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l. Introduction

The last fifteen years have witnessed a proliferation of techniques
by which the coefficients of a system of simultaneous linear structural
equations can be estimated. Thig Phenomenon can be explained with refer-
ence to at least three factors: (1) the development of macroeconomic
theory and the improvement in measuring macroeconomic magnitudes resulted
in new techniques for controlling the economy and thus necessitated more
accurate predictions; (2) the advent of fast electronic computers made it
Possible to solve complex computational broblems rapidly and frequently;
(3) the recognition of the distinction between endogenous and exogenous
variables compelled for theoretical reasons the abandonment of the direct
lea.st-squares approach to estimating the coefficients of structural equa,~
tions containing several endogenous variables.

As is well known, the basic simultaneous equation model as proposed.
by the Cowles Commission is as follows. Variables fall into two categories:
explanatory variables and variables to be explained. The former, denoted
by zl, _.,zk » are either exogenous, that is to say, their values are
given from outside the model in which they are embedded » they are nonsto-
chastic, and their values are identical in repeated samples, or they are

only predetermined and may then include not only exogenous variables but

l. I am indebted to Mr. Joln Cragg for numerous constructive comments.
The responsibility for errors is, of course, mine. T also wish to
express my thanks to the National Science Foundation whose grant en-
abled the completion of this beper., Finally, thanks are due to
Messrs. J, S. Hill and L. Sydor for assistance with tables and dia-
grams.




lagged values of variables to be explained, The latter, denoted by
yl, ***s¥y, @re the endogenous variables which are Jjointly determined by
the model,

We are now restricting ourselves to the case in which the explana-
tory variables are all eéxogenous. A structure consists of G, so-called
structural, equations each of which explains a barticular linear combina-
tion of y's in terms of a certain linear combination of z's and corre-
sponds to a hypothesized causal mechanism operating in the economy. The T
observations on the endogenous varisbles are assumed to be generated by the
system
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IB|# 0, where the elements of the vector U, represent error terms ang
are customarily assumed to be jointly normally distributed with mean zero
and covariance matrix X independent of + ,

Numerous methods have been devised for estimating the structural
coefficients, that is to say the elements of the [B ] matrix2 Any list
of them would have to include2

(2) Direct least squares

(b) Indirect least squares

(e) Full -information maximum likelihood

(4) Limited-information maximum likelihood

(e) Iwo-stage least Squares or generalized classical linegr

es’cimation3

2. [1l1, 61, I711, (81, [91, [10], (131, [171, [19].

3. The former teym being due to Theil, the latter to Basmann. Method (e)
is a particular case of a wide class of estimators called Theil's k-




(f) Three-stage least squares

(8) Linearized maximum likelihood.

The above methods differ from each other in various respects. Among
the most important of these is the extent to which a particular estimating
technique makes uge of the & priori restrictions on an econometric model
which most often take the form of requirements that certain variables not
appear in particular equations. With the exception of (a), the estimates
derived by all these methods have some desirable asymptotic properties such
as consistency. Some estimates are asymptotically normally distributed
and full-information meximum likelihood estimstes are efficient. It has
been shown recerrl:lyl'L that full information maximum likelihood is the cor-
rect generalization of the least squares brinciple, with other methods
being conceptually defective in one or more respects.,

None of these assertions says anything at all about the small sample
behavior of the various estimators. It has been observed before [2 ] that
it is generally assumed in the literature that the ranking of competing
methods achieved in the light of their asymptotic properties is also applic-
able to small Sample cases. Such g belief ig obviously unjustified in the
absence of knowledge about the small sample distributions of various esti-

mators .’ For example, knowledge that the Tull-information maximum

5. Consider two estimators @ and & with small sample distributions
F;(8), G; (@) for samples of size i; let the sequence Fi(a) - F(8)
and the sequence G;(@) = 6@) as i —> o - Iet a; anda B, ve
Some continuous functions of Fi and Gi respectively and let the
sequences ¢y —> a and ﬁi > PB. Then, the assertion that, say,

@ <PB allows us to conclude only that there exists some n such that
for i>n, ai<ﬁi .




likelihood method yields (asymptotically) efficient estimates does not
Justify the assumption that the dispersion of such estimates from finite
samples will be smaller than the dispersion of estimetes obtained by some
other method. A perhaps even more serious consequence of this is that
the direct least squares method which can be shown to yield biased and
inconsistent estimates may, in small samples, result in smaller bias than
some alternative methods which are consistent. It is hardly necessary to
boint out that there is no way of intuiting the value of n which is
large enough for asymptotic properties to hold in some approximate sense.
It is therefore essential that further light be shed on the small sample
broperties of the various econometric estimators.

Section 2 of this baper discusses some earliep theoretical and
experimental studies of the small sample properties of certain structural
equation estimators and considers alternative measures of the goodness of
estimates. Section 3 describes the nature of the sampling experiments
conducted on Theil's k-class and reported in this paper. Section 4 pre-

sents results and some eonclusions.

2. Previous Studies and the Goodness of Estimators

Three experimentel studies of the small sample broperties of cer-
tain structural estimators deserve special attention, namely those by
H. M. VWagner [18], A. I. Negar [10], R. Summers [16], and R.L. Basmann [3]?
The numerous individual differences among these studies are somewhat ob-
scured_by the similarity of the general approach. The authors assume a

system of gimultaneous structural equations




By +I'z = u (1)
and generate samples of the Jointly determined variables ¥y on the
assumption of normally distributed error terms. From each of the samples
the B and 7 coefficients of one or more equations are estimated by
various methods. Certain sample moments as well as some other statis-
tics are calculated from the samples of estimates and statements are made
on the basis of thesge statistics concerning the relative degrees of bias
and efficiency resulting from the various estimating techniques.

Individual differences emong these approaches are numerous. Wagner
and Negar employ the same three-equation model. Of these three equations
one is an identity. OF the two predetermined variasbles one is truly
exogenous and the other is a lagged value of an endogenous variable. Of
the two genuine equations one is overidentified and one is just identified?
Wagner tests limited information maximum likelihood, direct least squares
and instrumental variables by generating 100 samples of 20 observations
for two alternative error covariance matrices. He finds, on the whole,
that direct least squares gives more of a bias than the other two methods
but has smaller sample variance. Nagar continues Wegner's investigation
by applying to the Wegner model various estimating techniques all of which
belong to Theil's k-class. Again the bias is found to be largest for
direct least squares. Tt is smallest for two-stage least squares. Direct
least squares égain appears to yield minimum-variance estimates.

Summers [16] deals with a two equation model in which both equations

are over-identified8 and in which predetermined variables are genuinely

T. Note that the identity may be used to eliminate one of the endogenous
variables from the remaining equations. Some estimating techniques such

as two-stage least squares are not invariant with respect to the manner
in which this elimination is performed.

8. With the exception of the case in which the effects of misspecification _
are investigated in which overidentification of the first equation is
assumed erroneously (but intentionally).




exogenous, that is to say, do not include lagged values of endogenous
variables. Summers tests limited informetion maximum likelihood, two-stage
least squares, direct least squares, indirect least Squares, and full in-
formation maximum likelihood. Five sets of parameter constellations were
tested. 50 samples of 20 observations each were generated9 and two differ-
ent sets of exogenous variables were tried out. Direct least squares does
uniformly worst in terms of bias and tends to fare badly on the basis of
the second moment about the true value. There is no clear contender for
Tirst place: only indirect least squares does not seem to qualify for the
finels among the remaining four methods.

Basmann deals with g three equation model ang estimates from éamples
of 16 observationg the structural coefficients in the first, overidentified,
equation. He finds that direct least squares gives a greater bias than
either two stage least squares or limited information maximum likelihood.
In terms of the second moment about the true value direct least squares
does well, contrary to the Tindings of Summers. Both direct and two stage
least squares appear better than limiteqd information maximum 1ikelihood
by this criterion.

A significant difference between the Wagner-Nagar and the Summers
approaches is that the former test the various estimating methods by com-

varing estimates of structural coefficients with the true values of these

coefficients whereas the latter employs, in addition, the goodness of the
conditional prediction of endogenous varisbles given a specification of
values for the €xogenous variables. A clearcut decision in favor of one

of these techniques will ultimately rest on the objectives of the user. It

9. For one of the parameter constellations samples of 40 observations were
used as well.
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one is primarily interested in testing hypotheses about economic behavior
one is likely to be interested in slopes and thus perhaps favor the first

technique. If one is more interested in the predictive aspects of a model,
the second technique is indicated. Tt is noteworthy, however, that the
second technique may disguise some interesting facts. It is conceivable,
for example, that the coefficients of one equation are estimated more
accurately than those of another. Then, since conditionsl predictions
take into account all coefficients in the system, the latter method may
indicate an average bias which is not at all representative of the biases
of the individual coefficients. There is no & priori reason to believe,
however, that the ordering of estimating techniques will be different
depending on which quantity we examine for bias. In the experiments to be
described in subsequent sections the Wagner-Nagar approach was used, to
the extent that attention is focused on the structural coefficients.

The Monte Cario approach to the finite sample problem has been
questioned in some instances by Basmann since he has shown that in certain
simple cases the finite sample distributions of maximum 1ikelihood esti-
mators and two-stage least Squares estimators of structural equation co-
efficients have no finite moments of any onder.lo Although Basmann pro-
vides proofs only for certain two-equation cases, his conjectured extension
of these results to larger cases cannot be dismissed in view of the fact
that estimators always appear as ratios of random variables. 1In the pres-

ence of the infinite moment pProblem extreme care must be exercised in the

exogenous variables missing and g the number of endogenous variables
present in the equation in question. (2], p. 37.




interpretation of the results of Monte Carlo experiments.ll If the first
moment of the finite sample distribution of an estimator does not exist s
it is meaningless to compare the mean estimate from a set of samples to
the population value. If the variance does not exist, it is meaningless
to consider the root mean square error.la These considerations then
raise the question of what are statistically acceptable and rational megs-
ures or criteria of the goodness of an estimate,

In the absence of various statistical difficulties such as those
indicated above it appears natural to consider first the mean error, the
mean absolute érror, and the mean square error. Iet € be the population
value of a parameter and let @

1i
the ith sample. We shall then Judge method 1 to be preferable to method 2

and 92 i be two estimates of ¢ from

under the criteria named if

Z 6y 26,y
-9 < -9

n n
Zl6,.-6| <zle. . -g

i,ll i'al

2 2
;(eli-e) < 2(921-9) .

Even if finite moments exist it is not obvious what criterion of goodness

should be employed. Tt is relatively easy to argue that the first of the

11l. There is some awareness of this problem in the literature. See [10],
P. 33 and [16], p. 21.

sions and omitting terms of higher order of smallness than T-1
become questionable in view of the infinite moment broblem. Nagar,
of course, is well aware of this. See [10], p. 33.




above measures is not g very good one in that it suffers from all the
disadvantages of the arithmetic mean. But it mey be a perfectly rational
measure if what really matters is that on the aversge we be close to popu-
lation values. Consider the following artificial and overgsimplified ex-
ample: it is desired to achieve a certain rate of growth in the economy
by the judiecious use of government expenditures. Their desired or recom-
mended magnitude will be a function of the marginal propensity to consume.
If we overestimate the marginal bropensity to consume s our estimated
national income multiplier will be greater than the true one; therefore
government expenditures will be set at too low a level and the economy
will fall below the desired growth rate. In the converse case, the econony
will grow faster than desired. It may be rational to require from some
long run point of view an estimating procedure that will result on the av-
€rege in a growth rate close to the desired one,

Basmann ‘bel:i.evesl3 that if the estimates are at least approximately
normelly distributed and have Tinite variances then "...any rational meas-
ures of concentration we adopt will depend predominantly on their second
moments...", But, in general, what is a rational measure of goodness can
be defined only on the basis of & specification of the user's utility func-
tion over the errors. Assume, for example, that the finite sample distri-
butions of estimators el and 62 are known exactly and that these dis-
tributions f(el), g(ee) are members of some two-parameter family of
distributions such as the normsl distribution. ILet the two parameters be
the mean (ul and p o Tespectively) and the variance ( cr? and o2 re-

2
spectively). If we define a;‘fp and ng as the second moments about the

13. [2], p. 4.
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population parameter 6 and B and B, as the biases of the two esti-

1 2
mators such that ¢ = ”1 + Bl and @ = u2 + 32 then it follows that
2 2 2
Ulp = cl + Bl
2 2 2
aap = 02 + 32 .

The first eriterion suggests that 91
Bi < Bg 5 the third criterion suggests that ¢
2

is to be preferred to 92 if

5 is to be preferred if
°2p < afp « Obviously both of these can occur simultaneously. A rational
choice requires that a utility function U(02 » 32) be specified. The set
of possible estimators can be specified by the function h(o s B ) =
The choice among estimators is then accomplished by solving the following
problem:

Moximize U(GI?) s 32)

o

subject to h(US , BQ)

220, F3o.

Since we are dealing with utilities of estimates it would be desirable

to find a reasonable axiomatization that would allow the construction of
a utility index. The simplest, of course, would be a von Neumann-
Morgenstern [11] axiomatization under which statisticians would turn out
to be expected~bias-minimizers. This will hardly be adequate in view of
the general requirement that the goodness of an estimator be dependent

on its density or concentration in sone neighborhood around the population
value. At the same time it would be premature to select some concrete
axiomatization which explicitly involves second (ana Possibly higher)

moments.ll‘ Perhaps it is sufficient at this point to list some additional
1k, See [12].
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bossible measures of the goodness of estimators:

(a) The median of the small sample distribution of the estimator
minus the population value of the parameter estimated. An advantage of
this measure is that it always exists (although it is not necessarily
unique). Denoting the median by m, estimator 1 is to be breferred over

estimator 2 irf

Iml -8| < Imz -0 .
(b) The concentration ¢ 1in some & priori neighborhood around the
population value. ILet this interval be [0 -k, 6 +k]. ILet the variable
'vl =1 if an estimate el falls in the interval and let o= 0 other-

Ly
wise. The concentration cl associated with estimate 1 is then cl= L a
1

and el is to be chosen asg estimator if c_.L > c2 . ¢ is a consistent

O+k
estimator of the probability Pc(e -k, 6 +k) = j f(el)del which always

8-k
exists. The rationale Ffor the measure is obvious: the greater the concen-

tration around the population value the more often we can expect to be
relatively close to it. This measure is also used by Basmann [3].
(¢) The converse of the preceding measure is the decentralization

64k
d, an estimate of the probebility Pd(e -k, 0+k) =1 -j f(al)del .

0-k

We would consider method 1 better than method 2 if 4, < d2_ « The eszstimate

1
of Pd(e -k, 8+k) is chosen as a criterion of goodness if frequent ex-
treme errors are to be avoided., Of course, if k is taken to be the same
as in (b) this measure is basically the same as the previous one. As s
matter of fact, both concentration and decentralization eriteria may be

applied simultaneously and they may give conflicting evaluations of estinma -

tors if different values of k are used in constructing the criteria. In
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such a case a final evaluation cannot be made without a more concrete
8pecification of the utility function, this time as a function of ¢ and
d.

(@) One may decige upon one of various measures of range such as
the interquartile range. Comments similar to those under (a) and (b)
apply.

(e) One may choose az one measure of goodness, as does Nagar [10],
the sum of the ranks, summed over each estimator and obtained from an
aggregated ranking of the absolute biases of the estimates. This method
has the advantage of measuring, in essence, the mean absolute error with-
out presupposing the existence of the first moment.

(£) Summers, in the previously discussed study [16], and, in &
somewhat different context, Schupack [14] use the frequency of being
closest to the true value of a parameter, Underlying this is the supposi-
tion that we wish to choose estimating technique i so0 as to maximize
the probability Pr(|e, - o] < minlej -e}).

There are numerous additggiil criteria possible. We might choose
on the basis of that single observation which, for a given estimating
technique 1, makes |ei - 8] the largest if large errors are to be
avoided at all cost. Some of the criteria discussed above will be applied
to experimental results in Section L. It is to be remembered, however,
that the rationality of these criteria is not a purely statistical ques -
tion but depends on the costs (utilities or disutilities) associated with

various types of error.

3. Objectives and Design of Experiments

Sampling experiments were carried out in order to investigate a
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number of questions with reference to Theil’s k-class. Theil’s k-class
commends itself because of its simplicity, ease of computation, and the
fact that it is a generalization of classical least squares. Chow has
shown, however, that full information meximum likelihood is the correct

generalization if the underlying model is one in which simultaneous linear

combinations of endogenous variables are to be explained by the set of

exogenous variables. Some questions one may raise about the k-class are
as follows: (1) Can the tentative findings of other sampling experiments
with respect to the relative ordering of estimating methods be confirmed
by a different ang larger model? (2) Can Theil’s findings with respect
to the relationship between the magnitude of estimates and the parameter
k which is assumed in their derivation in the Girschick-Haavelmo model be
confirmed by sampling expe:m’.ments'.;‘:L5 (3) Can one verify the conjecture
that the magnitude or bias in the structural coefficients is a decreasing
function of the sparseness of the coefficient matrix associated with the
endogenous variables ; that is to say, 1is it true that the more zeroes
there are in the B matrix the less will be the degree of bias in the
estimates? (%) Can one verify the conjecture that the magnitude of bias
is a decreasing function of the sparseness of the covarilance matrix of
structural disturbances? This last conjecture has not been tested asg yet.
The former, namely (3), arises from the following heuristic considerations.
Bias is caused by the fact that the ¥ys are all stochastic variables
which, in turn, is due to the fact that they are Jointly determined, given
& specification of exogenous varisbles and error terms. The sparser the

B matrix the likelier it is tha’bf%gusal chain connecting the variables in

15. [17], pp. 234-6.
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the model contains no cycles. It seems plausible to argue that bias
depends on how meny causal feedbacks there are among the Jjointly deter-
mined variables.

Two models were employed, each of which contains 4 endogenous vari-

ables and thus 4 equations. Model 1 is

¥y - -Qyé + 2-0y3 - Yy -2 - .522 + 23 =

RE AT A .Sys + .1y, - 2.0z, - zg = u,
l.Syi - .Eyé 4 y3 + '2yh + .5z3 + z) - 2.0z5 = u3
.hyi oy, - .Sys oy, ' -z - .2z5 = 3.0zg = u,

Model 2 is the same as Model 1 with the exception that one more exogenous
variable is introduced, z7, the coefficients of which in the four equa-
tions are (0, .5, 0, 0) respectively. No predetermined varisble is s
lagged value of an endogenous variable. The values of the exogenous var-
iables remain the same in repeated samples, although the experiments are
performed on two separate sets of values of the exogenous variables. The

correlation matrices of the exogenous variable data sets are

[1.000 872 .35 707 -6 o .152
1.000 .40 .847 -.879 0 420
1.000 429 .,469 0 -.04g
1.000 -,865 0 L6l
1.000 0 - 27k
1.000 0
1.000
" J
for Data Set 1 apgd
[1.000 -.423 335 589 .oga 0 .193
1.000 -.165 -.539 139 0 .065
1.000 ,132 -,201 0 .556
1.000 -.095 0 -.030
1.000 0 .217
1.000 0
1‘°°°_J

for Data Set 2.
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In 81l cases the coefficients of the first equation are estimated.
This equation is Just identified in Model 1 end overidentified in Model 2.
The generation of data consists of Pirst generating 20 "observations" on
the vector (ul, Uy u3, uh) » Where the u's are approximately normally

distributed with 2€ro mean and covariance matrix

l-o -6 .8 -lto
o6 l.O O - .2
18 0 2.0 - o6

-1l.0 -2 .,6 2,5

Given the values of the vector 2, corresponding y-values are then calcy-
1ated.16 Theil's k-class estimators are then obtained for the given
semple for velues of k = -k, =35 «0e5 0, cvuy 1.0, 000, 1.9, 2,0. This
brocedure is then repeated until a total of 100 samples have been gener-
ated. Conjecture (3) is testea by performing this procedure for four dif-
ferent B matrices of differing sparseness. The B matrices used are
the one indicated eariier in the deseription of the model, namely

1.0 - .2 2.0 -1.0

"l-o llo 05 ol
1.5 - .5 1.0 .2
L 02" l.O - .5 loo_‘
and (1.0 - .2 2.0  -1.0]
-1.0 1.0 0 .1
0 - .5 1.0 .2

o4 0 - .5 1.0 |

1.0 - .2 2.0  -1.0]

0 1.0 0 .1
0 - .5 1.0 0
| 0 0 1.0 |
1.0 - .2 2.0  -1.0
0 1.0 0 0
0 0 1.0 0
| o 0 0 1.0_|

16. Whenever matrix inversion was necessary, it was performed by s method
designed to work well on ill-conditioned matrices. See [15]. The pro-
cedure was tested and its accuracy found to be good: if ais are ele-

* ~1 - * -6
ments of a matrix A and &y ©lements of Al then lsij z a’ikak,jl <10

where Bi 3 is the Kronecker delta. The method works well on the
Hilbert matrix of size Tx7.
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corresponding respectively to Run 1, Run 2, Run 3 and Run k.

For the purpose of estimstion the first equation is rewritten as

Y1 = Prolp * Byg¥s + By, + 702, + vz, + T13%3 T Yy -
Mathematically the estimates are obtained in the following menner. Define
Yl’ Y2, Y3 ) Yh the 20 x 1 column vectors containing the observations on

the variables J93Y0s¥=2¥), » Denote by Y +the 20 x 3 matrix
Vi3

Y= [Y2

matrix containing the observetions on the exogenous variables and by 2,

¥

“sesse
avesen

Yh] - Denote by Z the 20x 6 (or 20 x 7 in Model 2)

the submatrix of 2 Fformed by its first three columms. We Turther define
three 20x1 vectors V, by V, =Y, - Z(Z'Z)-lZ’Yi for i=2, 3,k
which makes the vectors v i contain the residuals from the reduced form

corresponding to y,y; and y,. We define V = [v v, Vh] . The

estimates (B ',; '} are then obtained as follows:

~ -1

B Y'Y - kY Y'Z* Y! - kv

~ = Yl
1 1 ¥

7 Z)Y 7.7, z)

where the matrix, the inverse of which appears on the right hand side,
will be referred to as the Theil-matrix.

Various safeguards were used to insure the proper operation of the
computer program. The results of the first sample for k= -.% and
k= 1.0 vere handcomputed on a desk calculator. These handcomputed re-
sults agree with those of the electronic computer except for rounding,
accounting for discrepancies of the order of 10'6. In addition the vector
(B 5> 7) was estimated by setting the error terms u identically equal to

zero in the generation of a sample. The results of this estimation are
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shown in Tadble 1.

Bio B3 Py 13 Ur 713

True Value .2 "‘2.0 l-o l.o .5 "l'o

Value estimaﬁed «1995451 -1.9989% «999115] .999622| .499531 - .999092
W‘ith k = -,

Table 1

Of course, in the absence of error terms the estimates should coincide
exactly with the true values, since in this cage the y’s are not stochas-
tic, all observations lie exactly on g hyperplane, and the k class (for
any value of k) coincides with the least sguares regression of ¥y; on

Yps ys, Yy 215 25, 23 « In fact, the residuals from estimating the re-
duced form corresponding to Yos y3 and Y, @are not zero, being on the
order of lO"6 and 1077, This is undoubtedly due to rounding error in
inverting (Z'Z), This error is then further bropagated when the Theil-
matrix is inverted. The figures in Table 1 are thus construed to support

the judgment that the results obtained are correct except for rounding

error,
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4. Results and Conclusions

A number of statistics were collected during the course of the
experiments. These are bresented in the Appendix in Tables 1A-20D and
Figures 1-16. The analysis of the results is based on various functions
of the samples of estimates. These include (a) the median, (v) the con-
centration, that is the density in some neighborhood of the population
bParameter, (c) the decentralization, i.e., the density in the complement
of some neighborhood sbout the bopulation parameter, () the maximm devi-
ation from the Population parameter, (e) the arithmetic means and standard
deviations of sample estimates. These latter are presented and discussed
even though there is no assurance that the finite sample distributions of
the various estimates bossess finite moments of any order. It must be
kept in mind, however, that the evidential character of these sample mo-

ments is weak ang cannot therefore be decisive.

A. Analysis and Results Based on Semple Moments.

(2) Direct Least Squares Versus Two-Stage ILeast Squares. One may
immedistely observe that the sample standard deviations for two stage
least squares are uniformly larger than for direet least squares by a fac-
tor ranging from less than five to over a hundred. This is in substantial
agreement with previous results. [71.

Since the ordering of estimating techniques imposed by the average
bias is essentially invariant with respect to which of the structural co-
efficients is being estimated andg which of the Runs generated the data,
aggregation over coefficients and Runs has been performed and the number
of instances in whieh the average bias of direct least squares is smaller

than that of two stage least squares has been counted. Since there are 6
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coefficients and 4 Runs, there are 24 cases for each Model-Data Set com-

bination. Direct least Squares beats two-stage least squares as follows:

TABLE 2. MEANS. Relative Performance of k = 0 and k =1,

Number of Cases Total

Type X =0 Beats Ties Ioses to k =1 Possible Cases
Model 1, Data Set 1 23 0 1 2L
Model 1, Data Set 2 2 0 22 24
Model 2, Data Set 1 15 0 9 2L
Model 2, Data Set 2 1 0 23 24

Two-stage least squares tends to result in smaller average biases when the
model is overidentified than when it is Just identified. What is much
more striking, however, is the extent to which the relative goodness of
the estimates depends on which set of €xogenous variables is used. With
the first set, direct least squares gives significantly better results
than two-stage least Squares: aggregating over Models 1 and 2 one can re-
Ject the null hypothesis that there is no difference between the two tech-
niques on the .00l level of significance. On the other hand, two-stage
least squares does overwhelmingly better than direct least squares with
Data Set 2. In g Sense one might expect (al1l) results to be worse in the
case of Data Set 1 since the Pairwise correlations between the exogenous
variables gre substantially higher than in the case of Data Set 2, In
fact, aggregating over coefficients and runs, one finds that the average
bias in the Samples is smaller for Data Set 2 than for Data Set 1 in cor-

responding cases as indicated in Table 3. In point of fact, however, it

TABLE 3, MEANS, Relative Performance of Data Set 1 and Data Set 2.

Number of Cases
Type Set 1 Beats Ties Loses to Set 2 Total Possible Cases
Model 1, k =0 0 0 23 24
Model 1, k =1 1 0 24 24
Model 2, kx =0 3 0 21 2L
Model 2, k =1 2 0 22 24
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is irrelevant whether relatively strong milticollinearity among exogenous
Variables can explain the differential performance of direct and two-stage
least sq,uares.l 7 It is sufficient to observe that in small sample situa-
tions two-stage least SQuares is not necessarily better than direct least
Squares. If the cause of thig is the presence of multicollinearity, one
has all the more reason to be concerned, since economic data frequently
exhibit high mul’cicollinearity. The asymptotic properties of two-stage
least squares do not carry through to the smsll sample situation, which
should not be considered surprising, particularly in view of the observation
that the relative goodness of estimates appears to be highly sensitive to
the configuration of the data. This then confirms Theill's tentative re-
sults in connection Wwith the Girschick and Haavelmo model of the U.S. Food
Market according to which the choice between two-stage and direct least

SqQuares cannot be made unambiguously.

(b) The Variation of Estimstes With k. Theil has plotted the
estimates obtained in the Girschick-Haavelmo model as a function of k
varying from O to 1. 5 .18 A similar procedure was undertaken in the present
study since estimates were calculated for variations in k by steps of .1
from -.% t0 2.0. The results are graphed in Figures 1-16. Theil had ob-
served g discontinuity in the graphs occurring roughly in the range k=1.1

to k = 1.5, This was explained on the basis of the fact that the Theil

Y'Y - kR'R ¥z,
matrix basses through singularity in that neighbor-
Z,X 22,

hood. With two exceptions, the estimates in the Girschick-Haavelmo model

17. The difficulty that can be caused by multicollinearity is, of course,
well known. See Theil, [171, p. 233.

18. [171, p. 235.
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appear to be nearly constant for values of k between O and 1.

The following observations can be made in the present case. (1) For
Data Set 1, that is the Data Set for which the average bias is smaller on
the whole when k = 0, the estimates tend to be fairly constant for values
of k < .9, Between k = 9 and k = 1,6 approximately, there are usually
several wide swings in the values of the estimates. This is the range in
which the Theil matrix basses through singularity. The fact that there are
several apparent discontinuities is due to the fact that the figures repre-
sent arithmetic means: since the individual cases which are being averaged
have their points of discontinuity at various locations in this interval,
the graphs of means behave in the manner indicatednl9 For values of k > 1.6
the estimates have values which tend to suggest that they lie on an extrapo-
lation of a line drawn through boints representing the estimates for k<<.9?o
The change in the values of the estimates is then quite smooth except for
the range in which the Theil matrix basses through the point of singularity.
It is wnfortunate that this range appears to include two-stage least squares,
(i1) For Data Set 2 the estimates are generally worse for k < 1.0 +than
for k =1.0 but they tend to improve monotonically as k incréases to-
wards 1.0, For k > 1.0 there are numerous wide swings in the estimates
with no apparent tendency to continue the "trend" followed by the estimates
obtained for k < 1.0, |

(e) The Effect of Sparseness. The mean estimates for the six co-
efficients by direct and two-stage least Squares have been arranged by Runs

1 through % in Tables 4 through 7 according to model and data set. It may

19. I am indebted to Mr. John Cragg for this point.

20. There is some evidence Tor this in Theil's results ag well.
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be recalled that the sparseness of the B matrix increases with the run

number: thus Run 1 involves the least sparse and Run 4 the sparsest B

matrix. The basic hypothesis that the mean bias tends to be reduced by
increasing sparseness can be examined and tested in several ways.

(1) If we rank the absolute velues of the biases in each column
of Tables 4-7, assigning the rank 1 to the largest and the rank 4 to the
smallest absolute mean bias and calculate the rank correlation by Spear-
man's p between each of these renkings and the ranking of the four B
matrices given by the run numbers (which thus associate higher rank with
greater sparseness), we find that k5 out of the 48 rank‘correlation coeffi-
cients are positive and only 3 negative, strongly supporting the conjecture.
Under the null hypothesis that there is no relation between absolute mean
bias and spafseness we would expect approximately as many positive rank
correlation coefficients as negative ones. Under this hypothesis the proba-
ability of the actual outcome is less than 1o'u, The null hypothesis is
thus ebandoned.

(i1) Inspection of Tables 4-7 reveals that for any given model - dgtg
set combination the variation in the bias from run to run tends to be
similar for all six coefficients. This is tested by Friedman's two-way
analysis of variance test, As before, the runs are ranked by each of the
six coefficients. Tr these rankings were random, the sum of the ranks
would be expected to be the same for each run. The null hypothesis that
the rankings are random is rejected on at least the .05 level of signifi-
cance in every case.

This test, of course, does not bear directly on the conjecture con-

cerning the relationship between bias and sparseness. It merely indicates




TABLE 4. MEAN ESTIMATES
Model 1, Data Set 1
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P12 By3 Pyl 711 712 713
True Values .2 -2.0 1.0 1.0 ) -1.0
k=20
Run 1 - .0951 -1.2004 3612 .7158 1154 - 3571
2 .2691 -1.2866 .3690 7306 1310 - .3634
3 .2876 -1.6823 Lh63 .8326 .1896 - 1369
4 3248 -2.0063 5756 .9938 .2550 - 5784
k=1
Run 1 - 290k - .9580 113k 6281 0733 - ,0907
2 .2618 -1.0398 1322 6344 0746 - J111
3 6179 - 2299 -2.0395 - 0527 -1,0698 2.0905
L L0344 -2.0254 1.9233 1.1283 1837 -1,9622
TABLE 5. MEAN ESTIMATES
Model 2, Data Set 1
P1o P13 Biy 711 712 713
True Values .2 ~2.0 1.0 1.0 .5 ~1.0
k=0
Run 1 - .1050 -1.2128 3636 <7265 2297 - 3576
2 2639 -1.2907 <3697 .T371 1426 - 3627
3 .2835 -1.6805 4450 .83%0 .1962 - 4348
o1 L «3207 -2.0048 5748 .9958 2631 - 5763
Run 1 - 1569 -1.2379 3530 .72k2 .1925 - 3434
2 .2hhs -1.2885 «3576 .7252 .1931 - J3hT77
3 2702 -1.6391 .3840 .7981 2114 - 3719
4 .3060 -1.9974 .5588 .9830 .3034 - 5590
TABLE 6. MEAN ESTIMATES
8 gbdel 1, Daga Set 2 y y y
1
True Values . 2 -2%8 l%g l%% .%2 -l%g
k=0
Run 1 - 0837 ~1.3333 Ll L7673 2130 - 4360
2 2469 -1.4006 R .7863 2217 - sk
3 .2609 -1.7324 5294 .8849 .2683 - .5185
o1 4 .2843 -2.0059 6601 1.0235 3385 - 6576
Run 1 .308k -2.3610 1.2778 1.2275 .6813 -1.2783
2 1790 -2.0919 1.0762 1.1066 .5696 -1.0741
3 2kt -1.7853 6387 8642 .3079 - 6052
L .2065 -2.0005 .920kL 1.0725 L4913 - .9338
TABLE 7. MEAN ESTIMATES
gbdel 2, Daga Set 2
7 7 4
. OTrue Values 22 -2%8 ;%g ;%% -%2 -lia_
R 1 - 0848 -1.3355 Lh50 .7696 2154 - 4374
g .2261 -1.4021 L5520 .5285 .2239 - 4468
2601 ~1.7325 5297 .8859 2 - 5194
T L .2834 -2.0057 6607 1.0245 .348% - .2536
Run 1 0771 -1.7530 L7847 .oloo L4057 - .7803
2 .2109 -1.7783 7940 .oli82 Ja12 - 7895
3 217 ~1.8943 B171 .9705 1201 - 8166
4 .225 -2.0030 8787 1.0280 4515 - 8766
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a high degree of agreement between the rankings achieved by the six co-
efficients. In view of this high degree of agreement, the rankings by the
six coefficients were averaged for each model - data set -k combination and
a new ranking was established for the four runs on the basis of the average

ranks. These are displayed in Teble 8. In six out of the eight possible

TABLE 8. RANKING OF RUNS BY MEAN ABSOLUTE BIAS

k=0 k=1
Data Set 1 Data Set 2 Data Set 1 Data Set 2
Model 1[{Model 2|Model 1|Model 2 |Model 1 Model 2|Model 1l{Model 2
Rinl 1l 1 1 1 2 1 1.5 1l
2 2 2 2 2 4 2 3 2
3 3 3 3 3 1 3 1.5 3
S B & B 3 B b B

cases the average rankings of absolute mean bias are identical with the
ranking of the B matrices based on sparseness. In no case do the average
rankings reverse the ranking of the B matrices based on sparseness. It is
noteworthy that the relationship between bias and sparseness is less clear-
cut for k = 1 +than for k = O. This is by no means surprising and is

clearly due to the extreme variability of the estimates when k = 1.

B. Analysis and Results Based on Measures of Concentration and

Decentralization.

The previous analysis based on sample means must obviously be
trested with extreme caution because the finite sample distribution of the
estimates may possess no finite moments of any order. The previously ex-
amined questions must therefore be reanalyzed in the light of sample statis-

tics for which corresponding population statistics are certain to exist.
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Three measures, denoted by the letters M, C, Dl and D2 have been chogen.
Their values for the various model - data set -k combinations are displayed
in Tables 17A - 20D of the Appendix.

M is the sample median and its value is the arithmetic mean of the
fiftieth and fifty-first items in an ordered list of the estimates of e
coefficient. C 1is a measure of concentration defined as follows. ILet @
be the true value of a coefficient and § on estimated value. ILet n be
the number of instances for a given model -data set -k ~ coefficient combi-
nation that .86 $6<1.20, and let N be the total number of cases,
that is, N = 100, Then C = n/N. C thus measures the concentration or
density within 20 per cent of the population value. The figure 20 per cent
was chosen arbitrarily, but on the generslly defensible grounds that devi-
ations from true values much in excess of 20 per cent could not be consid-
ered tolerable from a practical point of view, whereas most economists
would probably consider errors which are less than 20 per cent more or less
acceptable. Dl is a measure of decentralization, defined here
as the proportion of cases in which a particular estimated coefficient has
the wrong sign. This, too, is an arbitrary criterion but one which mskes
good sense in an economic context in which we are primarily interested in
qualitative answers, that is to say, whether two variesbles are positively
or negatively related. Dl represents a minimal criterion in the sense
that the least requirement of an estimating process is that it give us
estimates with the right sign. Finally, for the sake of completeness, data
on D2 » ‘the maximum sbsolute deviation from true value in each sample, are

presented.

1. Analysis based on Median (M). Tables 9 and 10 are analogous to




26

TABLE 9. MEDIANS. Relative Performance of k=0 and k =1l.

Number of Cases
Type k = O Beats Ties ILoses to k=1 Total Possible
Model 1, Data Set 1 13 0 11 2k
Model 1, Data Set 2 1 0 23 2L
Model 2, Data Set 1 18 0 6 ol
Model 2, Data Set 2 1 0 23 2k

TABLE 10. MEDIANS. Relative Performance of Data Set 1 and Data Set 2.

Number of Cases
Type get 1 Beats Ties Loses to Set 2 Total Possible
Model 1, k=0 1 9] 23 oL
Model 1, k=1 1 0 23% 24
Model 2, k=0 1 0 23 2k
Model 2, k =1 2 0 22 24

Tables 2 and 3 but are based on a comparison of sample medians to true
values., As before, aggregation over runs and individual coefficients has
been performed. As before, we can overwhelmingly reject the null hypothesis
that the two estimating methods are the same in performance. Again, two-
stage least squares does overwhelmingly better than direct least squares
with Data Set 2, but tendé to perform relatively much worse with Data Set 1.
The already conjectured sensitivity of any estimating method to the indi-
vidual peculiarities of exogenous data, such as multicollinearity, is
strongly confirmed by Table 10. On the whole the results are substantially
the same as those displayed in Tables 2 and 3. I the absolute differences
between the medians and corresponding true values are ranked in the usual
fashion, assigning the rank 1 to the largest difference, and if the pair-

wise rank correlations by Spearman's p are obtained with the ranking of
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runs based on sparseness (Run 1 being ranked 1), we find that all 48 rank

correlation coefficients are positive. Table 11,21 which is analogous to

Table 8, is based on the average renking of runs averaged over the six co-

efficients. It confirms the previous findings.
TABLE 11. RANKING OF RUNS BY MEDIAN ABSOLUTE BIAS
k=20 k=1
Data Set 1 Data Set 2 Data Set 1 Datae Set 2
Model 1lModel 2 | Model 1{Model 2 | Model liModel 2 Model 1l|Model 2
Run

1 1 1l 1 1l 1 1l 1l 1
2 2 2 2 2 2 2 2 2
3 3 3 p) ? 3 3 ) 3
by L L b L b h L 4

2. Analysis based on Concentration (C). C measures the relative

frequency of estimates within 20 per cent of the true values. Tables 12
and 13 display the relative performance of k = 0 versus k =1 and the

relative performance of the estimates for the two Data Sets and are based

TABIE 12. CONCENTRATION (C). Relative Performance of k=0 and k=1.
Number of Cases
Type k=0 Beats  Ties Toses to k=1 ‘Total Possible
Model 1, Data Set 1 L 0 20 24
Model 1, Date Set 2 4 0] 20 =
Model 2, Data Set 1 3 0] 21 2k
Model 2, Data Set 2 3 1 20 ok
TABLE 13. CONCENTRATION (C). Relative Performance of
Data Set 1 and Dats Set 2.
Number of Cases
Type Set 1 Beats Ties Loses to Set 2 Total Possible
Model 1, k =0 1l 1 22 2L
Model 1, k =1 1 0 23 o4
Model 2, k=0 1 0] 23 ol
Model 2, k=1 1 1 22 2k

21. See also Appendix, Tables 1TA-17D.
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on aggregation over runs and coefficients as before.22 Direct least
squares gives better estimates by this criterion in only 1% out of 96 pos-
sible cases, as opposed to 41 out of 96 cases if mean bias is the criterion
and 33 out of 96 cases if median bias is the eriterion. Although C is
almost invariably higher for Data Set 2, irrespective of which model and
vhat value of k are being used (Table 13), the relative performance of

k=0 wversus k = 1 is not distinguished by which Data Set is being used.

1

frequency of cases in which an estimate of a coefficient has the wrong

3. Analysis based on Decentralization (Dl_)_. D, is the relative

sign. Table 14 displays direct least squares as superior to two-stage

least squares in terms of Dl . The superiority does not seem to depend

on which Data Set is used. Table 15 results in a somewhat more ambiguous

TABLE 14. DECENTRALIZATION (Dl)
Relative Performance of k=0 and k =1

Nunber of Cases
Type k=0 Beats Mies ILoses to k=1 Total Possible
Model 1, Data Set 1 21 2 1 2k
Model 1, Data Set 2 o3 0 1 ok
Model 2, Data Set 1 2], 2 1 24
Model 2, Data Set 2 21 2 1 24

TABLE 15. DECENTRALIZATION (Dl)
Relative Performance of Data Set 1 and Data Set 2

Number of Cases
Type Set 1 Beats Ties Loses to Set 2 Total Possible
Model 1, k=0 1 19 L 2h
Model 1, k =1 3 0 20 24
Model 2, k=0 2 19 3 24
Model 2, k=1 0 7 17 2L

22, See also Appendix, Tables 18A-18D.
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comparison between Data Sets 1 and 2 than the preceding ones but it is
still elear that the estimators behave better with Data Set 2. Ties occur
frequently with k =0, indicating perhaps that direct least squares has
a lesser sensitivity to peculiarities of exogenous data.

Values of Dl by coefficient, model, date set, run and k are
displayed in the Appendix.23 If these are ranked in the usual fashion,
with the lowest D:L achieving rank 4 and the highest achieving rank 1 for
any k-model -data set - coefficient combination, we find that all 31 of
the J:'elveva.m;alL yrenk correlation coefficients are positive. In addition,

the mean values of Dl are .166 for Run 1, .050 for Run 2, Ot for Run 3,

and .029 for Run 4, confirming the previous findings.

L, Analysis based on Decentralization LDE_)_. D, measures the max-
imum sbsolute deviation in each sample from the corresponding true value.

Tables 16 and 17 are obtained in the usual Fashion by aggregation over runs

TABLE 16. DECENTRALIZATION (Dy). Relative Performance
of k=0 and k=1

Number of Cases
Type kX = O Beate Ties TLoses to k = 1 Total Possible
Model 1, Data Set 1 2L 0 0 2k
Model 1, Data Set 2 oh 0 0 24
Model 2, Data Set 1 23 0 1 24
Model 2, Data Set 2 24 0 0 24

TABLE 17. DECENTRALIZATION (D,). Relative Performance
of Data Set 1 and Data Set 2

Number of Cases
Type Set 1 Beats Ties Loses to Set 2 Total Possible
Model 1, k=0 L 0 20 24
Model 1, k=1 13 0 11 24
Model 2, k=0 6 0 18 o4
Model 2, k=1 5 0 19 24

2%, See Tables 19A-19D.

oh. 17 of the 48 possible rankings are omitted since in these cases D;=0
for all four runs.
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and coefficients. It is not surprising that k = O consistently beats

k = 1 in performance, that is, exhibits lower maximum absolute discrepan-
cies. Date Set 2 again leads to better estimates (by the current eriterion)
then Date Set 1 in a majority of cases except for Model 1 and k = 1. The
values of the maximm discrepancies, displayed in Tebles 20A-20D of the
Appendix generally confirm the conjecture for k = 0 that increasing
sparseness improves estimates. This is less clearly so for k=1 al-
though even there only 7 of the possible ol rank correlations are negative.
The values of the maximm discrepancies are large and the rank correlations

mostly negative with the just identified model.

C. Summary

We may swmearize the findings of this study as follows:

1. The desirebility of using direct least squares or two-stage
least squares (in small sample situations) is judged relatively differently
depending on the criterion employed.

2. The relative performance of estimators depends heavily on the
peculiarities of exogenous variables. Specifically, estimators perform
relatively poorly with relatively high multicollinearity among the exogen-
ous variables.

3. The performance of estimators improves as the sparseness of the
coefficient matrix associated with endogenous variables increases.

4. The distribution of two-stage least squares estimates tends to
have higher density in the neighborhood of the population parameter than
the distribution of direct least squares estimates, as is indicated by the

behavior of C.

5. The distribution of two-stage least squares estimates tends to
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have thicker tails than that of direct least squares, as is indicated by
the behavior of Dl and D2 .

6. The presence of multicollinearity tends to affect two-stage
least squares relatively more unfavorably than direct least squares.

7. Two-stage least squares does not perform unambiguously better
or worse in the overidentified case than in the jus® identified case, as
indicated by M, C, D; and De.

8. The behavior of k-class estimates for various values of k
is substantially as found by Theil in the Girschick-Haavelmo model.

9. Ultimately, the choice between direct least squares and two-
stage least squares is not clear, even though the latter's asymptotic
properties are superior to those of the former. A rationsl person may
still prefer to use direct least squares.

10. It is finally conjectured that further investigation of larger
systems estimated by a variety of methods will reveal similar ambiguities

and difficulties in ordering methods.
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TABIE 1A. MODEL 1; DATA SET 1; RUN 1
- ARITHMETIC MEANS
X B1o By Byy 711 712 713
-4 F - ,0855 | -1.188k 3538 . T100 L0993 | - 3562
-3 | - 0870 | -1.1913 359k .T122 .10%2 | - L3564
-2 | - 0902 | -1.194% 3600 715k 1072 | - .3566
-1 | = 0926 | -1.1973 . 3606 .T1h6 (1113 | - 3569
0 - .0951 | -1.200k .3612 L7158 L1115k |- 3571
1| - 0976 | -1.2036 <3619 <TLTL .1196 | - 3573
2 | - 1002 | -1.2063 <3625 . T184 .1239 | « 3575
Bl - 21029 | ~1.2101 .3631 <7197 L1284 | - 3577
Ao s1057 1 -1.2134 <3637 L7210 L1329 | - .3579
5| - L1086 | -1.2167 .3643% . 7223 L1376 | - L3579
b1 - 1118 | -1.2201 3647 L1237 Ah2h | - L3579
71 - L1153 | -1.2233 . 3648 .72k9 JAhTh | - W3575
8| - 1196 | -1.2260 3642 L7259 L1526 | - .3562
«9 | -~ 1264 | -1.226L , 3610 . 7260 L1579 | - 3521
1.0 | - .290% | - .9580 L1135k 6281 0733 | - 0907
1.1 | - .1606 | -1.1171 2756 . 7210 L0927 | - .2610
1.2 | - ,1026 | -1.2748 037 . T480 A779 | - 23989
1.3 | - 226k | - .9999 .1723 .6L76 .060% | - .1602
1.4 | - .0523 | -1.3722 L1882 .T981 .2083 | ~ 481k
1.5 | - .1031 | -1.3133 L4261 L7619 .2058 | - 4176
1.6 | - 1452 | -1.2389 +3592 . T323 .1811 | - .3k8k
1.7 | - 146k | -1.2436 + 361k <T346 .1852 | - .3500
1.8 | - .1460 | -1.2598 3715 . T409 L1972 | - .359
1.9 | - .1ko1 | -1.2663 3738 . T435 2043 | - 361k
2,0 | - .1526 | -1.2719 3755 . T457 2111 | - 362k
TABIE 1B. MODEL 1; DATA SET 1; RUN 1
STANDARD DEVIATIONS
-4 L0720 .1428 L1157 .0639 .0819 .1185
-3 L0722 .1h32 L1161 L0641 .0818 .1189
-2 .0725 L1436 .1166 .0643 .0818 .1194
-1 .0728 LIk L1171 .06k5 L0018 .1199
0 L0731 R R 1¥ g L1176 L0648 .0819 .1205
.1 0736 < 1h5h 1184 L0651 .0821 .1212
.2 LOTh2 . 146k .119% .0655 L0824 1222
.3 L0751 JANTT +1205 . 0660 .0829 .1234
A 0762 . 1495 1222 0667 . 0835 .1251
o5 L0773 .1523 J12h7 L0676 .08kl L1277
.6 .0802 1567 .1287 .0690 . 0860 .1318
.7 L0844 L1647 .1358 LOT1h .0886 .1390
.8 0923 .1810 .1501 L0761 L0943 .1535
.9 .1125 .2250 .1860 .0890 .1104 .1918
1.0 .9952 2.1413 1.8065 ., 7909 .9106 1.8449
1.1 1.1197 %.3890 2.6427 1.1377 1.7866 2.6831
1.2 .9110 1.8131 1.5526 .5526 L7516 1.5906
1.3 . TO0L 1.6597 1.3615 <5945 . T606 1.3918
1.k . THi0 1.4867 1.2698 5456 6581 1.2048
1.5 2488 5401 4518 .2076 .2391 4609
1.6 .1305 2788 2282 .1118 L1429 +2331
1.7 .1082 2490 .1971 .0980 1401 L201h
1.8 .0968 2027 .1608 .0832 .1197 .64k
1.9 L09k6 +1938 1531 .0808 J1TT «1565
2.0 .0938 .1891 L1486 .0798 .1178 .1519
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TABLE 2A. MODEL 2; DATA SET 1; RUN 1
ARITHMETIC MEANS

Bio Py3 Byy 711 712
- 0979  -1.2042 « 3620 L7244 A1 -
- 0996  -1.2063 . 3624 L7249 L1204 -
- ,1014  -1.208h4 . 3628 LT254 1234 -
- .1032 -1.2106 .3632 .T260 L1065 -
- 1050 -1.2128 .3636 .T265 1297 -
1 - 069 -1.2150 3640 L7271 1329 -
2 |- 1089 -1l.2172 . 3643 L7276 1361 -
.3 |- 1110 -1.219% . 3646 L7281 L1394 -
Aof- 1131 -1.2216 . 3648 . 7285 1428 -
W5 |- 1155 -1.2237 3649 L7290 63 -
.6 |- .1180 -1.2256 .3648 L7292 .1498 -
S |- .1211  -l.2271 . 3642 . 7293 1534 -
B8 - 1250 -1.2276 . 3625 . 7289 L1570 -
9 |- .1316 -1.2250 3576 .T270 L1602 -
1.0 |- .1569 -1.2379 3530 L7242 .1925 -
1.1 Oh31 -<1.5327 6324 8621 2524 .
1.2 L0051  -1.6299 6756 .8489 3671 -
1.3 |- .5189 -~ .2630 A2zl . 3985 +3002
1.h |- 152k -1.2687 3Thb . 7528 .2038 -
1.5 |- L1775 ~-1.0289 .2152 6763 .0398 -
1.6 |- .1064 -1.2812 o7 . 7500 A837 -
1.7 |- .1268 -1.2483 <3740 L1372 179 -
1.8 |- .1k22  -1.2013 <3923 . 7590 21k -
1.9 |- .1192 -1.3079 ke . 7602 2124 -
2,0 |~ 1555 -1.2316 . 349l L1307 21831 -
TABLE 2B. MODEL 2; DATA SET 1; RUN 1
STANDARD DEVIATIONS
- 0712 <1448 <1184 0628 .0809
-3 L0713 L1450 .1186 .0629 .0808
-.2 071k L1452 .1188 .0630 .0807
-1 0716 . 1455 <1191 L0632 .0807
0 0718 L1459 L1195 .0633 .0808
.1 0722 L1466 .1201 .0635 . 0809
.2 0726 L1475 .1209 .0638 0812
.3 L0733 .1488 .1220 L0643 .0816
R L0743 .1509 .1238 L0649 .0823
.5 .0758 .1542 L1267 L0658 .083h4
.6 .0783 .1598 131k L06Th L0854
o7 .0826 1697 .1398 .0702 .0889
.8 +0909 +1892 .1563 L0758 .0961
.9 .1107 .2356 .1953 L0894 L1140
1.0 .4088 . 9897 .8080 «3305 L4852
1.1 2,3224 5.0065 L.2137 1.9680 1.9549
1.2 .8207 2.3957 1.8672 .6551 1.2662
1.3 3.0272 7.5745 6.123%2 2,6391 3.6355
1.k LTT762 2.1729 1.7145 . TO6k 1.1131
1.5 1.0711 1.9436 1.7127 T2h2 .T650
1.6 L2681 . 5470 L1626 .2019 2476
1.7 .3286 L1376 6131 2871 <3274
1.8 6831 1.9693 1.5405 .8090 L9776
1.9 .2619 .6309 .5133 .2489 .2910
2,0 .1900 bk .3607 L1706 .2076




TABIE 3A. MODEL 1; DATA SET 2; RUN 1
ARITHMETIC MEANS
R Bio Bis Py 11 712 713
-4 | - .08k -1.308% L1263 L7504 .1988 - .h1T78
-3 | - .088: -1.3136 1300 .T543 2019 - k215
-2 | - .087L -1.319% L3k L7584 .2053 - 4257
-1} - .0856 -1.3259 4389 L1627 ,2090 - 4305
0 - 0837 -1.3333 il 1673 .2130 - 4360
W11 - .08k -1.3h1T 4507 LT72h 2175 - Jhhek
21 - .0785 -1.3515 4582 JTTT9 0006 - J4h99
3 | - JOTWT  -1.3631 L4672 . T840 2284k - L4590
Al - L0700 -1.37T1 L4783 + 7910 .2353 - Jh702
.5 | = J0637  ~1.3947 Lo23 <7992 2U3T - LB
61 - 0551 -1.M77 .5108 .8093 254 - 5032
.7 | - .ok27  -1.hhkok 5367 .8226 2688 - 5294
81 - 0832 -1.L4977 576k L8419 .2903 - .5696
.9 L0135  -1.5867 L6499 .8765 .329% - J6hl2
1.0 .308k  -2.3610 1.2778 1.2275 6813 -1.2783
1.1 | - .143%  -1.237h .3552 .8255 .1815 - .3530
1.2 | - 0622  -1l.hhok .5219 .8086 2763 - .5067
1.3 1.2762  -3.1245 2.2h92 -~ .0855 6111 -2.2917
1.4 | - 2161 -1.1hbh 2573 L1537 .1735 - .24ho
1.5 .2183 -2.0933 1.0749 .9932 .5367 -1.0548
1.6 | - .0305 -1.5772 .6236 . 8869 o7 - L6056
1.7 | - .5288 - .4B05 - .3043 B6Th - L1164 .33%33
1.8 | - Jb013 - .T113 - .1037 6787 - .0125 1143
1.9 2,80260 -8.0766 6.1008 3.8899 3,0315 -6.2077
2,0 { - 1971 -1.1712 .2853 STTH0 ATW7 - L2726
TABIE 3B. MODEL 1; DATA SET 2; RUN 1
STANDARD DEVIATIONS
-. .0602 L1334 .1083 .1022 L0691 .1108
-3 .0606 L1343 .1090 .1025 .0695 £1115
-2 L0611 L1354 .1099 .1029 .0699 .1123
-.1 .0616 .1366 .1110 .1034 .0705 L1133k
0 L0623 .1382 .1123 .10k0 L0712 L1147
1 L0632 .1k02 <1140 <1047 L0721 L1164
2 .0643 .1428 .1162 L1057 0733 .1186
.3 .0658 L1462 .1190 . 1069 LOTHT 121k
A 0677 .1508 .1228 .1086 L0767 .1252
.5 L0704 L1571 1281 .1109 L0795 .1305
.6 OT7h2 . 1664 .1358 L11h2 .0835 .1383
.T .0802 .1809 L1479 .1196 .0898 .1505
.8 .0907 .2066 .1693 120k L1011 L1721
.9 .1149 .2661 .2184 .1530 L1271 .2219
1.0 1.4029 3. 478k 2.8560 1.5856 1.5523 2.9022
1.1 1.773% 3.8117 3,2568 1.153%6 1.5398 3, 2747
1.2 1.0009 2.2090 1.8660 L6954 .9286 1.8943
1.3 | 20.9096 41.5872  36.L4091 12.4900 15.7669  37.084k
1.k 1.6352 4,1156 3.3413 1.6113 1.9238 3.4233
1.5 3.5134 8.7966 T.2320 3,141k 3,9220 T7.1997
1.6 1.9035 5.3093 4.2594 1.9631 2.4542 . 2023
1.7 2,8929 5.5613 44,8566 .5318 2.2306 5.0039
1.8 1.4969 2.9920 2.6200 i Telet 1.1037 2.6111
1.9 | 28.9%23 6k.9009 54.8812 28,5670 26.6598 56.1345
2.0 L4037 1.1148 . 8868 . 5006 .53%80 .8o24
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TABLE &4,

MODEL 2; DATA SET 2; RUN 1
ARITHMETIC MEANS

55

R P12 P13 Bik 711 712 713
-4 [ - L0900 | -~ 1.3133% Jh287 . 7549 L2029 | - WJ42ll
-3 | - ,0891 | - 1.3180 U321 .7583 2056 | - JL2ks
-2 | - 0879 | - 1,3232 L1359 . 7619 L2086 | - L4283
-1 - .0865 | - 1.3290 ko2 . 7656 2119 | - L4326
o | - .o848 | - 1.3355 L4450 .7696 2154 | - U374
A - L0827 | - 1.3428 4506 «7739 W2193 | - Ju4h30
2| - .0801 | - 1.3513 4571 .7786 L2236 | - J4hob
3| - J0769 | - 1,3612 LL46L8 .7838 2286 | - b573
Y L" - » 0728 - l- 3730 » Ll-7’+2 " 7896 ™ 234"“ -t ' 4667
Sl - L0676 - 1,3875 | L4858 . 7962 L2m3 | - (4784
b | - L0607 | - 1.4060 . 5006 L8043 2499 | - 493k
71 - L0510 | - 1.4307 .5208 LO1hk 2611 | - L5137
81 - ,0366 | - 1.4665 .5502 . 8284 2770 | = 5435
91 - .0116 | - 1.5271 .6003 .8511 .30%6 | - 5941
1.0 L0771 | - 1,7530 . 7847 LOl22 4057 | - L7803
1.1 L1166 | - 1,7694 .8158 .8595 .3865 | - .8065
1.2 1 - 0280 | - 1,495k » 5730 .8360 ,2889 | - .5632
1.3 | - L,0503 | - 1.4105 .5083 8172 2h66 | - 5077
l- L“ - 2 . 2881 3- ‘761"‘6 -~ 30 8""81 - - 5815 - 1 . 871"'3 3- 7723
1.5 - .0395 | - 1.4173 .5187 . 7600 .2460 .5118
1.6 | - 280k | - .,9065 . 0801 .6258 Lol | - L0682
1.7 8217 t - L,0976 2.6220 1.8393 1.5408 | - 2.5597
1.8 35,9368 | -87.4384 72.4727 32,1884 36,5590 | =71.9636
1.9 - .1890 | - 1.2436 . 3360 .8701 Ll | - ,3200
2.0 - .2511 | - 1.0335 .1722 . 7254 JA1h41 | - L1605
TABLE 4B, MODEL 2; DATA SET 2; RUN 1
STANDARD DEVIATIONS
~ b . 0601 .1352 .1096 .1033 . 0697 L1117
-3 . 0604 .1.358 L1101 .1036 .0700 L1122
-2 . 0608 .1365 L1107 .103%9 .0703 .1128
-.1 L0613 1375 L1116 J10k2 .0707 .1136
0 .0619 .1387 .1126 . 1047 0712 L1147
.1 0627 | L 140k L1141 .1052 .0719 L1161
.2 .0638 1426 .1160 .1060 .0728 .1180
o3 L0652 L1456 .1186 .1069 L0740 .1206
ol . 0671 1497 L1221 .1082 L0757 L1241
o5 .0598 <1555 .1271 .1100 .0780 .1290
.6 0736 .1640 <1343 .1125 L0814 .1363
o7 .0795 1773 1456 L1165 .0868 L1476
.8 L0894 .2001 L1649 .1235 .0963 L1671
.9 L1104 .24k . 2062 <1397 L1171 . 2090
1,0 .2563 .6795 5427 .3583 « 5357 .5558
1.1 1.6340 3.8020 3,1657 1.0919 1.6696 3,1975
1.2 1,0132 2.7411 2,2056 1.1871 1.2694 2.2040
1.3 1.0380 | - 2.2317 1.9016 .6813 ,9191 1.9244
1.4 19.1577 L6,2630 38.4969 13.3833 19.5556 37.6958
1.5 1.9726 3. 8401 3.3722 L6710 1.4673 3, 4h62
1.6 1.1698 2.5710 2.1919 Lo11k 1.0151 2.2010
1.7 11,7181 33,3718 26.6882 12,6359 15,5224 26,1806
1.8 | 358.000 855.786 715,819 312,521 361,163 710,864
1.9 1.153%7 2.7395 2.2918 1.0864 1.1500 2.2900
2.0 Jab87 1.0520 8777 | k223 L4525 .8853




TABLE 5A. MODEL 1; DATA SET 1; RUN 2
ARTITHMETIC MEANS
R P12 Biz Pk 711 Y12 713
A 2736 | - 1,2829 . 3681 .7292 1192 | - L3638
-3 2725 | - 1.2838 . 3683 . 7295 1221 | - .35637
-2 L2714 |- 1,2847 . 3685 .7299 L1250 | - .3636
-.1 2702 | - 1,2856 . 3688 L7302 1280 | - 3635
0 2691 | - 1.2866 + 3590 7306 1310 | - 363k
.1 2679 | - 1.2375 . 3592 . 7309 L1341 | - L3633
o2 2657 | - 1,2885 . 5693 L7313 372 | - 3632
.3 .2555 | - 1.2894 . 3695 .7316 Lok | - 03630
e 26h2 | - 1,290L . 3696 .7320 Q437 | - 3628
.5 2529 | - 1.,2912 .3697 .7323 Jb71 | - .3625
.6 2615 | - 1,2920 .3696 .7325 L1506 | - .3621
.7 2601 | - 1.2925 . 3692 7327 L1542 | - .3613
.8 2585 | - 1.2923 .3681 .7325 1579 | - .3596
.9 .2566 | - 1,289k 3642 L7311 L1615 | - .3550
1.0 2618 | - 1.0398 1322 63kl LO746 | - L1111
1.1 2218 | - 1.5837 L6232 .8532 L3260 | - .6152
1.2 .250% | - 1.8345 .3699 .9218 Jhts | - 885k
1.3 ,2781 | - 1.0511 L1541 6430 L0410 | - J1h23
1.4 2661 | - 1.5833 .6511 .3955 ,2089 | - .6495
1.5 2487 | - 1.3621 281 L7629 L2009 | - h202
1.6 2512 | - 1,2848 . 3568 .7299 JA7%2 | - J3h66
1.7 2498 | - 1.2930 . 3637 . 7337 L1785 | - 3532
1.8 2474k | - 1,3017 . 3705 . 7372 1868 | - .3597
1.9 2457 | - 1,304k . 3720 .7383 L1917 | - .3608
2.0 2Lho | - 1.3065 3729 J7391 .1963% | - ,3613
TABLE 5B . MODEL L; DATA SET 1; RUN2
STANDARD DEVIATIONS
-4 L 024k .1298 L1176 . 0615 .0821 .1208
-3 L 024k L1301 .1179 06156 . 0820 1211
-2 L0243 <1304 L1182 L0618 L0820 121k
-.1 L0243 L1307 .1186 L0619 .0320 .1218
0 0243 L1312 .1190 L0622 . 0820 .1223
.1 . 0244 .1318 1196 062k L0821 .1229
.2 L 024k 1327 L1204 L0628 .0823 L1237
3 L0245 .13%9 1215 -, 0632 .0827 .12h9
N 0246 .1356 1232 L0633 L0832 .1265
5 .0248 .1383 .1256 LObL7 . 0840 .1290
.6 . 0250 L1426 1296 L0661 . 0855 L1331
.7 L0254 .1505 .1368 . 0685 .0881 J1bok
.8 0262 1667 L151h .0735 . 0937 .1552
.9 . 0284 .2096 .1900 . 0870 ,1102 L1941
1.0 473 1.9%26 1.7397 .7645 .8820 1.7751
1.1 . 2009 1.6564 1.4699 6232 .9363 1.4925
1.2 .1313 5.,7742 5.3228 1.9558 2,0096 5,5563
1.3 1545 1.7841 1.5855 .6836 8769 1.6261
1.4 684 3,0528 2.,9612 1.5086 . 7759 3.0%70
1.5 Loh52 .5063 4558 . 2079 . 2377 4654
1.6 L0345 . 25606 . 2543 Jdl1k . 1407 2396
1.7 .0337 L2034 L1810 .0857 .1257 .1855
1.8 L0321 .1758 .1569 .0762 .1125 .1609
1.9 L0321 .1668 .1490 L0734 .1097 .1529
2,0 0325 161k L1442 .0718 .1086 .1480
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TABLE GA .

ARITHMETIC MEANS

MODEL 2; DATA SET 1; RUN 2

k P12 P13 By 711 712 713
-4 2671 | - 1.2883 . 360k 7572 L1337 | - 3630
-3 .2663 | - 1.2889 3695 7372 L1359 | - 3630
-2 2655 | - 1.2895 . 3696 .7372 L1381 | - .3629
-.1 L2647 | - 1,2901 3697 7371 L1403 | - .3628
2639 | - 1.2907 . 3697 . 7371 JAb26 | - 3627
.1 .2630 | - 1.2913 .3698 7370 Lk | - L3625
2 2622 | - 1,2918 . 3698 .7359 Jh72 | -~ 3623
.3 L2613 | - 1.2923 . 3698 . 7368 L1495 | 2 .3621
M L2604 | - 1,2928 . 3696 . 7366 1520 | - L3618
o5 .2595 | -~ 1,2931 « 3694 .7363 Jshk | - (3613
.6 .2585 | - 1.2931 .3689 7359 1569 | - ,3605
o7 2575 | - 1.2927 « 3679 .7352 L1594 | - 03593
.8 2564 | - 1,2012 . 3658 . 7340 L1619 | - 3570
.9 2551 | - 1.2863 . 3606 L7311 L1641 | - 3514
1.0 L2hks | - 1,2885 . 3576 .7252 L1931 | - 3477
1.1 Jaoks |- 11,8133 | - 2.4081 5341 | ~ 1.0632 2.4098
1.2 2313 | - 1.5389 . 5857 .8183 . 2930 .5777
1.3 3498 | - L2555 | = WJ5HHS 3563 | = .3805 . 5014
1.b4 2503 | - 1.1503 2373 .6994 L1051 .2187
1.5 2773 1 - J7519 | - L1285 5245 | - LOb3hL .1528
1.6 2550 | - 1,3378 L4086 L7546 1783 | - Jho22
1.7 L2568 | ~ 1.,2902 . 3645 L7341 L1615 | - .3573
1.8 L2509 | - 1.2476 L3211 .7189 L1607 | - 3057
1.9 2453 | - 1.3480 L4120 L7581 .2034 | - L4000
2.0 2ho6 | - 1,2765 3481 ,7285 L7421 - .3370

TABLE 6B. MODEL 2; DATA SET 1; RUN 2
STANDARD DEVIATIONS

.0223 .1317 .1196 L0614 . 0808 .1229
,0223 L1317 .1196 061k .0817 .1230
L0222 .1318 .1198 L0614 . 0806 1231
L0222 1321 ,1200 L0615 .0805 L1232
0222 1322k .1203 L0516 . 0805 L1235
1 L0222 .1329 . 1207 L0618 .0806 L1240
2 0222 1337 .1215 .0620 .0807 L1247
.3 .0223 .1350 L1226 L0624 L0811 .1257
. 022k .1369 L1243 L0630 .0816 1275
.5 .0225 L1401 1271 L0640 . 0827 .1302
.6 .0228 . 1454 .1319 L0556 0845 .1349
o7 .0233 .1550 .1403 . 0684 .0880 L1433
.8 L0242 L1737 .1569 L0741 . 0952 .1598
.9 . 0266 L2177 .1961 .0881 L1131 .1990
1.0 .0839 .8181 .7338 .2982 .Lh282 . 7549
1.1 1.7412 26.6126 23,6696 11,4601 10,9487 2%, 4493
1.2 .1355 1.3514 1.1950 JRIIbIYe) . 7066 1.2002
1.3 .6559 7.3190 6.4052 2. 7437 3.8100 6.6002
1.4 .1968 1.8587 1.6379 L6563 1.0148 1.66k42
1.5 . 2090 2.7325 2.5647 1.1692 .9519 2.6699
1.6 L0542 .5605 .5112 2271 . 2581 .5252
1.7 077k .7h26 5629 .31256 . 3717 6669
1.8 L1347 1.43%94 1.2801 .6129 AR 1.2969
1.9 . 0561 .5835 .5182 .2h53 .2852 .5167
2.0 L0416 «3936 . 3507 L1628 .1981 3511
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TABLE TA. MODEL l; DATA SET 2; RUN 2
ARITHMETIC MEANS
K P12 Biz Py 711 712 713
- 2499 | - 1.3799 4359 7725 2086 | - JLk275
-3 2ho2 | - 1,3842 405 L7756 2115 | - L4311
-2 L2485 | - 1.3890 Alhs .7789 LLh6 | - L4353
-1 2477 | - 1.3944 Aho2 .7825 2179 | - JL4hoOo
0 L2U6o | - 1,4006 Lshs .7863 2217 | - Jubsh
W1 260 | - 1,4077 L4607 . 7905 2258 | - Jh4517
.2 L2hho | - 1,4162 681 . 7952 2306 | - JW592
o3 L2U38 1 - 1,4262 L8770 . 3004 2361 | - L4683
i 2h2s | - 1,4386 L4880 . 8065 227 | - 479k
.5 209 | « 1,4542 .5019 .8138 .2507 | - 4936
.6 22390 | - 1.47h47 .5202 .8228 2610 | - ,5122
.7 2364 | - 1,50%2 5459 .8349 2751 | - 5384
.8 2327 | - 1.5459 5854 { .8527 | L2961 1 - .5785
.9 .2259 | - 1.6275 .6585 .3850 334 | - 6528
1.0 <1790 | - 2,0919 1.0752 1.1066 5696 | - 1.,0741
1.1 3082 | - L6227 | - L2583 .5880 | - .1373 .2608
1.2 2he7 | - 1,395 b6 .7726 2310 | - 4305
1.3 .1290 | - 5.5911 4,1923 2,8303 2.2843 | - 4.2399
1.b 23019 | - L5390 | - 3471 S5 o~ L1419 3648
1.5 .1088 | - 5,4592 4, 0081 2.1056 2,264 | - L, 1634
1.6 .2639 | - 1.1574 2305 . 7079 128 | - ,2183
1.7 L2717 | - 9100 .0006 6371 .0220 .0180
1.8 2984 | - 4697 | - L1168 6231 | -~ .1508 L4270
1.9 2495 | « 1,0822 L1448 . 7668 1276 | - .1320
2.0 2519 | - 1,1863 . 2495 .7561 .1508 .2%68
TABLE 7B. MODEL 1; DATA SET 2; RUN 2
STANDARD DEVIATIONS
-4 .0182 .1207 .1086 .0988 . 0695 L1112
-3 - ,0182 L1214 .1092 . 0991 L0698 - L1118
- L0183 « 1223 « 1100 « 0993 . 0702 11256
-1 . 0185 1233 .1110 . 0997 L0707 .1136
o .0186 1247 L1123 .1002 L0713 L1148
.1 .0183 L1264 .1139 .1008 .0722 L1164
.2 .0190 .1286 .1159 L1016 .0732 .1185
.3 .0193 L1315 .1187 L1026 LO7R6 1212
Ry .0197 .1355 L1224 .1040 . 0765 1249
o5 .0202 L1411 L1275 .1060 .0791 .1301
o6 . 0209 J1hoh L1351 .1090 . 0829 1377
o7 . 0220 162k L1471 .1139 . 0890 .1498
.8 L0241 .1856 L1683 .1230 . 1000 1713
.9 .0287 . 2394 2172 L1453 L1257 .2209
1.0 .2293 2.5117 2. 2744 1.1735 1.2182 2.3113
1.1 L1682 6.1889 5.7046 1.8775 2.7802 5.6974
1.2 .1259 1.5662 1.5283 .5700 L7447 1.5542
1.3 L,2198 53,6464 43,6023 21.3035 2k, 7852 50.2057
1.b . 5486 6.7620 6,1927 2.0536 3,1h462 6.2246
1.5 3.1630 31,8387 28,4073 12.1303 16,7311 1 28.9876
1.6 1488 1.6128 1.4841 . 5486 . 7554 1.4879
1.7 L1017 1.9616 1.8028 . 3832 . 8093 1.8472
1.8 .2720 4,9429 L, 6345 .8829 1.9511 L, 5204
1.9 . 2750 L, 6968 4, 4015 1.8353 1.8997 &, 4809
2.0 0793 . 7986 .7218 « 3501 . 7317
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TABLE 8A.

MODEL 2; DATA SET 2; RUN 2
ARITHMETIC MEANS

R B2 P13 Piy 711 712 713
-l L2487 | - 1.3836 L4393 <7765 L2124 | - L4307
-.3 2481 | - 1,3875 JRATE-TS 7792 L2149 | - 4340
-2 2475 1 - 1,3918 63 . 7621 2177 | - L3y
-1 2468 | - 1.3966 504 . 7852 .2206 | - L4420
o} 261 | - 1,k021 Js552 . 7385 02239 | -~ 4458
o1 2453 | - 1,4084 1607 » 7920 2275 | - JL4523
.2 L2uh5 | - 14157 L4671 + 7959 .2%16 | - L4588
o3 2435 | - 1,4243 LY .8003 2362 | - LL666
A L2h2h |~ 1, 43hy L48Lo .8053 2h7 | - b9
.5 L2411 | - 21,4476 <4955 L8111 L8 | - L4876
.6 2396 | - 1,464 5103 .8183 2566 | - 5026
.7 2376 | - 1,4863 « 5303 L8274 2676 | - 5229
.8 2348 | - 1,5188 .5597 .3ho2 2832 | - 5527
.9 2302 | - 1,5743 .6101 L0616 .3096 | -~ L6037
1.0 $2109 | - 1,7783 <7940 o482 12 | - ,7895
1.1 .2562 | -~ 1,4091 713 7348 L1043 | - L Lssh
1.2 3483 | - 6202 | - L2346 . 3973 2241 2410
1.3 2552 | - 1,3753 309 7757 .1998 L4311
1.4 .2888 | - 5416 | - .3471 . 5654 L1154 . 3660
1.5 L2k | - 1,6833 L7195 7720 3224 7200
1.6 L065h | - 4,6798 3.5465 2,1228 1.7320 | - 3,4820
1.7 £2081 | ~ 1,7707 .7313 . 9315 22 1 - 77279
1.8 $2373 | - 1,5060 «5505 .8050 2738 | - 15393
1.9 2577 | - 1.0010 L0743 . 7601 0830 | - ,0588
2,0 2638 | - 1,0491 .1223 . 7100 0871 | -~ .1108

TABLE 8B. MODEL 2; DATA SET 2; RUN 2
STANDARD DEVIATION

.0182 .1220 +1097 .0998 . 0701 .1120
.0182 1224 L1101 .1000 . 0703 L1124
L0183 .1230 L1107 1002 .0705 L1129
L0184 1237 L1114 . 1004 . 0709 L1137
.0185 1248 112k .1008 L0713 1146
.0186 1262 .1138 .1012 L0719 .11560
.0188 L1281 «1156 .1018 .Q727 L1177
.0190 .1307 .1130 .1026 L0738 .1202
.0193 1343 L1214 .1037 L0754 1236
L0197 .1395 1263 .1052 .0776 L1284
.0203 1473 .1335 .1075 . 0808 .1356
0211 1594 . 1446 L1111 .0861 .1468
8 .0226 . 1804 .1639 L1176 . 0953 1662
9 . 0260 .2262 . 2054 .1330 L1161 . 2084
1.0 L0731 L6284 5558 .3581 3472 . 5695
1.1 . 3874 L, Lozo 3.9541 1.5995 2.2374 &, 0627
1.2 1.0497 8.0723 7.1260 3.9092 L, 60h2 7.0914
1.3 .1780 2.5912 2.3690 .7286 1.1498 2.3961
1.4 .6011 8.6873 7.9056 2.5342 %.8906 8.0085
1.5 . 2738 6.5446 6.0884% .9088 2.5748 6.2419
1.6 3.7857 42,3165 | 39,6763 17.0927 19.2140 39.2190
1.7 Jbls 5.3032 L, 8305 2.003%9 2.4914 4,8553
1.8 1626 2.4195 2.2549 .6391 1.0184 2.2512
1.9 .1613 2.5232 2.3622 .6936 1,0554 2.4005
2.0 .0990 1.1119 1,0232 L4596 . 5202 1.0309




TABLE OA. WMLMDMA%TMRW3
ARTTHMETIC MEANS

> Bip P13 Py, 71, 712 13

-k .2897 | -1.6831 h69 3336 1855 [ - Jh3T
-3 .2892 | -1.6829 4468 8334 21865 | - L4376
-2 .2887 | -1.6827 T .8331 <1875 | - 437k
-.1 .2882 | -1.6825 4465 .8328 1885 | - 4371
0 2876 | -1.6823 4h63 .8326 21896 | - .4369
.1 «2871 | -1.6821 61 .8323 «1906 | - .L366
o2 2865 | -1.6818 JAhs59 .8319 <1917 | - 4363
o3 2859 | -1.6815 456 .8316 <1928 | - 4359
A .2853 | -1.6812 JAh53 8312 <1940 | - 4355
.5 2847 | -1.6808 Ao .8308 <1951 | - 4350
.6 2840 | ~1,6803 Juhh3 .8303% 1963 | - JL43ko
T 2833 | -1.6795 4433 8295 «1976 | - U331
.3 2082k | 21,6782 bk .8285 L1988 | - 4310
<9 .281% | -1.67h9 4364 .8261. »1996 | - ko555
1.0 6179 | - .2299 -2.0395 | - .0527 | -1.0698 | 2,0905
1.1 2648 | -1,7181 «5148 .8529 2488 | - ,5035
1.2 «2507 | -1.7960 6423 .8661 BLTT | - 6365
1.3 +3226 | ~1.5147 . 1604 7272 0501 | - ,1ko3
1.4 2h22 | .1,8096 L6743 + 9075 3331 | - L6673
l. 5 . 2811 “'l. 6908 . 14'626 . 8381 . 2067 el | 11'538
1.6 2841 | -1,6681 Aoz 8231 1913 | -~ 4139
1.7 2779 | -1.6842 4522 .8323 «2108 | - Lb35
1.8 «2792 | -1.6794 Ry .8295 «2061 | - 4345
1.9 <2786 | -1.6791 RN .8291 <2073 | - L4341
2.0 :2778 | -1.6789 bl .8288 2087 | - .4339

TABLE 9B. MODEL 1; DATA SET 1l; Run 3
STANDARD DEVIATIONS

-4 .0360 .0725 .123 0557 .0869 .1285
-3 0360 0726 .1248 .0558 .0869 .1287
-2 0360 0727 L1243 .0558 0869 .1289
-1 .0361 0729 1245 .0559 .0870 1292
0] .0361 0731 1249 .0560 0871 .1295
.1 .0362 073k 1254 0562 . 0873 .1301
o2 0363 .0739 L1262 . 0564 .0876 .1308
o3 . 0364 LOTLE 1273 . 0566 .0879 .1319
o .0366 0756 .1289 .0570 .0885 .1335

5 0369 0771 «1315 L0576 .0895 .1361
.6 0373 0796 «1357 .0586 .0911 .1403
.7 «0380 0841 <1433 0602 0940 .1480
.8 .0395 .0931 .1587 0636 »1002 163k
.9 .0L36 <1167 .1992 0727 .1180 .2041
1.0 2.0253 941959 | 15.57Th | 5.76T1 7.8269 | 15.9357
1.1 .1584 5792 1.0001 «2900 5415 1.0243
1.2 .1889 6599 1.1162 .2878 6h23 l.1421
1.3 2615 144571 2.4293 . 9262 1.0703 2.5104
1.4 3hh3 .T703 1.3530 «5137 . 0225 1.3624
1.5 .0588 .1695 «2910 .1001 <1739 <2977

0537 .1382 «2391 .0872 .1538 2470
.0526 .1222 .2131 0781 1450 .2194
O3 0936 |  .160% .0635 1122 1656
.0L37 .0885 L1514 0612 .1083 1566

D b
O\ ®W-3 O

.Ol435 .0855 1460 . 0600 - 106k .1512




TABLE 10A. MODEL 2; DATA SET 1; RUN 3
ARTTHMETTC MEANS
T~ P12 P13 By 711 710 713
-k .2850 | -1.6811 L4hs55 .8352 1932 | - 4355
-3 2846 | -1.6810 I .8349 «1939 | - .L354
-2 28k2 | -1.6808 453 .8346 04T | - U352
-1 .2838 | -1.6807 b5y .8343 2954 | - 4350
0] 2835 | -1.6805 L4450 .83L0 1962 | - L4348
.1 .2831 | -1.6803 L4448 .8336 1970 | - L4346
2 2827 | -1.6800 Lils .8332 21979 | - L4343
.3 .2822 | -1.6798 1Y) .8327 <1987 | - 4340
A .2818 | ~1.679k Jizg .8322 <1996 | - 4336
.5 2813 | -1.6790 4433 .8316 .200k | - 4330
.6 .2808 | -1.6784 hos .8309 2013 | - k321
T .2803 | -1.6774 o .8299 .2022 | - .4308
.8 -2797 | -1.6758 4388 8282 .2031 | - 4283
.9 2788 | -1.6719 4330 .8250 «2037 | - hooh
1.0 2702 | -~1.6391 .3840 L7981 211k | - 3719
1.1 3455 | -2.5155 1.7h04 1.1721 U317 | -1.7985
1.2 3171 | -1.6018 2915 <TTHT 090k | - 2661
1.3 «3092 | -1.6397 + 3673 8220 1266 | - .3595
1.4 .2265 | -1.8792 « 7939 . 9046 «398k | - 7856
1.5 L0654 | -2,4365 1.8286 1.2056 1.2421 | -1.8384
1.6 <3094 | -1.6371 . 3630 8172 1257 | ~ 3573
1.7 2801 | -1.6639 173 8275 .1958 | - .ho3k
1.8 .2710 | -1.7155 « 5062 .8561 «2359 | - .Lo6T
1.9 2837 | -1.6582 L4076 8104 21862 | - L3947
2.0 +3013 | -1.5707 «2601 . 7693 1183 | - .2504
TABLE 10B. MODEL 2; DATA SET 1; RUN 3
STANDARD DEVIATTIONS
I .0329 L0727 « 1251 .0570 .0853 <1297
- 0329 0727 .1250 0570 .0851 .1296
-2 .0%28 L0727 .1250 0569 .0850 .1296
-.1 .0328 0728 .1251 0569 .0849 .1297
0 .0328 0720 1253 | L0569 .08Lg .1299
.1 .0328 0731 .1257 0570 .08k9g .1302
.2 .0328 0735 »1263 0570 .0851 .1308
o3 .0329 LOT7he L1274 .0572 .0854 .1318
oAb .0331, 0752 «1291 0575 .0860 <1335
o5 .0%33 L0769 1319 .0580 .0870 21362
.6 0337 0797 1366 .0589 .088¢0 .1409
.7 .0345 L0847 Jhs5o .0606 002k 149k
.8 0362 0ok7 ,1623 0641 .0998 « 1664
.9 .0L06 L1192 <2043 0735 .lig2 .2086
1.0 <104k L367 < Ths5h 2548 « 3708 . T6T70
1.1 «9023 7.3515 | 11.268%4 2.8066 1.9169 | 11.9290
1.2 .5558 1.6342 2.9686 <9357 1.8531 3.1166
1.3 L1486 + 9657 1.7623 4099 1.3471 1.7753
1.k L4102 1.7039 2.9435 6649 1.6002 3.0116
1.5 k919 L, 5572 8.4659 2.2031 7.0568 8.5540
1.6 «201k 4804 8724 2hop «5955 8612
1.7 «1hT7 «5590 + 9699 .3418 . 5002 . 9937
1.8 0792 2TTT 792 L7k .2620 L4891
1.9 1024 .3800 6725 2448 + 3640 .6929
2.0 .220% 1.0246 1.7395 5912 8356 |  1.7239 |
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TABLE 114.

MODEL 1; DATA SET 2; RUN 3
ARITHMETIC MEANS

Biz Piz Piy 11 712 713
.26L0 |~ 1,7225 .5120 .8781 +2579 |- .5005
2626 |- 1,7268 .5195 8812 2625 |- ,5083
2618 |~ 1,7294 5241 3829 2652 |- .513%0
2609 [~ 1.7324 . 5294 .3849 .2683 |- ,5185
«2599 |- 1,7359 .5356 .8871 2718 1= 5248
.2587 |- 1.7400 <5429 .8896 2758 |- .5323
257k |- 1,7450 5517 .8925 2806 |- .5k
2558 |- 1.7511 .5625 .8959 286k |- 5525
.2512 |- 1,7691 5942 . 9057 .5030 |- ,5849
2476 |« 1,7832 6192 .9132 .3159 |- L6105
.8 2423 |- 1,8047 .6570 . 9246 3354 |- 6493
.9 «2326 |- 1.8433 . 7253 .obs55 .3705 |~ .7192
1.0 2417 |- 1,7853 6387 L8642 3079 |- L6052
1.1 03522 1= 1.33h49 |- ,1682 «79380 |- L0756 .1807
1.2 .2882 |- 1,7287 5154 7732 .2098 |- ,5023
1.3 .6325 [~ 4531 |- 1,7559 L1343 |- L9870 1.8144
1.4 L1647 |~ 2,0119 1,0353 1.1076 . 5809 1,0460
1.5 2702 |- 1,6399 . 3694 .8593 L2134 . 3532
1.6 3784 |- 1,1558 |= 4829 .5958 |- ,1884 .5127
1.7 3415 |- 1,4968 .0956 .7333 L0148 |- .0800
1.8 2.0519 |- 3.6596 |~ 9.4663 |- 3,6198 |- 5,1219 9.5157
1.9 JJB24h te 1,3312 |- L1710 L8727 |- L0172 L1857
2.0 2759 |~ 1,6455 . 3769 .8887 2059 |- ,3655

TABLE 11B. MODEL 1; DATA SET 2; RUN 3
STANDARD DEVIATION

. 0273 . 0626 .1097 . 0911 L0717 L1131
,0273 . 0628 .1100 ,0912 .0719 L1134
0274 +0631 .1105 L0913 .0721 .1139
0275 L0634 | L1111 . 0915 0724 L1145
. 0277 .0639 .1120 L0917 .0728 .1153%
.1 .0278 L0645 1131 . 0920 0733 L1165
2 .0281 L0654 L1147 .0924 L0740 .1180
o3 . 0284 L0565 .1168 . 0931 .0750 1202
L . 0288 .0682 .1199 .0939 . 0764 1232
.5 0294 .0706 l2k2 ,0952 .0785 .1276
.6 . 030k L0743 .1309 .0973 .0818 1343
.7 .0319 . 0803 1417 .1007 0872 1453
.8 L0348 .0915 .1618 1074 .0975 .1657
.9 0423 L1182 .2097 .1250 L1234 2146
1.0 .6061 2.2684 3,9257 2.0635 2.2535 L, 2004
1.1 6417 2.9760 5.1918 1.2291 2.4970 5.2359
1.2 .6949 2.3681 L, 2070 1.6586 2.3185 4, 3277
1.3 3.6566 | 12,1495 | 21,7374 7.0720 | 12.2122 | 22.2076
1.4 1,0162 4,5648 8,0952 2,0069 3.8463% 8.3487
1.5 . 2651 1,0813 1.8909 L4992 . 9849 1.9342
1.6 .9152 L, 2459 7.5049 2.3402 3.4122 7.6176
1.7 6716 1.9082 3.5286 1.0768 2,0521 2.5379
1.8 | 17,3488 | 51,0407 | 95.2247 | 43.9985 | 51.7299 | 95.4990
1.9 . 3480 2.5801 L, 4865 «3993 1.6965 4,4863
2,0 .1623 772k 1,3570 778 . 5284 1.3955




TABLE 12A. MODEL 2; DATAL SET 2; RUN 3
ARITHMETIC MEANS
B2 P13 By 711 Y12 713
- b .2628 |- 1,7235 .5138 .3801 .2607 |- .503%0
-3 .2622 |~ 1,7253 5171 L3814 .2627 |- 5064
-2 2616 |- 1,7274 .5208 .8827 2649 |~ 5102
-.1 <2609 |# 1,7298 52k9 8842 L2673 |~ 5145
0 «2601 |- 1,7325 5297 .8859 <2699 - .5194
.1 .2592 |- 1.7356 5352 8877 +2730 |~ ,5250
.2 .2582 |~ 1,7393 5417 .8897 2765 |~ .5317
3 3 Y 2571 - l . 7",’36 . 5494 . 8921 . 2806 - * 5395
n 2557 |- 1.7489 .5586 8949 .2855 |- 5490
. 5 . 2541 - l . 7555 . 5702 . 8983 . 2915 - . 5609
.6 .2520 |- 1,76%9 .5850 . 9026 .2992 |- .5760
.7 L2492 |~ 31,7752 . 6051 . 9083 .3095 [~ .5965
.8 L2U51 - 1,7918 6343 L0166 2hh o 6263
.9 .2381 |- 1,8197 .6836 9310 3h97 |- L6767
1.0 2175 |- 1,8943 3171 . 9705 JL201 (- L8166
1.1 .1986 |- 2.0538 1.0828 . 9335 5320 |- 1.0808
1.2 .3609 |- 1.3126 |- 2200 « 7438 . 0990 .2289
1.3 2419 [~ 1,8043 5556 . 9255 .3363 |- L6487
1.4 1773 |~ 2.2446 14142 1,1688 6349 |- 1,4405
1.5 «3531 |~ 1.3227 |- . 1897 . 7137 L0844 2179
1.6 «3155 |~ 1,5131 . 1449 . 7693 L0660 (- L1241
1.7 £ 2723 |~ 1.6453 <3798 8635 2105 [~ 3674
1.8 .2626 |~ 1,599% . 3103 .9010 L2068 |- ,2890
1.9 .2880 |~ 1.5483 L2174 . 8466 1324 |- 2020
2.0 .1928 |- 2,0918 1.1697 .9787 .5505 |- 1.1806
TABLE 12B. MODEL 2; DATA SET 2; RUN 3
STANDARD DEVIATIONS
-l . 0273 . 0628 L1105 .0919 .0723 .11326
-3 .0273 . 0629 .1107 .0919 0723 .1138
-2 L0274 L0631 .1109 .0920 ,0724 L1140
-1 .0275 .0633 111k .0921 L0725 114k
0 . 0275 .0637 .1120 .0923 .0727 .1150
.1 L0277 .06L2 .1130 .0925 L0731 .1160
.2 .0278 . 0650 L1143 .0928 0736 L1173
.3 .0281 . 0661 L1163 .0933 Neyzn .1192
N L0284 . 0677 L1192 .0939 .0755 1221
o5 . 0289 . 0701 L1234 0949 0773 .1263
.6 .0296 L0738 .1299 . 0964 .0802 .1328
o7 . 0309 L0798 . 1405 . 0989 .0850 L1435
.8 L0332 0904 L1594 . 1038 L0941 1626
.9 .0390 L1llh2 L2015 L1161 .1158 . 2055
1.0 .0908 L2811 L4967 L2547 .2950 .5157
1.1 .2863 1.3742 2.3879 .5255 | .1.1321 2, 4051
1.2 1.1810 L,6518 8.2901 2.1953 L, 2459 8.3550
1.3 .2222 9152 1.6158 4817 .« 7984 1.6422
1.4 1.3601 6.3680 | 11,2218 3.3970 5.2042 | 11.6028
1.5 L1397 1.9374 343669 .8959 1.6974 3.4787
1.6 . 2Lk « 9330 1.6536 .5073 3684 1.6762
1.7 2912 | 1.2497 | 2,2366 5514 11,0837 | 2.2440
1.8 . 3490 1.5044 2.6843 . 8067 1.2157 2.7253
1.9 « 3676 2.2163 3.8238 . 1869 1.6590 23,3467
2.0 8523 4,9575 8.7584 1,0029 3. 7054 8.9908
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IABLE 13A. MODEL 1; DATA SET 1; RUN b
' ARITHMETIC MBANS

K By Piz Byy 711 712 713
-4 .3270 | =2,0071 5761 + 9950 2498 | - 5795
-3 «3265 | =~2,0069 <5760 . 9947 «2510 | - ,5793
-2 3259 | -2,0067 « 5759 « 9944 2523 | - ,5790
™ l 03251"' "200065 05758 . 991"'1 . 2537 - -5787
. l . 3242 "2. 0061 . 5754 L] 9935 ] 2563 = . 5781
o2 «3236 | =-2,0059 5752 . 9931 2577 | - 5777
3 «3230 | =-2.0057 .5750 .9928 2591 | - 5772
A «3224 | «2,0055 5747 .9924 2605 | - 5767
o5 .3218 | -2,0052 5742 «9920 .2620 | - 5761
.6 3212 | ~2,0050 5736 | L9915 2635 | - 5752
o7 23206 | =2,0047 5726 . 9910 «2650 | - ,5739
8 $3200 | -2,0044 5706 « 9004 $2665 | - ,5717
o9 . 3198 -2.0039 « 5657 .9896 2676 | - ,5663
1.0 JO34k | -2, 0254 1,9233 1.,1283 .7837 | =1,9622
l. l . 281"'8 -2. 0045 3 7106 . 9779 . 3332 - e 706.77
1.2 3470 | «2,0099 .5210 .9829 2121 | - ,5278
1.3 - .2688 | -1.9770 2.3224 5522 1,5179 | -2.3240
1.4 .2982 | -2,0041 .6561 . 9981 «3060 | - ,6556
1 » 5 . 329"" "'2 ™ 0045 . 5360 » 9913 . 2‘4‘88 bl 5387
1.6 «3307 | -2.0053 «5376 .9918 25 | o 5389
1.8 3139 | -2,0029 «5789 <9904 «2800 | - .5797
1.9 #3135 | =-2.0027 5774 . 9899 .2809 | - ,5780
2,0 3129 | ~2 0025 . 5768 . 9894 2823 | « 5771
TEBLE 13B. MODEL 1; DATA SET 1; RUN &4
STANDARD DEVIATIONS
-l . 0kko L0137 1226 0473 . 0959 .1258
-3 L Ol .0136 .1228 .0L73 L0961 .1259
-2 LOhlip L0136 1229 LOlb73 . 0962 .1260
-1 LOLL3 L0136 1232 0473 . 0965 .1263
0 o Ollis L0136 1235 OL73 . 0968 .1266
ol . Olly 0137 L1241 . Olizh .0971 1271
o2 .0450 L0137 1248 «OL7h . 0976 L1277
o3 0453 .0137 .1258 . 0475 .0983 .1287
o . 0458 .0138 1274 . Ok75 .0992 .1303
o5 . 0465 .013%8 .1300 .0L76 .1004 1327
.6 .OL76 .0139 1342 . 0478 .1023 . 1368
.7 . Olok L0141 .1418 L0881 | L1055 1442
.8 .0529 L0143 <1575 L0487 .1119 +1596
9 . 0624 L0149 .1998 .0502 .1292 .2017
1,0 2.2099 3777 | 12.3432 1.3129 3.8236 | 12,8027
1.1 L4702 .0729 1.4906 . 1705 o460 | ,1.4542
1.2 L2211 .0292 «5980 L1193 L4285 .6857
1.3 8.2926 L7565 | 23,3868 L,2871 17.5467 | 23,3051
1.4 .1961 . 0234 . 7326 0784 3732 7157
1.5 .1033 .0195 .3487 .0577 »2095 « 3457
1.6 124k . 0201 «3986 .0599 .2572 L4035
1.7 .0775 . 0168 «2339 . 0509 .1629 « 2360
1.8 .0593 L0157 .1750 Noltel) 1267 1776
1.9 <0559 . 0156 .1596 0492 .1205 1625
2,0 . 0545 L0157 .1516 . 0490 .1182 1546
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TABLE 1%\, MODEL 2; DATA SET 1; RUN 4 k5
ARITHMETIC MEANS
R P12 B3 Byy 711 712 713
L™ Ll' . 3223 - 2- 0053 . 5750 . 9972 . 2591 - ] 5769
"0.3 03219 - 20 0052 05750 . 9969 . 2600 - 05768
-2 «3215 | - 2,0051 5749 . 9965 2611 | - 5766
-1 $3211 | - 2,0049 5749 . 9961 02621 | - L5765
.1 «3202 | -~ 2,0046 5747 « 9954 26h2 | - L5761
o2 <3198 | - 2,0045 5746 « 9949 <2653 | - 5759
o3 «3193 | - 2,0043 o« S7h4 . 9945 2665 | - ,5756
A «3189 | - 2,0041 5742 « 9940 2677 | - 5752
5 .3184 | - 2,003%9 <5738 « 9935 <2689 | - 5748
.6 3179 | - 2,0037 <5733 .9928 2702 | - 5742
o7 <3173 | - 2,0035 5725 . 9921 2717 | - 5732
.8 <3168 | - 2,0031 .5708 .9911 2734 | - 5714
] 9 e 3162 - 2. 0024 . 5669 (] 9893 . 2758 b - 5673
1.0 <3060 | -« 1,9974 .5588 .9830 3034 | - ,5590
1.1 .2961 | - 2,0061 L6711 1.0033 23081 | - ,6721
1.2 «3052 | - 2,0140 .6787 1.0211 2753 | - L6707
1.3 J0637 | - 2,0187 1, 54456 . 8924 «7569 | - 1,4129
1.4 «2936 | - 2,0070 .6849 .9989 3154 | -« L6903
1.5 3848 | - 2,00%7 2736 .9k32 1480 | - L2670
1.6 23227 | - 2,0051 « 5565 . 9987 «2573 | - 5542
1.7 2488 | - 1,9952 . 7527 « 9605 L4065 | - 7316
1.8 «3173 | -~ 2,0041 . 5736 . 9985 2706 | -~ 5751
1.9 «3109 | - 2,003k .5912 « 9966 .2839 | -~ 5019
2.0 259% | - 2,0016 7746 1,0104 .3856 | - ,7783
TABLE 148B. MODEL 2; DATA SET 1; RUN &4
ST/NDARD DEVIATTIONS
-k L0418 L0126 1242 .0k89 .0931 1273
-3 L0418 L0125 1242 .0489 .0930 1272
-2 .0l18 0125 1241 <0489 .0930 1271
-.1 L0418 .0125 Jd2h2 .0h48¢g .0930 L1272
0 .0k19 L0125 ..1243 . 0489 0931 .1273
.1 «0h20 .0125 L1246 . 0h89 L0932 1276
.2 +0h22 0125 1252 .0489 . 0935 .1281
3 LOb2k 0124 .1261 . 0489 .0939 .1289
o L0428 L0125 1276 .0490 . 0946 1304
.5 LOU3h . 0125 .1301 . 0490 .0956 1328
.6 Ol .0125 1344 .0kg2 0974 .1370
o7 L0463 L0126 1422 +0k95 .1006 448
.8 .0h99 0127 .1578 . 0500 .1071 . 1600
«9 .0596 0131 L1974 L0514 1248 .1993
1,0 2166 0376 1.0694 .1281 « 3920 1.0919
1.1 <2544 .0297 . 9059 L1637 .5197 .9112
1.2 8146 L0575 3.2136 2774 1,624 3.2471
1.3 2.7150 . 3235 11,0438 5641 5,0030 10,8465
1.4 + 3552 .0391 1,0870 L1562 L7466 1.0983
1.5 L9115 . 0704 L, 2465 5644 1.6805 4,3820
1.6 .2652 .0296 .9597 .1129 .5237 . 9682
1.7 1.2130 .1576 3.3367 Wh2ho 2.5091 3.1774
1.8 1257 .0199 . 3897 .0685 .2583 .3821
1.9 . 094k .0160 <3206 . 0603 .1922 « 3207
2.0 . 5257 . 0211 1,9149 .1707 1.0350 1,9521




TABLE 15A. MODEL 1; DATA SET 2; RUN 4

ARITHMETIC MEANS

B12 B13 Biy 712 713

«2893 |~ 2.0063 6438 3284 [~ 6411

+2383 |- 2.0062 Oh72 «3306 [~ ., 6L445

«2871 |~ 2.0061 6509 $3329 |- ,6483

.2857 - 2.0060 .6552 03355 - 06526

2843 |~ 2,0059 5601 3385 [~ 6576

2826 |- 2,0057 .6658 k18 |- L6633

.2807 |- 2.0056 6725 3455 |- 6700

2784 |~ 2,0054 . 6804 3499 [~ L6781

4 -2757 |- 2,0052 .6901 3552 |- ,6878
.5 2724 -~ 2,00k9 . 7022 «3616 |- 7001
.6 <2682 [~ 2.0046 <7179 «3697 1~ ,7158
o7 2626 |- 2.0041 . 7391 «3805 |- . 7372
.8 2543 |- 2,0034 7702 «3964 |~ 7685
.9 -2ko5 [~ 2,0022 8226 4229 [~ 8213
1.0 «2065 |- 2,0005 . 9294 4913 [~ 9338
1.1 0549 |~ 1,9877 2,0701 «9689 |- 2,0469
1,2 .2057 [~ 2,0056 1.0418 4836 |- 1,046k
1.3 3176 |- 2,0107 5625 <2758 |- ,5586
1.4 ¢ 5738 [~ 2.0252 . 7702 «1759 <7901
1.5 1415 1~ 2.0008 2.5127 1.1722 |- 2,4989
1.6 +3516 (- 2.0110 3802 22119 |- .3766
1.7 <3014 |-~ 2,002z .5235 .3067 - ,5158
1.8 J31h2 1. 2 0054 +5109 .2836 |- ,5050
1.9 2545 1< 1,9928 L7173 3968 (- L7065
2,0 5566 |- 2,0375 . 3864 .1855 « 3793

TABLE 15B. MODEL 1; DATA SET 2; RUN 4
STANDARD DEVIATIONS

- . 0367 .0091 .1073 . 0757 .1090
~e3 0366 . 0092 .1073 . 0757 . 1090
-2 . 0367 . 0092 1074 L0757 .1091
-1 . 0367 .0092 «1077 .0758 .1093
o) . 0368 . 0092 .1031 .0759 .1096
.1 . 0369 .0092 .1086 . 0761 .1101
o2 L0371 .0093 .1095 .0765 L1110
.3 <0374 .0093 «1109 .0770 .1123
A 0378 . 0094 .113%0 .0779 1144
.5 0386 . 0094 .1163 0794 1176
.6 . 0399 . 0096 .1215 L0818 1227
.7 L0421 . 0097 .1305 . 0861 1317
.8 . OLG7y .0101 «1h476 . 0947 .1486
.9 « 0577 L0111 L1864 .1159 .1872
1.0 « 2794 . 0286 1.2623 <5307 1.2610
1.1 2.4550 .2210 8.7886 4,6538 8.5591
1.2 .6573 . 0669 2.7455 1.2510 2.7372
1.3 « 5757 .0kg9 2.4626 1.0783 2.5163
1.4 2.3164 1214 | 11,9666 5.1138 | 12.1900
1.5 3.6327 .1359 | 15,2215 7.1585 | 15,0424
1.6 . 7451 0397 3.0697 1.4493 3.0737
1.7 .5226 . 0540 1.8246 1.0206 1.8351
1.8 . 2685 . 0377 . 9646 . 5200 .9615
1.9 69656 <1481 2.3417 1.3339 2,2768
2.0 1.7398 L2116 6.9087 3.3191 6.8188




TABLE 16A. MODEL 2; DATA SET 2; RUN &
ARITHMETIC MEANS

=,

LI B B ]
* o ¢ o
Laad AV RGN
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NV O\Ww o~ o

Bio B3 By 711 Y12 713
2879 {- 2.0061 .6l55 1.0228 « 3312 6432
2859 |- 2.0059 5522 1,0237 «335% 6500

«2847 |~ 2,0058 .56561 1,021 . 3377
2834 [~ 2,0057 « 5607 1.0245 . .340o3

.2819 |~ 2.0056 .6659 1.0249 L3432 .6538
.28g2 - 2,0055 6719 1.0252 . 3465 .6699
.2782

2759 2.0051 . 6876 1.0257 . 3549 .6858
« 2730 2.0049 .6982 1.0260 « 3604 . 5964
.2595 2.0046 7116 1.0261 . 3673 . 7099
. 2648 2.0043 . 7294 1.0263% « 3763 . 7277
.2582 2.0037 L7545 1.0265 +3890 . 7530
2477 2,0028 7947 1.0272 <4093 . 7934

2,0053 6791 1.0255 <3504 [~ L6971

o
..D..I...
OO BN O\ £ WV - OO 0o

NV b
2

1. <2254 1< 2,003 . 8787 1.0280 L4515 .8766
1. 0468 [- 1,9838 1.5148 1.0642 . 7934 1.5082
1.2 |- 2,2524 |. 1.9857 | 11.8859 |- 24674 S5.2454 [-11.7501
1.3 .1212 |- 1,9800 1.1877 1.0723 L6669 |- 1.1844
1.4 2349 1~ 2,0028 . 8660 1.0127 L4319 |- L8642
1.5 4600 |- 2.0396 L1343 .7286 L0032 |- ,1b2s5
1.6 «2263 |- 2,0007 . 8236 1.0276 4559 1= L8179
1.7 <3260 |- 2,0033 4198 1,0887 .2608 |~ L4089
1.8 1713 f- 1,9947 | 1,0033 1,0536 5461 |- 1,0859
1.9 .3987 |- 2.0101 .1882 1.1155 JA1h9 - 1882
2.0 2469 [~ 1,9938 . 7800 1.0503% L4059 (- L7702
TABLE 16B. MODEL 2; DATA SET 3; BOW %
T STANDARD DEVIATIONS
-k .0369 .0093 .1080 L1014 L0761 .1093
-3 . 0368 . 0093 L1079 .1015 . 0760 .1092
-2 .0368 « 0094 1079 1017 0759 .1091
-.1 . 0368 « 0094 .1080 .1019 . 0758 .1092
0 . 0368 <0094 .1083 1022 .0758 .1095
o1 .0368 . 0094 .1089 L1025 . 0759 .1099
o2 . 0370 . 0094 «1097 .1030 0761 .1108
o3 .0372 » 0094 J1111 .1036 .0766 1121
A . 0376 . 0095 1133 . 1044 L0774 L1k
.5 . 0384 . 0095 .1168 <1054 . 0788 1176
.6 . 0396 . 0096 1225 . 1069 L0811 .1231
.7 L0419 . 0098 .1320 1092 . 0854 1325
. +0k63 .0101 1496 L1130 + 0939 .1498
. . 0565 L0109 .1866 .1205 .1133 .1865

1004 L0148 « 3356 1497 +1994 .3392
1.3521 .1928 L, 271k 1.2951 2,642 4,2118
23,7078 <1127 105,737 hh,1322 | 45,8346 104,376
2.1922 2121 7.9477 .6318 4, 3600 8.0504
. 3908 JOh14 1.5401 <3309 . 7495 1.5426
L, 0000 L4225 | 1k.6042 2.3534 ?7.7791 | 14,3977
. 7292 .0679 2.85678 14689 1, 4047 2.8753
b33 L0410 1.56443 .2568 . 8656 1.6678
1.7629 1627 7.3572 . 2523 3.,2021 7.3102
7725 . 0626 2.9691 .5885 1.5173 2.9102
.5290 .1ok1 2,0708 1674 « 9730 2.0177
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e Values
=0

w
.

w
]
-

OO =W -

True Values
k=20
Run 1

=3

l.,

E I
=W £

True Values
k=0

Run 1

+F O

k=1
Run

AN N

True Values
k=0
1
2
3
A
k=1
1
2
3
4

IABLE 17A. MEDIAN ESTIMATES,

Model 1, Data Set 1

Bio P13 Pry 711 712 713
.2 -2.0 1.0 1.0 .5 ~1.0
- 1026 -1.1808 .3428 7159 JA157 - 340k
2688 -1.2699 3569 L7584 1261 - .3554
2831 -1.6755 L4307 .8334 21890 - k266
3194 -2,0075 .5668 .9961 2654 - .5605
- L1k7h 21,2040 3368 L7184 A5480 - 3258
2537 -1.2696 .3380 .7309 1540 - .3370
2799 -1.6402 3835 .8276 1756 - 3738
3176 -2.0009 5892 .9905 2716 - .5838
TABLE 17B. MEDIAN ESTIMATES. Model 2, Data Set 1
P1o By3 Py 711 712 713
2 -2.0 1.0 1.0 .5 -1.0
-~ 1115 -1.1956 <3514 «7253 1282 - ,3438
2640 -1.2771 «3587 <1324 Jdb402 - 3531
2815 -1.6722 4308 3314 21951 - ho3zp
«3207 -2.0065 5612  1.0005 2662 - .5604
- A .1.1773 3227 15 A534 - ,3118
2526  -1,2486 3266 7227 JA517 - L3112
.2800 .1.64k2 3875 8272 J831 - .3801
3226 -2,0019 .5388 .99L6 2683 - .5275
TABLE 17C. MEDIAN ESTIMATES. Model 1, Data Set 2
P1p P13 P1y 711 712 713
2 -2.0 1.0 1.0 .5 -1.0
- L0872 -1.3170 L4275 7625 2043 - 4160
2480 -1.3805 L4381 .7822 2133 - .ho73
2629 -1,7251 5173 .8824 2597 -~ .5004
2806 -2.006L .650F  1,0201 3282 - 649k
.1200 -1.8h441 .8726 . .9515 k206 - L8667
2105 -1.8588 .8768 .9515 Lo38 - 8632
2160 -1.9456 .9001 9921 4380 - .8883
.2100 ~-2,0007 .9283  1.,0268 L4715 - L9253

TABLE 17D. MEDIAN ESTTIMATES. Model 2, Data Set 2

Pio P13 By 711 712 713

2 -2.0 1.0 1.0 .5 -1.0
- O77Th  1.3152 4296 7662 2093 - k216
2h7T 21,3824 L4309k 7873 2164 - ,h288
2619 -1.7240 <5174 .8831 2607 - 4986
2876 -2.0063 6522 1,020% «3334 - L6495
Ohks 1 ,7000 .7500 .8611 3668 - .Tho8
.2227  -1.7403 <T490 .8667 3735 - JTho1
.228%F  .1.8869 .7986 +9339 3909 - .7903
2329 -2,0023 8773 1.0238 4319 - 8726




TABLE 18A. CONCENTRATIONS. Model 1, Data Set 1
Bio P13 By v 7 73
True Values 2 -2.0 1.0 1.0 .5 =1.0
k=0
Run 1 .00 .00 .00 .09 .00 .00
2 .09 .02 .00 .12 .00 .00
3 .08 .88 .00 .70 .01 .00
ko1t .02 1.00 .06 .99 .07 .06
Run 1 .02 .13 .07 2L .10 .08
2 27 A4 .07 .25 Jd2 07
3 A3 .51 .08 .51 .12 .08
L JA1 .98 .12 .88 A2 JA1
TABLE 18B. CONCENTRATIONS. Model 2, Data Set 1
Pio P13 P1y 711 712 713
True Values 2 -2.0 1.0 1.0 5 1,0
E=0
Run 1 .00 0L .00 A2 .00 .00
2 1 .03 .00 .15 .00 .00
3 .08 87 .00 .72 .01 .00
o1t +OL 99 06 1.00 .07 .06
" Run 1 0L .16 .06 .28 .10 .06
2 .33 .15 a1 <30 .09 .05
3 .19 6l .13 .60 Jd2 Jh
I A7 1.00 21 .98 .19 .21
TABLE 18C. CONCENTRATIONS. Model 1, Data Set 2
P12 P13 Piy 7 712 713
True Values .2 -2.0 1.0 1.0 .5 -1.0
k=0
Run 1 .01 .03 .01 .30 .01 0L
2 .30 .05 .01 Ao .01 .01
3 23 .98 .01 .83 N .01
=1 4 13 1.00 .08 .02 .22 .09
R 1 J1 .51 .33 Jo .29 .30
2 .53 .56 .33 .53 .30 W31
3 A3 .81 3k 67 .32 $32
4 .33 .99 48 TT i A7
TABLE 18D. CONCENTRATIONS. Model 2, Data Set 2
P12 P13 By 711 712 713
Trt;SeVaéues .2 -2.0 1.0 1.0 .5 -1.0
Run 1 .01 ,02 Roil .3k .01 .01
2 .34 .06 .01 4o 01 .01
3 .25 .98 .01 .83 .04 .01
k<1 ) .15 1.00 .09 .93 24 .09
Run 1 .09 .51 31 .60 27 .30
2 .59 .56 .33 L6l .28 .31
3 Al .88 37 .78 .33 .35
L .36 1.00 .51 84 i 49
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'ABLE 19A. DECENTRAILIZATIONS, Dy. Model 1, Data Set 1
P12 P13 By 71 712 713
Tme Values 02 "2.0 luo 1-0 ls -luo
K=0
Run 1 .86 .00 .00 .00 .10 .00
2 .00 .00 .00 .00 .06 .00
3 .00 .00 .00 .00 .01 .00
X -11‘ .Q0 .00 .00 .00 .01 .00
Run 1 73 A5 .30 .10 .28 «30
2 Ok .13 30 .09 .29 <30
3 .05 -09 .29 .08 028 029
L dh .00 .22 .00 .19 19
TABLE 19B. DECENTRALIZATIONS, D, . Model 2, Data Set 1
B B By T 7 ”
12 13 1. 11 12 13
True Values 2 2,0 1.0 1.0 .5 -1,0
E =0
Run 1 .90 .00 .00 .00 .06 .00
2 .00 .00 .00 .00 .04 .00
3 .00 .00 .00 .00 .02 .00
K 4 .00 .00 .00 .00 .00 .00
= 1
Run 1 .76 .0k 21 .OL .21 2k
2 .01 .02 21 .01 21 2l
3 .02 0L A7 0L .18 .20
L .ok .00 A2 .00 L11 A1
TABLE 19¢. DECENTRALIZATTONS, D, , Model 1, Date Set 2
Pio B13 Py 711 712 713
Tr;e Vg-lues 02 -2.0 loo l.o -5 .l'o
"Rm 1 .92 .00 .00 .00 .00 .00
2 .00 .00 .00 .00 .00 .00
3 .00 .00 .00 .00 .00 .00
Xk =:14 .00 .00 .00 .00 .00 .00
Run 1 .19 .05 06 .0k 06 .06
2 .07 .04 .06 .04 06 .06
3 .08 .01 .05 .03 .05 .05
i .09 .01 .03 .01 .03 .03
TABLE 19D. DECENTRALIZATTONS, Dy . Model 2, Data Set 2
P12 P13 By 711 712 713
sze Vglues 2 -2.0 1.0 1.0 5 <1.0
Run 1 .93 .00 .00 .00 .00 .00
2 .00 .00 .00 .00 .00 .00
3 .00 .00 .OL .00 .00 .00
k= lh- .00 .00 .00 .00 .00 .00
1 .32 .01 .0k .01 .03 .0k
2 .01 .01 .0k .01 .03 .04
3 .01 .01 .03 .01 .03 .03
4 02 .00 .01 .00 .02 .02
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TABLE 20A. DECENTRALIZATIONS, D, . Model 1, Data Set 1
1o By3 By 711 712 713
True Values .2 -2,0 1.0 1.0 .5 ~1.0
k =
Run 1 307 1.1152 .891k 4375 5430 .8960
2 .1320 .9888 8791 JA1hlh <5364 .8847
3 1971 4525 .8030 .2866 5229 8144
K =:Lh 2522 0370 .6990 8.9980 5105 .6991
Run 1 5.3601 11,6320 9.829k L.2087 k.o783 10.2095
2 6767 10,4872 9.4k426 L, 0684 4,7820 9.8062
3 | 16.5812 84.8750 142,500 51.7500 69.3750 146.750
b | 21,1019 3.6055 119.625 12.9687 36.0625 12k .125
TABLE 20B. DECENTRALIZATIONS, D, . Model 2, Data Set
1o B3 Piy 711 712 713
True Values ,2 ~2.0 1.0 1.0 .5 -1.0
k=0
Run 1 J4300 1.1508 9239 4390 .5517 .9305
2 1231 1.0224 9112 A163 5383 .9186
3 1832 702 .8362 2852 5034 .8ho}
X =:14 2375 .9955 .6991 1401 L4864 6926
"Run 1| 1.oe01 6.337h 4 .8960 1.8803 3.5717 5.1255
2 .5839 L, 2084 3.7168 1.5702 1.3161 3.9012
3 4301 3.0183 5.0313 1.9336 1.8468 5.2290
4 1.2046 .2658 6.6187 .8783 2.0206 6.8579
TABLE 20C. DECENTRALIZATTIONS, D, . Model 1, Data Set
1o P13 By 711 712 713
True Values o -2.0 1.0 1.0 .5 ~1.0
k =
Run 1 4393 1.0532 .8596 4589 .3148 .881L
2 .0913 <9562 8559 Lho9 A776 .8787
3 L1344 Jbs57 .7865 <3077 Ao 8137
x =:14 .1854 0284 L6217 2705 3714 .6291
Run 1 8.6519 22.2939 18.2036 10.6636 10,0134 18.4546
2 1.1507 14,1727 12,9283 5.7277 6.5019 13.0192
3 5.5239 15.5918 33,9141 19.9561 20.2920 36.6523
4 1.8u71 3.9895 3.1985 4. 5707 1.7248 10.4780
IABLE 20p. DECENTRALIZATIONS, Dy . Model 2, Dats Set
Bio By By 711 712 41
T?Ze Values o -2.8 1.0 1.0 .5 -l.g
Run 1 4306 1.0512 .8585 4597 4798 8784
2 .0900 .9539 8547 JAhaT L4761 8757
3 1323 L8 1.3535 3062 Ah36 8116
X =214 .1860 0278 6241 2758 +3695 .6295
Run 1 1.1254 3.8092 2.8319 2.2962 1.7484 2.8931
2 .5384 3.619%4 3.0761 2.4159 6.4481 3.145)
3 4781 3.8208 2.9198 1.5692 1.6781 3.1316
4 3Th6 .0549 1.4138 L4584 .7800 1.4929
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