear model y=x' BO + €, this restriction immediately implies a linear form for

the conditional mode of Yy given x:

max f . (yix) =v

y 'ylx * X8

¢} 0
More generally, a mbde restriction may impose constancy of the modal interval of width w

for the error distribution, defined as
vo(x,w) = argmax Pr{le - u| s w2 |x) = argmax E{l(|e - u| s w/2)|x),

which yields the same linearity result for the modal w-interval of y given x in a linear
model. Lee (1989) Proposes an estimator for the linear model which solves a sample
maximization problem derived from this restriction, and verifies its consistency under
suitable conditions; he also shows how this restric-ion can be used to construct consistent
estimators for the truncated regression model, since modes a'r"e invariant to truncation

(provided they do not overlap the truncated region).

2.3 Conditional Symmetry Restrictions
The assumption that the error terms ¢ are con_ditionally symmetrically distributed

around a constant term vo = 0,

(2.25) Prie = u[x} = Pr{ -e = u|x)

for all u, clearly implies a constant conditional mean or median (when either are

well-defined), so estimators which impose. these weaker restrictions are also applicable
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under (2.25). More -generally, a conditiona] symmetry restriction is useful for
identification of the parameters of interest @y for models that can be "symmetrized" in -
the error terms e. Specifically, suppose that, for the structural relation y = g(x,ao,e),

a function h(y,x,a) can be constructed where the composed f unction h o g is an odd

function - of €. That is,
(2.26) h(g(x,a,€),x,a) = - h(g(x,a,-€),x,u)

. for some h(-) and all possible X, «, and e. Then the random function
h(y,x,a) = h(g(x,ao,e).x,a) will also be symmetrically distributed about zero when

o = %q implying the conditio_nal moment restriction
(2.27) E[h(y,x,ao)[x] = E[h(g(x,a_o,e),x,ao)]x] = 0.

As with the previous restrictions, the conditional moment restriction can be used to
generate an unconditional moment equation of the form E[d(x)-h(y,x,ao)] =0, with d{x) a
conformable matrix of instruments with number of rows equal to the number of components of

a In general, the function d(x) can be a function of « and nuisance parameters &

o
(possibly inf inite-dimensional), so a semiparametric M-estimator ; of @, can be
constructed to solve the sample moment equations
1 N ~ 2 "

(2.28) 0= N i; d(xi,a,a)-h(yi,xi,tx).
for S an estimator of some nuisanc'e. paramgters. 60.

Fof‘ structural functions g(x,a,e) which are invertible in the errdr'terms, it is
straightforward tovf ind a transformation satisfying condition (2.26). Since ¢ = e(y,x,a)
is an odd f unction of €, h(:) - can be chosen as this inverse function e(+). Even for -
non-invertible structural functions, it is still sometimes possible to find a "trimming"
function h() which counteracts the asymmetry induced in the conditional distribution of

¥y by the nonlinear transformation g(+). Examples discussed below include the censored

and truncated regression models and a particular selectivity bias model.
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As with'phe quantile estimators described.in a preceeding section, the moment
condition {2.27) ‘s sometimeé insufficient to identify the parameters @y Siace the
"trimming" transformation h(-) may be identically zero when evaluated at certain values
of @ in the parameter space. For example, the symmetrically censored least squares
estimator proposed by Powell (1986b) for the censored regression mode! satisfies condition
(2.27) with a function h(-) Whlch is nonzero only when the fitted regression function x‘ B
exceeds the censoring pomt (zero), so that the sample moment equation (2.28) will be
trivially satisfied if B is chosen so that x’iB is nonpositive for all observations. In
this case, the estimator é was defined not only as a solution to a sample moment condition
of the form (2.28), but in terms of a partic:.ar minimization problem B = argmm S (B)
which yields (2.28) as a first~order condition. This further restriction on the acceptable
solutions to the first-order condition was énough to ensure consistency of the estimator é ,
for BO' and construction of an analogous minimization problem might be necessary to fully
exploit the symmetry restriction for other structural models.

Once consistency of a particular estimator c; satisfying (2.28) is established, the
asymptotic distribution theory immediately follows from the GMM formulae. For a particul;r
choice of h(-), the form of the sample moment condition (2.28) is the same as condition
(2.6) of section 2.2 above, replacing the invere- ‘ransformation "e(:)" with the more
general "h(-)" here; thus, the form ot the a-, mptotically normal distribution of ;
satisfying (2.28) is given by (2.7) of section 2.2, again.replacing "e(-)" with "h(.)'",

Of course, the choice of the _syminetrizing transformation h(-) is not unique -- given
any h(-) sgtisfying (2.26), vanot'her transfor-mation" h.(y.x,a) = t(h(y.x;a).x.aj will also
satisfy (2.26) if &u,x,a) Is an odd function of u for all x and «. This
multiplicity of possible symmetrizing transformations com’blicatgs the derivation of the
semiparametric eff‘iciency'bounds for estimation of « under the symmetry restriction,
which are typically derivéd on a case-by-case basis. For example, Newey (1991) derived the
semiparametr: fficiency bounds for -the censored and truncated regression models under the

conditional Symmetry restriction (2.25), and indicated how efficient estimators for these
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models might be constructed.
For the linear regression model g(x,ao,e) = x'B + €, the efficient symmetrizing
transformation h(y,x,8) is the derivative of the log-density of €& given x, evaluated

at the residual y - x’B, with optimal instruments equal to the regressors x:
* "
h (y,x,8) = 8In felx(y - x’'B|x)/8¢, d (x,8,8) = x.

Here an efficient estimator might be construc;cea using a nonpabametric estimator of the
conditional density of ¢ given x, itself based on residuals e = y - x’§ from a
preliminary fit of the model. Alternatively, as proposed by Cragg (1983) and Newey (1988a).,
an efficient estimator might be constructed as a sequence of GMM estimators, based on a
growing number of transformation functions h(-) and _instr'ument sets d(-), which are
chosen to ensure that the sequence of GMM influence functions can approximate the influence

function for the optimal estimator arbitrarily well.

2.6 Independence Restrictions
Perhaps the most commonly-imposed semiparametric restriction is the assumption of

independence of the error terms and the regressors,
(2.29) Pr‘(ei s A]xi) = l-"r-(ei < A} for all real A, w.p.l

Like conditional symmetr'}" restrictions, this condition implies constancy of the

conditional mean ax"ad median (as well as the conditional mode), so estimatqr's which are
consis;ent under these weaker restrictions are equally applicable here. In fact, for
models which are invertible in the errors (¢ = e(y,x,ao) for some e(:)), a large class

of GMM estimators is available, based upon the general moment condition
(2.30) E(d(x)-[l(e(y,x;ao)) - vol) =0
for any conformable functions d(-) and £(-) for which the moment in (2.30) is

well-def ined, with vy = E[&(e)]. (MaCurdy (1982) and Newey (1988a) discuss how to exploit
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these restrictions to obtain r -re efficient estimators of linear regre<<ion coefficients.)
Independence réstrictions are also stronger than t..e index and exclus..n restrictions to be _
discussed in the next section, so estimation approaches based upon those restrictions will
be relevant here.

In addition to estimation approaches based on these weaker implied stochastic
restrictions, certain approaches specific to independence restrictions have been. proposed.
One strategy to estimate the unknown parameters involves maximization of a "feasible"
version of the log-likelihood function, in which the unknown distribution function of the
errors is replaced by a (preliminary or concommitant) nonparametric estimator. For some
structural functions (in particular, discrete response models), the conditional likelihood
function for the observable data depends only on the cumulative ;:listribution function
Fe(-) of the error terms, and not its derivative (density). Since cumulative
distribution functions are bounded and satisfy certain monotoriicity restrictions, the set
of possible ¢.d.f.’s will be compact with respect to an appropriately-chosen topology, so

in such cases an estimator of the parameters of interest «. can be defined by

0

maximization of the log-likelihood simultaneously over the finite-dimensional parameter «
and the infinite-dimensional nuisance parameter F e(-). That is, if f(y|x,«,F e(')) is

the conditional density of y given x and the unknown parameters .«, and Fe {with

0

respect to a fixed measure uy), a nohparametric maximum likelihood (NPML) estimator for

the parameters can be defined as

3
(2.31) = argmax

. In f(y,|x.,aF(-)),
F(-) .
o€d, Fe¥

L
N

-1z

i=l

where ¥ is the space of admissible c.d.f.’s. Such estimators were proposed by, e.g.,
Cosslett (1982) for the binary Eeéponse model ahd Heckman and Singer (1984) for a duration
model with unobserved heterogeneity. Consistency of « can be establis-~d by

- verificiation of the Kiefer and Wolfowitz (1956) conditions for consistency of NPML

estimation; however, an asymptotic distribution theory for such estimators has not yet been

developed, so the form of the influence function for « (if it exists) has not yet been
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rigorously established.

When the likelihood function of the dependent variable y depends, at least for some
observations, on the density function fe(e) = dFs(e)/de “of the error terms, the joint
maximization problem given iﬁ (2.31) can be ill-posed: spurious maxima (at infinity) can
be obtéined by sending the (unbounded) density estimator ;e to infinity at particular
points (depending on « and the data). In such cases nonparametric density estimation
techniques are sometimes used to obtain a preliminary estimator Fe which is substituted
into the likelihood function, yielding the "profile likelihood" criterion considered by
Severini and Wong (1987a), Andrews (1990a,b), and Newey (1991). More generally, the profile
likelihood approach might be used whenever the likelihood function depends upon an
infinite-dimensional nuisance parameter 60(-); given a preliminéry estimator 3(:) of

this nuisance parameter, an estimator of @, can be defined as

-1z

(2.32) a = argmax Nl—

In fly.|x,,e3(-)),
il 7
ac® i

1

which yields a first-order condition of the "semiparametric M-estimator" form discussed
above. The nonparametric estimator ) 3(+) typically varies with o« -- for example, a
density estimator might be based on residuals e, = e(yi,xi,a)) -- which complicates
derivation of the asymptotic theory, requiring particular rates of convergence of 3(:) to

0]

volume. Though the profile likelihood approach is, in principle, applicable to models which

3,(+) which are uniform over «, as discussed in Andrews’ and Newey’s chapters in this

do not impose independence'of ‘the errors and regressors, it is more .attract.ive under this
restriction because the unknown nuisance parameters (the cumulative and/or density of the
errors) is relatively low—difnensional. deﬁending only the dimension of €  and not .also on
the number 6f regressors x. Such 'estimators have been prbposed for most of the limited
dependént variable models cohsidered below.

A variant of profile likelihood estimation is based upon squared error minimization
rather than likelihood maximization. From the structural mpdel y = glx,a,e), it is

usually possible to deduce the form of the conditional mean of y,
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(2.33) Ely|x] = Elg.x,&,€)|x]) = v(x,0,f ().

Given this expectation function and a nonparametric estimator f(-) of f E:(-), a

semiparametric analogue of a nonlinear (weighted) least squares estimator of @, is

- N .

(2.34) « = argmax —;J- Z wix.):(y, - 'ar(x.,a,f(')))z,

. i i i
ae® i=l

where the weights w(x) might also depend upon preliminary (parametric or nonparametric)
estimators. In general, such estimators will be less efficient than their profile

likelihood counterparts (just as least s: e; is generally less eff icieﬁt than maximum
likelihood), but in some circumstances m  ichieve the semiparametric. efficiency t;ound.
Semiparametric least squares estimators have also been proposed for. many limited dependent
variable models.

Another method for construction of estimators under independence restrictions, the
"pairwise comparison" approach, uses the fact that differences of independent and
identically-distributed random variables are symmetricaliy distributed about zero. For a
particular structural model y = g(x,a,e), the first step in the construction of a
pairwise difference estimatc: is to find some transform- “on e(zi, zj. o) = eij(a)
of pairs of obsc-vations (z; Zj) = ((yi,xi),_ (yj,xj)) andd the parameter vector so

that, conditional on the regressors X, and xJ., the transformations eij(ao) and

eji(ao) are identically distributed, i.e.,

(2.35) Z(eu(ao)lxi, xj) = E(eji(ao)lxi, xj) a.s.,‘

where £(-[-) denotes the conditional sampling distribution of the random variable. In
order for the paraméter to be identified using this transformation, it must alsoc be

*
1 o’

true that- Z(eij(al)lxi, X .";(eﬁ(al)lxi, xj) with positive probability if «
which implies that observ- .ns i ahd J cannot enter symmetrically in the function
e(zi. z i «). Since € and ej are assumed to be mutually independent given %, and

Xj. eij(a) and eji(a) will be conditionally independent given X, and xJ.; thus, if
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(2.35) is satisfied, then the difference eiJ.(a) - eJ.i(oc) will be symmetrically distributed
about zero, conditionally op X, and Xj’ when evaluated at o« = . Given an odd
function &(-) (which, in general, might depend on X and xJ.), the conditional symmetry

of eij(oc) - eJ.i(oc) implies the conditional moment restriction
(2.36) E[E(eiJ.(ao) - eji(ao)”xi’ xj] =0 a.s.,

provided this expectation exists, and @ will be identified using this restriction if it
fails to hold when o = @, When £(-) is taken to be the identity mapping £(d) = d, .
the restriction that eiJ.(ao) and eiJ.(oco) have identical conditional distributions can

be weakened to the restriction that they have identical conditional means,
(2.37) E[eij(ao)lxi, Xj] = »E[eij(oco)lxi, xJ.] a.s.,

which may not require independence of the errors g and regressors X, depending on the
form of the transformation e(-).
Given an appropriate (integrable) vector l(xi, xj, «) of functions of the

regressors and parameter vector, this yields the unconditional moment restrictions
(2.38) E[&(eij(ao) - eji(ao))-ﬂ(xi, xJ., ao)] =0,

which can be used as a basis for estimation. If &(-) is chosen to have the same
dimension as «, a method-of -moments estimator o of oco can be defined as the solution

to the sample analogue of this Population moment condition, namely,

-1 .
n - - -
(2.39) | [ ) ] Z E(eiJ.(a) - eji(a))-g(xi, xJ., o) = o

i<j
(WhiCﬁ may only épproximately hold‘if‘ E(eij(a) - leJ.i(a)) i; diécontinuous in «). For
many models (e.é., those depenqmg on a latent variable y: s g(xi, a) + ei), it is
possible to construct some minimization problem which has this sample moment condition as

a first-order condition, i.e., for some function s(zi, zj, a) with
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as(zi, z, a)
T = E(eij(a) - eji(oc))-l(xi, X o),

the estimator o« might alternatively be defined as
-1
n

(2.4(_)) @ = argmin Z 's(zi, zJ., a)l,

aes 2 i<

A simplve example of a model which is amenable to the pairwise differencing approach
is the linear model, yi = x'iBo + ei, wher‘e. ei and xi are assumed to be independent.

For this case, one transformation function which satisfies the requirements above is
B = - f
e(yi, X xJ.. a) = ¥; xiB.

which does not depend on xJ.. Choosing e(xi, xJ., ) = X, - xj, a pairwise difference

estimator of Bo- can be defined to solve

-1

n “

[2 ] Z £ly; - yp - x - X;)'B)-(x; - x;) = 0,
i<j

or, if Z is the antiderivative of €, to minimize
-1
n .
= - - - - ’
S,(® = L 2 -5) - i, x;)’8).
2 .
1<}
When £(d) = d, the estimator B is algebraically equal to the slope coefficient
estimators of a classical least squares regression of y; on X, and a constant (unless
some normalization on the location of the distribution of & is imposed, a constantlterm
is not identified by the independence restriction). When €(d) = sgn(d), B is a rank
regression estimator which sets the sample covariance of the regressors X, with the
ranks of the residuals i - x'iB equal (approximately).to zero (Jureckova 1971, Jaeckel
1972). The same general approach has been used to construct estimators for discrete
.. response models and censored and truncated regression models.
In all of these cases, the pairwise difference estimator ¢ is defined as a

minimizer of a second-order U-statistic of the form
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n -1 . ‘
Un(oc) = Z p(zi, Zj’ a)
2 ..
1<
(with z, = (yi, xi)), and will solve an approximate first-order condition .

n -1
-172

Z 'q(zi, zJ., a) = op(n ),

i<j
where q(:) = 8p(-)/8a when this derivative is well-defined. As described in section 1.4
above, the asymptotic normal distribution of the estimator « can be derived from the

asymptotically linear representation

n
(241)  oa=a - - Z H-l-r(zi, o) + op(n-l/z),

where r(zi, a) = E[q(zi, Z_j’ oc)lzi] and

8E[r(zi, oco)l

ge’

The pairwise comparison approach is also, useful for construction of estimators for
certain nonlinear panel data models. In this setting functions of pairs of observations
are constructed, not across individuals, but over time for each individual. In the
simplest case, where only two observations across time are available for each individual,

a moment condition analogous to (2.36) is
(2.42) E[Ej(elz’i(ao) - eZl,i(“o))Ixil’ xizl .= 0 | a.s.,

where now P i(aL) = e(z.l, 2,5 «} for the same types of transformation functions e(-)

described above, and where the second subscripts on the random variables denote the
respectlve time periods. To obtain the restriction (2. 42), it is not necessary for the
error terms g = (g, €,,) to be independent of the regressors x; = (x,, X,,) across

‘individuals i; it sufficies that the components € and €, are mutually independent
and identically distributed across time, given the regressors xi. The pairwise

dif ferencing approach, when it is applicable to panel data, has the added advantage that
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it automatically adjusts for the presence of individual-specific fixed effects, since
4 . . . . ., . ) ) .

g1 * 7 and €5 ¥, Wwill be identically distributed if £ and €, are A

familiar example is the estimation of the coefficients [30 in the linear fixed-effects

model

Vit = XitBo * ¥ *+ £ t=12

where setting the transformation €5 i(a) =¥y x'i 1B and €(u) = u in (2.42) results

in the moment condition
Elly;; =y - (x - X;) Bo"‘n, X;p) = Elg;) - ealx; x50 = 0,

which is the basis for the tradiltional least-squares fixed effects estimator. As
described in section 3.5 below, this idea has been exploited to construct estimators for
lpanel-data versions of the binary response and censored and truncated regression models
which are semiparametric with respect to both the error distribution and the distribution

of the fixed effects.

2.5 Exclusion and Index Restrictions

Construction of estimators based on index restrictions can be based on a variety of
different approaches, depending upon whether the index function v(x) is completely known
or depends upon (finite- or infinite-dimensional) unknown parameters, and whether the
index suff iéiency condition is of the "weak" (affecting only the conditional mean) or
"strong" (applying to the entire error distribution) form. Estimators of the parameters
of interest under mean index restrictions exploit modified forms of the moment cqnditions
implied by the stronger constant conditional rﬁeaﬁ restfictions, just as estimators under
distributional index reétr‘ictions use modifications of estimation strategies for
independence restrictions. |

Perhaps the simplest version of the }*estrictions to analyze are mean exclusion

restrictions, for which the index f unction is a subset of the regressors (i.e.,
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vix) = 'xl, where x = (x{, x5)’), so that the restriction is
(2.43) Ele|x] = Ele|x] a.s.

As for conditional mean restrictions, this condition can be used to identify the
parameters of interest, %o ‘for structural functions y = g(x,ao,e) which are
invertible in the error terms (e = e(y,x,ao)), so that the exclusion restriction (7.1)

can be rewritten as
(2.44) E[e(y,x,ao)lxl - E[e(y.x,ao)lxll = 0.

By iterated expectations, this implies an unconditional moment restriction which is.

analogous to condition (2.4) of section 2.2, namely,
(2.45) 0 = E[d(x) ey, x,a)],

where now

2.46)  d(x) = dbo - EldG0 | x, 1 EAG) [ x, D7 AG)

for any conformable matrix d(x) and square matrix A(x) of functions of the regressors
for which the relevant expectations and inverses exist. (Note that, by construction,

Eld(x )|x1] = O almost surely.) Alternatively, estimat?on might be based on the condition
(247 0 = Eldx)-ely,x,a)],
where, énalogously to (2.46),

e(y,x,0) = e(y,x,a) - E[e(y,x,a)lxll-(vE[A(.x)|x1])~1~A(x).

Given a particular nonparametric method for estimation of conditional means given x1
(denoted E[- | xll), a semiparametric, M-estimator « of the structural coefficients @

can be defined as the solution to a éample analogue of (2.45),
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. S 3 - Btdix o e 1 L, . -
(2.48) 0= i; (dlceu8) - Eldlg08) |, 1- EIAGE %, D72 )-ely, x. 2,

where the instrumental variable matrix d(x) is permitted to depend upon « and

a preliminary nuisance parameter estimator S as in section 2.2. Formally, the asymptotic
distribution of this estimator is given by the same expression (2.7) for estimation with
conditional mean restrictions, replacing "d" with "g" throughout. However, figorous
verification of the consistency and asymptotic normality of ; is technically difficult,

and the estimating equation (2.48) must generally be modified to "trim" (i.e., delete)
observations where the nonparametric regression --timator é[-] is imprecise. A bound on

the attainable eff iciency of estimators of @, un.er condition (2.44) was derived by

0 :
Chamberlain (1992), who showed that an optimal instrumental variable matrix d: (x) of the
form (2.46) is related to the corresponding optimal instrument matrix d (x)- for the

constant conditional moment restrictions of section 2.2 by the formula
~* . . -1 -1 -1
(2.49) d (x) =d (x) - Eld (x)|x 1 [E((Z(x)] le}] [Z(x)]

where d'(x) is defined in (2.8) above and $(x) is the conditional covariance matrix of
the errors ¢ given the regressors x. This formula directly generalizes to the case in
which the subvector X is replaced by a more general (but known) index function v(x).

For a linear model y = xéBo + €, thel mean exclusion restriction (2.43) yields the

semilinear model considered by Robinson (1988):
p ’ -
Y = X384 + 6(x)) + 1,

where 6(x)) = Ele|x,] and E[n]x] Ele - o(x )lx] = 0. Defmmg e(y,x,a) = y - xZB and

d(x) = X5 the moment condmon (2.47) becomes
‘I:‘.[(x2 - E[lexll)-(y - E.’y|)_c1] - (xz - E[lex:])’Bo)l = 0,

which can be solved for BO:
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: . |
By = (Ellx, - Elx, % - (x, - Elx, [x, DD El(x, - E[lexll)'(y - E[ylxll)].

Robinson (1988) p_roposed-an estimator of BO constructed from a sample analogue to
(2.47), using ker;lel regression to nonparametrically estimate the conditional expectations
éhd "trimming" observations where a nonparametx;ic estifﬁator of the density of X,
(asshhled .continuously distributed) is close to zero, and gave conditions under which the
resulting estAiAmator was root-n-consistent and asymptotically normal.

Strengthening the mean exclusion restripfcion to a distributional exclusion condition

widens the class of moment restrictions which can be exploited when the structural

function is invertible in the errors. Imposing

(2.50) Pr{e s u|x} = Pr{e = ulx,?

fc;r' all possible values of u yields the ggneral moment conditions
(250 0 = Efd(x)-Uely,x,a )]

for any square-integrable function &(g) of the errors, which includes (2.45) as a special

can be improved by

case. As with independence restrictions, precision of estimators of %y

judicioué choice of the transformation &(-).

Even for non—inverﬁcible structural functions, the_pairwise comparison approach
considered for index restrictions can be modified to be applicable for distributional
exclusion (or known index) restrictions. For any pair of observations z, ~and zj which
have tb_e same value of the index function v(xi) = v(xJ.), the corresponding error terms g,
and s:j will be independently and identically di.stributed given the regressors X, and xJ.

under the distributional index restriction
(2.52) Pr{e s u|x) = Pr{e = u|v(x)).

Given the pairwise transformation function e(zi. zJ., a) = eij(a) described in the previous

section, an analogue to restriction (2.35) holds under this additional restriction of
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equality of index functions:

(2.53) Z(eij(ao)lxi, X v(xi) = v(xJ.)) = .‘e(eﬁ(ao)lxi, xJ., v(xi) = v(xJ.)) a.s.

As for independence restrictions, (2.53) implies the weaker conditional mean restriction
(2.54) E[eij(ao)lxi' X v(xi) = v(xj)] = E[eji(ao)lxi, X v(xi) = v(xj)l a.s.,

which is relevant for invertible structural functions (with eij(a) equated with the
inverse function e(yi,xi,a) in this -case).

These Eestrictions suggest estimation of @ by modifying the estimating equaticn
(2.39) or the minimization problem (2.40) of the preceding subsectic. 2 exclude pairs of
observations for which v(xi) # v(xj). However, in general v(xi‘) - v(xJ.) may be |
continuously distributed around zero, so direct imposition of this restriction would exclude
all pairs of observations. Still, if the sampling distributions Z(eij(ao)lxi, xj,

v(xi) - v(xj) = ¢) or conditional expections E[eij(aé)lxi, xJ.. v(xi) - v(xj) = c] are
smooth functions of ¢ at ¢ = 0, the restrictions (2.53) or (2.54) will‘approximately
hold if v(xi) - v(xJ.) is close to zero. Then appropriate modifications of the estimating

equations (2.39) and minimization proi:lem (2.40) ars

-1
n ~ N ~
(2.55) [ , ] Z §le; e - e jj(@) -elx;, X @)W (vix,) - vix ) = 0

i<j

and

-1
~ n °
2.56 = in o 2., . ) = v(x.)),
( ) a axe-gr;m [2] z s(z1 zJ «) wn(v(xl) vxq))

i<j

for some weightix_xg function wn»(-) which tends to zero as the magnitude of its argument :
increases, anc a faster rate as the sample siz= n increases (so that, ultimately,

only obser'va‘tv with v(xi) - -v(xJ.) very close zero are incluc . in the summations).

Returning to the semilinear regression model y = xéﬁo + e(xl) + 1, Elnix] =0, the

same transformation as used in the previous subsection can be used construct a pairwise
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difference, provided the nonparametric components e(x“) and e(le) are equal for the

. .' . . - N = - ¥ 4 5 .
two observations; that is, if e(yi, X, xJ., a) = eiJ.(oc) ¥ xiZB and v(xi) X1
then

eiJ.(oco) - eji(oco) = (s:i - eJ.) = ('ni - 'nJ.)

if v(xi) = v(xJ.). Provided e(xu) is a smooth (continuous and differentiable) function,
relation (2.36) will hold approximately if X, = le. Defining the weight function wn(')

to be a traditional kernel weight,
(257w () =kh'd),  k0) >0, k(A)so0 as Al 5@ h 50 as no e,

and taking £(xi, xj,‘ a) = Xip - sz and £(d) = d, a pairwise difference estimator of
Bo using either (2.55) or (2.56) reduces to a weighted least squares regression of .
;the distinct differences (yi - yJ.) in dependent variables on the diff erences
(xiz - sz) in regressors, using k(h;l(xil - le)) as weights (as proposed by Powell
(1987)).

Consistency of the resulting estimator é requires only the weak exclusion restr‘iction‘_
(2.43); when the strong exclusion restriction (2.53) is imposéd, other choices of odd

function €(d) besides the identity function are permissible in (2.55). Thus, an estimator

of B'O using £(d) = sgn(d) might solve

-l .

n . “

(2.58) [ ] z sgn((yi - yJ.) -(xil - le) B)-(xil - xJ.l)'k((xi2 - sz)(hn) = Q,
i<j '

This is the first-order condition of a “smoothed" version of the minimization problem

defining the rank regressioh estimator,

-1
-~ n
(2.59) - B = argmin ' z “yi - yj) - ()_(i - xJ.) Bl -k((xi2 - xJ.Z)/hn),
B 2 R

1<j

which is a "robust" alternative to estimators proposed by Robinson (1988b) and Powell (1987)

for the semilinear model. Although the asymptotic theory for such estimators has yet to be
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developed, it is likely that reasonable conditions can be found to ensufe their
root-n-consistency and asymptotic normality.

So far, the discussion has been limited to models with known index functions v(x).
When the index function depends upon unknown parameters 80 which are functionally
unrelated to the parameters of interest %5, ~and when'preliminary consistent estirhators 3
of '60 are availabie, the estimators described above are easily adapted to use an estimated
index function ;(x) = v(x.é). The asymptotié distribution theory for the resulting
estimator must proverly account for the variability of the preliminary estimator 3 When
60 is related to y» and that relation is.exploit=4 in the construction of an estimator
of «q, the foregbir;g estimation theory requires more substantial modification, both
conceptually and technically.

A leading special case occurs when the index govel;ning ;he conditional error
distribution appears in the same form in the structural function for the dependent variable

y. For example, suppose the structural function has a linear latent variable form,
(2.60) y = g(x,ao.e) = t(x’Bo + ),
and index v(x) is the latent linear regression function x’ BO,

(2.61)  Pr{e = u|x} = Pr{e = u}x’BO).

This particular index restriction on the unobservable error terms immediately implies the

same index restriction for the observable dependent variable,

(2.62) Pr{y = u|x) = Pr(y = u{x’Bo),

which can be used to generate moment restrictions for estimation of BO. For example,

(2.62) implies the weaker restriction
(2.63) Ely|x] = G(x’Bo).

on the conditional mean of the dependent variable, where G(:) is some unknown nuisance

function. (Clearly ]30 is at most identified up to a location and scale normalization
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without sstrohg_er‘ restrictions on the form of G(-).) Definiﬁg E(y.X,b) £y - E[ylx’b],

condition (2.63) implies that
(2.64) E[d(x)-'e”(y,x,son =0

for ariy conformable, square-integrable d(x). Thus, with a nonparametric estimator
E[y[x bl of the conditional expectation function Ely|x’b), a semiparametric M-estimator
of BO can be constructed as a sample analogue to (2.64). Alternatively, a weighted
Pairwise difference approach might be used: assuming G(:) is continuous, the diff erence

in the conditional means of the dependent variables for observations i and "j"

satisfies

(2.65) E[yi-yj]xi,xj] = G(XIBO) - G(xJ.BO) =0 if xiBO = XJBO'

ASO by estimating E[Yi-yjlxi,xj] nonparametrically and determining when it is near zero,
the corresponding pair of observations will have (xi-xJ.)’ BO % 0, which is useful in
determining BO. When G(-) is known to be monotonic (which follows, for example, if the
transformation t(-) of the latent variable in (2.60) is monotonic and € is assumed to
be independent of x), a variation on the pairwise comparison approach could exploit the
resulting inequality E[y.-y.]x.,x.] = G(x’.B ) - G(x‘.B )>0 onlyif x’ B > x B
Various estimators based upon these conditions have been proposed for the mornotone
regression model, .as discussed in section 3.2 below. More complicated examples, Which
involve multiple inaices, with some indices depending upon parameters of mterest and others
depending upon unrelated nuisance parameters, as for some of the proposed estimators for
selectivity bias models. ’I'he methods of estimation of | the structural parameters &y vary
across the particular models, but generally involve nonparametric estimation of Eegressibn

or density functions involving the index wv(x).
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3. Struc'turalj M: s

3.1 Discrete spc 2

The parameters of the binary response model
(3.1 y=1lx'By+ e >0)

are traditionally estimated by maximization of the average log-likelihood function

. . - 1
(3.1.2) $N(B,F) =N ,

12

y.-In[F(x//)] + (1 - y)-inll - F(x:B)l,
1 1 ) 1 - 1 1

where the error term € is assumed :. be distributed independently of x with known
distribution function ~F(+) (typically standard normal or logistic). Estimators for
semiparametric versions of the binary response model usu.ally invbﬁe maximization of a
modified form of this log-likelihood, one which does not presuppose knowledge of the -

distribution of the errors. For the more general multinomial fesponse mode!, in which J

indicator variables (yj, j=1 .., 3 are generated as
] k _ j
(3.1.3) yj = x Bo + ej > x Bo + g for all k = j)-HMx BO + cj > 0},

the average log-likelihood has the analogous form

@14 g8 Loy o 8y inte gl o xieD
- N er B "Niz__:ljzlyij [t LA Ll

whefe Fj(-) is the conditional probability that y.i =1 given the regres;ors x. This
form easily specializes to the ordered response or grouped dependent .variabl_e models,
replacing "F j(-)" with "F‘(x’iB0 - cj) - F(x’iBO - cj__l)," where the (cj) are the
(known or unknown) group Boundaries. |

"The eariiest example of a semiparametric approach for ‘estimation of a limited
det. .‘dént variable model in econometrics is the "maximum score" estimation method proposed
by danski (197S). For the binary response mode, Manski suggested that BO be estimated

by maximizing the number of correct predictions of y by the sign of the latent



regression function x’B:; that is, B was defined to maximize the predictive score

function
N .
(3.15) . S_(B) = izl ¥ UxiB > 0) + (1 - y)-Ux}B s 0}

over a. suitable parafneter‘ space @ (e.g., the unit sphere). The error terms & were
restricted to have conditional median zero to ensure consistency of the estimator. A
later interpretation of the estimator (Manski (1985S)) characterized the maximum score
estimator é as a léast absolute déviations estimator, since the estimator solved the
minimization proplem

(3.1.6) . é = argmin L

® N,
i

12

1 lyi - l(x’iB > 0}].

This led to the extension of the maximum score idea to more general quantile estimation of
BO' under the assumption that the corresponding conditional quantile of the error terms
was constant (Manski 1985). The maximum score approach was also applied to the

multinomial reponse model by Manski (1975); in this case, the score criterion becomes

N J :
= ot ad s oK .
(3.1.7) S (B v B)) = i;l J_Zl Y] xt8? > x18%, k= ),

and its consistency was established undér tﬁe stronger condiﬁon- of mutual independence of
the alternative specific errors (eJ.). - M. Lee (1991) used cpnditibnal rﬁedian restrictions
to define a least absolute deviations estimator of the parameters of _fhe ordered response
model ‘along the same lines. |

Although consistency of the maximum score estimator for binary response was
rigorously established by Manski (1985) and Amemiya (1984), ‘its asymptotic distribution
cannot be established by the methods described in section 2.3 above, becéuse of lack of
.continuit& of the median regression functioﬁ l(x'Bo > 0} of the dependent variable y.
More importantly, because this median regression function is flat except at its

discontinuity points, the estimator is not root-N-consistent under standard regularity
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conditions on the errors and regressors; Kim and Pollard (1990' found that the rate of
convergence of . the maximum score estimator tb Bo under suc.. conditions is NV 3, with a
nonstandard asymptotic distribution (involving the distribution of the maximum value of a
particular Gaussian process with quadratic drift). This result was confirmed for finite
samples by the simulation study of Manski and Thompson (1986).

Chamberlain (1986) showed that this slow rate of cbnvergence of the maximum score
estimator was not particular to the estimation method, but a general consequence of
estimation of the binary response model with a conditional median restriction.

Chamberlain howed that the semipar-- ~tric version of the information matrix for this
model is ide :ally zero, so tha_t no - lar root-N~-consistent -stimator of BO exists

in this case. An extension of t;y Zheng (1992) derived the sam - result - a zero
semiparametric information matrix - even if the conditional median restriction is
.-strengthened to an assumption of conditional symmetry of the error distribution. Still,
consistency of the maximum score estimator é illustrates the fact that the parameters

BO of the binary response model are identified under conditional quantile or symmetry
assumptions oh the error terms, which is not the case if the errors are restricted only to .
have constant conditional mean.

If additional smoothness restrictions on the distribution of the errors and
regressors are imposed, the maxi: ium score (quantile) approa’éh can be modified to obtain
estimators which converge to the true parameters at a faster rate than N1/3. Nawata
(1992) propdsed an estimator which, in essence, estimates BO by maximizing the fit of an
estimator of the conditional median function l(x'B0 > 0) of the binary variable to a
rionparametric estimator of the conditional median of y given x. In a first stage, the
observations are grouped by a partition of the space of regressors, and the median value
of the dependent variable y. is calculated for each of these regressor bins. These group
medians, along with the average value of the re:g ssion vector in each group, are treated
as raw data in a second-stage fit of the bina{-y r. sponse model using the likelihood

function (3.1.1) with a standard normal cumulative and a correction for heteroskedasticity
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induced' by the grouping scheme. Nawata (1992) gives conditions under which the rate of
convergence of the resulting estimator is NZ/S, and indicates how the estimator and
regularity conditions can be modified to achieve a rate of convergence arbitrarily close
to Nl/z.‘ - Horowitz (1992) used a different approach, but similar strengthehing of the
regularity conditions, to obtain a median estimator for binary response with a faster
convergence rate. Horowitz modifies the score function ;)f (3.1.5) by replacing the

conditional median function 1{x‘B > 0} by a "smoothed" version, so that an estimator of

. BO is defined as a minimizer of the criterion

~12

* -
(3.1.8) s 8 =

1 yi'K(’_(liB/hN) + (1 - yi)-[1 - K(x’iB/hN)],

1

where K(-) is a smooth function in [0, 1] with K(u) 3 Oor 1 as u - -o or ®, and
hN is a sequence of bandwidfhs which tends to zero as the sample size incfeéses (so that
K(x‘BO/hN), approaches the binary median l(x’B0 >0) as N 5 w). With particular
conditions on the function K(-) and the smoothness of the regressor distribution and the
conditional density of the errors at the median, zero, Horowitz (1992) shows how the rate
of convergence of the minimizer of S;(B) over @ can be made at least NZ/s and
arbitrarily close to Nl/z; moreover, asymptotic normality of the resulting estimator is
shown (and consistent estimators of asym‘ptotic bias and covariance terms are provided), so
that normal sampling theory can be used to construct confidence regions and hypothesis

~ tests in large saniples.

When the error terms in the binary response model are assumed to, satisfy the stronger
assumption of independence of the errors and regressors, Cosslett (1987) showed that the
semiparametric information matrix for estimation 6f BO in .(3.1.1) is generally
nonsingular (a necessary condition fbr existence of a regular rt;ot-N-consistent
estimator). - Its form is analogous to the pérametric information matriﬁc when the
distribution function F(:) of fhe errors is known, except that the regressors "x" are

replaced by deviations from their conditional means given the latent regression function

x'Bo; that is, the best attainable asymptotic covariance matrix for a regular estimator
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of 30 when € is  independent of x with unknown distribution function F(-) is

(rxrg)1® L -1
‘[x - Elx|x’Bpll-[x - Elx|x’ 8,1 ,

»
(3.1.9) vV =<E
F(x’B)[l-F(x’BO)]

where f(u) = dF{u)/du and ; is the subvector of regressors x which eliminates the
last corhponent (whose coefficient is assumed normalized to unity to pin down the scale of
BO). Existence of the inverse in (3.1.9) implies that a constant term is excluded from
the regression vector, and the corresponding intercept term is absorbed into the

definition of the error cumulative F(-).

For the binary response model under an index x;eszriction, Cosslett (1983) prbposed a
nonparametric ma:r'cimum likelihood estimator (NPMLE) of BO through maximization of t'he
average iog-likelihood function .‘BN(B;F) simultaneously over B € e. and. F e 5, where
F is the space of possible cumulative distributions (monotonic functions on [0,1]).
Computationally, given a part.icular' trial value b of B, an estimator of F s
obtained by monotonic regression of the indicator y on Xx’b, using a "pool adjacent
violators" algorithm; this estimator f-'" of F s then_ substituted into the likelihood
function, and the concentrated criterion iﬂN(b;I;) is maximized over
be8={B |B] =1). Cosslett (1983) establishes consistency of the resulting estimatorsv
of By and F(-) through verification of the Kiefer-Wolfowitz (1956) conditions for the
consistency of NPMLE, constructing a topoloéy which ensures compactness of the parameter
space ¥ of possible nuisance functions F(-). As noted in section 2.6 above, an
asymptqtic distribution for NMPLE has not yet been established, thougﬁ root-N-consistency
of the estimator seems likely, and possibly asymptotic efficiency as well.'

Instead of the monotonic ‘rggr'ession estimator l?‘ (+) - of F(-) implicit in the
construction of the NPMLE, the same estimation approach can be based upon other
nonparametric estimators of thg error cumu'lative. The resulting "profile 'likelihood"
estimator of BO‘ maximizing ZN(b;f) of (3.1.2) using a kernel regression estimator F,
was considered by Severini and Wong (1987a) (for a single regressor) and Klein and Spady

(1989). Because kernel regression does not impose monotonicity of the function estimator,
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this profile likelihood estimator is valid under a weaker index restrictionb on the error
distribution Pr{e s u[x) = Pr{c = u|x’f30), which implies that E[y]x] = F(x’BO) for
some (not necessarily monotone) function F(-). Theoretically, the form of the profile
likelihood ZN(b;If"‘) is modified by Klein and Spady (1989) to "trim" observations with
ifnprecise estimators of F(:) in order to show root-N-—.consistency and asymptotic
norrﬁality of the resulting estimator é Kleiq and Spady show that this estimétor is
asymptoticall& efficient under the assumption of independence of the errors and
regressors, since its asymptotic covariance matrix equals the best attainable value V.
of (3.1.9) under this restriction.

Other estimators of the parameters of the binary response model have been proposed
which do not exploit the particular structure of the biqary response model, ‘but instead
are based upon general properties of transformation models. . If independence of the errors
and regressors is assumed, the monotonicity of the structural function (3.1.1) in & can

be used to define a pairwise comparison estimator of BO. Imposition of a weaker index

restriction Pr{e = u|x} = Pr{c = u|x’BO) implies that
(3.1.10) Ely[x] = G(x'B)

for somé unknown function G(:), so any estimator which is based on this restriction is
applicable to the binary_response model. A number of estimators proposed for this more
general setup are discussed in the f ollowing section on transformation models.
Estimation-'of"the multinomial response model (3.1.3) under independence and index
restric_tions can be ‘based on natural extensions of the methods for the binary response
model. In addition to the maximum score estimator defined by minimizing (3.1.7), Thompson
(1989a,b) considered -identification and estimation of the parameters in "(3’153) assuming
independence of the errors and regressors; Thompsonlshowed how consistent estimators gf
(Bé, cers Bg) could be cénstructed using a least-squares criterion even if only a single
element yJ. of the vector of choice indicators (yl, cens yj) is observed. Lee (1991)

extended prof ile likelihood estimation to the multinomial response model, and obtained an
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analogous efficiency resuj+ Klein and Spady’s (1989) result for binary resr-nse. And,
as for the binary respons. del, various pairwise com;.rison or index restriction
estimators for multiple index models are applicable to the multinomial response model;

these estimators are reviewed in the next section.

3.2 Transformation Models

In section 1.3 above, two general classes of transformation models were
distinguished. Parametric transformation models, in which the relation between the latent
and observed dependent variables  invertible and of known parametric form, e
traditionally estimated assuming the errors are independent of the regressors with de: y
function f(-;t) of known parametric form. In this setting, the; average conditional

log-likelihood function for the dependent variable

- ’ . - - -1 . - L4 -
(3.2.1) y = tlx BO + g; AO) <=> e=1t (y; 7\0) X BO = e(y,x,ﬁo.ho)
is
1 N |
(3.2.2) £ BATA) = & __Z {tnlfe(y;,x;,8,2%,T)] - Inl|dely,,x.,B,2)/8y]],

is]
which. is maximized over © = (8, A, T) = (a, T) to obtain estimators of the p-arameters'
Bo and AO of interest. |

Given both the monotonicity of the tranformation t(:) in the latent variable and
the explicit representation f unction e(-) for the ‘errors in terms of the observable
variables and unknown parameters, these models are amenable to estimation under most of
the semiparamet_ric restric*.ions on the error distribution discussed in section 2‘, For
exainple, Amémiya and Powell 4(ll981)‘ considereci nonlinear twb-stage least squa‘reé {method of
momenfs) estimation of 30 and AO for the Box-Cox transformation (3.1.3.15) under a
' conditional mean restrictions of; the errors € given the regressors x, and showed how
this estimator could greatly outperform a misspecif ied Gaussian ML estimator over some

ranges of the transformation parameter A Carroll and Ruppert (1984) and Powell (1991)

(0
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discuss least aﬁsolute deviations and quantile estimators of the Box-Cox regression model,
imposing independence or constant quantile restrictions on the errors. Han (1987b) also
assumes independencé of the errors and regressors, and constructs a pairwise difference
estimator of the‘ transformation parameter 7‘0 and the slope coefficients Bo which
involves maximization of a fourth-order U-statistic; this approach is a natural
generalization of the maximum rank correlation estimaﬁon method described below. Newey
(1989c) constructs efficient method of moments estimators for the Box-Cox regression model
under conditional mean, symmetry, .and independence restrictions on the error
térms. Though not yet considered in the econometric literature, it would be
straightforward to extend the g_eneral estimation strategies described in section 2.7 above
to estimate the parémeters of interest in a semilinear variant of‘ the Box-Cox regression
model.
| When the form of the transformation function t(-) in (3.2.1) is not parametrically
specified (i.e., the transformation itself is an infinite dimensional nuisance parameter),
- estimation of BO becomes more problematic, since some of the semiparametric restrictions
on the errors no longer suf f ice to identify BO (which is, at most, ﬁniquely determined
up to a scale normalization). For instance, since a special case is the binary response
model, it is clear from the discussion of the previous section that a conditional mean
restriction on € is insufficient to identify the parameters 6f‘ interest. Conversely,
any dependent variable generated f rom an unknown (nonconstant and monotonic)
-transf ormation can be further transformed to a binary response model, so that
identification of the parameters of a binary response model generall}' implies
identification of the parameters of an analogous transf ormatipn model.

Under ,the -assumptién of independence of the errors and regressors, Han (1_987a)
proposed a pairwise comparison estimator, termed the "maximum rank correlation estimator,"
for the model (3.2.1) with t(-) unknown but n;:ndecreasing. Han actually considered a

generalization of (3.2.1), the "generalized regression" model, with structural function
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(3.2.3) y = tls(x’ Byell,

with t[:-] a monotone (but possibly noninvertible) function and s(-‘) smooth and
invertible in both of its arguments; with continuity and unbounded support of the error
distribution, this construction ensures that the sﬁpport of y will not depend upon the
unknown parameters Bo. Though the discussion below focusses on the special case
s(x’B,e) = x’B + €, the same arguments app;ly to this, more general, setup.

For model (3.2.1), with i(-) unknown and € and x assumed independent, Han
proposed estimation of BO by maximization
N ]-1 Nil 'f

(3.2.4) Ry (B) = (.2

Ll (10, > 7 pe1xie > x4 + 115, < yprlxie < xip)]
J=1+ :

over a suitably-restricted parameter space 8 (e.g., normaliiing one of the éomponents of
Bo to unity). Maximization of (3.2.4) is equivalent to minimization of a least absolute
deviations criterion for the sign of ¥y - y‘j minus its median, the sign of x’i B - x:jB,
for those observations with nonzero values of Yy - ¥

J

N-1 . N ‘
. - — . . N '1 ’ i
(3.2.5) B = argmax_(B) = argming [ ] i; Z l(yi=yj)- [l(yi>yj) - l(xiB>ij)|.

J=i+l
In terms of the pairwise difference estimators of sec-ti-on 2.6, defining
- . - ¢ 7
(3.2.6) eij(B) = l(yi=yJ.) sgn[l(yi>yj) 1(.xiB>ij)l.

identification of BO using the maximum rank correlation criterion is related to the

conditional symmetry of

e, .(BO) - eji(BO)

327 N 2¢1580)

2 y2y - sgallllx; % )’ Booe e )-Ll(x;-x ) B>0)]

about zero given X, and xj. The maximum rank correlation estimator defined in
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(3.2.5) does nbt solve a sample moment condition like (2.6.11) of section 2.6 (though such
estimators could easily be constructed), because the derivative of RN(B) is zero
wherever it is wgll—def ined; still, the estimator é is motivated by the same general
pajrwise comparison approach described in section 2.6.

Han (1987a) gave regularity conditions under which é is consistent for BO; these
included continuity of the error distribution and compact support for the regressors.
Under similar conditions Sherman (1990) demonstrated the root-N-consistency and asymptotic
x_lormality of the maximum rank estimator; writing the estimator as the minimizer of a .

second-order U-process,

N
Z p(zi, zJ., B),
j=i+l

(3.2.8) /g' = argrnax@ [

ASherman showed that the asymptotic distribution of é is the same as that for an
M-estimator based on N/2 observations which maximizes the sample average of the
conditional expectation r(zi, B) = E[p(zi, zJ.. B)lzil over the parameter space ©, and
also showed éonsisteney of an estimator of the asymptotic covarianéé-matrix of é based .
upon numerical derivatives of sample estimators of this expectation function r(z, B).
Cavanagh and Sherman (1991) propose a variant of the maximum rank correlation estimator

which maximizes

I~z

(329 . qei= M(y))- R, (B),

Jj=1

for M(-) an increasing function and fRNi(B) the rank of x'iB in (x:iB, Jj=1,...,N},

i.e.,

. N
(3.2.10) Ry (B = J; Ux{B = x:jB);

they also consider a related estimator based on a criterion which replaces M(yi) in

(3.2.9) with the rank of ¥ in (yj), defined analogously to (3.2.10). For the binary
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response meodel, vmaximization of any of these criteria is numgrically equivalent to
maximization of the criterion RN(B) of (3.2.4), but ‘the estimators differ for non-binary
dependent variables. Cavanagh and Sherman (1991) demonstrate root-N-consistency and
asymptotic normality of these estimators undér relatively weak regularity conditions, and
discuss how consistent asymptotic covariance matfix estimators can be obtained.

When the transformation f unction t(-) of (3.2.1) is not known to be monotonic, or
when the errors are assumed to satisfy only the weaker index restriction
L(e|x) = Le|x’ By)s the maximum rank correlation estimator and its variants will not be
consistent in genera. being based on monotonicity of the relation between y and x B ).
Instead, the r:sulting ndex restriction on the de :ndent variable, Ly|x) = Ly Ix'Bo).
or the implied mean index restriction Ely|x] = Ely|x’ Byl can be used to form estimators
of Bo. Some of these estxmators impose strong restrictions on the distribution of the
regressors, whxle others use nonparametric estimators to sidestep such restrictions.

A number of papers in the statistics and econometrics literature have noted that,
under the index restriction, certaiﬁ misspecified maximum likelihood estimators will be
consistent for BO (up to an intercept and scale normalization) when the regressors
satisfy a particular linearity condition on their conditional expectations. Chung and
Goldberger (1984) show that the classical least squares regression coefficients for Yy on
X (and a constant term) will be consistent up to scale if the joint distribution of the

. »
regressors and latent variable y = x’BO + € satisfies

. .
(3.2.11) Elx|y 1= uy + v -y

for some fixed vectors “0 and vo; in this case, the least squares coefficients tend

to cho. whére. K is the population least squares regression coefficient of y = t(y )
on y . Greene (1987) notes a similar result for classical least squares estimates in the
special case of a ¢- ;gred dependen: variable. Brillinger (1983) shows consistency of

blassical least squares estimates for the general transformation model when the regressors

are jointly normally distributed, which implies that the conditional distribution of the
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regressors X given the index x’BO has the linear form

- (3.2.12) E[xlx;BOI il vo-(x’Bo)

for some Ho and Vo Ruud (1983) noted that condition (3.2.12) was suff‘icient for
consistency (up to scale) of a rnisspecif_ied maximum likelihood estimator of BO in a
binary response model with independence of the errors and regressors; this result was
extended by Ruud (1986) to include all misspecified maximum likelihood estimators for
limited dependent variable models when (3.2.1), (3.2.12), and independence of the errors
and regressors are assumed. Li and Duan (1989) have recently noted this result,
emphasizing the importance ot_‘ convexity of the assumed likelihood function (which ensures
uniqueness of the minimizer KBO of the limiting objective function). As Ruud notes, all
of these results use the fact that the least squares or misspecified ML estimators ; " and
; of the intercept term and slope coefficients satisfy a sampile moment éondition of the

form

1
(3.2.13) 0=

r(yi, a+ x’izr)-
i

1 X.
i

-1z

for some "quasi-residual" function r(-). Letting
(3.2.14) F(x’BO, @ + x'y) = Elr(y, o + Sc’v)lx]

. . . .
and imposing condition (3.2.12), the value 7 = KBO will solve the corresponding
population moment condition if k and the intercept « are chosen to satisf y the two

conditions
(3.2.15) 0 = E[F(x'By,  + k(x'By))] = EIF(x’By, @ + k(x’By))-(x’B)),

‘since the population analogue of condition (3.2.13) then becomes
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1 0
(3.2.16) 0=E r(x’BO, o+ :c(x'BO))- ' + -(x’BO }
o Yo .

under the restriction (3.2.12). (An analogous argument works for condition (3.2.11),
replacing “x’BO" with "y " where appropriate; in this case, the index restriction
£(y|x) = f(ylx’Bo) is not necessary.) Conditions (3.2.11) and (3.2.12) are strong
restrictions which seem unlikely to hold for observational data, but the consistency
results may be useful in experimental design settings (where the distribution of the
regressors can be chosen to satisfy (3.2.12)), and the resuits suggest that the
mconsxstency of traditional maximum ljkelihoo ! estxmators may be small when the index
restriction hold. :nd (3.2.11) or: (3.2.12) e approximately satisfied.

If the regressofs are assumed to be jointly continuously distributed with known
density function fx(x). modifications of least squares estimators can yield consisteﬁt

estimators of BO. (up to scale) even if neither (3.2.11) nor (3.2.12) holds. Ruud (1986)

proposed estimation of Bo by weighted least squares,

b4

1 (¢<xi)/rx(xi))'-(xi-k)(yi-i).

ne-

A N . . oq-l
(3.2.17) B = [ Z (¢(xi)/f'x(xi))-(xi-x)(xi-x)’}
‘ i=1 i

where ¢(x) is any density function " .r a rar :m vector satisfying = ndition (3.2.12)
(for example, a multivariate normal density function) and

: 1
(3.2.18) X 8 =

N .
i

-1z

l (¢(xi)/fx(xi))-xi,

wnth an analogous definition for y This reweighting ensures that the probability hmlt
for the weighted least squares estimator in (3 2.17) is the same as the probabxllty llmxt
for unwelghted least squares with regressors having margmal density ¢(x); since this
density is assumed to satisf y (3.2.11), the resulting estxmator will be consistent for Bo
(up to scale) by the results cited above.

A different approach to use of a known Fegressor densxty was taken by Stoker (1986),

who used the mean index restriction E[ylxl Ely|x'B,] = Glx! By) implied by the
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transformation model with a strong index restriction on the errors. If the nuisance
function G(:) is assumed to be smooth, an average of the derivative of Ely|x] with

respect to the regressors x will be proportional to BO:
. *
(3.2.19) E[8Ely|x)/ax] = E[dG(x’BO)/d(x’BO)]-BO = k B,

Furthermore, if the regressor density f x(x) declines smoothly to zero on the boundary of

its support, an integration-by-parts argument yields
. :
(3.2.20) K BO = -E(y-aln[fx(x)]/ax),

which implies that’ BO can be consistently estimated (up ﬁo scale) by the sample average
of ¥ times the derivative of the log-density of the regressors, aln[fx(xi')]/ax.' Also,

using the facts that
(3.2.21) _ E{aln[f‘x(x)]/ax) = 0, E((aln[fx(x)]/ax)-x’) = -

Stoker proposed an alternative estimator of K*BO as the slope coefficients of an
instrumental variables fit of y; on X; and a constant, using the log-density
derivatives aln[fx(xi)]/ax and a constant as instruments. This estimator, as well as
Ruud’s density-weighted least squares estimator, is easily generalized to include models
which have regressor density f (x--r )} of known parametric form, by substitution of a
preliminary estimator Tt for the unknown distribution parameters and accountmg for the
variability of this’ preliminary estimator in the asymptot1c covariance matrix f ormulae.
When the regressors are continuously dxstmbuted with density f unction fx(x) of
unknown form, nonparametric (kernel) estimators of this density function (and its
derivatives) can _be substituted: into the formulae for the foregoing estima‘tors._ ‘_Although :
the nonpa‘rametr.ically-estfmated components. necessarily converge at a rate slower than
Nl/z, thé éorresponding density-weighted LS and average derivative estimators will be

root-N consistent under appropriate conditions, because they involve averages of these

nonparametric components across the data. Newey and Ruud (1991) give conditions which
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ensure that the" density-weighted LS estimator (defined in (3.2.17) and (3.2.18)) is root-N
consistent and asymptoticall& normal when f x(x) is replaced by a kernel estimator
t:x(X)' These conditions include the requirement that the reweighting density ¢(x) is
nonzero only inside a compact set which has fx(x) bounded above zero, to guarantee
precision of the corresponding nonparametric estimator ';‘x(x). Hérdle and Stoker (1989)
considered substitution of derivative of a kernel estimator of the log-density,
aln[;‘ x('x)]/ax into a sample analogue of condition (3.2.20) (which deletes observations
for which aln[Ex(xi)]/ax is small), and gave conditions for root-N consistency and
asymptotic normality of the resulting estimator (and its instrumental variables versions).
A "density-weighted” variant on the average derivative estimator was proposed by

Powell, Stock, and Stoker (1989), using the fact that

(3.2.22) E[f‘x(x)-aE[ylx]/ax] = E[f(x)-dG(x’BO)/d(x’BO)]'BO

+
K Bo = _-ZE(y-afx(x)/ax).

where the last inequality f ollows from a similar integration-by-parts' argument as used to

derive (3.2.20). The resuiting estimator & of 8, = x"ﬁo,

“ N -
(3.2.23) §= - iZI -2(8f  (x,)/9%)-y,,

was shown to have lth compone: of the form

2

yi-yj

(3.2.24) 5, =

———

Z

e
1
n~1

N-1 _
Z UEN(xi - xJ.)'
i =ie

1'J. . Xie T Xy
with weights m&N(xi - xj)' which tend to zero as ij - xjﬂ increases, and, for fixed
ﬂxi - xjﬂ, which tend to zero as N increases. Thus, the est}mator implicitly uses
finite difference Aratios to approximate derivatives, averaging 'o{rer those d;ffefenﬁe
ratios f or"Which the denominatqr is small. An instrumental Variables version of the
estimator, which uses a;‘x(xi)/ax as’ instrumental variables for a linear fit of y; onm

X;» Wwas also proposed, using the integration-by-parts condition
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(3.225)  -2°E(8f,(x)/6x)-x’} = EIf (x)]-1.

Because the estimator & (and the components of its instrumental variables version) is of
the U-statistic form considered in section 1.4, its root-N consistency and asymptotic
'normality are relatively simple to establish under appropriate conditions; Powell, Stock,

and' Stoker (1989) showed its influence function is
(3.2.26) Yy, x, o) = 2-((fx(x)-6E[y|x]/ax -8y + (y - E[ylx])-afx(x)/ax).

Like the Newey and Ruud (1991) and Hirdle and Stoker (1989) papers, the conditions imposet.iv
on the density-weighted average derivative estimator 3 include particular rates -of
convergence of a "bandwidth" sequence (governing the dggree of smoothing ih the
nonparametric estimators) to zero, and the use of "higher-order bias reducing” kernels to

1/2).

ensure that the asymptotic bias of the estimator is of o(N~
If some components of the regressor vector x are .not continuously distributed,
neither the density-weighted LS or average derivative estimation approaches are
applicable, since they use a regressor density fx(x) which is well-defined (with respect
to Lebesgue measure). In this general setting, Ichimura (1992) proposed a semiparametric

M-estimator for BO (up to scale) under an index restriction on the errors, using the

conditional mean f ormulation
(3.2.27) E[ylx] = G(x'Bo) = E[y]x’BO] = E[ylx'b]l S

This estimator, a specialization of the Friedman and Stuetzle (1981) projection pursuit
approach, uses kernel regression to estimate E[ylx’b] as a function of b, then chooses

B to maximize

(3.2.28) SN(b) = i

wix.)(y, - Ely, |x/b)3,
1 1 1 1 1

e~

where the weights w(x) are constructed to equal zero where the nonparametric estimator
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of the conditional éXxpectation is imprecise. Ichimura (1992) gave conditions for

identif. tion of Bo and root-N consisténcy and asymptotic normality of é; ‘the

formula for the asymptotic covariance of this estimator ié similar to the analogous
formula for a weighted nonlinear least squares estimator with known eéxpectation function
G(-), except that the regression vector x, where it would appear separately f‘rom the
index x’BO in that formula, is replaced by the deviation of the regressors from their
conditional mean given the index, x - E[x]x’BO]. Newey and Stoker (1989) derived the
semiparametric ef ficiency bound f or ' estimation of BO (up to a scale normalization on one
coefficient) hnder condition (3.2.27), which has a similar form to the semiparametric

efficiency bound for estim.tion under exclusion restrictions given by Chamberlain (1992),

as described in section 2.7 above.
3.3 Censored and Truncated Regression Models

censoring takes the dependent variable Y and an observable indicator variable d to be

generated ag
(3.3.1) y = min(x’B0 + €, u}, d =Ky < u)

this includes the censored Tobit mode] With dependent variable censored below at zero
(with u =0 and a sign change on the dependent and explanétory variables) and the
accelerated failure time model (y eduals log failure time.)vwith either fixed (u alwaysv
observable) or random censoring tirﬁes. Given a parametric density .f‘ (e';'ro) for the error
terms (assumgd independept of X), estimation of ‘the resulting parametric model can be
based’ ubon maximization of the likelihood function

N

‘ y |
(3.3.2) ES(B,‘:;F) =] izl 4 MlyxBTle (1 - d;)-2nll - Flu;-x!g;7)]

over possible values for BO and T where F(:) is the c.d.f. of ¢ (i.e., the

O)
antiderivative of the density f(+)). This likelihood is actually the conditional
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likelihood of ¥ di) given the regressors (xi} and the censoring points (ui) for

all observations (éssuming Y, is independent of 'yi and xi), but since it only

involves the censoriné point ui for those observations Which are censored, maximization
of the likelihood in (3.3.2) is equally feasible for fixed or random censoring. For
tr‘uncat.ed data (i.e., sampling conditional on d = 1), the likelihood function becomes

1

N .
i

-1z

(3.3.3) 2;(3,1;17) = ln[f(yi—x’iB;t)/F‘(ui-x’iB;T)];

1

here the trunction points must be kﬁown for all observations.

When the error density is Gaussian (or in a more general exponential family), the
first-order condition§ for the maximum likelihood estimator of BO‘ with censored data can
be interpreted in terms of the "EM algorithm" (Dempster, Laird, and Rubin 1977?), as a

solution to

(3.3.4) 0= % izl (y:.'(B,';) - X’iB)'xi,
where
(3.3.5) y;(BO,rO) = di-yi + {1 - di)°E[x’iBO + eil di=0’ X Qi]
= di'yi + (1 - dij- [x’iBO + 5 ) e.~f(e;'ro)de], :
Ui7%iBo

with a similar espression for the nuisance parameter estimator 1. Related formulae for
the conditional mean of y given x and u,

u-x’Bo

-0

(3.3.6) Ely|x,ul = [I - Flu-x’By)l-u + f ['X'BO #'c]~f(e;ro)de.

or for the conditional mean of y given x, u, and d = 1,
1 VxR
: (3.3.7) E[Y'x,u,d=l] = _[F(u-x’BO)] -f [x’BO + c]'f‘(e;'to)de,

-0

can be used to define nonlinear least squares estimators for censored data (or for
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truncated data using (3.3.7)) in a fully parametric model.

As discussed in section 2.2 above, the parameters of interest for the censored

“o
regression :model (3.3.1) will not in general be identified if the error terms are assumed
only to satisfy a constant conditional mean restriction, because the structural function

is not invertible in the error terms. However, the monotomc1ty of the censoring
transformatxon in € for fixed x and u implies that the constant conditional quantile
restrictions discussed in section 2.3 will be us.ef ul in identifying and consistently
estimating BO' For fixed censoring (at Zero), Powell (1984) proposed a least absolute

deviations estimator for B, unc - the. assumpt 1 that the error terms -ad conditional
0

median zero; in t'he ‘notation of model (3.3.1), tr.s estimator B would be defined as

~

N
. 1 s fat
(3.3.8) B = argming & izl [yi - mm(xiB, ui)]

where 8 is the (compact) parameter space. Since the conditional medijan of y given x
and u depends on the censoring value u for all observations (even if y is

uncensored), the estimator is not directly applicable to random censoring models.
Demonstration of the root-N consistency and asymptotic normality of this estnmator follows:
the steps outlined in section 2.3; the asymptotic covariance matrix of \/N(B - Bo) for

this mode! wil] be H. VOHG , With
(3.3.9) H, = ZEIf(OIx))-l{x'BO < upxx‘], Vo = Ell{x’8, < u}-xx’1,

for f(0|x) the conditional density of the error term ¢ at its medxan zero. This
approach was extended to the model with a general constant quantile restriction by Powell
(1986a), which derived analogous conditions for consistency and asymptotic normality;
under the stronger restriction that the error terms are mdependent of - thc regressors,

this paper showed how more efficient estxmators of the slope coef flcxents in Bo could be
obtained by combining coef: cien timated at different quantiles, and how the
assumption of independent error- ild be tested by testing convergence of the differences

in quantile slope estimators to z. J, as proposed by Koenker and Bassett (1982) for the
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linear model. Nawata (1990) proposed a two.-sftep estimator for Bo which calculates a
nonparametric estimator of the conditional median of 'y given x in the first step, By .
grouping ’;he regressors into cells and computing the within-cell medians of the dependent
variable; the second step treats these cell medians ;.i and the corresponding cell
averagés of the regressors ;EJ.' as raw data in a Gaussian version of the likelihood
function (3.3.2), weighting these quasi-observations by the cell frequencies (which would
be optimal if the conditional density of the errors at the median were constant). Nawata ,
gives conditions for consistency of this estimator, and _shows how its asymptotic
d-istribution épproaches the distribution of the censored least absolute deviations
estimator (defined in (3.3.8)) as the regressor cells become small. And, as mentioned in
section 3.2, Newéy and Powell (1990) showed that an eff icient estimator of BO under a
quantile restriction on the errors is a weighted quantile estimator with weights
.proportional to f (OIX), the conditional density of the errors at their conditional
quantile, and proposed a feasible one-step estimator which is asymptotically equivalent to
such an estimator.

When thé censoring value u is observed only for ‘censored obsérvaltions,» with u
independently distributed from (y,x‘), Ying, Jung, and Wei (1991) propose a quantile
estimator for BO under the restriction Pr{e = 0|x} = n € (0,1) using the implied

relation

- (3.18)  Pr{y > x’Bojx)= Pr(x'Bo <u and € > 0|x}

Pr(‘x.‘BO < u|x}-Pr{e > O|x}

H(X'Bo)-(l -n),

where H(c) Pr{u > c} is the survivor function of the random variable u. The unknown
function H(:) can be consistently estimated using the Kaplan and Meier (1958)
product-limit estimator for the distribution function for censored data; the resulting

consistent estimator H(-) uses only the depenhdent variables (yi} and the censoring

indicators (di}' Ying, Jung, and Wei (1991) define a quantile estimator B as a
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solution to estimating equz-ions of the form

. | |
1 ) (%’ R -1 ‘a - .
(3.3.19) osﬁélpmﬁm > i@ - - ]

based on -the conditional moment restrictjon (3.3.18), and give conditions for root-N
consistency and asymptotic normality of this estimator. Since H(x’BO) = l(x’Bo s uo)
when the censoring points ui = u0 with probability one, these conditions do not permit
fixed (and constant) censoring except in the special case Pr{x’ Bo s uo) 1. A

modification of the sample moment conditions defined in (3.3.19),
(3.3.20) osﬁi;[uﬁ>ﬁm-mm§»u-w]«r

would allow a constant censoring value, and when n = 1/2 would reduce to the subgradient
condition for thé minimization problem (3.3.8) in this case; unfortunately, this

condition may have a continuum of inconsistent roots, if é can be chosen so that

x’i é > u, for all observations. It is not immediately clear whether an antiderivative of

the right-hand side of (3.3.20) would yield a minimand which could be used to consistently .
estimator Bo under random censoring, as it does (yielding (3.3.8) for @ = 1/2) for

fixed ceﬁsoring.

Because the conditional median (and other quantiles) of the dependent var‘iable y
depend explicitly on the error distribution when the dependent variable is truncated,
quantile restrictions are not helpful in identif ying BO for truncated samples. With a
stronger restriction of conditional symmetry of the errors about a constant (zero), the
"symmetric trimming" idea mentioned in section 2.5 can be used- to construct consistent
estimators f qf‘ both censored and truncated samples. Powell (.1986b) proposed a
symfnet_rically truncated least squares estimator of 'BO for a truncated sample; ' the

estimator exploited the moment cc a

(3.3.21) Eliy > Zx’BO-u)-(y - x’BO)Ix, y < ul = Ell{e > x'By-ut-efx, € < u-x'gyl = 0
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which holds for the truncated model under conditional symmetry given x and u; the -

resulting estimator is defined to minimize

. 1 .
(3.3.22) . TN(B) = q L (yi - mm(x’iB, yi/z -ui))z,

-1z

which yields a sample analogue to (3.3.21) as an approximate first-order condition.
Similarly, a symmetrically censored least squares estimator for the censored regression

model (3.3.1) will solve a sample moment condition based upon the condition
(3.3.23) E[lmax({y, Zx’Bo-u) - x’BOIx] = E[(max{min(e, u-x’Bo), x’Bo-u}|x] = 0.

The root-N consis'tenéy and asymptotic normality of these estimators was established by
Powell (.1986b); in addition to conditional symmetry and a full-rank condition oﬁ the
matrix VO of {3.3.9), a unimodality condition on the error distribdtion was' imposed in
the truncated case. A variant on the symmetric trimming approach was proposed by Lee
(19?7), which, for a fixed scalar w > 0, constructed estimators for truncated and

censored samples based on the moment conditions

(3.3.24) E[l{u - X'By > whI{]y - x’Bol < wh(y - x’Bo)lx, y < u]

= E[I{u - x'B,> w}-1{|e|. < whe|x] =0
and

(3.3.25) E[i{u - x'Bo > w)min{|y - x’Bd|, w)-sgn{y - X’Bo)lx]'

=.E[1(u - x'BO > w}-min{|e], w)'sgn(c)‘]xl, = 0,

respectively. Newey (1991) derives the semiparametric eff iciency bounds for estimation of
.BO under conditional symmetry with- censored and truncated samples, noting that the
symmetrically truncated least squares estimator attains that efficiency bound in the

special case where the unknown error distribution is, in fact, Gaussian (the analogous
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result does - “old, though, feor the symmetriqally censored estimator).

As dec =d in section 2.- :onditional mbde restrictions can be used to identify
BO for truncated data, and an estimator proposed by M. Lee (1992) explaits this
restriction. This estimator solves a sample analogue to the characterization of BO as

the solution to the minimization problem
(3.3.26) By = argming Pr{|y - min{u, + o, xib)l > w},

as long as the modal interval of length 2w for the untruncated error distribution is
assumed to b- atered at zero. M. Le: 71992) showed th NI/S_C; sistency of this
estimator, and considered its robus: :ess properiies.

Most of the litérature on s.emipar-ametr'ic estimation for censored and truncated
regression in both the statistics and econometrics literature has been based upon
‘independence restrictions. Early estimators of B.O for random censoring models which
relaxed the assumed parametric form of the error distribution (but maintained independence
of the censoring times and the latent dependent variable) were proposed by Buckley and
James (1979) and Koul, Suslara, and van Ryzin (1981). The Buckley-Jémes estimator uses
the Kaplan-Meier (1958) nonparametric estimator for the error distribution, applied using
residuals ; =y~ x’f§ and tneir censoring points u - x’é, to obtain nonparametric
estimators of the conditional expectation Ely|x, d=0] in (3.5.5) above; then (3.3.4) and
(3.3.5) are used iteratively to obtain a semiparametric analogue of the EM algorithm.
Although Buékley ahd James did not rigorously establish consistency of this estimator,
they demonstrated that it was well-behaved in practice, and Ritov (1990) showed how a
modif ication of this approach yields a root-N consistent and asymptotically normalv
estimator. Koul, Suslara, and van Ryzin (1981) proposed estimation of BO using a
weighted least squaresiregre‘ssion of the uncensored dependent variables on their

corresponding regressors, using the inverse of the estimated survival function for u

evaluated at y, [H(y)]" . :s weights. Using the fact that
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(3.3.27) Eld|x,e] = Pr{x'B, + € < u} = Hix'B, + e),
this estimator exploits the moment condition
(3.3.28)  E[(d/H(y))-(y - x'Bo)|x] = El(Eld|x,el/H(x' B, + €)-e|x] = Ele|x] = 0.

Thus, only a conditional mean restriction is required for consistency of the resulting
estimator; however, the upper limit of the support of the censoring variable u must be
larger than the upper limit of the support of the latept variable | y. = x'BO + £, Wwhich
rules out a' fixed censoring point (unless censoring never occurs). |
In the econometrics literature, where the censoring vélue u is assumed to be
fixed at zero, Duncan (1986) and Fernandez (1986) proposed semiparametric profile
likelihood estimators of BO - by replacing the unknown error density and cumulafive by
nonparametric estimators, using different smoothing techniques. Horowiti (1986) showed
consistencybf a nonlinear least squares estimator for BO using an integr"ationk-by-parts
formula for the conditional mean of y = min(x’BO + g, 0) given x:
(3.3.29) Ely|x] = J‘-XIBO (e + x’Bo)-f(e)de = - J"-X'BO F(e)de,
. -0 -x

where f(-) and F(-) are the error density and cumulative. To obtain a feasible
estimator, the unknown error cumulative F(:) is réplaced by its Kap_lan-Meier estimator
based upon residuals, as for the Buckley-James estimator. Horowitz (1988) constructed a
more efficent nonlinear weighted least squares version of this estimatof. and showed its
root-N‘consistency and asym'ptotic normality; a similar approéch, baseél on tﬂe analogous
expres;ion for the conditional mean of y given ‘x and d =1, was proposed by Moon
(1989).

- Pairwise difference estimators for the censored and truncated regression models have
also been'c‘onstructed by Honoré and _Powell. (1991); for model (3.3.1) with fixed
censoring, and using the notation of | section 2.6, these estimators were based upon the

transformation
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"‘ e : ) i nd ‘ . = I- »
(3.3.30) eu( ) = e(z,, z, B min{y, xi8, u, xJB)
which satisfies
(3.3.31) ei_j(eo) = mm(mm(tei, ui-xiBo), ui_ijO) = mm(ei, ui-xiBo, ui-xJ.BO),

so that eij(eo) and e_ji(eo) are clearly independently and identically distributed

given 'xi and xJ.. Again choosing Z(xi, xJ., 8) = X; - xJ.. the pairwise difference
estimator for the censored regression model was given_ as a solution to the sample moment
condition (2.6.11) of sectibn 2.6 above; these estimating equations were shown to have a
unique solution, since they correspond to first-order conditions for a convex minimization
problem. Honoré and Powell (A1991) also considered estimation of the truncated regression

model, in which ¥; and X, are observed only if ¥; is positive; -that is,
(3.3.32) ¥ = xiBO +v,

i

where v; has the conditional distribution of g given € > -x’iBo,
(3.3.33) Z(Vilxi) = Z(eilxi, g > fxiBO)'

Again assuming the untruncated =-rors 5, are i.i.d. and independent of the regressors

X, a pairwise difference estimator of /30 was defined using the transformation
.3 =y, - xiB)'Uy, - x'B > -x'B)-Uy. - x’'B > -x'B).
(3.3.34) e(zl, zJ, B) (yl, xlB) l_(yl XIB “xJB) l(yJ xJB xlB)
When evaluated at the true value By the difference
’ - = (v, = v.) UV, > -x"8)-1(v, > -x’
(3.3.35) eij(BO) eji(Bo) .(vi , vj) l(vi ' xJB) l(vJ xlB)

is symmetrically distributed around zero given X, and xJ.. As for the censored case,
the estimator B for this model was defined using l(xi, xJ., 9) = (xi - xj) and (2.6)
through (2.8) above. When the function €(d) = sgn(d), the solution to (2.6.11) for this

model was proposed by Bhattacharya, Chernof f, and Yang (1983) as an estimator of Bo for
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this model under the assumption that X, is a scalar. The general theory derived for

. th . . . . .
minimizers of m™ -order U-statistics (discussed in section 1.3) was applied to show root-N
consistency and obtain the large-sample distributions of the pairwise difference

estimators for the censored and truncated regression models.

' 3.4 Selection Models

Rewritihg the censored selection model of (1.3.22) and (1.3.23) as

d = l(x'lso + 7 >.0)

(3.4.1)
y = d-[xgﬁo + ¢]

y, Bé = 60. and Bg = BO), a fully parametric model would specify

(for y, =4, Y,
the functional form of the joint density f (e,n;to) of the error terms; then

maximization of the average log-likelihood function

N
1 ’
(3.4.2) .‘CN(B,B,T;f) =N Z [ di-ln[_l'°° ) f(yi-XZiB,’n;'r)'dn]
i=1 -xlia

+-d)nf 0"

- -’
® xlia

f(e,m;T) dnde] ]

over B, &8, and T ih_the parameter space.' An alternative estimation method, proposed

by Heckman (1976), can be based upon the conditional mean of y given x and d = 1:

o0

(3.4.3)  Ely|x,d=1] I f(e,n;'co)-dnde]'l et e-fle,n;7 ) dnde]

4
xZBO ¥ [I_m -x'8s - =-X‘3
170 : 170

XZBO + A(xlao;'ro).

When the "selection correction function” A(x’lé;t) is linear in‘the distributional
parameters <t (as is the case for bivariate Gaussian densities), a two-step estimator of
B, can be constructed using linear least squares, after inserting a consistent f irst-step
0 g

estimator 3 of 80 (using the indicator d and regressors x. in the binary

1
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log-likelihood of (3.1.2)) into the selection cc ection function. Alternatively,

a nonlinear leést squares estimator of the parameters can be constructed using (3.4.3),
-which is also applicable for truncated data (i.e., for y ‘and X being observed
conditiona‘l on d = 1),

To date, semiparametric -modelling of the selection model (3.4.1) has imposed
independence or index restrictions on the error terms (e, m). Chamberlain (1986a)
derived the semiparametric efficiency bound for estimation of BO and 60 in (3.4.1)
when the errors are independent of -the regressors with unknown error density. The form of
the eff icienéy bound is a simple modification of the parametric efficiency bound for this
problem when the error density is known, with the. regression vectors x1 and >_cz being
replaced by their deviations from their conditional means given tﬁe selection index, V
xl'__ E[x1|xl160]v and Xy = E[lex’lacl, except for terms which involve the index xiéo.
Chamberlain notes that, in 'general, nonsingularity of the semibarametric information
(i.e., some component of x, with

2 1

nonzero coefficient in 60 is excluded from xl). as well as a normalization restriction

matrix will require an exclusion restriction on x

on 60. The efficiency bound, which was derived imposing independence of the errors and p
regressors, apparently holds more generally when the Joint distribution of the errors in
(3.4.1) given the regressors depends only upon the index x’lao appearing in the selectic-
equation.

Under this ipdex restriction, the conditional mean of yv given 'd =1 and x will
have the‘ same form as in (3.4.3), buf with selection correé_tion function of unknowp form;
More generally., conditional on d = 1, the dependent variable y haé the linear

representation

3.4.4 = x’ + €,

( ) y ‘xzﬁo €

where ¢ éatisfies the distributional index restriction

(3.4.5) £(e|d=l, x) = £(e|d=1, x'lso) a.s.,
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so that other estimation methods for distributional index restrictions (discussed in
section 2.7) are"applicable here. So far, though, the econometric literature has been

exloited only the weaker mean index restriction
(3.4.6) e|d=1, x) = Le|d=1, x{3).

A semiparametric analogue of Heckman’s two-step ‘estimator was constructed by Cosslett
(1991), assuming independence of the errors and regressors. In the first step of this

approach, a consistent estimator of the selectivity parameter &, is obtained using

0
Cosslett’s (1983) NPML estimator for binary reponse, described in section 3.1 above. In

this first step, the concommitant estimator F(:) of the marginal c.d.f. of the selection

error 7 is a step function, constant on a finite number J of intervals

(. =1lc. ., ¢ j=L...0} (with c
A B S UL P 0

approximates the selection correction function A(-) by a piecewise-constant function on

~®, c; = ®); the second step estimator of .Bo
those intervals. That is, writing

J - -
(3.4.6) Y = X8y + »jél AjHxi, € 1) + e
the estimator )§ is constructed from a linear least-squares regression of y on X, and
the J indicator variables (l(x’lg € I_j))' Cosslett (1991) showed consistency of the
resulting estimator, using the fact that the number of inter\;als, J, increases
slowly to infinity as the sample size ipcreases (so that the piecewise linear
f unction could approximate_ the true selection function A(:) to an arbitrary degree). An
important identifying assumpti‘én was the requirement that vsome corriponent' of the regression
vector X, for the selection equation was excluded from the‘ regressors X, in the’ |
equation f orii y, as diséuésed by Chamberlain (1986a).

| Although independence of the errors and regressors was imposed by Cosslett (1991),

this was primarily used to ensure consistency of‘ the NPML estimator of the selection

‘coefficient vector 60; the same approach to approximation of the selection correction

function will work under an index restriction on the errors, provided the first-step
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estimaior of ‘50 only requires this index restriction. In a parz tric context, L. Lee
(1982) proposed estimation of BO using (3.4.3) using a flexible = -ametrization of the
selection correction function A(-); for the semiparametric model Newey (1988) proposed a
similar two—step'estimator. which in the second step used a series approximation to the

selection correction function to obtain the approximate model

J
(3.4.7) 'y = XZBO + jél Aj-pj(xlao) + e,.

which was estimated (substituting a preliminary estimator 3 for 60) by least squares to
obtain an estimator of Bo. Here the f.unctibns (pj(-)) ~were a series of functions whosel
linear combination could be used to approximate (in a mean squared error sense) the
function A(:) arbitrarily well as J 5 »; Newey (1988) gave conditions (including a
particular rate of growth of the number J of series éompopents) under which the
estimator é of BO was root-N consistent and asymptotically normal, ahd also discussed
how efficient estimators of the parameters could be constructed.

As discussed in section 2.7, weighted versions of the pairwise-difference estimation
approach can be used under the index restriction of (3.4.5). Assuming a preliminary,

0
difference estimator of th,e form (2.7.17) when £(d) = d, eij(e) &

root-N consistent estimator & of &, is available, Powell (1987) considers a pairwise
-
i = XjpB and

Z(Xi. xJ.. 8) = xi - x.i (where the dimension of the instrumental . .. iables z(xi) is the

same as for Bo). yielding the explicit estimator

-~ v { ~ .

(3.4.8) B = w, [(x., - X, )'6]-(x. -x..)x.,-x..)
2(: N{7il J1 i2 Jj2® iz 7j2

1<)

- ’h . - ) .' - A
Cox Z WN{(xil le) a] (xiz_ sz) (yi2 yjz? .
L i< . ,

Conditions were given in Powell (1987) on the data generating process, the weighting
functions wN(-). and the preliminéry estimator 8 which ensured root-N-consistency and

asymptotic normality of B8, and the dependence of this asymptotic distribution on the
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large sample bt_ehavior- of & was explicitly derived, along with a consistent estimator of
the asymptotic covariance matrix. The approach was .also extended to permit endogeneity of

some components of X, using an instrumental variables version of the estimator. L. Lee

2
(1991) considers system identification of semiparametric selection models with endogenous
regreésors, and proposes efficient estimators of the unknown parameters under an
independence assumption on the errors.

When the errors in (3.4.1) are assumed independent of the regressors, and the support
pf the selection error 7 is the entire real line, the assumption of a known parametric .
f ormk x’lao of the regression function in the selection equation can be relaxed. In this

case, the dependent variable y given d = 1 has the representation (3.4.4), where the

error term € satisfies the distributional index restriction
- (3.4.9) £(eld=1, x) = .‘C(§|d=1, p(xl)) a.s.,

where now the single index p(xl) is

(3.4.10) p(xl) = E[d[xl] = Eld|x].

Given a nonparametric estimator ;3(x1) of the conditional mean p(xl) of the selection
indicator, it is straightforward to modify the estimation methods above to accommodate
this new index restriction, by replacing the estimated linear'index x’ls by the
nonparametric index ";(xl)" throughput. Choi (1991) proposed a series estimator of BO.
based on (3.4.7) v‘;ith this suhstitution, while Ahn and Powell (1992) modified the weighted
pairwise difference estimator ‘in (3.4.8) along these lines. Both papers 'used av
nonparametric kernel estimator to construct 1;(;(1)‘, and both gave conditions on the:
model, this first-step nonparametric estimator, and the degree of smoothing. in the second
step which guaranteed root-N consistency and asymptotic normality of the resulting
estimators of BO. The. influence functions f or' these estimators depend upon the

-conditional variability of the errors € and the deviations of the selection indicator

from its conditional mean, d -'p(xl). Newey and Powell (1992) calculates the
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semiparametric .ef ficiency bounds for 3 under the distributional index restriction
(3.4.9) and its mean index analogue, -le Newey and Powell (1981) discusses construction
of semiparametric M-estimators whicy will attain these efficiency bounds.

For.-the truncated selection model] (samplmg from (3.4.1) conditional on d = 1),
1dent1f ication and estimation of the unknown parameters is much more difficult. Ichimura
and Lee (1991) consider a semiparametric version of a nonlinear least squares estimator

using the f onm of the truncated conditional mean function
(3.4.11) Ely|x,d=1] - 2By + Alx{3,)

from (3.4.3) with A(-) unknown, following the definition of Ichimura’s (1987) estimator
in (3.2.28) above. Besides giving conditions for identifiqation of‘the parameters and
root-N consistency of their estimators, Ichimura and Lee (1991) consider a generalization
of this model in. which the nonparametric component depends upon several linear indices.
If the linear index restriction (3.4.6) is replaced by the nonparametric index restriction
(3.4.9), identification and consistent estimation of BO requires the functional
independence of X, and X5 in which case the estimator proposed by Robinson (1988),
discussed in section 2.7 above, will be applicable.

Just as eliminating the information provided by the selection variable d .makes
identification and estimation of By harder, a strengthening of the information in the
selection variable makes estimation easier, and permits identification using other
semiparametric restrictions on the errors. Honorsé, Kyriazidou, and Udry (1992) consider

a model in which the binary selection variable d is replaced by a censored dependent

variable Ypr so that the model becomes

[}

¢
Y max{0, xlao + )
(3.4.12)

¥, = 1(y1 >0} [x 3.+ ¢€];

-0

this model is called the "Type 3 Tobit" model by Amemiya (1984). Assuming the conditional

symmetry of the errors (e,n) about zero given x, the authors note that 60 can be
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cdnsis'tently estimated using the quantile or symmetric trimming estimators for censored
regression models discussed in section 3.3, and, f uf‘thermore, by symmetrically trimming

the dependent variable y2 using the trimming function

(3.4.13? h(yl,yz,xl,xz,a,ﬁ) = {0 < y, < 2x1c5)'(y2 - xZB),_

the function. h(-) satisfies the conditional moment restriction
(3.4.14) E[h(yl,yz.xl,xz,ao,so)|x] = Ell{-x{8, <m < x{8,)-€|x] = 0

because of tﬁe joint conditional symmetry of the errors. By constructing a sample
analogue of (3.4.14) (possibly_based on other odd f unctioné of ¥y - xéB) and inserting
the preliminary estimator S, Honoré, Kyriazidou, and Udry (1992) show the resulting
estimator é to be root-N consistent and asymptotically normal under relatively. weak’
conditions on the model. Thus, with the additional information on the laﬁent variable
x’lao + n provided by the censored variable Yo it is possible to consistently estimate
Bo without obtaining explicit nonparametric estimators of infinite-dimensional nuisance

functions.

3.5 Nonlinear Panel Data Models

For panel data versions of the latent variable models considered above, with
! - ’ . ‘ =
(3..5.1) Vg tin + stO + e, 'co), s=1 .. T,

derivation of the log-likelihpod functions like the ox;es above is straiéhtf orward if the
individual-specific intercept 7 is assumed independent o_f X (or its dependence is
parametrically specified) with a distribution of knownbparametric form; the conditional -
density- of y = (yl, ey yT) given x for each individual can be obtained from the
_joint denéity of the convolution u s (n+ él, s M+ e.l.), which, for special (e.g.,

Gaussian) choices of error distribution are of simple form. Maximum likelihood estimators

of’ BO for these nonlinear "random effect" models have the usual optimality properties,

89



but their consistency depends on proper specifigation of both the error :orm

€ = (el’ e.r)' and the random effect 7. When the individual-specific in.zrcepts z - ;
treated as unknown parameters ("fixed effects"), the corresponding log-likelihoods for the
parameters Bo and the vector of intercept terms (nl. e Ty ey _nN) are even
simpler to derive, being of the same general forms as given above when the errors e, are
assumed to be i.i.d. across individuals and time. However, because the vector ;)f unknown
intercept terms increases with the sample size, maximum likelihood estimators of these .
fixed -ef fects will be inconsistent unless the number of time periods T also increases to:
iﬁfinity; moreover, the inconsistency of the fixed effect estimatc:s leads to

inconsistency of the estimators of the parameters of interest, BO’ a consequence of the
notorious "incidental parameters” problem (Neyman and Scott, 1948).

For some special parametric discrete response models, consistent estimators of - BO
with fixed eff ects can be obtained by maximizing a "conditional likelihood" function,
which conditions on a fixed sum of the discrete dependent variable across time for each
individual. In the special case T = 2, this is the same as maximizing the conditional
likelihood given that Y, *= Yy and the estimation method is the anaiogue to estimation
using pairwise differences (over time) for linear panel data models. Models for which a
version of pairwise differencing can be used to- eliminate the fixed effect in panel data
include the binary logit model (Andersen (1971)), the Poisson i"egression model (Hausman,
Hall, and Griliches (1984)), and certain duration models (Chamberlain (1984)); however,
these resulté requil;'e a particular (exponential) structure to the likelihood which does
not hold in general.

For the binax_'y, censored, and truncated regression models with fixed effects,
estimators have been proposed under the assurhption that the time-specific errors (es) '
are identically distributed across time periods s given the regressors Xx. Manski
(1987) shows that, with T = 2 time periods, t..he nditional » :dian of the difference
¥, = ¥, of the binary variables ’;s = UxB, + e, = 0} given that y =y, is

1((x2 - xl)'Bo > 0), so that a consistent estimator for B(') will be
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o . ; 1
(3.5.2) B = argming &

We~12

Wy, * vy l(yi2 - yil) - 1((x2 - xl)'B0 > 0},
1

i
which will be co_nsistent under conditions on (xi2 - xn), etc., similar to those for
consistency of the maximum score estimator, Honoré (1992) considered pairwise-difference
estimators for censored and truncated regression models with fixed effects using the
approach described in section 3.3; specifically, using the transformations given in
(3.3.30) and (3.3.34) for the censored and truncated cases, respectively, estimators of the

arameter vector B, in both cases were defined as solutions to minimization problems which
P 0

generate a first-order condition of the form

(3.5.3) - 0=

i E(e(ziz, Z,s B) - e(zil, 2,5 B))-(xiz - xil)‘

n~-1z

1

As discussed at the end of section 2.6, the expectation of the right-hand side of (3.5.3)
will be zero when evaluated at BO’ even in the presence of a fixed effect. As for
Manski’s binary panel data estimator, this estimation approach can be generalized to allow

for more than T = 2 time periods.
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4. Summafy;and Conclusions

As the previous section indicates, the theoretical analysis of the properties of
estimators under various semiparametric restrictions is quite extensive, at least for the
latent variable models considered above. The following table summarizes the current state

of the econometric literature on estimation of semiparametric models:

Mean Median  Mode Index Symmetry Independence
Linear 3 3 1 O+ 3 3
Transformed 3 3 0 C - 3 3
Censored . 0 3 0 o+ - 3 3.
Trucated o o 1 O+ 3 . 3
Binary 0 1 0 3 1 3
Monotone 0 1 0 2 1 o 2
Semilinear 3 2 ? 3 2 3
Selection 0] ? ? 3 2 3
Binary Panel 0 ? ? ? ? 1
Censored Panel 0 7 ? ? ? 2
Key: O - Not identified (0+ - Identified only up to scale)
1 - Parameter identified / consistent estimator

2 - \/N.-consistent,' asymptotically normal estimator

3 =~ Efficient estimator

Of course, this table should be viewed with caution, as sdme.of-‘ its entries are ‘ambiguous
(for instance, the entry under "symmetry" for the "selection"v row ref ers to the "Type 3
Tobit" model with a censored regression model as ‘the selection equation, while the other
columns presume a binary selection ec-quation). Nevertheless, the table should be

suggestive of areas where more research is needed.
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The literature on'émpirical application of semiparametric methods .(apart from
estimation of invertible models under conditional mean restrictions)s much less extensive.
When applied to {-elatively small data sets (roughly 100 observations per parameter), the
potential bias fr‘orn misspecification of the parametric model has proved to be less
.i-rnportant than the additional imprecision induced when- iaarametric restrictions are
relé#ed. For example, Horowitz and Neumann. (1987) (and McFadden and Han (1987)) estimate
the paramet'e.rs of an employment duration data set imposing independence and quantile
restrictions.l but for these data even maximum likelihood estimates are imprecise (in terms
of their asymptotic standard errors). ‘A similar outcome was obtained by Newey,b Powell,
and Walker (1990), which reanalyzed data on married women’s labor supply originally
studied (in a parametric context) by Mroz (1987); for Fhese data, estimates based .upon
semiparametric restrictions were fairly comparable to their semiparametric counterparts,
with differences in the estimates having large standard errors. On the other hand, for
larger data sets (with relatively few parameters), the bias due to distributional
misspecification is more likely to be evident. Chamberlain (1990) and Buchinski (1991b)
apply quantile methods to estimate the returns to education for a large, right-censored P
data set, and find these estimates to be quite precise.

Beﬁides the possible imprecision due to weakening of semiparametric restrictions, an
obstacle to routine use of some of the estimators des,cribed in section 3 is their
dependence upon avchoicév of type and degree of "smoothing" imposed for estimators which
depend explicitly upon nonparametric components of the model. Though this question has
been widely studied in the literature on nonparametrics, the results are different when
the nonparametric component is a nuisance parémeter. Some ea}‘ly results on the proper
degree of smoothing are available for some special cases of estimators based upon indei
restrictions (Powell and Stoker (1991), Hirdle, Hart, Marron, and Tsybakov (1992)), but
more theoretical results are needed to narrow the choice of possible estimato'r"s which

depend upon nonparametrically-estimated components.
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