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1. Introduction.

In R. J. Aumann and M. Maschler [1], a theory was developed to
attack the following general question: If the players in a cooperative
n-person game have decided upon a specific coalition-structure, how then will
they dis%ribute among themselves the values of the various coalitions in such
a way that some stability requirements will be satisfied. Several criteria
for the "stable" splits were given, centering upon the. idea that a "stable"
payoff should offer the players some security in the sense that each
"objection" could be met by a "counter objection." A variety of concepts of
dbjections and counter objections were suggested;‘andlone of them was studied
in more detail. This one, and some of the others, héd the feature that for
some coalition-structures there were no stable payoffs, and therefore these
coalition-structures could not be used by those players who wished stability
in this sense. (See also [6].) Moreover, cases weré established in which
even a coalition-structure which yields the méximum %otal amount to all the
players had no stable outcome. In particular, an exémple was given in [1]
of a game with a superadditive, non-negative, non-idéntically zero character-
istic.function, in which no outcome was stable unless each player received a
Zero amountﬂ

It is conceivable that many would rejecé such an outcome on the
ground that "rational" players in a superadditive game would always agree
on an imputation, because otherwise they can all benefit by switching to an
appropriate imputation.

We do not share this opinion, for we feel that often a desire
for security is stronger than a wish to make some extra profit. In fact,
many profitable coalitions in everyday life are never realized because the

"players" do not consider them safe. Nevertheless, we do believe that in




some cases, especlally if large profits are at stake, people may be willing
to relax their safety requirements in order to make more out of a game.
It is therefore of interest to develop a theory in which safety
requirements are so relaxed that there always exist stable imputations in a
.superadditive game. We shall prove that fhis is indeed the case:for‘one of
the variants proposed in [1]. MoEeover, we conjecture that this}vériant
always provides stable outcomes fpr each choice of a coalitionwstructure.
We are able to prove this conjecturé for those coalition~structyres in which
each coalition does not contain more than three players.
- The key theorem, very interesting in itself, states that each
outcome induces a partial "order" relation among the players which is asym-
|
metric and unever intransitive (theVer, it is not necessarily transitive).
This phenomenon, which, e.g., does not occur in the von Neumann—Morgénstern
concept of domination, is "just enough" for proving various existence theorems.
The necessafy definitions are stated to make the paper self-
contained.
We are grateful to Dro Martin Avkowitz for helpful discussions

during our research.

2. Basic Definitions.

We consider an n-person cooperative game T , described by a
set N=1{1, 2, ..., n} of n players and a real function v(B) defined

for each non«empty subset B of N . B is called a coalition and v(B)

is its value. The function v(B) is known as the characteristic function of

the game.l It is not necessarily superadditive.

31The theory allows also for the possibility that some non-l-person
coalitions are not permissible. If B is such a coalition, we simply agree
that v(B) = 0 , and modify slightly the permissible outcomes.
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There will be no loss of generality if we assume that
(2.1) v(B) >0 and v(i) =0 foreach i ,i=1,2, ..., n .

An outcome of a game I' 1s represented by a payoff configura-

tion (p.c.)

(2.2) | (x;:8) = (Xl’ Xps wees X5 By Boy e, Bm)

Here, 38 =B, B

co ey Bm is the coalition-structure, and hence satisfies

1’ e’

m ]
(2.3) Bj nBs, = ¢ for all j, k, j # k , and _ul Bj =N,
J =

and X = (xl, Xpy ooy xn) represents the payoff vector according to which

player 1 receives in the outcome the amount X i=12, ..., n. We
assume that each coalition makes full use of its value, and therefore X is

required to satisfy

(2.4) %X, = v(Bj) s J =1, 2, vee, m

We also require that each outcome is individually rational, i.e., that

(2.5) x, >0 foreach i, 1=1,2, ...,n.

Thus, for each fixed coalition-structure & = B ceep Bm » the set of

l‘) B2)

all possible payoff vectors consists of a cartesian product of m simplices

(2.6) 8 =8, X8, X ... X8,

where, in view of (2.4) and (2.5),

(2.7) 8, = {-{xi}ieB l L ox, = V(Bj) ; % >0 }-, J=1,2, -v., m
3

Let (x‘;ZB) be an individually rational payoff configuration

(i.r.p.c.), (2.2) and (2.5), in a game IT', and let k and 4 be two distinct
') )

members of a coalitionl Bj of QB .

LIhis requires, of course, that B, contains more than one
player. J




For a coalition C and a distribution {yi} , 1 €C, of its value

among its members, the pair ({yi}; C) is called an objection of k against
L in (x;8B) , ir

(2.8) kec, Léc, k,./ﬂij,
ieC
l . .
(2.10) Yy 7 ¥ » ¥y 2%, forall i, ieC

Let (z;2%) 7be an i.r.p.c. (2.2) and (2.5), in a game I' and let
({yi}; C) be an objection of a player k against a player 4 in (x ;23) s
(2.8), (2.9) and (2.10). For a coalition D .and & distribution {zi} , 1e€D

of its value among its members, the pair ({zi}; D) ‘is called a counter objec-

tion to the above objection, if

(2.11) Led, k¢D,
(2.12) £z, =v(D),
ieD
) (2.13) z, >2x, forall i, 1€D,.
(2.14) z; >y; forall i, ieDNC.

Definition 2.1 An i.r.p.c. (x;B) in a game I is called stable

(a%§l> - stable), if for each cbjection there exists a counter objection.

The set of all thefstabie p.c.'s is called the bargaining Set2

It will be of advantage to introduce a "strength" relation among

the players, which corresponds to each i.r.p.ca

;No loss of generality will be causéd if we assume that all the
inequalities are strict.

aI‘his is one of several variants mentioned in R. J. Aumann and
M. Maschler [1]. Although formulated differently, it is actually the same as
. ‘A(l of [1], with the coalitional rationality requirement being replaced by

individual rationality. The definition in [1], however, "sounds" more gener-
al. (See [6].) :

2



Definition 2.2 Let (z;8) be an i.r.p.c., (2.2) and (2.5), for a game T .

Iet k¥ and £ De two players in a coalition Bj of B . We say that
player k is stronger than player £ in (x ;&) , and we denote this by
k > 1 5 if player k has an objection against player 1 , which cannot be
coﬁntered.

We say that a player'k is equal to player 1 in (x ;ﬁ) , and
denote this by k ~4 , if k¥4 and LFx . (# means "not stronger
'than").

Obviously, an i.r.p.c. (x,-23) is stable in a game I' if and

only if in each coalition of B » each player is equal to each other player

who belongs to the same coalition,

In the next section we shall study some properties of the

relation > .

5. Weak Partial Order.

Definition 3.1 A binary relation A will be called a weak partial order,

if it is never intransitive. I.e., if

(3.1) AT A, A27?A3 s ey Aa_lﬁ by = ~a KA .

It will be shown subsequently that > is such a relation, hence
this relation may enter everyday situations in a natural way.
Certainly A can be imbedded in a partial order relation 7<¥

by defining Al A * Aa whenever Al% Aa or a sequence A., A

12 22 Aoc
exists, which satisfies the left~hand side of (3.1). However, it is not
always advisable to replace > 4 by %* ; 1f one wishes to derive theorems
concerning R itself,

It follows from (3.1) that a weak partial order is an asymmetric

and an irreflexive relation.
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Let %i be a binary relation defined by:

. if if ~A KA a ~A A
(3.2) AD’ZAM if and only if " , an M?? o ?

then )JF is a reflexive and symmetric relation (but not necessarily transi-
tive). Certainly, the relation [# or AT complete.

Let (1:;23) be an i.r.p.c., (2.2) and (2.5), for a game T,
and let C be a coalition. Then the expression

(5.3) e(c) =v(0) - = =z,
ieC

will be called the excess of the coalition C in (25;23) . Clearly, this
excess, if it is positive, is the supremum of the amounts with. which a player

in C can "manoeuvre," if he claims an objection by forming the coalition

C

Lerma 3.1 Let (x;28) De an i.r.p.c.)(2.2) and (2.5), for a game T ,

and let k and 4 be two distinct players in a coalition Bj of 2 .

Suppose that player k has an objection ({yi} 5 C) against player 4, and

that this objection cannot be countered. Under these conditions, any coali-

tion b for which
(3.4) Len, ed) >e(C)

must contain player k .

Proof: Certainly, by (2.9) and (2.10), e(C) > 0 and therefore e(D) >0 .
If k ¢ D, then (2.11) is satisfied. Playerfﬁ can then counter-object by

({zi} ; D) , where

T in for ieD-C, i#4d,
(3.5) { v for 1ieDnNC
v(D) - = z. for i=4 .
L ieD-(£} * :

Indeed, it remains to show that (2.15) is satisfied for i =4 . Actually,




zp - xp =v(D) = % z, ~xp =v(D) - X y, - & x, =

TR ieD-{4} * t ieDNC © ieD-C *

v(D) - v(C) + X y; = Z X, > v(D) - v(C) + = X, - I x, = e(D) - e(C) >0 .
1eC-D ieD=C ieC-D ieD-C

This contradicts the assumption that the objection cannot be countered.

Theorem 3.1 Let (x;28) be an i.r.p.c.}(2.2) and (2.5% for a game T ;

then the relation > in (x ;3B) (see Definition 2.2) induces a weak

partial order (see Definition 3.1) among the members of each coalition in 23 .

4

Proof: Let Bj be a coalition in A , and suppdse that the relation >> is
not a weak partial order among the players in a coalition Bj of 23 . With-
out loss of generality we can assume that B. contains the players
J
1,2, -+, t , and that in (x ;:B) ,
(3.6) 122,223, ci, t=1>%, £51 .
We know, therefore, that an objection ({yf} K CD) » of player » against

player (v+l) (mod t), exists, which cannot be countered, v =1, 2, ..., t .
Let CDO be a coalition among the cPrg » Wwhich has the maximum excess
(see(3.3). We shall show that cDO contains all the players 1, 2, ..., t ,
and this will furnish the contradiction, because, by (2.8), CDO cannot

contain player (Do+l) (mod t) . We proceed by induction: By (2.8),
1Y) 0
Do ec . Suppose that a player v belongs to the coalition C © ; then,

by Lemma 3.1, replacing k, £, ¢, D by (v-1)(mod t), v, C(D_l)(mOd t)
O
c, respectively, we find that player (v-1)(mod t) also belongs to C © .

2

This completes the proof.

Example 3.1 Let T %be a S5-person game with the characteristic Tunction
v(123) = 30, v(1h) = 40, v(35) = 20, v(2h5) = 30, v(B) = O otherwise; and
consider the p.c. (10, 10, 10, 0, 0; 123, L4, 5). 1In this p.c., 1»2,

because player 1 can object against player 2 by ((11, 29); 14) and this
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objection cannot be countered. Similarly, 2:> 3 , the objection being
((11, 1, 18); 245). On the other hand 1 ~ 3 . This example shows that the

relation >- is not necessarily transitive.

Example 5.2 Let I' Dbe a 5-person game with the characteristic function:

v(123) = 30, v(14) = 30, v(34) = 20, v(25) = 30, v(B) = 0 otherwise.
Clearly, 1~2, 2~3, but 1p3 in the p.c. (10, 10, 10, 0, 0 ; 123, 4, 5).

This shows that the relation ~ is not necessarily transitive.

L. Making a Coalition Stable.

Definition 4.1 Tet (x ;) %be an i.r.p.c) (2.2) and (2.5), for a geme T ,
and let Bj be a coalition in 3 . We shall say that the coalition Bj is
stable with respect to (x ;&) s 1f each player in Bj is equal to each

other player in Bj .

Clearly, an i.r.p.c. (x;28) is stable if and only if all the

coalitions in..zg are stable.

Theorem 4.1 ILet (x ;) be an i.r.p.c. (2.2) and (2.52 for a game T ,

and let Bj be a fixed coalition in ¥P . It is possible to modify the

payoffs to the players in Bj » Without changing the other payoffs and the

coalition-structure, in such a way that Bj will be stable with respect to

the modified p.c.

Proof': There is no loss of generality in assuming that the coalition Bj
consists of the players 1, 2, ..., t . We know that all the possible
payoffs to the members of Bj constitute the simplex Sj defined by (2.7),
(j TDeing fixed). To each point % = (xl*, xg*, cen, xt*) in Sj there

A
corresponds an i.r.p.c. (x;8) , where

x. ¥ . .
(4.1) o i1 forall i, 1€ Bj
X, for all 1 i ¢ B,
i ? J




Let E = ED({Xi}iﬁfBj;B) , v=1,2, ..., t , be the set of points x %, x*e Sj’

for which player v 1s stronger than or equal to ( 2 ) all the players i

ie Bj , in the p.c. ( ;C 529) . The theorem will be proved if we show that

t
(k.2) M, = Mj([xi}i¢Bj;a29) = Drzwl E, £0 .

In order to show this, note first that the face X, < 0 of the
simplex Sj is cont'ained‘in ED , V=1, 2, «+s,yt . Indeed, 1if X, = 0
in (% ;B) , then, by (2.1), player v can counter ocbject to each objec-
tion raised againét him (if such exists) by ({O};‘ ‘D>

We shall now show that

t
J+v = M
(4.3) DL*—jl E, Sj

Indeed, suppose‘th'at there exists a point x* in 'SJ which

is not in this union, then there exist players il’ i2, veey iJG in B,

J
such that in (Z ;2) ‘
s . o1
(4.h) -ly{ll, 2(12,7“., t<lt A
This violates the non—intraﬁsitivity property of the relation » . (See

Theorem 3.1.) Thus, (4.3) holds. Applying now the lemma of B. Knaster,
C. Kuratowski, and S. Mazurkiewicz [4], usually used to prove in a direct
way the Brouwwer fixed-point theorem (see also Kuratowski [5]), (%.2) follows

immediatélye This completes the proof of the theorem.

Corollary 4.1 An important consequence of this lemma is that if the char-

acteristic function is superadditive, then there always exists an
imputation X , such that (x; N) dis stable.
We conjecture that to each coalition-structure 2 , there is

a payoff vector X such that (x ;3) is stable., It seems that in order

lWe define 4 in the obvious way.

J
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to prove this, one has to know more properties of Mj . We shall state
some of the properties we have in mind in the next section, and verify them

in some cases.

Theorem 4.2 The set Mj , defined by (ﬁ.E), is a union of a finite number

of closed convex polyhedra.

(

Proof: L <o
o0 et Fuu Fuu Xy 117 Fpgp? s

x_; ) be the set of points X %, X*e 55
for which player p is stronger than or equal to player v , in the p.c.
(Z2:8) (see (4.1)). p, ve Bj . If we prove that FuD is a union of a

finite number of closed convex polyhedra, then so also will Mj be , because

t t 0t
(4.5) Moo= N E =0 N F .
o i=1 i=1 v=1
By a well-known theorem in logic it follows (see [1], Theorem
. convex
2.1) that FHD is a union of a finite number of|polyhedra. We shall prove
that it is closed by showing that its complement is open. Indeed, if x ¥
belongs to the complement of FMD , with respect to Sj , then player v has
an objection ([yi}; C) against player ¢ , which cannot be countered.
Without loss of generality, we can assume that s > X, for all i, 1 €C
(See footnote to (2.10).) Let zpL e the maximum amount that player p can
"
assure himself by paying each other menber of a coalition D , u € D, v ¢ D,
the amount Xy if this member is in D - C and v if he is in DN C

0 < ZH < XH , because the objection cannot be countered. Let

) Mim{xl_L -z 5 ¥y - %y ieC}, then & >0 . Any point of Sj which

b

is in a B/n - neighborhood of X * also belongs to the complement of FQD 5

because at such a point ({yi}; C) is still an objection which cannot be

countered. This completes the proof.

Corollary 4.2 The set GM =qg (

v s H i x * ] .
5 oo K17 , Xn,ZB) of points in SJ 5

A
for which player y is stronger than player v in (£ ;28) is open in Sj‘,

b} € B.
s M 3
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5. The Existence Problem.

We shall now generalize somewhat a theorem due to von Neumann
[7]. We shall employ Kskutani's method of proof [3], but we shall make use

of the S. Eilenberg and D. Montgomery sharper fixed-point theorem [2]:

Lemma, 5.1 (von Neumann theorem for m = 2).

2

Let Sl’ 82, cony Sm be m bounded closed acyclic polyhedral’
n, 1y n

in the euclidean spaces R ", R 7, ..., R " , respectively. ILet us consider

nl+n2+...+n
their cartesian product T = Sl X 82 X eee X Sm in R m

and let Ti = Sl X 82 X «.. X5 X 8, X oo X Sm be the respective car-

2

i-1 i+l

o n, +n. 4+ ... 4+ n, + n, + s + 1N
tesian product in R 2 i-1 i+l a

et U, U, ..., U Dbe m closed subsets of T such that for each point
— 1’7 2 m —

x () = ~ (1) L (1)
Xy Xy geees £y 15Xy 0 ,...,xn} in T, , the set V (‘2: ) of

all the points X, X; €S, , such that {Zl, Xys oy xm} €U; 4is a non-

empty closed acyclic polyhedron, i =1, 2, ..., m . Under these assumptions,

the sets Ul’ U2, oy Um have a non-empty intersection.

Proof: We define a point-to-set mapping X —> ¢(Z) , of T into itself,

as follows:

(5.1) $(2) =g(2, %, -osx ) = T D)y v @ @y oy )y

This mapping is upper-semi-continuous because the sets Ul’ U2, cvoy Um are
closed. The image of each point is a cartesian product of acyclic closed poly-

hedra; hence it is an acylic polyhedron, and so is T itself.

lI.e., connected polyhedra whose homology groups of order > 1
vanish.

this lemma, can further be applied for absolute neighborhood
retracts.
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Therefore, by the Eilenberg and Montgomery fixed-point theorem [2], there
exists a point & = {gl, 52, cie gm} in T , such that ¢ € g(e) . In

other words, the components &l, §2, oeey gm satisfy gi € Si B

£, € V(l)(g(l)) , i=1,2, ..., m; therefore, ¢ e,,Ul nu, N ...n U

This completes the proof.

Theoren 5.1 Let #3 =B, By, ..., B, be o fixed coalition-structure (2.3)

‘for a game I', and let (x;38) be an arbitrary i.r.p.c.,(2.2) and (2.5).

= . i * * ;
Let Mj Mj({xi]i¢3j*29) be the set of points X ¥ , x* € Sj , defined by

: A
(2.7), for which Bj is stable with respect to (x ;28) , defined by (&.1).

If, for each choice of j , J =1, 2, «.., m, and for each choice of (z‘;25) 5

the set Mj is acyclicli then there exists a stable p.c. (El, &2, cony En;QB)

having 323 as a coalition-structure.

Proof: Lgt Uj s 3 =1y 2, vy, m e the set of points ZX£ in

S = Sl X 82 X eee X Sm for‘which Bj is stable. Clearly, the sets V(j)
defined in Lemma 5.1 are now the sets M._, j=1,2, ..., m . Thus, the
sets Uj , 3=1, 2, ..., m , have a non-empty intersection. This intersec-
tion is precisely the set of points % in S suéh that (xz ;23) 1is stable.

In some cases we are able to show that Mj is indeed acyclic.

The following lemma will be of much use.

Lemma, 5.2 Let 26 = Bl’ B2, oy Bm be a fixedrcoalition—structu?e for a

gamé T' , and suppose that Bl consists of the players 1, 2, ..., T .

Let (x ;B) = (Xl, Xs wees By Xygs woes Xy Biy Byy o Bm) and

B

(& ;2§)== (gl,‘ge, cees gt, Xpg1? *t00 Xy b B . Bm) be two i.r.p.c.'s.

YRR
Denote by P ‘the set of players 1 , different from player 2 , for which

l}

;By Theorem 4.2, we know that it is a closed polyhedron.
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(5'2) ngXl 2 §2_>_X2 2
(5.3) X, - & 2 iﬁP (8, - %),
(5.4) 1> 2 in the p.c. (x;:8) ,
then
(5.5) 1> 2 also in the p.c. (¢ ;.8) .
Proof: Since &) + &y + ... + Et =Xk Ky b oeee b XS v(Bl) (see (2.4)),

(5.3) is equivalent to

(5.6) kg2 B 0ny - )

where Q is the set of players i , different from player 1 , for which
x; > gi . Intuitively, (5.3) and (5.6) will make it "easier" for player 1
to object against player 2, and "more difficult" to counter object.

Let ({yi}; C) be an objection of player 1 against player 2 in
(% ;8) , which cannot be countered. Thus, (2.8), (2.9) and (2.10) hold for
k =1, 4 =2 . We shall form an cbjection ({ni}; C) of player 1 against
player 2 in (£;8) as follows:

Max (yi, gi) forall i ,1i+4+1,1i¢eC

(5.7) n
v(C) - = n. for i
ieC-{1} *

1.

Clearly, (2.8) and (2.9) are satisfied for k = 1, 4 =2, and so is (2.10)

for i #1 . Checking the case i =1 , we find, by (5.7), that

=v(C) - = Ny = v(C) - = v, - I &
ieC-{1} ieR ieF

M
where E (F) is‘the set of players i, 1 % l, i € C, for which v > gi
(gi > yi)'. Certainly F (C P , hence, by (2.9), (2.10) and (5.3),

M, - & =y. + & y. - % E, -t >x -t -2 (£ -x.)>0.
1 1 1 ieF i ieF i 1 1 1 ieF i i



=14

This objection cannot be countered. Indeed, if ({Ci}; D) is a counter
objection, then (2.11) - (2.14) are satisfied for k =1, 4 = 2, X5 Yyo Iy

being respectively replaced by gi, m; C‘i , 1 € D . Conslider the payoff

{zi} , i €D, defined by
x, forall i,1 +2,1eD-C

(5.8) 7, = yi’forall i,ieDdDnNC

v(D) - = z.,
ieD-{2} *

We shall arrive at a contradiction by shéwing that ({zi]; D)
is a counter objection to the objection ([yi]; ¢) in (x ;;88) . Indeed,
(2{11), (2.12) and (2.14) are satisfied and so is (2.13) for i $ 2 . Check-
ing for i = 2 , we find that, by (5.8), (2.11)-(2.14) applied to ({Ci]; D),

and by (5.6) ,

z,-%,=v(D) - £ x.,- £ y, =2 ¢ - 2 x - % y, >
2 72 ieD-C * ieDNC '  ieD T ieD-¢ ' ieDnc T
> X Et. .+ 2 - x - % y,= 3 (E-x)+ = (t-y,)>
ieD-C T ieDNC T ieD-C 1 iednc ' ieD-C + ieDncr + 1
> = (&, ~x%x,)>(,~%,) - % (x, -¢,)>0.
fep-c + 10T T2 2T 4 1 LTS

This completes the proof.

Corollary 5.1 ILet (x ;;3) be an‘ arbitrary i.r.p.c. for a game I' , and

let Bj be a coalition in s which contains 2 players. Then, the set
= . 3 * * i .
Mj MJ.({xi}ieB.,Za) of the points =¥ , x*¥ ¢ Sj , which make Bj stable

N
in (x ;Zﬁ), defined by (4.1), is a closed interval.®

Proof: We may assume that Bj consists of the players 1, 2. Let a.'& be

the simplex Sj , Where X, = 0O at @ and Xy = 0 at 'ﬂ . If B x = (cl*, 0'2*)

, A
is a point in a7 having the property that 1> 2 in (€ ;3) , then, by

Lemma 5.2, all the points X * = (Xl*, xg*) of the closed interval &€ have

TPossibly a point. See (2.7), (4.2), and Definition 4.1.
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the same property. Thus, the set of points X * with this property is
either empty or consists of an interval with being one of its end points.
By Corollary k4.2, this interval is open with respect to auZﬁ‘. Similarly,
‘the set of points X ¥ , having the property that 2 }AJ_ in (2 ;3) is
elther empty or consists of an open interval with ‘11 as an end_point. (See
Figure 1.) Since the relation )> is asymmetric, this implies that Mj is

a non-empty closed interval; and therefore it is acyclic.

- _ y 1
[
@

Figure 1.
It Bj contains more than 2 players, Mj is, not ﬁeceésarily

. a convex set.

Example 5.1 Let T be a 5ﬁperSOn game with the characteristic function

1l

v(123) = 10, v(15) = 100, v(24) = 100, v(3k4) = 98, v(B) = 0 otherwise. It

is easy to verify that the coalition 123 is stable both in ,

(10, 0, 0, 0, 0; 123, b, 5) and in (0, 6, 4, 0, 0; 123, 4, 5), but not

in (5, 3, 2, 0, O; 123, 4, 5) , where 2}5 . Thus, (10, 0, 0) and (0, 6, 4)
belong to M =M(0, 0; 123, 4, 5) but (5, 3, 2) does not. (See Figure 2,

where the points of M are marked.)

(19,0,0)

_Xl =0

Figure 2.
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Corollary 5.2 Let (x ;;88) be an arbitrary i.r.p.c. for a game T , and

let Bj be a coalition in 3 which contains 3 players. Then the set
= . i z * x % i
Mj Mj({xi}ig/B_,sB) of the points - , € S,j » Which make Bj stable

A
in (x;28) , defined by (b.1), is an acyclic closed polygon.

Proof: We know by Theorem 4.2 that Mj 1s a closed polygon.
(1) Tet Bj = (1, 2, 3). ILet afec ve the simplex Sj , where X, = 0
on the face Ze 3 X, =0 on @c and x, =0 on aé. Ir

2 p,
L = (dl s A%, dj*) is a point in SJ having the property that 1 ) o
in aé' E) s draw parallels through o[* to the faces ae and ’ﬁc . By
Lemma 5.2, all the points X ¥ = (xl*, XE*3 XB*) in the shaded :r'egionl of
Figure 3 have the same property. (Actually; by Corollary 4.2, there exists

a neighborhood of this region whose points have the same property. )

Figure 3.

(ii) We shall first show that Mj is always a connected set. Indeed,
if this is not the case, let £ % gnd .Zé* be the two nearest points in
two nearest distinct components of M - By definition, 1 ~ 2 s L ~3,

A
2 ~3 hold both in (i :8)  and in 74;3)

1
i * * * > g *
Characterlzed by X] < dl 5 X2 d2
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Case A. Suppose that 2 * and %* lie on a line parallel to a 1-face,
' (Pigure L.)
say Z@ ; and let Z * YDe any point of the segment L*,%* | If 1>2
. A
A
in (z ;) , then in view of (1), 1> 2 also in (%,;3) » contrary to our
A
assumption. If 2> 1 in (2 ;2) then 2> 1 also in (& :23) s con-
trary to our assumption. In a similar fashion one proves that no strong

relation holds between any other pair among the players 1; 2, and 3. Thus

the segment .2,*,_-%*- belongs to Mj > contrary to the assumption that

L% and %* belong to distinct components of Mj
<

Figure L.

Case B. Draw the straight line jolning £ % and 7@* » Now assuming that
1t is not parallel to any of the faces of the triangle. There‘ exists exactly
one side, say 1 , of thé triangle, which forms both angles greater than 60°
with this line. From each of the points £ % ang % * we draw lines paral-
lel to the 2 sides other than 4 » and consider the parallelogram formed. by
them. We may aséume that the situation is as shown in Figure 5. Obviously,
the parallelogram -2 % ;—* %’* ‘%* belongs to Sj . By applying the results
stated in (i), one observes immediately that 1 ~2 and 1 ~3% ip (2 ;Z) s
if 2 ¥ lies in this closed parallelogram. Moreover, 22 3 in (74,,25)
and 3 2 2 in (-2 ;26) - Take any closed path which lies in the parallelo-

gram.and joing the ‘points 7,* and. %* - Then, in view of Corollary 4.2,
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and the fact that > is an asymmetric relation, it follows that there exists
a point X ¥ on the path with the property that o ~3 in (z;28) .
Therefore, X ¥ ¢ Mj - Obviously, x* is closer to -2 * +than Zé * , and

this contradicts our assumption. Therefore, Mj is connected.

Figure 5.

(iii) We shall now show thaf any l-cycle in Mj bounds.l Indeed, if

& 1is a l-cycle of Mj which does not bound, then there exists a point

dg* in S, , which is surrounded by the carrier a* of « s and

J A

di* 4 Mj . If, say, l,> 2 1in (a?;iﬁ) » then, by the result stated in
(i), there is a region of points ¥ having the property that 1 >~2 in

N
(x;B) . This region comnects £* +to the face X, = 0 and hence it
intersects % . This is impossikble, since % g Mj » and we have arrived
at a contradiction. This completes the préof of the Coreollary.

From Theorem 5.1, Corollaries 5.1 and 5.2, we deduce:

Theorem 5.2 Iet X = By, Bos veep Bm be a cealition structure (2.3) for

a game T , suc¢h that each Bj s J =15 2, .sep m, does not contain mere

than 3 playsrs. Then, there exists a payoff xz = X1 Koy eany X such

that (z ;28) E%:El)—stable.

lAssuming that MJ is new triangulated.
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6. Miscellaneous.

Let .22 be a fixed coalition-structure for a game I' , and
let (z ;38) be an i.r.p.c. We shall show that any intersection of the
form H .= ﬁ F s, fixed, uv_€ B, ,B. e &, r>1, (see Theorem

s=1 MVs 5 J J -

4.2), is acyclic. In particular, EH is acyclic. Indeed, if a point x *
belongs to H , then, by decreasing xu and increasing the other components
of Z * 1in any arbitrary way, we always get points of. H 5 because, by
Lemma 5.2, p will remain stronger than or equal to each Vg s 8 = 1,2, ..
Moreover, the face XH = 0 obviously belongs to H . Hence H is con-
tractible over itself to a point, and therefore it is acyclic. By similar
considerations, one can prove that the set I of points X ¥ having the

property that a player u is weaker than or equal to the players

o e is acylic.
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