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NOTE

The present memorandum is also Chapter T of Analysis of Economic

Time Series, by C. W. J. Granger in association with Michio Hatanaka (to be
published). It is being presented in the present form to speed discussion
of the results.

The only notation not self-evident is the following:

Tet X, be a non-deterministic stationary process with Cramér

t

representation,

where

f(w) being the power spectrum of X

The related process Xt{a(w), p(w)} is defined by

X, (ale), 9(0)) = fﬂe“‘“ a(@) %@ 4z(a)

=TC

il

where &(w) p(w) , O<w<x

i

0 , WwW=20

il

-p(-w) , -t <w<O,

and a(w) is a real function of ® .



ECONOMIC PROCESSES INVOLVING FEEDBACK

7.1l Feedback and Cross-Spectral Analysis

In the previous two chapters we have been considering the case in
which one process {Xt} is "causing” or is intrinsically leading another

process {Yt} . Buch relationships can be expressed as

Y, =X {alw), ol@)]} + U, | (7.1.1)

using the notation introduced in section 5.6, U£ being a stationary process
independent of Xt . Such models may be reasonable in the field of micro-
economics, but in macro-economics there 1s often also a feedback equation,
perhaps of the form

X, = It{b(ca)? e(w)}) + v, . (7.1.2)

It should be fairly clear that when feedback is present in a system the methods
described in Chapter 5 will be less appropriate. This may be shown more
exactly by considering further the pair of equations (7.1.1) and (7.1.2).

Assuming E[Ut] = E[Vt] = E[UtvtaT] =0, all t, T , they may be rewritten

X, Xt{a(w) blw), olw) + 6(w)) + Ut{b(w}, B(w)} + v,
(7.1.3)

T =Y, {alo) v(w), o)

+

6(w)} + V (alw), olo)} + U,

T e
" JF e dzp(w)

=710

E[dzp((b) dzpixi]

and if

P

0, oFN

=f (W) , =2\
p(),

for P =X, %Y, U, V , then

-10(w)

daéw)=fﬂw)e daﬁm)+daﬁmﬂﬂﬂm)9w:>o

I

dzy(w) [a(w) e?i@(w) dzv(w) + dzu(w)]/A(w) , >0
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where

Alw) =1 - a(w) p(w) exp {-i(6(w) + (w))}
dzx(—w) = dzX w) , dzy(—w) = dzy w) ,
and if Cr(w) = Co(w) + iq(w) is the power cross-spectrum between {Xt} and.

{Yt} , then

B(0) £ (@) = b (0) £ (0) + 7 (o)

. ) fv(a)) + fu(a))

B(w) ¢ (w) = a(w) fv(co) cos @lw) + blw) fu(a)) cos 8(w)

B(w) q(w) = a(w) fv(w) sin ¢(w) - ol(w) fu(w) sin 6(w) ,

2

where B(®) = 1 + a-(w) bo(w) - 2a(®) b(w) cos [o(w) + 6(w)] .

Thus, the coherence is
2 2 2
a () £ (

w) + bz(w) fu o) + 2a(®) dlw) fu(a)) fv(m) cos [op(w) + 6(w)]

Clw) =

2(0) £ (@) + 1 (o))

[b%(w) fu(oo) + fv(w)}[a v 4

and the phase-diagram varies as

1 b(w) fu(w) sin 6{w) - alw) fv(m) sin ¢(w) }
) = tan | plw) fu(m) cos B(w) + alw) fv(w) cos ¢(w) :

The coherence, of course, still measures the degree of dependence between the
processes at each frequency, but, as now no one process is continually lagged
to the other, the phase diagram is unlikeiy to provide useful information
unless the feedback is weak (b(w) small for all ® , a(w) not small, say).

It should further be noted that as there are six unkunown functions
(a(w), plw), olw), 6(w), fu(w), fv(w)) andionly four estimated functions
(fx(w), fy(m), Co(w),,q(w)) it is not possible to estimate the unknown func-
tions. Even if the processes {Ut} and {V%} are assumed to be white noise,
the estimation problem cannot be solved using spectral methods.

Thus, consideration of feedback suggests a variety of problems which

will e considered in this chapter:
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(i) How to define feedback and test it if it is occurring in a
system.

(ii) How to measure the feedback-lag (length of time taken for feed-
back to occur) and the strength of any feedback.

(iii) How to consider whether feedback is varying in importance and
direction with frequency.

7.2 Some Preliminary Results

If the g X 1 vector zt withl

X

g m X

147 Koo vev th} 5
E[th] =0, =1, «vv, q,

1s a multivariate, stationary, non—determinist102 process, Zashuin [7] has

shown that it may be represented by

where B(U) is the matrix
B(U) = [EJK(U)]
-5 ™

and Et is a g X 1 multivariate white noise vector with mean zero, i.e.,

) - — LR, .
[ {elt, €ops toos th} R E[ejt] =0, 3 =1,00.50;

..
| D
Il

. ' -
E[Etgt Eq_’ E[Et§t+s] gq ;8 £ 0

Here, Eq is the unit matrix and gq the zero matrix, both of the qié
order. (7.2.1) may be called the "moving average" representation of the
process.

Defining the theoretical autocovariances and power spectral

TMatrix A' is the transpose of matrix A .
2Defined in Chapter 3.



functions by

—

—
0

~—
|

- E[Xj9t+§xkt]

it is easy to show that

Flo) = E(eim)

@'(eaiw)

- If the equation in =z , IE(Z), = 0 , has no roots on or within lz] =1, we
may invert (7.2.1) to get the "autoregressive” representation

A(U) X, = &, (7.2.2)

where A(U) g"l(U)

0]

s A, U
J=0

1l

If we write (7.2.2) as

AJX + (past values of zt) = & (7.2.3)
we have
_ 51 :
K, = A7 gy + (past X)
=B & + (past gm) . (7.2.4)

Equation (7.2.3) will be called the basic representation of the vector process

{X,} and equation (7.2.4) the reduced-form representation.

t

It is important to note that (7.2.3) is not a unique representation.

If A 1is an orthogonal matrix, i.e., a square matrix having the property

AA* =T , then, if € igs a white noise vector, so is the vector 0y
defined by 0 = A & » a8
1 — 1 [ J— | - s -
Elng 0.t ) =AElee i 1A AL A =I ,if s=0
=AO A”=Oq,if s £0
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Thus an alternative representation to (7.2.3) having exactly the same form
is achieved by pre-multiplying (or post_multiplying) throughout by any
orthogonal matrix, getting

AA X o+ (past X, ) =1,

It follows that, as any matrix can be written as the product of an orthogonal
matrix and a trianguler matrix, we lose no generality by assuming éo to be
a triangular matrix in any basic representation. On the other hand, we are
unable, in general, to assume éb = Eq and still retain a basic representa-
tion having white noise as phe residﬁal term.

Viewing the reduced;form fepresentatiéﬁ (7,é;ﬁ) with regard to

prediction possibiliﬁies, we see that if given all past values of X,  we

t
can predict all of the present Kt apart from the terms Eo £ - The
determinant of the covariance matrix of these terms ,
- '
v = | E[(Boe,)(Boe, )] |
=3 3 | =8 | (7.2.5)
=0 =0 =0 ?

is called the total predictive variance of the process ({X We note that

t} :

pre-multiplying the basic form by any orthogonal matrix A has no effect on
V as I A ] =1.

Let us denote the set of g stochastic processes {Xit} i
i=1, ..., g, by Q@ and let Q(j) bve the set of processes {Xit} s
i=1, ooy j=1, j+l,kqao, q , i.e., the set Q excluding {th} , let

Q(j,k) be the set of processes § excluding {X.,} and {th} , and SO

Jt
forth.

For any one of the processes in the set Q , say {Xit} , We can
form an optimum linear predictor using only those processes belonging to some

subset J of Q by defining

i € J ] ' (702;6)

p..[J] = 2 Zoag Xk

it k=1
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and choosing the coefficients ajk 80 that the prediction error variance

2
Vi[J] = E[(Xit - Pit[J]) ] (7.2.7)

is a minimum. Thus, Pit[J] is the best (in a least-squares sense) predic-

tor of Xit gvailable to us if we restrict ourselves to using only the past
values of the set of processes {th} s J e d . Clearly, the better the
prediction, the lower will be the value of Vi[J] , and thus

0<V.[5] <o”

i =i

where o 2. E[X ]2 . V.[J] =0 if and only if the process X is
i it i it

deterministic.

7.5 Definitions of Causality and Feedback

We shall initially restrict ourselves to vector stochastic pro-
cesses having basic representation

A %y = (past X ) + e

where & is white noise and éo is a diagonal matrix. As explained above,

this is a restrictive assumption, but the class of such processes is impor-

tant because each process {X., ]} i=1, ..., 9, is now "caused" only by
it® "’ ? 7 ’
ast values of X, . The removal of this assumption is discussed below.
.B_._. ..-.-t

We note that for such processes (7.3.1) can be written

?_g_t: (PaSt X‘t) +B‘O Et 2
where
B B' =V =1{V, &, .]
—o = - iJ
with
aij=o, i £
=:|_, i=J
Thus, Vi will be the prediction error variance of the process {Xit] if



Tep.T

all processes in the set Q are used, i.e.;
2
- 2. a7,
and the total prediction variance is given by
q
V=1 Vi
i=1
LUsing the notation of the previous section, we shall define caus-

ality of the process {X. } by the process {th} within the set Q if

jt
VJ[Q(k)] - VJ[Q] >0 .

Such a causality will be denoted by

() = (X,)

ir

VJ[Q(k)] - Vj[Q] =0,

there is no causality, denoted by {th} = {th} . Thus, we say that the

} if we are better able to

process {X .} is causing the process {th

kt

predict th using past values of th than if we do not use these Values.5

If we find {th} => {th} and {th} = {th} , i.e., we have
both VJ[Q(k)] - Vj[Q] >0 and Vk[Q(j)] - Vk[Q] >0 , we say that direct

Teedback is present and denote this by
{th} <= {th}

Two other types of feedback will also be distinguished:

(1) I VJ[Q(j)] - vV.[Q] > 0 , we say that there is "internal feedback."

; are found 1
(ii) If causallty chains/of the type {th} = [Xit} == {th} =$?{th}

we may talk of "indirect feedback."”
Strictly speaking, we should always indicate the basic set Q of

processes within which we are working whenever the causality or feedback

notation is used. A possible notation is:

3

This definition of causality agrees with that proposed by Wiener [6].
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{th] = [x,) | q .

The reason why we must be careful on this point is because it is possible,

for instance, that there exists a stochastic process (Y, } outside of

t
Q such that
X, = (1) | R
(r,) = {xjt] | R
and
X ) 7 X0 | R
but

Kb = &0 | a,

where R is the set @ plus the process {Y } . ‘In such a case we are

T
finding causality within Q due to the indirect causality via {Yt} in the
larger set R . Putting this another way, causality is found in Q between

th and th because th contains information about the missing process
Y£ which itself contains information about ‘th . However, whenever the
basic set of processes Q within which we are working ig clearly evident
the generalized notation will not be used.

B

7.4 Time-Lags Connected With Causality and Feedback

Suppose that we have a set Q of stochastic processes and that a
causality has been found between two of them {th} ==$>{th} , S0 that we
have optimum linear predictors Pjt[Q]’ Pjt[Q(k)] and prediction error
variances VJ[Q], VJ[Q(k)] associated with them and having the property

Vj[Q(k)] > vj[Q]

Define the k-truncated optimum linear predictor of th as
[ ] s o0
FyglQ 110 = 2 T a. X .+ Z oa. X . .
e peq(x) i=1 PL Pst-d Pl Fk,b-1

i=t

where the coefficients aji are chosen to minimize
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2

Vd[Q; k,T] = E[(X.t - Pjt[Q5 k,t])71,

J
VJ[Q; k,T] being the minimum thus achieved.

If now, we find that

VJ.[Q(k)] = VJ.[Q; k,T] > VJ.[Q] s

then there is a causality lag of at least T ‘time units. VJ[Q; k,7] will
be a non-decreasing sequence as =t increases, and the least value of

T(TO) such ‘that
VJ[Q3 k,7 -1] = Vj[Q; k,T ] < vj[Qs k,T +1]

Wwill be called the integer causality lag of the causality [th] =$'{th] .

We are saying here that if the causality {th] = {th] occurs,
but that we do not worsen our prediction of th by not using any of the
terms th, X

T units.

Kk, 4-17 7 Xk,t»T+l » then the causality lag must be at least

The true causality lag may be To + a time units, where
0 <a<1l, as the discrete processes being considered may be samples from
continuous stochastic processes and the causality need not occur exactly at
cne of the sampling points. To introduce such sophistication would not
appear to be worthwhile in practice, but this point will be discussed again
later when there is a possibility of s causality lag of less than one time
unit occurring (see section 7.7).

If the integer causality lags of [th} = {th} and
{th} = {th} are T and T. respectively, we shall call T T the

1 1
integer feedback lag.

(.5 Strength of Causality and Feedback

Using the notation of the previous two sections, we define the

strength of the causality {th} ==$>[th} as



. Tap.10

V.[q]
C(k,3) = 1 = =d (7.5.1)
’ VJ[QZK)]

and the strength of the feedback {th} <:$>{th} is defined as

S(k,3) = ¢(k,3) ¢(3,k)

v.[Q] ) v lal > ' (7.5.2)

SRR Ac ) DICRR aCE
These quantities have the properties
0 <cC(k,j) <1,0<s8(k,j) <1
S(k,3) = 8(4,k)

The quantities measuring strength are chogen so that C(k,j) =0
when {th} > {th} and S(k,j) = 0 when there is no feedback between
the two processes. Although these measures have useful properties, it must
be emphasized that they are arbitrarily-chosen measures and that various
alternative measures could be proposed.

To indicate how these measures of strength or importance are
related to alternative measures such as coherence and information, we
consider the case when g =2 , 1.e., the set q contains only the two

processes {X,.} and {X_, } . Suppose that fl(w), fg(m) are the power

1t 2t

spectra of these processes and C(w) is the coherence between them.
For the case q = 2 , Vl[Q(E)] will be the minimum prediction

error variance of Xlt when only past values of Xl are used, and

t

Vl[Q] will be the minimum prediction error variance of X when past

1t
values of both Xlt and X2t are used. VE[Q(l)] and VE[Q] are simi-

larly defined, and V = Vl[Q] VQ[Q] is the minimum total prediction variance.

Kolmogoroff [4] has shown that

T
log Vl[Q(E)] = %; /“ log fl(w) am
‘et

and
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T
log Vo[Q(1)] = él;; f log £ () aw ,
=TT

and Whittle [5] has shown that

T
log V = log Vl[Q} + log VQ[Q] = 515 f log [fl(a)) fg(a))(l—C(a)))] dw .
‘ot
Thus,
log Vl[Q] + log VE[Q] = log Vl[Q(E)] + log VE[Q(l)] - I
where B
I=-4 | o (1= o) aw, (7.5.3)

has been defined by Gel'fand and Yaglom [2] as the average amount of infor-

mation per unit of time contained in {X.,} about {X.. } and vice-versa.

1t

Substituting from (7.5.1) into this equation, we have

2t

log (1 - C(1,2)) + log (1 - c(2,1)) =-I

or

1 +8(1,2) - ¢(1,2) - c(2,1) = &F . (7.5.4)

Thus, in the case of two variables, the important quantities of strength of
feedback, information, and ccherence are connected by equations (7.5.3) and
(7.5.4). TIn the case of q variables, similar equations exist if coherence
is replaced by partial coherence (defined in section 5.9), and a new concept

of "partial information" is introduced.

7.6 Tests for Causality and Feedback

The previous sections of this chapter have been chiefly concerned
with the theoretical aspects of causality and feedback, and we have been
able to assume that we have available knowledge of all rast values of the
processes belonging to the set Q . In practice, of course, we will have
only the past values of {gt} over a finite time interval of N units,‘

i.e., Xis Xpy o cees Xy Thus we are forced to use approximate linear pre-

dictors of the type



T.p.l2

~ m.

J
P..IJ] =% = a, x , ped (7.6.1)
Jt p kzl pk th'k

which, for sufficiently large mJ s J €J , will be an approximation to
Pjt[J] defined in equation (7.2.6). Although it is more general to put no
limit on the truncation values mJ s we shall henceforth take all the mj's

to be equal, i.e., mJ =m, J €J , and denote the resulting approximate

linear predictor Pjt[J’m] + This will be an optimum predictor if the
coefficients ajk are chosen sc that
N
~ 1 ~ 2
ViGm] == 2 (x, -P,.[J,m])
! Nom gy I8 3t

is minimized, VJ[J,m]being the resulting minimum value. In general,

E[GJ[J,m]] > Vj[J] , but

lim E[Q.[J,m]] =V.,[J] ,
> J J

and so if we choose m sufficiently large the aspproximate linear optimum

predictor will be a good approximation of the true optimum predictor.

If it is assumed that all the processes {th} s J € Q, are

Gaussian, some results due to Whittle [5) provide a test for causality. He
proves that under the null hypothesis of no causality [th] = [th] » the

statistic

”~

: V[Q(k>) m]
¥ = (N-gem) log, | A —
‘ VJ[Q; m]

. LI- .
is distributed as chi-squared with m degrees of freedom. Thus, if
I

If the simplifying assumption mj =m , all j , had not been
made, the test statistic should be

We = (n~q-M/q) log, [,‘}[Q(k), ml / ¥lq, m]]

q
where M = % m, , and wg is distributed as chi-squared with m

J=1

" degrees

of freedom under the null hypothesis.
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N Pay
VJ[Q(k), m] / Vj[Q’ m] becomes too large the null hypothesis of no causality
will be rejected. If, and only if, both causalities {th} = {th] 5

{th} = {th} are found, it can be said that feedback exists between the

two processes.
The same test may be used to find the causality lag. Suppose that

the null hypothesis {th} 7E> {th} has been rejected and that a pre-

truncated approximate linear optimum predictor of X,

3t is found ,

~ m

m
P.. [Qm; k,1] = = Z a., x .+ I oa ., .
Jt peq(k) i=1 pl "p,t-i St ki Xk,t-l

being an approximation to the predictor introduced in section 7.4, with the

coefficients minimizing

V.[a ] =L 5o P 1°
. m; k,T = )] X, -P.
v ’ T femal Jt Jt ’

Vj[ ] being the minimum.

The hypothesis that the integer causality lag is at least T + 1

units is tested by forming the statistic

V.~ = (N-g-m) log, J_

which, if the null hypothesis is true, will be distributed as chi-squared
with T - 1 degrees of freedom. If the null hypothesis is not rejected, the
integer causality lag will be T units or less.

How important is the assumption that (gt} is a Gaussian vector
process 1s uncertain. No equivalent test for non-normal data exists at
present, but the test given is likely to be appropriate asymptotically as
N — o . The question of whether economic series may be considered to be
Gaussian, possibly after "decontamination," has been briefly mentioned in

Chapter 4, but considerably more research is required before a more definite

answer can be given.
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(.7 Removing the Basic Assumption of Section 7.3

The previous four sections have all been based on the assumption

that the vector process (X

t} can be represented by

A X

(past X_ ) + & s (7.7.1)

where £t is white noise and éb is a diagonal matrix. Using the terms
since introduced, the assumption can be restated as assuming all causality
lags occurring in the system to be of at least one time unit. For certain
economic series such as monthly production data, such an assumption may be
a realistic one, but it is certainly not so for all economic series. It will
be the object of this section to study the effect of removing this assump-
tion.

First, however, a test of whether or not the assumption holds for
a given set of processes will be considered. Suppose that, using the nota-

tlon of the previous section, an approximate optimum linear predictor of

th is found for all Jj = 1,...,q , involving all the processes in the set
Q , i.e.,

~ g m

Pjt[Q’m] = % = 2ok %otk

p=1 k=1
for each J =1,...,9 .
Now, forming the estimated prediction error series

Ry = %y - Polen] (7.7.2)
for =1, ..., ¢ and t =m+ 1, ..., N, we need to consider two possible
sources of error in our approach:
(1) m has not been chosen sufficiently large, so that one or more
of thevapproximate predictors ﬁjt[Q,m] ,.j =1, «.., q , are

not good approximations of the true optimum predictors

PJt[Q]szl) aou,q_,'
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(ii) the assumption that éo is a diagonal matrix in representations
such as (7.7.1) is untrue.
The possibility of complication (i) occurring can be investigated
jt} . Various

tests for serial correlation are available, the best known being that by

by testing for serial correlation in any of the series {e

Durbin and Watson [1].
If these tests indicate that the m chosen is sufficiently large

(or if new predictors and error series with m larger have been constructed)
the basic assumption of (ii) can be investigated by testing for correlation

bet 4 ies (..}, (¢

etween any two error series ejt 5 {Ekt

samples. Any of the usual tests for correlation will suffice, but generally,

} considered as independent

since N - m will be large, one of the quick and easy tests will be
appropriate. If any correlation coefficient is found that is significantly
non-zero, the assumption that éo is diagonal will have to be rejected.

Once the assumption that éo is diagonal is rejected, the problems
of defining and testing for causality and feedback become not merely more
difficult but perhaps impossible. This is shown by considering a simple
example. Suppose that the set Q consists of the two processes {Xt] s
{Yt] only, and that there is a causality {Xt} = [Y£} but no feedback,
and let the causality lag be exactly one time unit. Suppose now that
instead of sampling the processes at times 1t = 1, 2, ... the gampling
had taken place at times t =1, 3, 5, ... . In this case, the time lag is
now twice the causality lag. Let the processes sampled at twice the original
time unit be denoted by {XT} s {YT} , and suppose further that the original

representation of the process [Xt} 5 {Y£} was

o0
X, = % a,X_ ., +e€
t j=1 J Tt-J t

YJG =p X

(7.7.3)

0]
o1 * % bj Y .+ My

go1 J
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which, incidentally, has a causality lag of exactly one time unit. The

representation for the new processes would be

Xo=a X, 1+ Z a,'X + €

T o "T-5 . J TT-] T
=1
] i (7.7.1)
= 1
YT B XT—% + b YT_% + il bJ YT_J + N
J
if one could define XT—l B YT_;_, but
2 2
T, R
XT_L _ \/ﬂ elTw e—lw/E az (w)
2 L1
and
e—1a¥2 = 3 g e iw
j=0
and so
X o]
_L = Z d., X . >
T 2 j=0 J T"J
and the representation becomes
o= % a"X, . +e
T 5=1 J T-3 T
Y, =pB' X, + E b." Y + 7! 12
T T J TT-j T°

J=1

i.e., Ao is no longer diagonal..
These steps have several important implications concerning the

problems of defining and testing for causality. For the original processes

represented by (7.7.3), we cannot "predict" X, any better by knowing Yt 5

T

but this is not true for the new processes, as Y. contains information

T
about XT 1 which can be used to better "predict" Xn Similarly, if we
-2
know all past X, eand Y, , we could better "predict" Yo if we also knew
XT than if we did not , as XT contains information about XT 1 - Hence,
-2

the definitions of causality and feedback using the idea of linear predictors
are no longer appropriate. Due to the lack of uniqueness of the general

representation (7.7.1) when éo is not diagonal, it seems unlikely that
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causality can be defined or tested for when the causality lag is less than
the time lag. In brief, the data are unsuitable for the problem being con-
sidered when éo is not a diagonal matrix.

In such a case, the only appropriate method of analysis would seem
to be that of classical model-building, and we are brought face-to-face with
ﬁhé usual problems of ldentification, simultaneous equation estimation, and
interpretation. However, it must be emphasized that the preceding techniques
have little in common with model-building methods, being based on a different
philosophy. The techniques, given certain assumptions, are entirely general,
whereas model-building attempts to use all the a priori knowledge and economic
theory that is available.

In section 7.9 below, the possibility of causality strength and
causality lag varying with frequency is considered. It is plausible that
causality lag decreases with increasing frequency, and that by suitably filter-
ing out high frequencies the resulting data will have a causality lag longer
than the time unit. Clearly, no general rules can be laid down about such a
method of making data suitable for causality testing, and each particular
set of data will have to be dealt with in the light of available a priori
knowledge or theory. |

A further question that can be mentioned is whether or not instan-
taneous causality or feedback occurs in economic systems. It is the author's
personal belief that instantaneous feedback does not occur, and so one can
always, by sampling the processes sufficiently often, make all causality lags
not less than the time unit. If this view is true, an implication is that
the majority of the work on feedback and feedback control which is availlable

in the field of electrical engineering cannot be applied to economics.
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7.8 Calculations Involved in Testing for Feedback

The main calculations involved in testing for a causality

(th} = {th} are the formation of the approximate linear predictors of

~ g m
P..[Qm] = & £ a _ X
Jt p=1 r=1 P¥ P,

and of the resulting prediction error variance,

A 1 N ~ 2
V.[Qm] = min =— = (x., - P, [q,m])
J Nem gy 98 J®

together with the corresponding quantities when § is replaced by Q(k) .

The equations for a

ok when the prediction error variance is mini-

mized are asymptotically the same as

HJ = Mé ; (7-811)
ig the gm X 1 vector of the unknown coefficients, i.e.,

]

with (7.8.2)

| -
a.' = la; a, ey 8
= [ il? 712’ 4

é':[?‘—l" égl) ceny

g !
-d

im

and Ej y M are gm X 1 and gm X gm matrices of the estimated cross-

and autocovariances, 1.e.

- ’ 1 . 1
EJ [Ejl, _l:J'_J'E) F] 'HJQ_]
with (7.8.3)
o= [0, (1), 5. (2), oo, T, (m)]
EJP MJP( ); HJp( ): 3 HJP H
M= My My By Mlq‘w
M M Mo vu.

=21 =22 =23
) ) : (7.8.k%)
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o . . . . ~ , . .th
where Mrs = [Hrs(k-l)] , i.e., the matrix with urs(k-l) in the i

row and kEh column. Here ﬁrs(k-i) is the estimate of the cross-covariance,

as introduced in Chapter 6,

~ 1 N 1 N N-7
“rs(T) T N7 [z ri *s,i-1 " Nt z i z si
i=7+l ’ i=t+l i=1
where
E[“rs(T)] - “rs(T) B E[Xrt XS,t-T]

assuming E[Xrt] =0, all r, t

(These quantities already appear in the cross-spectral computer programs and
so need not be re-progremmed.)

Thus, the coefficients in a are found by forming

Ry (7.8.5)

and, once these are known, %[Q,m] is formed by

N
A 1 . 2
vliQ,m] = T t§m+1(xjt - Pjt[Q’m]) . (7.8.6)

To find ﬁ[Q(k),m] , the same matrices are involved except that all compo-

nents involving the parameter k are removed, e.g.,

a' = [él', 25"y cces BY 1 B lis s Eq'] , ete.

Clearly, the calculations will invariably be sufficiently compli-
cated that a high-speed electronic computer will need to be used.

The only decisions that must be made before computation starts are
the size of g and m . The size of g will almost certainly be deter-
mined by the economic system being considered, and the size of k will almost
certainly be limited by the ability of the computer being used to invert
large matrices. A value for m of at least 10 or 12 is recommended, al-

though experience may indicate that a larger value is required or that a

smaller value is sufficient.
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7.9 Causality and Feedback Varying With Frequency

One of the important features of spectral and cross-spectral analysis
is that it provides ways of observing how certain quantities vary with fre-
quency. Just as it is possible for the strength of the relationship between
two series (coherence) and the phase-lag to vary with frequency, so also is
it possible that the strength of causality (and thus of feedback) and the
causality lag to change with frequency. A simple (and highly unreal) example
will perhaps help to show this. Consider two stock exchanges in some country,
one of major importance (A) and the other of lesser importance (B). Clearly,
B will be likely to follow all the fluctuations, both long-run and shortrrun,
of A, and so we have A =>B. However, A will be unlikely to be affectea by
the short-run fluctuations of B, but may be concerned by the long-run fluc-
tuations. Thus, if a subscript L denotes the low-frequency component and a

subscript H the high frequency component, we may have
=
B, = A
BH#AH.

Thus, in this example, feedback will only occur in the low frequency range.
A conceptually simple way of considering the possibility of caus-
ality and feedback changing with frequency is as follows:
Let Fj[ I, =1, ..., m , be a set of mutually exclusive filters

such that if (X,} 1is a stationary process with Cramér representation,

t
T,
Xt /ﬁ eltw dz(w) ,
¢

then

o .
[ g, (@) ¥ gz (w)

FJ. [Xt] B

where gj(w) is the real function
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0O elsewhere.

Thus, applying the filter F[ ] cuts out all Trequencies except in the band

5 = (Ld=l)m gry
J m m
and leaves the phase angle unaltered.
Let Fj'[ ] be a set of symmetric, moving-average filters approxi-

making the set Fj[ ] . If the new time series vector [1%(j>} formed from
the‘original vector {zt} by
FJ.'[gt] =¥, (3)

we can study the causality strengths and lags for the frequency band by
carrying out the techniques introduced in the previous sections on the data
yt(j) - Similarly, other frequency bands can be studied by using yﬁ(j)
for the other j's

such a procedure will not be studied in any further detail here as
the amount of computation required would be considerable in practice, and
would be superimposed on what is already likely to be a very large amount of
computation. However, if an intensive study of feedback within a certain
group of economic series is required, the suggested technigue should provide
useful and interesting information, always remembering that all results will
depend to a certain amount on the particular filters Fj'[ ] that are
chosen.

Although the procedure outlined above is intrinsically reasonable,
it has connected with it certain formidable theoretical problems. It is
not possible to justify the technique theoretically by considering the
perfect case when information of all the past and the actual filters

Fj[ ] are available. This is because the resulting process Yt(j) = FJ[X ]

t

will have a frequency set of finite measure for which its spectrum is zero.
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Wherever this occurs, the process is deterministic, i.e. prediction can be
made perfectly and so the definition of causality via prediction becomes of
no use. In practice such problems have little consequence since no finite
moving average filter Fj’[ ] can produce a process Y, having zero spec-

t

trum over a set with finite measure unless the input process Xt in the

definition of Yt , 1.e.,

—_ 4
¥ o= Fj [Xt] ’

is already deterministic.

7.10 Summary and Conclusions

The main results of this chapter can be summarized as follows:
(i) If feedback is present in a system of processes the coherence
diagram will still provide useful information but the phase-diagram is
unlikely to do so. (Section 7.1.)
(i1) We say that, given a set of processes {th] s J =1, vovy a,
} 1f we can better predict X,

Jt

using past values‘of th than if we do not use these values. (Section 7.3.)

there is causality of {th} by [th

(iii) 1If {th ot

that feedback is present. (Section 7.3.)

} causes (X, .} and also {X .} causes {X

} , we say

kL Jt

(iv) If causality {th} = {th} is found, but we cannot better

predict X.

Jt X

using the values X X than if we did

K,t-27 "7 Pk a1

not use these values, we say that there is a causality lag of at least

k,t-1’

T units. A measure of causality strength can be defined. (Sections 7.4
and 7.5.)

(v) If we assume all processes to be Gaussian, a test for causality is
avallable. The test is likely to be appropriate asymptotically for non-
Gaussian processes. (Section 7.6.)

(vi) When any causality lag is less than the time unit involved in the
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processes, no appropriate way of defining or testing for causality is
suggested. (Section T7.7.)
(vii) It is possible that causality and feedback vary with frequency.

(Section T7.7.)

If the tests for causality are found to be efficient in practice,
the theory proposed in this chapter should prove useful in testing many
currently importanl economic hypotheses and theoriés, in model building, and
in suggesting control methods for the economy.

One essential assumption involved in the techniques here proposed
is that of stationarity. Methods of removing trends in mean are discussed
in the next chapter, but the effects of more complicated non-stationarities
are not known at present. The definitions of causality, feedback, lags,
etc., are easily generalized to the non-stationary case by the use of non-
stationary predictors, but the effect on the tests involved is likely to
prove more difficult to determine.

Clearly, the basic assumption of this chapter is that the future
is caused by the past. It is possible to propose that the future is also
caused by the expected future, but as the expectation must be based on past
and present knowledge, the basic assumption still holds true.

More research is required into the field of feedback problems,
particularly with respect to how feedback varies with frequency. Economic
theory occasionally suggests that the direction of causality between two
series will be different for the long-run and the short-run. In such a
case, the overall method will indicate a (spurious?) feedback. The method
suggested in this chapter for investigating the variation with frequency is
clumsy, and it is to be hoped that a better and more direct method can be

evolved, possibly as a generalization of the spectral method.
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Finally, it should be emphasized that the "causality" defined in
this chapter is strictly only a second-moment causality. For non-normal
processes the true causality may be more complicated. However, just as
"second-moment" prediction is a useful method, so is "second-moment"

causality and feedback.



[1]

[2]
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