A THEORY OF THE PSEUDOSPECTRUM
AND ITS APPLICATION TO NONSTATTIONARY
DYNAMIC ECONOMETRIC MODELS

*
Michio Hatanaka and Mitsuo Suzuki

Econometric Research Program
Research Memorandum No. 52
January 31, 1963

The authors are grateful to C. W. J. Granger for his
many helpful comments on an earlier draft of this paper.
However, any remaining errors are the authors!. The
work presented in the present paper was initiated by

J. W. Tukey's suggestion that the best way to understand
the "spectrum" of the nonstationary process is to look
upon it as scme sort of avérage of changing spectra in
J. W. Tukey, "Discussion, FEmphasizing the connection
between Analysis of Variance and Spectral Analysis,"
Technometrics, Vol. 3, No. 2, 1961, p. 203.

The authors wish to acknowledge the support given by
the National Science Foundation and the Rockefeller
Foundation respectively.

Princeton University
Econometric Research Program
92-A Nassau Street
Princeton, W.J.



Page

10
15

17

Errata sheet for Research Memorandum No. 52

Line ®

From

+ . from-above|:

-from below

+ 10

+ 12

r{v) = E (tht+v)

2N | .
z (1- 5%%% r{v)e
v==2N
lim Fw)w ;N)
Nes
2N
z -1
e (v)
N
r(v) = z E (xx_ )
t=!v‘+l el

a complex number

W
P (W) )p3 4. (B )ad’
.XJxk L. d:jdk" .

value of
value of
value of

value of

cld gld gld i<

r(v) = E lxg—;:;]

_J___)r(v)e-iﬂ.)v
v=-2N ON+1
1im F(w=w?;N)
N o
2N
z -1V
veooy & (V)
1 N
r(v) = = £ EBlxx__ )
N lVl+l t T4V

a complex function of time.

value of tan

value of tan

value of tan-:L

value of tan-l

cld gl<d gl £ld



Page

19

19

20

21

29

351

Line-

+ from above |

- from. beloiwr

+ 8

Table

From

between ewﬁ and ewi;'t'

and e~ %5t and e~ et

w

+[ p

W1t xjxk

(wa') p. {w! )aw!

¢j¢k

€

I'p

-€

=t )dw!
@ 5%

to a solvable form.

95%
app. 3

complex number.

between elq)jt end e it

and between e~ 7jt and e” Ykt.

[4))
o (w-0') p (0" )dw?

+[ o
w1 %3 ®5%

in qu - W+ €) .

€

Ip

(@* )dw?*
e P5%

to a form that is solvable
even when the parameters change
over time.

95
approximately 3

complex time series.




II

IIT

v

Vi

TABLE OF CONTENTS

The Purpose and Conclusions of this Paper .
Pseudospectrum and Cross-Pseudospectrum . e

The Pseudospectral Matrix of the Stochastic Processes
with Changing Amplitudes and Changing Phases

The Pseudospectral Matrix of the EXplOSlve Dynamlc
Econometric Model .. e . e v e e

Pseudospectral Matrix of the Deviation from the
Equilibrium Solution in the Dynamlc Model with
Changing Parameters . .« e e e & e e

Pseudospectrum of a Constant and a Trend . .

14

26

29
36



I. THE PURPOSE AND CONCLUSIONS OF THIS PAPER

The spectrum is a parameter of a stochastic process indicating its variance

decomposition by frequencies. In mathematical analaysis the spectrum has been

defined for the stochastic process which has an infinitely long time domain and

satisfies the stationarity conditions in the wide sense:

E(Xt) = a constant

E(xt—E(x ))2 = g constant

t

E(x,-E(x

" ))(XS—E(XS)) depends only on the time distance t-s.

t

The stationarity conditions mean, among other things, that the first two moments
of the stochastic process do not depend upon the origin of time; i.e., the process
is essentially "historyless” in the sense in which history is used in the social
sclences.

On the other hand, in the practical applications of spectral analysis, samples

of finite length have been used for the study of variance decomposition of the

stochastic process which may not satisfy the stationarity conditions. As a first

step toward filling the gap between the mathematical analysis and the practical

(1

applications, Blackman and Tukey )developed a method for making estimations of the

spectrum of the stationary stochastic process by using samples of finite length.

Thus, the practical applications of spectral analysis can be Jjustified 1f the

stochastic process is indeed stationary. In practice, however, spectral analysis

has been used for the study of the stochastic process which is very unlikely to be

stationary.

lR. B. Blackman and J. W. Tukey, The Measurement of Power Spectra.
E. Parzen has also made an important contribution. BE. Parzen, 'Mathematical
Considerations in the Estimation of Spectra,"” Technometrics, May, 196L.




.

Particularly in economic applications we cannot assume that the stationarity
conditions hold. The institutional, behavioral, and technological backgrounds of
econcmic time series are always changing and, therefore, there is no reason to be-
lieve that the first two moments of the economic stochastic process do not depend
upon the origin of timege)

Under these conditions the finite length of the data has an entirely different
implication than under the stationarity conditions. If the stationarity conditions
hold, the estimate of the spectrum from samples of finite length can be considered
as a kind of representation of the spectrum of the process having an infinitely
long time domain. If the stationarity conditions do not hold, assuming that the
"spectrum" of such a process would be meaningful, the estimate from samples of
finite length cannot be considered a representation of the "spectrum", as long as
the "spectrum" is a characteristic of the process over the entire time domain from
~ o to +® . The only way to get around this difficulty is to recognize explicitly
the historical nature of the economic stochastic process and to define the "spectrum”
as a characteristic of the (nonstationary) process over a finite time domain. In
other words, we must recognize that the "spectrum" would depend upon what finite
portion of the time domain is taken, e.g., the "spectrum” during the second half
of the 19th century would be different from the "spectrum” during the first half
of the 20th century.

In the present paper we have defined the pseudospectrum and the cross-
pseudospectrum for those processes which are not necessarily stationary and which
are defined over a finite time domain. We ghall show first that the basic charac-
teristics of spectrum as defined in the usual mathematical analyses are maintained
for our definition of pseudospectrum and cross-pseudospectrum. By this we mean the

following: The pseudospectrum is the frequency decomposition of the mean of the

2Although we can apply any transformations to a given time series with the
purpose of eliminating nonstationarity, it is difficult to ascertain whether or
not the series comes from a stationary stochastic process after the transformation.



time-changing variance, just as the spectrum is the frequency decomposition of the
(constant) variance. The mean of the time~changing autocovariance (or cross=-covariance)
and the pseudospectrum (or cross-pseudospectrum) is a Fourier transform pair, Just as
the (constant) autocovariance (or cross-covariance) and the spectrum (or cross~spectrum)
is a Fourier transform pair. The coherence inequality holds for the cross-pseudo-
spectrum and pseudospectra just as it does for the cross~spectrum and spectra.

Further, if the stochastic process is defined over an infinitely long time domain

and 1f the stationarity conditions do hold, then the pseudospectrum is identical to

the spectrum.

It 1s important to note that pseudospectrum and cross~pseudospectrum are, apart
from the complications due to the spectral window, the mathematical expectations of
the estimates of spectra and cross-spectra which we would obtain if we had made this
estimation without considering the problems of nonstationarity. (The electronic
computers do not know whether the data come from a stationary stochastic process,
and, regardless of the data given to them they "read out"™ some outputs.)

Although the exact specification of the types of nomstationarity is not possible
at the present stage of economics, some observations and fairly reasonable hypotheses
have been .presented to characterize vaguely the nonstationarity of the economic
stochastic process. In the present paper we study the nature of the pseudospectrum
assuming that these vague observations and hypotheses are acceptable. The nature of
the pseudospectrum then obtained can be used for the interpretation of the estimates
of spectra and cross-spectra without considering the problems of nonstationarity.
(The nature of the pseudospectrum derived from a too exact assumption as to the
nonstationarity would not be useful because economics has not reached the stage in
which an exact statement can be made as to the nonstationarity.)

First, we study the stochastic process in which the variance changes over time.
The apparent variances of many economic time series for the United States show a
.secular change usually with a clear discontinuity sbout World War IT. If 4 is a

€

deterministic function of time and Xy is a stationary stochastic process so that

dtxt is a nonstationary stochastic process whose variance changes with time in



proportion to d 2

L 2 is the convolution of the

then the pseudospectrum of dtxt

pseudospectrum of dJG and the spectrum of X - (A similar formula also holds for

the cross-pseudospectrum.) Thus, if dy

involves one or two jumps in addition to a smooth trend so that the pseudospectrum

ig either a smooth function of time or

of dt ig concentrated in the very low frequencies, the pseudospectrum of dtxt
is roughly equal to the mean of the time-changing, instantaneous spectra,
thPX(w), where Px(w) is the spectrum of x.

Second, we proceed to the study of the stochastic process in which the ampli-
tudes and the phases of different frequencles change with time. We know, for example,
that the amplitudes of the seascnal variations of many economic time series have a
downward trend and also that the phases of the seasonal variations change from year
to year. Further, the phases of the cyclical components are very likely to be affected
by external events such as wars. The convolution theorem that is similar to the one
mentioned above holds in this case too. If the phase changes are uniform over all
different frequencies, and if the phase changes are either smooth or involve one or
two jumps in addition to a smooth trend, then the phase of the cross-pseudospectrum
between two such processes yi(l) and yt(g) shows the average of the time-changing
differences bebween the phases of the two processes. If the phase changes are uniform
over only a narrow frequency interval, the phase of the cross-pseudospectrum is more
complicated, but its meaning is straightforward. Let @w(tyv) represent the diff-

(1)

erence between the phase of Vi at time +© for frequency o and the phase of
yt(g) at time t + v for frequency . Then the phase of the cross-pseudospectrum
at frequency o ‘is the double average of ww(t,v) over t and lvl, where the aver-
aging over v 1s done with weights that are roughly in inverse proportion to v
Third, we apply the concept of the pseudospeétrum to the time series generated
by the nonstationary dynamic econometric models. As for the pseudospectral matrix
of the endogenous variable in an explosive dynamié econometric model with constant

parameters, we can show that it is related to the spectral matrix of the random dis-

turbance and the pseudospectral matrix of the exogenous variable, in the same way as



the spectral matrix of the endogenous variable in a stable dynamic econometric model
is related to the spectral matrix of the random disturbance.

Finally, we study the stochastic process of the deviation from the equilibrium
solution of the model, which deviation is used to represent business fluctuations.

For the case in which the parameters of the model change over time, we can show that

the pseudospectral matrix of the deviation is a convolution which involves the
spectral matrix of the random disturbance and a transfer function of the parameters.
However, even in the case in which the parameters are smooth functions of time and
the spectrum of the random disturbance is smooth, the pseudospectral matrix has a
more complex form than an average of the time-changing, instantaneous spectra. For
a given time point 1, let us consider the impacts of the random disturbances in
the periods prior to t (and including t) upon the values of the deviation at
time t . ILet Ct . e the impact of the random disturbance in period t-J, and,

»d

let G(t,w) be the transfer function of Ct,o’ Ct,l’ ceesy Ct,t—l at frequency .
1

- g° - _ pd
If the parameters of the model are constant, Ct,o =B, Ct,l BY, ... Ct,j BY, e

The transfer function is independent of t and can be written as CG(w). The spectral

"
matrix of the deviation is G(w) PU(w) G(w) , where PU(w) is the spectral matrix
of the random disturbance and * means the Hermitian conjugate. If the parameters

of the model are not constant, the pseudospectral matrix of the deviation is

1. ~ ~ * gin ev
E‘ﬁ% [3 G('t,(.l)) PU(CD) G(t+v,a)) —_— ]

under the same smoothness conditions, a double average of G(w) PU(w) G(w)* over t
and v .

So far we have mentioned the cases in which the pseudospectrum 1is directly amen-
able to a reasonable interpretation without the use of some specific a priori knowledge
(e.g., the exact time function representing the changes in the parameters) about non-
stationarity. There are many possible cases in which such an interpretation is not
available. For example, as for the case of dtxt mentioned above, if dt is

dominated by some irregular cycles, the pseudospectrum of dtxt can be expressed as

the result of smoothing the spectrum of x, and then shifting it along the axis of @ .



This follows from the convolution theorem which holds for any movements of dt

and from the fact that the pseudospectrum of dt ig not concentrated in the very
low frequencies around zero but rather spreads around a certain non-zero frequency.
For the other models of nonstationarity treated above, basically the same convolu-
tion theorem holds for any types of changes of the parameters, although the relevant
parameters vary from one model to another as described above. If the pseudospectra
of the time series of the (changing) parameters are not concentrated in the very
low frequencies, the interpretation of the spectral matrix is very difficult.

Thus the contribution of the present paper to economic applications of spectral

Vanalysis lies in the convolution theorem which holds for a broad class of non-

stationary economic stochastic processes and which enables us to discern the cases

in which a reasonable interpretation of the spectral matrix is available without

the use of some specific a priori knowledge about nonstationarity from the cases

in which such an interpretation is not possible.
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II. PSEUDOSPECTRUM AND CROSS-PSEUDOSPECTRUM

One definition of the power spectrum (density) for a stationary stochastic

process with zero mean is

£ (0) = g xte’i‘”t l? , -t <w< (1)

t=-N

qoa 1
Tim
N—-)oo 27((2N+1) E {

where o is the (angular)frequency, and Xy is the discrete time series data
produced by the stochastic process. The power spectrum is the decomposition of
the variance of the process in terms of frequency o . (1) is equivalent to the

more commonly used definition of the spectrum,

fx(w) = % OZO‘. e 1 (y) (1)

V=00

where r(v) =E (x ) . This is because

txt+v

1im L E J)' S %X e‘iw(t’sﬂ(
2 (2N+1) Net,s<N © © .
N - ~ k) B,

No o
1 2N ~-iwv
= lim = v (1- r(v)e:
RS I > £
1 " e N -iw'v
= lim 5% [ Flo-w!;N) s r(v)e daw?
No o -7 v=-2N
2N .
where F(w-o';N) = z (l—lZL— ) -i{w-0")v
2N+1
v==2N
and 1lim F(w)w!;N) is a Delta function of w-a' ,
N
2N

_ 1 PN -ivw
= lim 37 5y © r(v)
N o0



Let us consider a general (stationary or nonstationary) stochastic process
{xt} and suppose that the data are available for a finite time period,

t=1, 2, ..., N. The pseudospectrum px(w) of x, 1is defined as

pX(CD 2111\1 {‘Z‘. xe le}, - o< (2)

where Xy is considered, in general, as a complex number. For the purpose of
our mathematical treatment, we find it convenient to work with the pseudospectrum

for the variance about zero rather than the mean. This is why the mean is not

subtracted in (2).

(a) The integral of px(w) over the frequencies from - T to ¥ is the mean of

the variance (about zero) over the given period.

" 1 " N it S
;i px(m)dw e _£ E-{ Itzl x,e l }'d&

1 N N .
L 7o oz oE Eew (3)
n t=l1 s=1

=% z E(lxtle]

(o) Let us define the pseudoautocovariance r(v) for lag v of a general process

X as

t

N-v
r(v) = ﬁ%ﬁ % E {xtxt+ } for v>0
t=1 -
N
r(v) = N_lv £ B (xx ) for v<O

t=|v|+l



Obviously r(v) =

r(-v). Then the pseudospectrum px(w) and the pseudoautoco-

variance r(v) are a Fourier transform pair when r(v) is weighted by 1 -
J
i.e.,
N-1
1 -1V
o @ =% = (1-Lhrwet ()
v=- (N-1)
and
ﬂ ]
(1 - l%i)r(v) = [ px(w)elwwdw for v=0, +1, ..., + (N-1) (5)
Proof':
p (@) = L glzrsxx eriw(t—s)
X 21N t s
t s
N-1 N-v ‘ . -1 N .
1 -iwv -1lwv
= —— y % E {% X A} e + )Y z E{? X }'e
DN v=0 t=1 | TtV ve=- (N-1) t=4v|+l Lt
N-1 .
= é; 2 (1L - l§l) r(v)e
T — (N-l‘) ’
n . T N-1 ' . '
I px(w)elwvdw - é% | 5 (1 - l¥rl) ( ,)elm(v V)dw
-7 : -x v'=-(N-1)
- - Ly e
1\]’ .
3 1 N-v L
Alternatively r(v) == Z B {x } for v>0
N £=1 t t4v -
N ——
r(v) = z BE {x x } for v <0
t=.1.V|+l T o+

may be used. Then pX(w) and r(v) are a Fourier transform pair without using

Ll

the weight, 1 - N
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(c) The pseudospectrum pX(w) is the mathematical expectation of sample estimates

m
of spectra ( )dbtained by using (1 - 1§L) as the lag window for the estimation.

When we define the sample estimates of r(v) and px(w) respectively as

/’ N-v

1 _ -
2 - —_—
2(v) = N-v § X ey vz0
t=1
1 N
P(v) = by %, X v <0
\ N-|v ‘t=|V|+l vtV
and
N-1 .
o) - = (-dh e,
v=-(N-1)
the mathematical expectation of ﬁx(w) is
N-1 .
5 (@) - oz 1-LhE e < p (o)

=-(N-1)

(a) 1If Xy is stationary with zero mean and the time period is infinite in length,

the pseudospectrum converges to the spectrum, as can be seen from (1) ana (2).

We can now define the pseudospectrum pd(w) of a deterministic process (itJG

in the given time period +t =1, ..., N as

1 N -1t
e

where dJG is considered, in general, a complex number. If a nonstationary process

As Bartlett pointed out, the variance of P (w) 1is not reduced to zero when
N —»® even if x, is stationary. This. point, hOwever, is totally irrelevant to
the pseudospectrum of nonstationary process.- . The pseudospectrum is defined for
and dependent upon a given finite length of time period covering a specific portion
of our economic history; thus the consistency of the estimate P_(w) is not a
relevant problem. X
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y, =d, + x, s, where 4 is a determinisitic process and x is a stationary
t t e

T t

stochastic process with zero mean, the pseudospectrum of Yy, is obviously the

sum of the pseudospectra of d, and x,_ . Especially when 4

+ + . s a trend,

it is well known that the pseudospectrum of dt is significant only at the low
frequencies. This will be elaborated on later in Section VI.
For the multi-variate stochastic process we can define the cross-pseudo-

spectrum and pseudocovariance. The cross-pseudospectrum between two stochastic

processes, X (1) and X (2) is
t t
N N
1 (1) = (2) -iw(t-s)
P (0) = = E-{ LI x X '
12 2nl L t=1 =1 t 8

and the cross-pseudocovariance is

Nev
(V) L 'ﬁi‘:r, S E {xt(D z (&) } v >0
=1 . +V )
N
rlg(f) = anv z E {%t(l)§t¢v(2)} v <0
t=|v]+l L ' : ’

{e) The cross-pseudospectrum plo(w) and the cross-pseudocovariance rlg(v)

are a Fourier transform pair when r..(v) is weighted by 1 - lzl .

12 N

The cross-pseudospectrum between two deterministic functions of time, Kt

and My s is defined as

1 <im{t-g)
Ba =2 MM .
t s
" I
In general, let x = (xt(“), xt(g), see g Xt(m)) be a m-variate stochastic

vector process. Then
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is the pseudocovariance matrix, and R(-v) = R(vi .

The matrix of pseudospectral and cross-pseudospectral functions, i.e., the

pseudospectral matrix, is defined as

P(w) = [pjk(w)]
where
N-1 R
1 -iwv
pjk(w) = 5= Vz_%N_l) (1 - l%i) rjk(v)e

N N . .
E%ﬁ E{'Z ) Xt(J)ES(k)e_lw(t_s)} R
t=1 s=1

Another representation of the matrix P(w) is

P(w) === E { 5 5 ¥, xxei0(t-s) }

21N t s t s

where Xt and X: are the vectors of m components, and where X: is defined

as the complex conjugate of the transpose of Xs , i.e., the Hermitian conjugate
of XS . This representation will be used extensively in Sections IV and V.

(f) The coherence inequality holds for the pseudospectra and cross-pseudospectrum.

Let fj(w) and fk(w) be the Fourier transform of xt(J) and xt(k), i.e.

(§) -iut
Xt e

|
M=

fj (w) =

(k)e- it

Il
M=
o]

£, ()
Then from the Schwartz's inequality, the inequality

B (2, (@)1, @)% < B (£, B (|2, )]")



-13-

holds. Then

B (|5 £, ()2, (@)]%) £ 5 ( )|?) B (sl f (@)

enlN EHle

ie., ENOIRESINOREINC

This is the coherence inequality.



III. THE PSEUDOSPECTRAL MATRIX OF THE STOCHASTIC PROCESS

WITH CHANGING AMPLITUDES AND CHANGING PHASES

The present section deals with the stochastic process in which either the
amplitudes or the phases of different frequencies change over time. It also

serves as the mathematical background for Sections IV and V.

(a) The pseudospectral matrix of the stochastic prbcess in which the amplitudes
change uniformly over different frequencies but the phases do not change.

The nonstationary stochastic process in which the amplitudes change uni-
formly over different frequencies but the phases do not change can be represented

by the product of some function of time and some stationary stochastic process.

Theorem 1. Let dt(J)(j=l, ... M) TDe deterministic processes and xt(J)(j=l, ces M)

stationary stochastic processes with E(xt(J)) = 0. Then a column vector of the

stochagtic process

£ =1, 2, ... N, has the pseudospectral matrix ip (w) = I[p ()]
2 J yjyk

W

where p (w) = [ p (w~w') p (! )dw® . (6)
yjyk o 50 ijk djdk

P (w) and P (o) are respectively the cross-spectrum between X () ana
X.X djdk t

Jk . k
xt(k)} and the cross-pseudospectrum between dt(J) and dt( )
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Proof .
P ) (s — (k)= —iw(t-
\ yayk(w) _ Ei—N B | % 5 dt(J)Xt(J)ds(k) S(k) 10(t-s),
- 'e%ﬁ 55 Wy (&) g xt(j)Es(k)}e'i‘”(t's)
t s
i . . oq .
= Ei_N [ dt(‘])as(k)px'x (@f)e™ ™ (t-5) -i00(t-8) s
-t s J kK
'j}f .
= [p _ (0)py g (o-0")dw
-1 XJXK d‘jdk
(D}-T[
= (@)o')p 5 , (0 )dw!
o pXij W)W pdjdk w
g.e.d.

The pseudospectrum of yt(J) = 4 (J)X (3) is the convolution of the pseudo-

t t
(3) (3) . .
spectrum of 4 , i.e., a sort of weighted moving

‘ and the spectrum of X

t

average of the spectrum of xt(J) by using the pseudospectrum of dt(J) as the
weights.
(1) 1If x%(J) is a white noise, €, , with its variance o° , 1.e.,
(3) _ 4 (3) (3)
yt = dt et, then the pseudospectrum of y_t is
o i dt(J> 2
p. (0) =2 .
yj 25 N

(3) ’ 2 (3),2
J ; g J
L D€ s e ox |

(ii) Suppose that the pseudospectrum (for the variance about zero) of dt(J)

is significant only in the frequency band [-€, €] , where € >0 1is a certain

(3)

small number. (This is possible when dy

ig either a very smooth function of
time or dt(J) involves one or two jumps in addition to the trend. The fact that

p. (®) 1is a pseudospectrum for the variance about zero is important in judging the
dj —_—_— '
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plausibility of the concentration of this spectrum in the low frequencies in

economic studies.) Further assume that D (w) is smooth so that
j .

= 7 ¥ s -
p, (@) =p (o) forall «'s in (o - € @ +¢€) .

X, X,
J J
Then
+€
~ 1 i
py_(co ) pX_(w ) I py (0 )dw
J J -€
7T
~ YAy !
px.(mo) f pd_(w )
J -7 J
A (3)]2
~p (o) t| 7t
XJ N

This is again the mean of the changing spectra.

(iii) If the movements of dt(J) are dominated by irregular cycles, the

pseudospectrum of yt(J) = dt(J)xt(J) can be expressed as the result of smoothing

the spectrum of X and then shifting it along the axis of ® . When only one
(3)

sample of Vi is available and when no a priori information about 4, 1s given,

t
there would be no easy way to interpret the pseudospectrum of yt(J).
(b) The pseudospectral matrix of the stochastic process where the phases change
uniformly over different frequencies but the amplitudes do not change.
Any real, stationary stochastic process with continuous spectrum can be

represented as

L () LT IOy (w)etv (@) Yo o
e T 5O

T T
=2 [ (cos am)uj(w)dw +2 [ (sin wt)vj(w)dw, J=lye.e, M
o o
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where

uy (w) = uy (-w)

vj(w) —vj(-a)))

o if w# o

= i = '
3D, (w) if w=w

E(u:j (w)u. (@) E(VJ- (‘D)Vj (w')) =

~—
=

J

E(uj((b)vj(a)')) =0 for all o,
E(u, (0)u (o) = E(v, (o) (o) = © it o o
uJ (J)U.k 4V} VJ [6V] Vk 6V} {%Re[px ) (w)] e oo

| IE
B, (@)v, (@) = -B(v,(@)u (o) ={ 0 if 0 o
yoE Ik 3t lp, , (@] if 0= o
J

(Re [ ] and I, [ ] mean respectively the real part and the imaginary part

The phase of (7) is defined as (5)
1 v, (o)
tan ——mj o
E1’0 be more precise, take the principal value of % if uw>0, v>0
% - the principal value of % if u<0, v=>0
% + the principal value of % if u<0,v<O
5 1 - the principal value of % if u>0, v<0

of [ 1.)
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We are concerned with a real, stationary process of which the spectrum is identical

to 12 () and of which the phase of frequency o is greater than that of xt(j)
J
by wj(m). If @j(m) = - wj(-w), then such a process is represented by
7
i) it ~ip,l® .
2 D @) = | %5 @ (0)-1v, ()an (8)
t Ik J J
T
=2 [ cos wt [cos 9. (@u,(w) - sin P, (w)v, (o) law
o J J J d

(8")

b
+2 [ sin ot [sin 9. (@)u, (w) + cos 9. (0)v,(w)]ldo ,
5 3 3

Actually (8) is a real process, because cOS mj(w)uj(m) - sin @j(w)vj(w) is an

even function of ® , and sin wj(m)uj(w) + cos wj(w)vj(w) is an odd function of ® .

The spectrum of xt(J){wj(w)} is identical to the spectrum of Xt(J) because

E{[e—iq)j(m)(uj(a)) - iVj(CD))lE} = E{uj(w)e} + E{vj(m)z} .

The phase of xt(J){wj(w)] is greater than the phase of xt(j) by wj(w) at the

frequency & because

v, (o)

13 4p.(o)
ujiwi 3

1 sin ¢, (w)u,(w) + cos wj(w)vi(m) o
= tan

tan cos wj(w)uj(wj - sin wj(w)vj(w)

The nonstationary, real stochastic processes, where the phases change with time,

but the amplitudes do not change, can be represented as

. T, .
yt(a) _f elwte-lcpjt(w(uj(m) 17 (@) )ae (9)
-7
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7
=2 £ cos wtlcos cpjt(m)u(j (w) - sin cpjt(a))vj(m)]dw
(99
7
+ 2 £ gsin otlsin cpjt(w)uj(a)) + cos cpjt(a))vj(a)) law

In the present section (b), we shall study the special case of yt(J) )

1 CPJJG((D) =ijt for O<w<m
cth(w) =0 w=0 (10)
9., (w) _
Jt = - cp(jJG -t <®»<O0

i.e., the case where the phases change uniformly over different frequencies.

Corollary 1. The nonstationary stochastic processes of yt(J) and yt(k)

(=1, ++e M, k=1, ... M) defined by (9) and (10) have the cross-pseudospectrum

P (@) ,
yjyk
6V, 1
W) = - — (W' )dw!
b, (@) = | b (o) o= ()
J’k w Jk J'k
(11)
»
+ [ (w)w') p (w7 )aw?
o F5%% ? 3%
where p (w) and p- — (w) are the cross-pseudospectra, respectively,
¢.9 ¢.¢
J'k J'k
between eMPjt and el(pkt and e"lcPJ't and e"lcPkJG
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Proof'.
Since
. . 0 .4 T
7)o B I o) -t () + o %5t T P (0r)-1v (o) Jao!
t o J J 0 J J 4
j k -i(p,, - iw' (t-s
-1 T3k
. _ cont (o
. e1(<Pjt Pyg) [ 10" (t-5) (0" )doo?
X.X [
0 Jk
Therefore,
1 (3)= (k) _-io(t-s)
., (@) = ZEZEy, v, )
ijk enll t s
o T
=[p, . (o) = (o awt + [ o (0)p, o (00 )dw’
M %% o % PP
OAHIT h
= [ o _ (0o )p- = (@)do' + [ p_ (0-0')p  (0)dw
o *i5%x P3P wo-n *5% P3Py y
qg.e.d
Suppose that the norms of p—- — (®) and p () are relatively significant
only in the frequency band [- €, €] where € >0 is a certain small number. This
is possible when the phase changes of yt(J) and yt(k) are smooth, or, otherwise
involve one or two jumps. Further assume that Py x (w) is smooth so that
Jk
— ? : -
Py x (w) = P, o (cbo) for all 's in ((J.)O €, W, * e) .
Jk Jk

Then, if 7 > ®_ > € , then the first integral of (11) for ® =«  is not signi-
ficant, because the interval [ub’ mb+n] does not include the freguency band

[ - e, €]. Therefore,



D]~

P, o A )dw!
YV xjxK _{ cpcpk

(12)

. 1, ile..-9.)
(w ) f P (o!)dw* =p (w ). = Z e 73t "kt
J k P, ¢k X X o’" N

M

g
I

If -m<o <-¢€, then the second integral of (11) for o is not signi-

ficant and, we obtain

€
P () =p W&ﬁ %—(MMM

(12%)

)

Ll

~ P (@) - —1:\LT-Z e'l(cht"CPks
P %

Thus, the phase of the cross-pseudospectrum between yt(J) and yt(k) differs

from the phase of the cross-spectrum between xt(J) and Xt(k) by
“Zsin (9., - @)
t Jt kt
-1 (w > €) (13)
tan i. cos (qJJ.t - Cpkt) ¢!
or
=
L sin(o, 3t - o)
tan (w < - €) (131)
b -
; cos (P Py o .

Tn order to understand the meaning of the phase of the cross-pseudospectrum
between yt(J) and yt(k), let us consider a special case where xt(J) = xt(k)
for all t's . Then, the phase difference between yt(J) and yt(k) is solely
due to the fact that yt(J> in (9) involves e"l¢jt(w) whereas yt(k) involves
e—lwkt(w)_ Indeed, (wjt— @kt) is the instantaneous phase difference at t
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X..Xk

J
is real, and, the phase of - (wo) is given by (13) and (13').. Therefore,
Jk
the phase of the cross-pseudospectrum is a kind of average (over time) of the

between yt(j) and yt(k>. When xt(j) = xt(k), D (db) in (12) or (121')
(

instantaneous phase difference. (13) or (13') shows that the average of any

two angles 61 and @2 must be defined as

-1 sw_@1 + 31n@2
tan

cos@:L + cos@2

(c) Tne pseudospectral matrix of the stochastic process where both the amplitudes
and the phases change differently over different frequencies.

The real nonstationary stochastic process, . yt(j), where both the amplitudes
and phases change differently over different frequencies, can be generated from a

real stationary stochastic process

. T .
xt(J) =_£ eldm(uj(m)—ivj(w))@w
by
. T, .
7, ) - 1% (9 (@) (u, (@)-1v (0))an (14)
where
dt(j)(w) _ ajt(w)e_1¢jt(w)
9. (@) = - 9, (-0)
ajt(w) = ajt(—w) .

ajt(m) represents the amplitude of the frequency o at time t , and wjt(w)

the phase difference of the frequency ® between xt(J) and yt(J) at time © .
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Corollary 2. The cross-pseudospectrum between the real nonstationary stochastic

processes Yy (3) and v (k) defined by (14) can be represented as
t t
T
D (w) =[] p (w")p (w,0")dw? (15)
yjyk e xjxk fjfk
where
() -iw(t-
D (,00) = grg D E ft(J)(w'),fs (@) eiolts)
gk t s
and.
() oy 5 (3)p yy i00'E
ft (') = d, (o)
£, W) = g, B el

(The proof is omitted,)

Pe g (w,w*) 1is the cross-pseudospectrum at frequency o between the deter-

Jk . ‘o
ministic processes 4d (J)(w')elw t and ds(k)(

t
(k)(

Suppose (i) that dt(J)(w') and 4,

3 1
o )el®'s

®') are smooth functions of time
(for‘any w') so that Ipf £ (w,m')l is significant only for the values of

Jk
that are near or equal to ' , which means

B w,He
1 L - | 1
[ P ¢ (wb,w )aw f Do ¢ (wo,w )dw
-7 Jk wo-e Jk

and (ii) that P, x (w') is smooth so that

P (') = p (wo) for any o' such that
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Then from (15) we cbtain
®_+€
o
~ 1 1
Py vy (aE) Py x (mo) / epf.f (a)o’(D )do

Y57k ik © - 3k .

Further, if we can assume, in addition to (i) and (ii), that (iii)

a () = a () ()

t t o]
}- for any o' in (ab-e, wo+e)
ds(k)(a)') = ds(k)(mo)
then
g (mo) ~ Dy (wo) R dt(‘j)(cbo)ds(kj(mo) sin e(t-s)
J°k k t s t-8

| .
he phase of pyjyk(mb) differs from the phase of the pxjxk(ab) by

-1 % i' ajt(d)o)aks(wo)sj'n{cpjt(wo) - cPks(d)o)} ——-—————Sintfit—s)
n

ta (16)
i by ajt(wo)aks(mo)cos{th(wo) - @ks(mb)} sin €(t-s)
s t-8
(16) 1is a generalization of (13) and (13'). Notice that §EEE§éE:§l is
inversely related to It-sl where € 1is small.
In the special case in which the amplitude does not change ét any frequency
(16) becomes
Tz Sln[@jt(mo) - wks(wo)} sin €(t-s)
tan"l t S . ' t"S (16])
i i cos[¢ft(wo) - wks(wb)] 51ntfét-s)

‘ N B ) . o\ s
Tet v = t-s and ij,ab(t,v) = @jt(mo) wks(wo) Then (16') is a double
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average of wjk o (t,v) over t and v , where the averaging over v 1is done
2

with the weights il%—“iy- )



IV. THE PSEUDOSPECTRAL MATRIX OF THE EXPLOSIVE DYNAMIC ECONOMETRIC MODEL

Most of dynamic econometric models are sets of linear difference equations

such as
Bont + Blnt-l + e+ Bpnt_p
(17)
= Fogt + Flgt-l ee + Fqgt-q + Vt
where
o
— — — - r—'
(1) e (1) L, (D]
g t £
j
nt = > Et = , and V£ = E
: !
(k) (k) (k)i
My, 6t Ve oo
L— - L L -

represent respectively the endogenous variables, exogenous variables and random

disturbances. Bo’ B ' are k x k matrices of the

l, l, o a0 q

parameters. lBol # 0 is assumed.

. B and ' , T
P o)

If the exogenous variables are removed from (17) and the stability condition
holds, (17) represents a stationary stochastic process of the endogenous variable

' 6
My - It is well known(‘) that the spectral matrix of 0y is related to Pv(aﬂ by

. .1 . =1
~ -iw -iwp -iw -iap,
Pn(w) = (BO+Ble F oeee F Bpe ) Pv(co) (BO+Ble e +Bpe ) (18)

6
“Whittle, P., "The analysis of multiple stationary time series."
Journal of the Royal Statistical Society (B) 15, (1953) pp. 125-139.
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If the stability condition does not hold, N, represents an explosive stochastic
process. In this case, if we take a finite time period, we can prove that the
pseudospectral matrix of nt is related to the pseudospectral matrix of gt

and the spectral matrix of V£ Just in the same way as Pn(w) is related to

Pv(w) in (18).

Theorem 2. In the system (17), let us assume (i) that the end effects for p
time lag of My, and for q time lag of gt are negligible for the period,

t=1, ..., ¥ ,(ii) that gt is deterministic and V, 1is stationary with

t

E(V%) =0, and (iii) that

|BO+'Be'iw+...+Bpe'iwp|;‘éo, -r<o<n .,

Then

,Pn(m) = (BO+B g 10 T e-id)q_)

-iwp,-1
1 + e +Bpe ) [(Fo+r‘

le

» i % »
Pg(w)(r‘o+f‘ e e-vlwq) + Pv(w)}(BO+B e 4.+ Be

1 a 1 D

where Pn(w) Pg(m) and Pv(w) are respectively the pseudospectral matrices of

2

My > gt s and V£ .

Proof.

The Fourier transforms of the left and right hand sides of (17) are,

respectively,
N -iwt
§ (BOT]t By gt oeee Bpnt_p)e
t=1
-iw =iwp N -iwt
~ (BO +Be + oee. + Bpe ) = Ny€

t=
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and
N ot
I' & r eee T
il(§t+1%4+ + th+%k
. . N . N .
~ (I +7T " 4o aT ey 5o st L o5y o 10t
o) 1 =1 t t= t »

This is because, for example, if the end effect for k time lag is negligible,

N -iwt N ~iwk ~io(t-k)
= e M, .. €

K-k = K £k

The pseudospectral matriﬁes of both sides of (17) are, respectively,

N N
1 -iw -iwp -iwt iws -iw -iwp ¥
EWE}HRD+Bf +...+%§ )?nf %n; Bdﬁf +...$Ez )}
1= s=1
_ -iw -iup -im -ilwp ¥
= (Bo +Be e +—Bpe ) Pn(w)(Bo%Ble Foeen +-Bpe ) .
and
-iw -img -iw -iag ¥
(FO+Fle + oee. + qu ) Pg(w)(Fo+Ple + e F qu )+ Pv(w)
Since
B, + Blg_yw 4 oeee Bpe'rwpl #0 for ® in [- m, n],

we can get the theorem.

q.e.d.
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V. PSEUDOSPECTRAL MATRIX OF THE DEVIATION FROM THE EQUILIBRIUM SOLUTION

IN THE DYNAMIC MODEL WITH CHANGING PARAMETERS

Tn econometric studies of business fluctuations the deviation of the solu~-
tion of (17) from its equilibrium solution are frequently used to represent
business fluctuations. We shall consider this deviation in the dynamic econo-

metric model whose parameters change over time.

To treat the model with changing parameters, let us change the form of the
system from (17) to a solvable form. Any linear difference equation of order P
can be replaced by a system of p first order difference equations in p

variables(Z), if we define the new variables as follows:

N B e
n B Yy
.t } oO t
v, =| . U, = )
M-pl 0
— "—| - —
-1 -1 -1
21 B, +B T e 4 e # BT E
0 o
Zt = . = . (18)
0 0
L | . "
]_ b
-B_ lBl . -B, 132 L ee. =B 1Bp_l , B, pr
I, 0
0 I, 0
] ; i ,
B = . . . .
0 0 I, 0

where Ik is a k x k identity matrix and B is a kp x kp matrix.

zPaul A. Samuelson: Foundations of Economic Analysis Harvard University Press,
(1947) Mathematical Appendix B.
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The system (17) can now be represented by

Y, - BY, | =2 +U, (19)

13

Let us consider the model with constant parameters by using the representation
(19) in order to clarify the concepts that we use in this section.

The solution of (19) with YO as the initial condition is

t -1 m
Y, =BY + I B(Z __ +U
m=0

) (20)

t-m -

Iet Xt be the deviation from the equilibrium solution, i.e.,

This is a moving average of random disturbances Ut . Then we can get the

pseudospectral matrix of Xt 3

1 N N t-1s-1 _ %
- —F
‘PX(w) 5T ¥y £ ¥ % B (Ut_mU s_n)B
t=1 s=1 m=0 n=o0

AN
n*_ in(t-s)

T . e x _- _
- __23;1\1 222 o8 [ Pyle)e® (t-m-sin)q .y gn*-io(t-s)
tsmn =1
Put
-l o ot
G(t,w') = © B (21)
m=0
N .
Ho-o',o') = = G(t,o!) -i(e-ot)t (22)
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We shall call Hxayw',w') the double transfer function of the parameters

1 -
BO, B, sen Bt 1 . Then we obtain

IS
= _i_ 1 1 At 1 1 *
PX((D) = 5 JfT H(w-0',n") Py (") H (o-0',0") do! (23)
or
] Wi %
= 1 ! ; ! 1 ey ? '
PX((D) S [ Ho' oo )PU(a)-a) JH(w! ,o-0') do'
=1t :
In order to understand the meaning of (21), (22), and (23), let us assume
that {Bm} converges to zero when m - « and that, since Xt is now statiomary,

the time domain extends from t = - » to t =+« , and accordingly the initial

is carried back to t = - © . Then

time point t =0

o0 it
1) Glt,0t) = = BT < g(or)
m=o

This is the transfer function of the coefficients of U's

2) H(w-w',w') is a Delta function of w-®' such that
H(o-w',w') =0 except o' =0 .
%) Further (23) becomes
0 —- o0 * .
Po(@) =(z Ble”™) Pyl@) (= BY ™) (2k)
n=o

m=0
= ¢(w) P_(@) Gw)"
—Gw)P_Ucn ®),

which is a well known formula of the spectral matrix of a multi-variable moving

average process.
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Going back to the general case where the above assumptions need not hold,

we can regard G(t,m') as the instantaneous transfer function at t of the
. . . t-1 t-2 o
moving average with the weights B~ 7, B~ 5 ..., B~ . We can also regard
H(w-o', ®') for a given ®' as the transfer function of G(t,w') evaluated
2 .

at o' . If G(t,0') is a smooth function of time t , |H(0-0t, o')] is
significant only in the neighborhood around o' =0 .

Now let us consider the dynamic econometric model with the parameters changing

over time. The system (19) should be replaced by

Yo - BT =% Y (25)
Let
Y‘t =Bt-l * B‘t-Q 2 eee 2 BOYO .

Then the deviation from the equilibrium solution with Yo as the initial

condition is

~ _ t-1 t-1
X, =Yoo (B + 202 gl = 20 Uy (26)
m=o m=0
where
I, at m=o
'Ct,m -
Bt-l Bt-2 ces Bt- , at m=l, ... , t-1 .

Then we can get the pseudospectral matrix of the deviation from the equilibrium

solution as a convolution of the spectrum of the random disturbance Ut and the

double transfer function of the parameters.
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Theorem 3. The pseudospectral matrix Pi(w) of §£ in (26) is,

AL ~ *
Py () == [ E (000" )P (o-0') H (0-0',o") do
X 2nN ot U
where
N -
H (o,o'-0) = = G (t,0-0")e 1™
t=1
o t-1 ~i (o0 )m
G (t,ow*) = = C
_. &
m=o
Proof.
N N t-1s-1 « % :
Py () === E %~ % £ I C -iw(t-s)

U, U
el t=]1 s=1 m=0 n=0 t,m t-m s-n S,n

T ‘ot (£t * —im(t-
_ L ossss o -] P(en)et® (s mlan ot e io(t-s)
2nN £ t,m U s,n
smn - .
k18
l ~ ~ * -1 (l)—a)' t-
L [z Hsenpgen) 5 8 (s,00)e L@ ) (t=8) gy
-1t s
T
l i~ ~o *
= S5 _£ H (m~w’,w')PU(w')H(w_w',w’) dw?’
o P e 1 Dot eyt
= S w{ﬂH ﬁu»ax,ux),PU(aya))H’ﬁayaﬂ,ax) dw?!

g.e.d.

The pseudospectral matrix of the deviation of Ny in (17) from its

equilibrium solution can be obtained as a portion of Pg(w) .



-3l

The meaning of G 2 H and (27) are now obvious from the explanation given
for G, H, and (23). Furthermore, we can derive the pseudospectal matrices of
the following case.

£ (i) PU(m') is smooth so that for some small number € > 0O
1 =
PU(w ) PU(mo)‘
where ]wb-w'l <e, (ii) E(t,w) is a slowly changing function of time so that
~ ) .~ *
H (ere';e') © H (o-of,o*)

is negligible when lwo—w'l >e , and (iii) a(t,w') = a(t,w}) for any t and

such that Iab-w'| < € , then we obtain

* gine(t-s) . (28)

N—]:_ ~ ~
PX(w) PN G(t,m)PU(w)G(s,w) o

N t s

The above procedure can be summarized as-follows. For a given time point t ,
let us consider the impacts of the random disturbances in the periods prior to ¢t

(including t) wupon the values of X at time t . These impacts can be represented

by Ct,o 3 Ct,l 5 Ct,2 5y ees Ct,t—l (Ct,j is the impact of the random disturbance
in period t-j). The transfer function of Ct,o Ct,l see Ct,t-l at frequency o
is ‘a(t,w). ~— If the parameters of the model are constant,
50 o1 52 . s
Ct,o =B , Ct,l =B, ct)2 =B, ... . The transfer function is G(w) and the
*
spectral matrix is G(w)PU(w)G(w) . —— If the paramters of the model are not
constant, the pseudospectral matrix is
% ginev

l ~ ~
T i [:3 G(t,m)PU(m)G(t+v,w) =
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It should be noted that the pseudospectral matrix of the deviation can not

e considered the mean of the time changing instantaneous spectra, i.e.,

1 -1 o iam =1y Lin *
ﬁz<z B, e >PU(m)<ZBte > .
t \m=o / . N=0

This 1s because Ct,m can be very different from ~Btm , particularly when Bt
has a trend, and also because (28) has a double summation over t and s .

If the cyclical changes rather than the constants or trends dominate the
changes of the parameters of the dynamic econometric model, then the interpre-

tation of the pseudospectrum is difficult, just'as in the case of the cyclically

changing variance discussed in Section ITI.



VI. PSEUDOSPECTRUM OF A CONSTANT AND A TREND

In the previous sections we have mentioned that the pseudospectra of a
constant and a trend are significant only in the narrow frequency band around
zero. In the present section we investigate how narrow the band really is.

Since the pseudospectrum of a trend depends upon where the origin of time is,

it is difficult to present results that have significant generality. Furthermore,
the pseudospectrum of a + bt is not generally equal to the sum of the pseudo-
spectra of a and bt unless the origin of time is centered over the time span.
This diminishes the significance of the following presentation to some extent.
Thus we merely try to present a clue which might be useful for forming some idea
as to the pseudospectra of constant and trend.

Let us define p, n(a)) and p, n(a)) respectively, as
’ ’

N- . 2
D ((D) _ 1 Zl ej-l(Dt
c,n 2nly t=o
N-1 2
1 ~-iwt
Py n(®) = 555 tio e .

Iet us define mo for each preassigned value of @ in such a way that

» B

O = =

[ pc,n(w)dw =q _ﬁ pc’n(w)dw o
_U)O

@ I
‘f‘o pt’n((l))d(l) =0 -f p_b,n(a))da) = _(_N'l)éEN'l)
-

e]

We have studied the range of « between 90% and 99% and the renge of N
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between 200 and 1,000. When & is fixgd, wo depends upon N . This relation
between wo and N for a given @ is almost an inverse proportion within the

regions of @ and N which we studied. Therefore, we can use %? as the unit
of frequency. As for pc’n(m) , the relation between ab and N for any given
@ is so nearly an inverse proportion that we have presented fairly exact figures

in Table l.(B) For by n(m), the relation is slightly more complicated, and
2

Table 2 for pt n((D) does not have the same degree of exactness as Table 1.
b4

Pe,n®) b, (@)
a 90% 95% 9% ' o 90% 95% 9%
w . w ,
9/en <9 - 2.1 10.2 21 | 1.6 app.> 12-15
or | 72
Table 1. ‘ Table 2.

It might be interesting to note that o8 m(w) near zero frequency has a
: P

violent movement, and we had to estimate the integral

w -0
O o) b1 Tt

'i Pt’n(m)dw by subtracting =£ pt,n(w)dw + mf pt,n(w)dw from ,£ pt’n(w)dw .
e o

In view of equations (6), (11), (15) and (27) for the pseudospectra of non-
stationary processes, and in view of the fact that the pseudospectrum is the

average of all sample estimates of the spectrum (apart from the complications due

If we were treating continuous time, this relation should be exactly an
inverse proportion. However, time element is discrete in the pseudospectrum.
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to the spectral window) obtained with no regard to the problem of stationarity,

an interesting question is how wide the unit of the frequency interval should be

in order to make this average of sample estimates independent of the slow changes

in the parameters of the stochastic process. Obviously the small numerical study

summarized in the above two tables is not sufficient to give an answer to this
question for the general class of slow movements of parameters. Let us suppose,
however, that Table 2 represents the nature of the pseudospectra of the linear
trend in general. Then we can answer the above question. When m represents
the number of lags used in the estimation of the spectrum, the unit of frequency
interval is 2% x %; ., If dt in Sec. ITT, and G(t,m’) in Sec. V are linear
functions of time, then 95% of the variance of d, or E(t,m') is contained in
the frequency interval having the width 6 x %F s where N 1is the number of

data. If 2n x é% is equal to 6 x %? > i.e.;, N =12m , then the pseudospectra

represented in the equations (6), (11) (15) and (27) become practically independ-

ent of the parameter changes.



