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Summazry

The author has tried to accomplish:

1) an elementary explanation of spect'él analysis and cross-spectral anhalysis
on the basis of the concepts and techniques that are presently a part of the econ-
omist's common knowledge, e.g., regression analysis, time series decomposition, and
macro-dynamics, rather than on the basis of Cramer's representation of stationary
stochastic process derived from advanced mathematics, or, electric engineer's
"jargon" such as signal, impulse, and response(however, our explanation treats
only the concepts used in the spectral and the cross-spectral analysis; it does
not treat technicalities of the estimation procedures);

2) a comparison between the estimates of the lead-lag by the National Bureau
method involviﬁg peaks and troughs and by the cross-spectral analysis involving
the data for all time points (the comparison uses about 30 business cycle indi-
cators);

3) a study of the lead-lag relationships involved in the cyclical adjustment
of labor inputs to changes in outputs in manufacturing in order to obtain reliable
leading indicators that promptly reveal changes in expectation (this study uses
time series for the labor inputs in the set of business cycle indicators); and

L) the derivation of some crude, general statements as to the significance
of the cyclical component from the spectral and cross-spectral analysis of im-
portant economic time series as to different sectors of the economy, which the
business cycles indicators are.

Actually 3) and 4) have not been very successful, but, a suggestion for
model-building is derived from 4). As for 2) the estimates of the lead-lag by
two different methods have comé very close in most cases. There are still sev-

eral ambiguous points in the results, and a more extensive study is suggested.
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I. THE SETTING OF THE PROBLEM

In the National Bureau method for studying business cycle indicators,
peaks and troughs are marked for each individual time serjes in which the
cyclical component is visible. This Is done in order to define +he expan-
slon and contraction phases of the specific cycles of individual +ime series
and also fo derive from them the peak and trough reference dates of bus|ness
cycles. The lead or lag of business cycle indicators is measured as the
Time difference between their peaks and the peak reference dates, and between
their troughs and the frough reference dates. Since many stabilization
policies must be executed once (or, at most, a few times) at+ the right time
during the expansion or contraction phase in an attempt o mitigate the
economic stresses about the reference peaks and troughs, the time difference
between the peak or trough of each indicator and the possible peak or trough
reference date Is an important plece of information for policy=planners.

Selection of the peaks and troughs for each individual +ime series
involves a great many difficulties. Exact dating Is meaningless because
of random disturbances in the economic system, and difficult because of
estimation errors. Further, some stabjlization policies, the most important
of which would probably be open=market operations, must be executed constant-
ly, or their possible use must be considered constantly. For these policies
the lead-lag relations in terms of all +ime points is more desirable than
the lead-lag In terms of peaks and Troughs onIyol It is an open
question whether or not the two kinds of lead~lag are equal,

In the present paper a study of the lead-

. Many economists have presented the hypothesis that the iead=lag
relation would vary among the different phases of business cycles,
Although this Is an important hypothesis, the author does not know
of any statistical techniques for testing this hypothesis
appropriately. The cross-spectral analysis does not seem
to be applicable to this problem,



lag of business cycle indlicators in terms of all *ime points rather
“Than of peaks and troughs alone is presented. A comparison between
the two types of lead~lag Is also undertaken.

The traditional method for the estimation of lead-lag in terms
of all time points has been to estimate the auto-correlation
coefficients. This method does not seem to be applicable fo the
present study of business cycle indicators because we would like to
obfain the lead-lag in terms of the cyclical components and not in
terms of any other components. Cross-spectral analysis was designed
by Prof. John Tukey to handle aperiodic time series data and +o
estimate the lead-lag in any component defined as the wejghted average
of frequency Intervals. In this paper, we present an application of
the cross-spectral analysis to the study of business cycle indicators.

Spectral and cross-spectral analyses are not only new statistical
techniques but also provide a way to represent various economic con-
cepts used in the study of business fluctuations. Since the business
cycle indicators form a sample of Important time series covering
different areas of our economy, we shall +ry to examine these concepts
by using the results of spectral and cross~speciral analyses of many

business c‘ycle,indlcan‘ors.2

2. The present study has another purpose which is not discussed
here. Estimation of the spectrum and cross-spectrum involves
some filtering ftechniques, and the selection of appropriate
filtering techniques depends upon knowledge of the specific
shape of the spectrum which we wish to estimate. Since the
business cycle indicators are @ sample of important time series
In different sectors of our economy, it Is hoped that we can
develop filtering techniques that are appropriate for the
study of a wide category of economic time series. The results
of This study are in Chapter XII of An Analysis of Economic
Time Series, by C. W. J. Granger in association of M. Hatanaka,
1953,




II. Elementary Explanation of Spectrum and Cross-spectrum
A. Introduction

Time series decompositions have been used in economics for a long
period. According to a traditional decomposition method, a time series
s decomposed Into trend, cyclical component, seasonal variation, and
irregular component. The ultimate purpose of this decomposition has
been the study of the relationship among djfferent economic time
series with regard to the cyclical component. Spectral analysis per-
forms a kind of time series decomposition indicating the relatjve
Importance of the different components. Cross-spectral analysis
analyzes The relationship among different time series, component
by component,

The concept of spectrum was developed before World War II; but i+
was through The efforts of M. S, Bartlett and J. W. Tukey, working
independently of each other in 1949, that this mathematical concept
‘became amenable to statistical estimation procedures, Since then
Tukey has developed many techniques, such as cross-spectral analysis,
for the application of spectral analyses to practical purposes. In
order to understand the concept of the cross~spectrum, it is
necessary to grasp the meaning of spectrum,

The explanation of spectral analysis in standard reference
books3 Is written primarily for maThemaTicians./ The explanation is
based upon Crémer*s representation of sTaTIonar; stochastic processes,

the understanding of which requires an exceedingly advanced knowledge

3, For example, Grenander, U. apd Rosenblatt, M., Statistical
Analysis of Stationary Time Series, and Hannan, E. J., Time
Series Analysls are written definitely for highly-trained
mathematicians. Granger, C. W, J. In association with
M. Hatanaka, op,cit., Is more elementary, but it is written
primarily for statisticians who might work with economists,
or for highly mathematically-minded economists.
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of mathematics. The author has attempted elsewhere o base the ex-

planation of spectral analysis on the knowledge of statistics which

many economists have;4 to be more concrete, 1) simple Trigonometry

and the theory of complex numbers as used, for example, in elementary
economic dynamics, and 2) a basic knowledge of regression analysis.,
We shall present here such an exposition of spectral analysis
emphasjzing those aspects which are important in studying the lead-

lag relation.

B. Sinusoid
Sinusold Is defined as

A cos (2mft + ) (1)

which can also be expressed as

a cos 2mnft + b sin 2mft . NGRS
The relation between (1) and (I') is 2

A=.a? 4% 9= —tan! 2 (2a)

a=Acos 6 b =~A sin 6, (2b)

Time, t , Is the argument of this function (1) or (), and , £,
A and © in (1) or, alternatively, f , a and b in (I') are +he
parameters. When & and b are given, A and © can be obtained

from Them by (2a); and when (A and ©. are given, a and b can be

4., . Part I of Hatanaka, M., Spectral Analyses of
Business Fluctuations, now being written., The present section
Is a concise excerpt from these chapters.

5. In obtalning Tan—l'g , b
take The principal value of tan a if a>0, b>0
take ™ minus the principal value of +an"'§ ifa<0, b>0
take m plus the principal value of tan~| gr if a< 0, bgO

take 2m minus the principal value of Tan—l‘g if a>0,b<0

-4 -



obtained from them by (2b) . f Is called frequency and is equal

to the Inverse of the period of the sinusoid. This is because when

T moves from zero to ‘% > 2mft moves from zero to 2m and

cos 2irft completes its one cycle., A Is amplitude and is phase
gﬂglg. & Indicates the position of the sinusoid in relation to the
origin of time by using angle,. One.can easily see from Fig. | that the
diagram of A cos (2nft + ©) can be obtained by shifting the diagram

of A cos 2mft (i.e. © = 0) either fto the left or to the right

(depending on whether 8> 0 or 8< 0 ) by - ES? . ‘Since ‘%
is The period of the sinusold, = Eg‘ indicates what portion of the

period this shift amounts to.

Aﬁﬁﬁx}t+9>

/

Fig. |



Throughout the following presentation we assume that the data
are discrete, l.e., they are defined in terms of some *ime unit such
as a month., Then { (s measured by that portion of one cycle move-
ment which is contained in the given time unit. E.g., if the period

|
is 12 months and a month is the time unit, == cycle is contained

2
in the Time unit. Thus f |is 'T% cycle per month.

C. Fourier Analysis

Since Fourler established what 1s now called Fourier's theorem
for a periodic functlon of fime many different versions of Fourier
analysis have appeared. For our purpose, Fourier analysis can be
regarded as a regression analysis of a given time series, {XT} ’

t = 1,2,...,N upon the following set of sinusoidst

| l

. i 1 . 1

a| cos 27 N T+ b{ sin 2m N,T having the frequency N

A~ ,2. \ ; n 1t 13 ..Z

az cos ZﬂiN T + b2 sin 2m N + N
(3)

) ; _I._ -} .l 1t " il _I

aN/Z cos 21T > T + bN/Z sin 21 > ¥ >

(We ignore a minor point as to whether N 1Is odd or even.) {x+} need

not be perlodic in the sense that x for some TO and

Tt

=Xy g e The reason why we exclude
Q

from {(3) sinusolds with frequencies higher than |/2 is that, as long as

all +, l.e. X =X s Xout

we are treating discrete data, these higher frequencies are Indistinguish-
able from the frequencies which are included in the above set of
slnusolds. Since this may be considered a technicality we shall not

elaborate on jt.



It can be proved that the estimates of a's and b's In (3)

by the least squares method are glven by6

A . J
a‘j N E Xy COS 27 N T X
(= |,2,...,E‘) o (4)
o2 ; 4
bj =N E Xy sin ZW_N T

The variance of {x+} s

M™M=
W M=

l =2 - _
= (x, = x) where x =7 X, o
Ny 1 Nopoyp o1

can be decomposed Into N/2 parts associated with N/2 s]nuosids

in (3), That part of the variance of {x+} which can be accounted for

th

by the ] sinusold with the frequency point, J/N , can be

represented as

a b

e N

o |5
I\)Il\)

Cod a2, e _J L2
[( % x4 cos 2 3¢ )7 + { E x, sin 2m N +) ] ] (5)

o |

N

It can be shown, if we are.concerned with the number of data, that

the number of parameters to be estimated in the above least squares mefhod

and the number of data are identical no matter what N may be. Anyone who has

some experlence with the least squares method can see how poor the

The proof is glven In any standard Textbook on Fourler analysis,
€.9e, Eo T. Whittaker and G. Robinson, The Calculus of Observatfions,"
pp. 264-267,

For a proof, see, €.g., H. T. Davis, The Analysis of Economic Time
Series, pp. 65-66.




estimation would be under this circumstance., Indeed, This is so unless
x4 1s determinisfic and furthermore a periodic function of fime. (If x4

is deterministic and periodic, the mean of x+ as the constant term, plus,

Y

the sum of sinusoids in (3) using the estimates 3 and BJ , fits x4
perfectly. This is a version of Fourier's theorem, As for the case of
non-periodic x4, even if we attempt fo estimate any portion of the set of

parameters, e.g., Just %J and Bj [for some number j ] , the result of

this estimation Is always identical to the result of the estimation which
is calculated simultaneously with the rest of parameters using the least
squares methods, This Is due to the orthogonality condition.) In fact,
this poor performance can be demonstrated in the following way. Suppose
that {xf} (+ = 1,2,...,N) Is a stochastic process generated by a normal

variafte such that E(xy) =0, E(x%} =0 , E(x¢xg) =0 if t#s . Then

N 2
we can show that aj is a normal variate with zero mean and 2%— as its

-~

variance, bJ is a normal variate with the same mean and variance as aj s

and, a; and b; are uncorrelated, Then

J
a2 "7
E aj + bj . -‘20.2
{ 2 J N

a2 A2

N aJ-+bJ
Further, since ~§'[ —~—E——— ] has XZ distribution with two degrees of

ol

freedom =- the variance of such XZ is known to be 4 —--

AZ AZ
aj + bJ 404
the variance of —/—— = 7 -
’ 2 N ~2 22
aJ + bj
Therefore, the ratio of the standard deviation of 5 to its mean is

unity and |s independent of N . In other words, the increase of N does not
a2 + b2
J J

improve the estimate of > o

(This was first pointed out by M.Bartlett®
'%JZ + BJZ
in connection with periodogram. Periodogram is defined as N o ——5——

where N is chosen to make one of J/N any desired raticnal values of frequency.)

8. M, Bartlett, An Introduction to Stochastic Process, p. 278.
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D. Spectral Analysis

Spectral analysis is based upon the concept of the sfochastic
process, which can be looked upon as a population having a time
dimension. Thus, a given Time series {x+} is a sample drawn from
a stochastic process. The spectrum is a parameter of the stochastic
process having an infinifely long ftime dimension from = fo + o .
It is a function of frequency f ; when E(x4) =0 for all * , it

is defined as9

n n
S (f) = lim 2 E { % x, cos 2nfT> 2 4 ( Y x, sin 2uft 2}
X 2n+| _ T - T
n— w T=-n T=-n
(6)
_ ‘ 2 -i2mf(t-s) "
= |im oAl E { L xyxge } (7)
n— o -ngt,s<n

for any real number of f between O and z. The existence of The limit

is assumed., {When E(xf) =u #0, x4 in (6)-(7) must be replaced
by X4+

When the spectrum is written in the form (6) and Fourier analysis
is expressed by (5), the similarity befween Fourier analysis and spectral
analysis becomes obvious. Both are essentially the variance decomposi-
tion of {x+} using sinusoids. The differences between the two are more
subtle. First, mathematical expectation is used in the definition of
spectrum because |t ls a parameter of a sTéchasTic process, whereas
mathematical expectation is not used in Fourier analysis. Since, in the

case of economic applications, we usually use just one sample drawn

9, To derive (7) from (6), fransform {6) first into

L2 : ~f2mft2
bim > E {I -Z Xy ! } .
n- T==n

- g -



from the stochastic process, we shall not emphasize this aspect of the
difference between spectral analysis and Fourier analysis. The second
difference is quite similar To the difference befween discrete and con-
tinuous probability distributions. We first emphasize that (6)-(7) are
defined for any real number of f between Q0 and '% . Just as p(x)dx
is the probabllity of x falling In the infinitesimal interval dx
when p(x) 1is a continuous (density) distribution defined for aﬁy real
value of x within a given interval, Sx(f)df is that part of total
variance that can be accounted for by the infinitesimal frequency
interval df . (Thus, S,(f) is called spectral density, At this
point, we are using the word, variance, symbolically. The more exact
meaning of total variance will be given later.) Using Fig. 2 we can
contrast the Fourier and the spectral analyses. In the case of Fourier
analysis the sum of the lengths of N .lines erected at the frequency
polnts ﬁ', ﬁ', ... must be equal to The total variance, whereas in
spectral analysis the ftotal area of the spectrum between O and B
must be equal fTo the fotal variance. This difference is reflected in

the difference in the divisors of (5) and (7). (Notice that the length

of the lines erected in the Fourier analysis Is inversely related to N.)

"," A_’L
414
J = 52 (f)
Wh it %
Fourier Analysls Spectral Analysis

Fig. 2
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It must be noted that in our definition of spectral density the
variance contribution from a point of frequency is zero (just as the probabifity

of x falling at a point is zero). This means that our definition is

not applicable if the stochastic process contains a sinusoid, e.g. if

{XT} can be represented by

coSs ZﬂfOT t et

where {ef} is a time series uncorrelated over time. This s because

in such a process the point of frequency fg has a non-zero variance

contribution. (It is possible fo modify the definition of the spectrum
so that it is applicable to stochastic processes containing sinusoids,)
This restriction on the applicability of the definition of spectrum,
however, does not seem to be a serious drawback as far as economic
problems are concerned, because there is no reason to believe that the
economic stochastic process contains a sinusoid. Even the seasonal

- variafion does not have a constant structure. Its amplitude and phase
do change over time and, hence, it cannot be represented as a sinusoid.

Thus in the spectrum defined above, We are making a frequency decomposi-

tion of the variance of the stochastic processes which do not contain

sinusoids. However perplexing this may be, this Is an important point.

E. Spectra of Stationary Stochastic Processes
The spectrum has been traditionally defined only for stationary

stochastic processes, which are defined by the following conditions:

E{x+) = constant, writften as y

E(xt - p)2 = constant, written as o } (8)

E(x+ = p){xg - ) depends only on t-s, written as Yi,
(h = t=5) .



In other words, the first two moments of the stationary stochastic
process do not depend on the origin of time. (Note that o2 =vyo.)

When the stochastic process Is stationary, (7) is reduced to

which Is the definition of spectrum most common |y USed.lO

Sx(f)df
is that portion of ¢2 which can be accounted for by the infinitesimal
frequency interval df . In fact
4
: 2
[ sytf)df = o
o
because Yh T Yoy, - The spectrum of a random series which is uncorrelated
over time -- such series are called white noise -- is horizontal as drawn
in Fig. 3. Every infinitesimal frequency interval contributes to the
fotal variance in an equal degree. (This is a way of defining "random".)

The endogenous variable

Sulf)

Fig. 3
In the linear dynamic econometric model, when the effect of exogenous

variables is subfracted, can be represented as

0. From the standpoint of mathematical statisticians this Is
probably the most natural defintion of spectrum. See P. Whittle,
"Some Recent Contributions to +the Theory of Stationary Processes",
Appendix 2 in Herman Wold, A Study in the Analysis of Stationary
Time Series, p. 197, and R. B, Blackman and J. W. Tukey, The
Measurement of Power Spectra, p. 7.
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= ‘ 9
agky FAXy |t oees T aXe T baeyt bie,_t eoo F bq€T~q (9)
where €4 is a white noise with variance 02 . The stochastic
process of {xf} which satisfies (9) is stationary if Tthe stability
condition is sa+isfied,ll The spectrum of {XT} satisfying (9) is
fairly smooth if k and q in (9) are fairly small. Figure 4 Is a

tough sketch of the spectrum of

X.‘. - 1.l XT"I + 0,5 XT"‘Z = €+

S {)

0 AM

Fig. 4

Certain Infinitesimal frequency intervals contribute more to the total

variance than others, and this Is why Irregular cycles can be

represented by the dynamic econometric model (9).

F. Pseudospectra of Non-stationary Processes

When the length of data Is finite and when the stationarity
conditions (8) are not satisfied by the stochastic process -- these
are the conditions under which economists work -- we can define the

pseudospectrum as

1. I.e., If the absolute values of the roots:

aOA+_k + aIK+~k—I + ... +a =0 are less than |, or if the

solution of the difference equation
gt T apxe t oo T x| = 0 converges fo a limit when t=xo,

- 13 -



N

: N
s.(f) =2 ¢ {( % x4 cos 2nf+>2 +{ T x4 sin 2nf+)2}
t= .

| t=1

S (f)df 1is that portion of the mean of the changing variance,

N2 .

leél E(XT) ;, which can be accounted for by the infinitesimal
interval df .v It is proved elsewhere|2 that the pseudospectrum
maintains the basic characteristics of the spectrum. Various types

of non-statjonarity can be considered. First, the pseudospectra of
constant and trend (notice that the first condition of (8) Is not
satisfied here) have significant values only in the very low
frequencies as illusfrated by Fig. 5. The width of the frequency band
over which the pseudospectrum s significant, relative to the mean of
changing variance, is roughly In inverse proportion to the number of
data , N . Second, let us consider the case where the variance is not

constant, i.e., the case where the second condition of (8) does not hold.

Suf)

N3

Fig. 5

2. M. Hatanaka and M. Suzuki, "A Theory of the Pseudospectrum and its
Applications to Nonstationary Dynamic Econometric Models,"
Research Memorandum of Econometric Research Program, Princeton
University. The present section F) Is entirely drawn from this
paper. The slight difference in the definition of pseudospectrum
between the present paper and the paper cited above is due to the
difference In the definition of frequency.

- |4 v



If the stochastic process of {xf} is stationary and dy 1is a

deterministic function of time (dT can be normalized so that

N
Z df = N) , the pseudospectrum at frequency fg of {d+x+} -
t=|

whose variance changes im proportion to di -~ s a welghted average

of the spectrum of x4 about fy , and the smoother the change in

dy the narrower the range of the weighted average. The smoothness

of the changes Involved in dy s measured by the extent to which the
pseudospectrum of dy Is concentrated in zero and the low frequencies.
Thus, the d; that involves a few jumps In addition to a trend is also
conslidered as smooth.

A third type of non=stationarity is the case in which phase angles
of various frequencies are not constant over time. (In studying the
pseudospectrum this is a way To itreat the case where the third condition
of (8) does not hold.) This type of non-stationarity is important in
relation fo cross—spectrum, and, the explanation will be given later in
the sections where the cross-spectrum |s discussed.

Yet another type of non=-stationarity Is the dynamic econometric
models of which the parameters change over time. We can say that if
the cyciical components of the parameters dominate the others such as
the constant part or trend in terms of their variance contribution, fhen
the pseudospectrum becomes meaningless. If the constant or trend com-
ponent dominates the cyclical component, the pseudospectrum (and, for

that matter, the cross-pseudospectrum) is meaningful.

G. Spectral Window
When we come to the statistical estimation of the spectrum from
time series data of finite length, we cannot estimate Sx(f) at each

distinct frequency point f . (This Is analogous to the fact that we

- !5 o



cannot estimate the value of a continuous pfobabilify density function
at every point when only a finite number of data is given.) Therefore,

we divide the frequency band between O and 1 Info an appropriate

2
number of. intervals and try to estimate fthe variance contribution from
each frequency EnJrervaI.13 (This is analogous to a histogram.) In practice,

whatywe iry. to  estimate (for the spectrum for a frequency interval
centered at fo) Is the weighted average of the frue spectrum about fo ,
i.e., a smoothed picture of the frue spectrum., The welght is highest

at fo . When we use the Tukey estimation method, assuming that & s
the length of this interval, the welght Is positive between f, + 26 and
fo = 28, but it does not vanlsh completely beyond fo+ 28 and f, - 28,
though 1t is very small. The welghting function is called the spectral

window,

We have commented ear!ler that the spectral analysis Is based upon
the methodology of modern statistics as to the relationship between The

population and samples drawn from jt. Thus, to the estimation of spectrum
is afTached the concepf of degrees of freedom, In the case of
fhe Tukey estimation meéthod, it is given as - b

2%‘, where N .is the number of data and m 1s the number of Intervals

into which the entlire range of frequencies from 0O To '% is divided.
T.ea, & = é;‘. If we want to maintain a glven. degree of freedom in

the estimation of spectrum, the width of the interval of frequency §
is Enverse(y proportional to the number of data; l.e., The longer the

set of data, the finer the analysis of spectrum that can be made.

The fact that we can control the degree of freedom_gl choosingdg

4

. B SN . o [

3. R., B. Blackqan and Ja W. Tukey, The Measurement of
Power Spectra. ‘ v ' o




desirable value of m (or &) should be contrasted to the fact

that the estimates of (5) in Fourler analysis have always only

2 degrees of freedom,

H. "Periodicity of Oscif{lation

In mathematics a periodic function of time is defined as the
f(+) that satisfies (1) = f(+ + TO) for all * and a given ¥4,
feea, 1) =01 +15), f(2) =2+ 1)) ...  f, iscalled perjod.

In economics we might call such functions periodic oscillations.

Figure 6 shows an example of periodic oscillations, In this example, tg = €.

(1)

O ! 2 32 4 5 6 7 8 91011 1213141516 17 18 >t

Fig. 6
and f(O) = f(6) , (1) = f(7), et cetera. There is a mathematical
theorem, called Fourier's theorem, to the effect that any perliodic

oscl | lations with period +O can be adpproximated well by a set of

sinusoids having only a finite number of the first portion of the

sequence of frequencies %&“ » 2L°, eees loe., only those finite

T
points of frequencies haVeOsignif?canT variance components., We have
commented earlier on the degrees of freedom for the spectral
estimates. There is one (minor) dif ficulty in the presently avallable
estimation methods of spectrum. The confidence band for the estima-
tion of the spectrum Is based upon the assumption that no single

frequency dominates the adjacent frequencies in terms of thelr

variance contribution. Thus, this assumption rules ocut the
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possibility of handling periodic oscillation. One very Important

difference befween Fourier analysis and spectral analysis is the

following: speciral analysis Is not designed to handle periodic
oscillations, whereas Fourjer analysis Is designed to handle periodic

oscillations.
Thus, If we agree on two assumptions, |) that the economic system
contains a random element, and 2) but that it does not contain periodic

oscillations, then spectral analysis is the method to be use-do|4

I. Cross-spectrum

When we have a multi-variate stochastic process, the cross~spectrum
or cross—pseudospectrum can be defined. They are direct extensions of
the spectrum or pseudospectrum. Thus, when E(XT) = Elyy4) = 0 for atl

T , The cross—spectrum between {xf} and {y+} at frequency f (f s

any real number between O and '% ) s
Cot) = 1in Shm e {3 gyt (10)
Y n— @ -n<t,s3n

Compare (10) with (7), which Is an expression for spectrum, The cross-

pseudospectrum is

t4.  If the sysfem contains peridoic oscillations and a random element,
we can use Perjodogram Analysis. If the system contalns periodic
oscillations but not a random element, then we can use Fourier
Analysis. In fact, Fourler analysis produces a disagreeable result
even when it is applied to a periodic function of time. Suppose
that the analysis Is applied fo a sinusold A cos (2mf. T + 6) where
fy # jJ/N for any integer | but Jo/N > fo> (j~=1)/N. Then
*he variance confribution as esTnmaTed by Fourier ana?ysis Is spread
around ¢ Jo/N  and (j.=1)}/N in spite of the fact that f
should be Fhe only frequency which has a non-zero variance
contribution,
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, 2 =i2mf(t=s)
C_(fy=%=E z X,y e :
Xy N { 1§T,S§N T7s }

Unlike the spectrum, the cross-spectrum is a complex function of f ,
having a real part ‘ny(f) and an Imaginary part Ixy(f). AiThéugh

it is an analogy of the cross-products % X4 Y+ That appear in standard
.l..

statistics, It is a far more complicated concept. In order to see the

meaning of cross~spectrum Intuitively we rewrite (10) as

. 2 =2t i2mfs
Coy{f) = lim E { Zx,e T yee }
Xy m2n+l _1_1' Ss
2 (e
= lim ST E {(Z Xycos 2Tt ¥ y cos 2mfs + = szln 2nft I y sin 2nfs)
@ + s T s
+ 1(X x,cos 2nft Ty_sin 2mfs - Ix_ sin 2nft Ty cos ans)} .
+ T s T s
s T s
Let us put
2 n 2
caylf,n) = v +=§n Xy cos 2ft R ay(f,n) = ot E y cos 2rrts
(tn
__ 2 _ 2 .
b {f,n) = o] v? X+ sin 2mft s by(f,n) = o E Y sin 2nfs
Then
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o ; ; 2 2
(1) Norm, or squared amplitude of ny(f), l.e., ny(f) +Ixy(f)

= 1im 12—“}5-13 [{ E(ax(f,n)ay(f,n))}z + { E(bx(f,n)by(f,n'))}z

n— <«

+ { E(ax(f,n)by(f,n))}z + { E(bx(f,n)ay(f,n)}zj
because of

E(ax(f,n)ay(f,n))°E(bx(f,n)by(f,n)) = E(ax(f,n)by(f,n))»E(bx(f,n)ay(f,n))

which follows from (|1). and the stationarity conditions {8).
L6 15

ny(f)

(i1) phase of ny(f) = tan

- E{ax(f,n)by(f,n)—bx(f,n)ay(f,n)}

= |im tan )
o o Ela, (f,m)a (f,n)+b (f,n)b, (,n)}

Now we can consider an analogy with Fourier analysis. Let us take the
jTh sinusold

3y, j cos ZW'% o+ bx,j sin Zﬂ'ﬁ + (12)

used for the variance decomposition of {x+} , and the jTh sinusoid

ay,j cos 2ﬂ7% T+ by,j sin Zn:ﬁ T (13)

used for the variance decomposition of {yf} » where the estimates of

ax,J » bx,] 5 @ay,j, and by | are given by (4).. We can define the

|5. For the definition of tan

use fhe same rule as specified in
footnote 5. '
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complex cross-product between (12) and (13) by the following
two concepts:
Product of squared amplitudes —— see The equation for A In

(2a) -— of (12) and (13)

2 2 2 2 2 2 2 2 2 2 2 2
a- .+ b Yy X {a" .+ b” )y =+(a" .a + b~ b +a b +a b
( Xsd X, J X YsJ Ysd X3 JY,J X5 Y}J X, 0¥, d \ZRIEIN
Phase difference —~— see the equation for © In (2a) -- between
(12) and (13) '©
b , b a b - b a
an~! ed otV X S T Y XSy (14)
a ., a . an a .a .+b b
Y X, J X, J Y5 X,JYsJ

Then, we can see that the cross-spectrum ny(f) is analogous to the
complex cross-product thus defined. The squared amplitude of ny(f)
is an analogy of the product of the squared amplitudes of the two

sinusolds of the same frequency used for the decomposition of x, and

+
Vi o The phase of ny(f) Is an analogy of the difference between the
phase angles of two sinusoids of the same frequency used for the decomposi-
tion of xy and vy; . The differences between cross~spectrum and complex
cross—product in Fourier analysis are that: 1) since the cross-spectrum

is defined for a (multi-variate) stochastic process, it Is defined as a
mathematical expectation as fo all possible sample time series, and that

2) the cross-spectrum uses all real numbers of frequencies between

O and £ , as previously explained.

6. Using the rule in footnote 5.
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J. The Treatment of Lead-Lag Relations by Cross-spectrum

When (11) Is substituted info ny(f), 1t becomes.

“'12n+|)

Lim — [ E(ax(f,n)ay(f,n))+E(bx(f,n)by(f,n)) 1 <+
A T o T T S
+1) o -
l'im f2nhl) o i [ E€a, (f,n)b (fin))~E(by(f,n)a (f,m)) ]
hosls (0200 L0 (XY

J. Tukey calls the real part of +his expression co-spectrum, representing

the "In-phase relation", and the imaginary part quadrature spectrum,

representing the "90° out-of-phase reléfion". The cross-spectrum repre-
sents any relations (involving a lead or lag at each frequency) by
combining properly these "in-phase" and "90° out-of-phase" relations,

In order fo understand the meaning of these terms, It is again instructive
to consider the Fourier counterpart of the above expresslons, The "in-
phase relation" is ax,jay,j + bx,jby,j"and the M90° cut-of-phase

relation™ is a Since the a's are the cosine

b - b .8 .
X,J7Ysd X5 J Y5
components and the b's are the sine components of the two time series,

It should be clear why a is the "in-phase" relation.

a8 + b b,
X,J7Ysl XsJ Y5

T tain wh a b ~b a . Is the "90° out-of~phase relation”
O P WY A 1Py 1%, iy, g 10 P

let us consider fwo sinusolds such as (12) and (13). There is a ane=-
to-one correspondence between the whole class of sinusoids of a given
frequency, N and the whole set of polnts in the two-dimensional
space formed by the coordinates for a and b . E.g., The point x in

. y J J
Fig. 7 corresponds to the sinusoid, aX,Jcos 27 N T bX sin Zﬂ.N +

»J

Let us normallize the sinusoids and consider only those having

a “ o+ b, ? = |, (The normaljzation is made only to simplify the
>

X,

geometry Involved here., The essence of the following statements follows
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even without this normalization.) Then the whole class of sinusolds
under consideration corresponds to the uni+t circle in +he (a,b) space,

Now the phases of these sinusoids have a ohne-to-one correspondence with

the angles. represented on the (a,b) space, b
A
o Z
% \ Las
&%~
- T o~
4o a
Fig. 7 Fig. 8

E.g., the phase angle of the sinusoid that corresponds to x s essen-

tially the angle x0a; I.e., 1L<'5unml —<s . (In fact, the minus sign
"]

must be attached in front. See (2a) ). Suppose that the phase djffer-

ence between the two sinusoids (I2) and (13) is 900, If the relative
sifuation befween the two phases is represented by Fig. 7, then

a .==b_ ., b =a_ .. Therefore, a

vod o ] =0

. 4+ b b
%, 0%, 0 7 %, 1Py,

2 2. , .
ax,jby,j"bx,Jay,j('ax,j + bx,j) =1, If the relative situation be-

?

tween the two phases Is represented by Fig. 8, then ay J=b>< K

b = -3

v, Thus, a

:O,

o a ,+ b b
X5 X5 Y5 ] X, J7Y,J

2 2 ' , .
'ax,jby,j“bx,Jay,j = =(a ij+ bx,j) = =] o In other words, in either

case, the "in-phase relation"” is 0O and 900 out-of-phase relation" fs |.or =i,
It Is important to note that equation (14) shows that the differ-

ence In the phase angles of the two sinusoids can be represented by the
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values of ak,jay,J'+'bx,jby,j and The value of ax,be,j - bx,Jay,j .

As to the difference in the phase angles, we need to exerclse caution
in defermining the direction of the lead or lag. For example, suppose that
we observe a 12° phase difference at frequency 1/30 cycle per fime unit.

(see Fig. 9). In terms of time rather than of angles, this is

30 x gé% =1, f.e., | Time unit. The fact that the angle Yoa Is greater

than the angle Xoa by 12° on Fig. 9 means that the phase angle for the
sinusold Y s less than the phase angle for the sinusoid X by 12°
(see (2a)). In other words, the sinusoid X leads +he sinusoid Y by {2°

or | time unit.at frequency 1/30, This iIs I(lustrated in Fig. 10.

-

Fig. 9 Fig. 10

Incidentally, all our mathematics used here are expressed modulus v2n = 360°,
and the relative positions of X cand Y in Flg. 9 can also represent the
case where the angle Yoa is greater than the angle Xoa by 3720

(= 360°+12°), l.e., X leads 'Y by 3| time units. Fig. 9 is also
consistent with the possiblli+y that the angle Yoa Is greater than

the angle Xoa by =348° (= 120-360°) , i.e., the angle of Y is less

Than the angle of "X by 348° , f{.e., X s lagging behind Y by
29 time units. The cross=spectrum cannot discriminate befween these

different possiblities.
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K. Three Statistics Derived from Cross-spectrum; Black Box

In the applications to practical problems, we use three
sTafisfics derived from spectra and cross-spectra. (Each of the three
can be defined for the spectra and cross-spectrum and also for the

pseudospectra and cross~pseudospectrum, ) First, coherence is defined as

[y (£)]7

(14)
5, ()5, (1)

and indicafes the coefficient of determination between xt+ and vy, in

regard to that part of these series which can be accounted for by the

sinusoids of frequency f . The coherence always lies between | and O .

(This is also true for the coherence defined for the pseudospecira and
cross~pseudospectrum.) In fact, The coherence is not the ordinary coeffi-
cient of determination, but Thls coefficlient when the proper phase
difference between xy and vy 1is adjusted. This Is because [ny(f)lz
s an analogy, not of the simple cross=product but of +the product of the

I
squared ampljtudes, l Second, gain of y; over x4 s defined as

[7. Using an analogy with Fourier analysis, the expression corresponding
to the coherence is 2 2

. 5+ - . .

(a 5, 1%y, 37 T3, Py, 5P, By, 5

2+b 2 2 2

3 b
%, 1%, 5 By, iy, ]

which is lidentically equal +o |, no matter what the values of a's
and b's are, l.e., no matter what the phase difference between
The fwo_sinusolds Is.

N -+
%, J%Y,

(

)

Although this analogy is useful to explain The relation between co-
herence and phase dif ference, it is quite misleading because I
ignores the stochastic element involved in the definition of cross-
spectrum. TIndeed, the coherence for any two-variate stochastic
processes is generally not unity. If The processes of {XT} and {VT}
are totally uncorrelated, The coherence should be zero., We can visu-
alize this by a two=variate stochastic process where the event of
certaln phase for {XT} occuryring at a frequency is totally uncorrelated
with the event of a certain phase for {VT} occurring at the same
frequency. Since the cross~spectrum is defined using the mathematical
expectation of all possible samples drawn from the stochastic process,
the coherence is zero. When we are dealing with only one sample drawn
from the stochastic process, as we do In most economic studjes, the
event of a certain phase difference occurring at a frequency f, is
totally uncorrelated with the occurrence of the same phase difference ~
at a neighboring frequency fgte . Therefore, over some frequency
interval the coherence should be very small,
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[ny(f)[

(15)
5, (f)

and corresponds to the regression coefficient of yy on x4 1in regard

To the frequency f . Third,

1 (f)
- XY (16)

tan
Ry ()

fs The phase of the cross—-spectrum ny(f) and indicates the lead-lag

between x; and vy4 In regard to frequency f .

When the length of data iIs finite, we must take a weighted average
for all the functions of frequency f that appear In (14), (15), and (16),
in just the same way as we had to take the weighted average of the
True specirum,

For a multi-variate stochastic process we can define the matrix
of spectra and cross-spectra in tThe same way as we define the matrix of
varlance and covariance. From this matrix the partial cross—spectrum is
derived in just the same way as the partial correlation is derived from
the matrix of varlance and covarian*ce.‘8

Now we observe that the greatest advantage of cross-spectral
analysis Is that we can study certain relationships frequency-by-frequency.
(In the next section, we shall explain that the time series components
.can be represented by frequencies.) Therefore, the cross—spectral

analysis Is useful when the relationship befween {x+} and {VT} can

be decomposed in Terms of frequencies, l.e., the component of {VT}
that s accounted for by frequency f Is Independent of the component

of {xf} that Is accounted for by any other frequencies ' and can

8. This work, done by T. Wonnacott, is described in Granger in
assoclation with Hatanaka, op. cit., Chapter 5.
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be dependent only on the component of {x+} that is accounted for by
frequency f . Such relationships are called black box relationships.,
In The case where a portion of the variance of {y+} is accounted for
by a deterministic function of {x+}, {ZT} = F({XT}) , and the rest by
a white noise, Tukey has proved that the relationship between {XT}

and {yT} is a black box when .. ...v
Iy F is linear; l.e., If {le}r= F({xlT}) and {Zz+} = Fc{x2+}>

and
2) F is time=invariant, l.e., 1f {zt} = Ft{x{}) and if we define

{Zi} = {Z++h} » {Xi} = {x 3 5 1.4, The new time series are

t+h
obtalned by shiffing the old Time series along the time axls, then

{Zi} = F({xﬁ}) no matter what h may be.

An example of a non time~invariant function is

zp = axy + bt .
The reason why this is not @ time-invariant relation is

¥ = ayx¥ + + ax¥
¥ = ax¥ bt + bh # ax¥ + bt,

Thus, given the origin of time, when a time-invariant relationship Is
observed over a finite porfion of the time, this observation can be just
as good a sample (of this relationship) as an observation over any other
portions of the fime with equal length. In other words, the relationship
i s not "historical",

This conditien cerftainly does not hold In economic Time series.
Particularty Important in connection with the study of business cycle

indicators is the time-changing lead-lag relationships.,
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L. Phase bf Cross-pseudospectrum and Changing Lead-lLag

Let us consider a two-variate (non=stationary) stochastic process
where the phase angles of the two series x4+ and Y4 can change
over time. The difference between the phase angles of x; and vyt ,
i.e., tThe lead or lag, can also change over time. Let us consider
+the case where the changes in the phase differences are smooth or involve
only one or two Jumps so that their pseudospectrum almost entirely con-
centrates |n the low frequencies., If the changes In the phase angles In
each of the fwo series are uniform over different frequencies, i.e, the
way In which the phases change over time does not vary from frequency to
frequency, then the phase of the cross—pseudospectrum at f s the
average of the time-changing phase differences at f . If The changesin
the phase angles are uniform over only a narrow frequency interval
around f , the phase of The cross-pseudospectrum at frequency f |is
the double~average of mf(T,v) over T and v , where wf(f,v)
represents the difference between the phase angle of x4+ (al frequency f)
at time T and the phase angle of Yy (at frequency f ) at time t+v,
The averaging over v uses The weights that are roughly in inverse
proportion to [vl .

Therefore, we .can conciude that the phase of the cross-

pseudospectrum represents the average of the time-changing lead or lag,

M. Frequency Representation of Time Series Components,
Especially the Cyclical Component

It 1s true that the representation of the time series components
by frequencies may not be unique in the sense that two different
components could be represented by practically The same weighted average
of practically the same frequenclies. This happens in the following fwo
casest (1) Different shapes of trend =- linear, exponential, quadratic,

etc. =— are almost all similar in the frequency representation (see Fig. 5).

_28-_



In all cases the pseudospectrum of the trend between 0 and 5

N

frequencies contain more than 95% of +the varlance. (2) Fluctuations
with changing amplitude appear on the spectrum almost exactly like the
fluctuations with a constant amplitude, which is roughly the average of
the changing amplitude, if this change is slow. For problems for which

a fine distinction among slightly different time series components Is
necessary, the cross-spectral analysis would not be useful. The analysis

would be very useful , however,! for studying the relationship among

several series-ini ferms of any vaguely. defined time series component,

Let us now try to represent the traditional time series
components by frequencles. -Since most of the cycle indicators are monthly
data, let us use a month as the +ime unit +o represent frequency. Then
The frequency, T%‘ cycle per month, is the frequency of a 12-month sinusoid,

We shall abbreviate cycle per month as c/m . Let us consider an artificial

seasonal component with a perjod of |2 months which is periodic but not a

sinusoid. In order to represent this seasonal component we need the

e L 2 3 4 5 s .
frequencies 22 T2 2772 ' T2 c/m . All but the first are

called the harmonics of the first frequency. Since the real seasonal

component is not an exact periodic function of time (because of amplitude

changes and phase changes), some (usually very narrow) intervals of fre-
{ 2

quencies around 12 72 2 2 o0 s T%’c/m have significant variance

contributions in the spectrum of the seasonal component,

As for the cyclical component, it should be obvious that it is far

more Irregular than the seasonal and hence the representation of the cyclical
component needs a wider frequency interval than the seasonal. The average
duration of National Bureau business cycles is about fifty months. We can

take Z% c¢/m as the center of the frequency interval corresponding to the
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National Bureau business cycles, /m is convenient because it is a

Z'8“C
quarter of T%‘ c/m .) Recently, Mack proposed the consideration of sub-
cycles, which are substantially shorter than the National Bureau business
cycles,!9 and we would like fo include subcycles in our definition of the
cyclical component. Thus the cyclical component would be a weighted
average of frequencies which include both 'Z% c/m and E% c/m .

Now we must define the upper and lower bounds of the frequency
interval corresponding to the cyclical component. We could use the well-
known boundaries of business cycieé set by Burns and Mitchell, i.e., two
years for the lower bound and ten or ftwelve years for the upper bound20
or in terms of frequencies, ‘Tiz c/m as the lower bound and E%‘c/m
as the upper bound,

We do not choose these upper and lower bounds, however, There
are two reasons why the lower bound must be ralsed beyond Tﬁz c/m . The
first reason [s that there has never been a business cycle with a dura-
tion as long as 144 months in the United States. (The fongest one for
the United States was |0l months.  G. H. Moore has informed the author
that Burns and Mitchel! considerad European business cycles as well as
those of the United States in setting the upper bound,) The second

reason, which Is more important than the first, Is that cross-spectral

analyslis cannot analyze properly frequencies lower +han ﬁ',;where N

19. R, P. Mack, "Notes on Subcycles in Theory and Practice",
American Economic Review, May 1957, pp. 161-174,

20. A, Burns and W, C. Mitchell, Measuring Business Cycles,
p. 3 and p.57.
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is The number of daTa.Z‘ The majority of business cycle indicators are

200-500 months long, and, for this majority Tﬁz'c/m and even TéT c/m

are foo low to be analyzed properly by spectral analysis. Since we have
discarded all the indicators less than 200 months in tength, the lower

bound for the frequency band of cyclical component is at most 3% c/m .

As to the upper bound of the frequency interval of cyclical

component we choose 'T% c/m ., Thus the interval contains Mack's sub-

cycles, the average duration of which is 24 months. There are two reasons

why . the upper bound is raised from Eﬁ c/m to T%‘ c/m . First, since

24 months is the average duration of a subcycie, individual durations
can be shorter. The second reason, which is more important, is related
to the observation that when we put the center of frequencies for the

National Bureau business cycle at Zé c/m , the center of the frequencies

for the subcycles, Eﬁ' c/m , is the first harmonic of the National Bureau

business cycle. Once this is realized, there is no reason to stop at the
first harmonic. Therefore, we have rajsed the upper bound as far as we
can, stopping just before possible Interference with the seasonal

22
frequencies.,

2l. The phase of cross-spectrum at zero frequency is necessarily zero
(because by (f,n)= by(f,n) = 0 at f = 0) and, in a sense, it is a
meaningless concept because a sinusold with zero frequency, i.e.,
infinite period, is a constant. The spectral window carries this
meaningless cross-spectrum at zero frequency to the higher frequencies.
For example, 1f we want o maintain 12 degrees of freedom for the
estimates of cross-spectrum, the cross-spectrum at zero frequency
Is.carrled as far as the frequency 6/N . The distinction between the
frequencies that can and cannot be analyzed properly by the cross-
spectral analysls shouid not be taken rigidly., This is because this
distinction depends upon the degree of freedom that one wishes to main-
taln and also because the spectral window smoothly approaches zero so
that the upper bound to the region of frequencies that are affected by
the meaningless zero frequency cannot be represented by a singie
number in practice,

22. We have commented on the spectral window. Since we would like to have
the weights for 1/12 ¢/m to be zero, the center of the highest fre -
quency interval to be included in the cyclical component Is
(1/12 = 28) c/m where 8 is the width of the unit frequency Interval.
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In order to represent the cyclical component as a weighted average
of frequencles, the appropriate distribution of weights within the upper
and lower bounds should probébly be the spectrum in this bound. In
practice, we have Taken a rather free attitude in this regard. For the
average of phase and coherence over the frequencies for the cyclical
component we have taken visually the average on the charts of phase and
coherence, Since the estimates of these statistics are subjected to
various kinds of errors (see the Appendix I to this paper), an elaborate
weighting scheme would probably not be worthwhiie.

The definition in the literature of irregular components has been

vague. Economic statisticians tend to think that iT‘is what is eliminated
from a series by a moV?ng average., Ecenomists tend to associate the
irregular components with exogenous fdctors. An unpublished study by

J. Cunningham23 shows that when we define the irregular component as
whatever is obtained from the application of Shiskin's method, the

spectra of irregular components are insignficiant in the frequencies

I
less than B c/m .

N. A Brief Comment on Filtering
In spectral analysis, linear transformations of a time series
are called filftering, Thus, filtering can be represented as the operation

to obtain from x4+
YVt T 8Xtkh T APppa) T g a7
( h = some integer )

As to the cross~spectrum between the two time series {XT} and {y+}

we have the following conditions:

23, J. Cunningham, "Some Observations on the Spectral Analysis
of Economic Time Series", presented to the 1962 Meetings of
the Econometric Society.
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(i) the coherence is equal to |

S, (f)
(I1) the gain of {yf} over {XT} Is equal to Y
S, §f)
and can be represented by using the
parameters a's . in (i7) as
]ao+a]e~i2ﬂf+»aze—2iznf P ake—k32ﬂ+ ,2 (18)
(111) +the phase is
- aysin znf + assin 2(2mf) + -— + a sin k(2zmf)

tan -

agtajcos 2Wf+a2cos 2¢2mf )+ — + 8, cos k(2mf)

(19)

Since the relation between {XT} and {yf} Is deterministic, The
coherence is obviously | . When the coherence is |, the gain is the
ratjo of two spectra., Formulas (18) and (19) can be derived from 17y,
(7) and (10),

Apart from the general use of (17) as a ftransformation of
variables, filtering is essential for the estimation of spectrum and
cross—spectrum. Suppose that the true spectrum has a very sharp and
high peak at a frequency fs. Then, the "spectrum" which we estimate,
Te€., the "spectrum" obtained by smoothing the true spectrum by a
spectral window (see Section II, G) at a frequency fi » which is located
near fo » is mostly the "leakage" of the true spectrum at fo, rather
tThan +he true spectrum at fl . In the case of economic time series,
such sharp and high peaks in the (pseudo) spectrum appear at zero and
near-zero frequencles (due to the trend and the long waves, see Fig. 5)
l | |

] | |
TZ2°57473 5 ¢/Mm. (This

and the seascnal frequencies,
explanation anticipates the results described in Section V to some
extent.) When we are concerned with frequencies other than These, e.g.,

the frequency of the cyclical component, the "spectrum" obtained by

smoothing the frue spectrum Is frequently meaningless.
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Filtering enables us to eliminate this difficulty. We can choose
sohe appropriate values for the parameters aé in €17) so that the true
spectrum of {VT} could not possibly have such extreme peaks which would
obscure the frequencies of the cyclical comporent. Then we can first
estimate the "spectrum" of {yf} ; by using (18), we can estimate the
"specttum® of {x+} ... The estimate of the "spectrum" of {x+} ‘Is far
nearer the true spectrum of, {x+} than is the direct estimate of the
Yspectrum" of {XT} .

The elimination of the peak at and near zero frequency Is
similar to a trend adjustment, and, the elimination of the peaks at
the seasonal frequencies Is similar to a seasonal adjustment. However,
the sole purpose of filtering Is to reduce the peaks of the spectrum.
There Is usually great freedom as to the extent to which the reduction
of peaks should be made. The effect of each filtering method upon the
spectrum is mathematically known, Therefore, the problems of filtering
are simpler than the problems involved In trend and seasonal adjustments,
where The time series obtalned by these adjustments are required to have
certain rigorous properties. (See the comment on the non-uniqueness of
frequency representation at the beginning of Section II, M.)

The author's experience with different types of filtering in
relation fo the study of cyclical component is described In Chapter XII

of C. W. J. Granger in association with M. Hatanaka, An Analysis of

Economic Time Serjes .

0. Estimates of Spectra and Cross-spectra in Relation fo
Pseudospectra and Cross-pseudospectra

In several previous sections, we have explained the conceptual
meaning of pseudospectrum and cross-pseudospectrum. These concepts also

have a great, practical signiflcance. Suppose that we estimate the
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"spectrum” and "cross-spectrum" of some time series data by using a standard
estimation method, without paying any‘aTTenTionJTo the possible non-stationarity
of the mechanism behind the time series data. (The computer does not know
whefTher or not the input data come from a stationary stochastic process,

and it prints out something as the estimates of "spectrum" and "cross-spectrum",)

The pseudospectrum and cross-pseudospectrum are the mathematical expectations

of such estimates of "spectrum" and "cross-spectrum" obtained by using a

special, spectral window., This window is not desirable from a certain
standpoint of statistical estimation, and, hence, noone actually uses it.
The major difference beiween this window and the commonly used windows,
however, is only that the latter smoothes the true spectrum more than the
special window for the pseudospectrum does. Therefore, unless we try to
make a statement about a very narrow frequency interval, we can say that

we actually estimate the pseudospectrum and cross—pseudospectrum when we

estimate the spectrum and cross-spectrum without paying any atfention to

the possible non-stationarity.

ITI. STRUCTURE OF LEAD-LAGZ>

In past studies of economic relationships, generally two kinds of
definitions of lead-lag relationships have emerged. In the field of business
cycles many people have tried to define the lead-lag in Terms of the cyclical
component, which must be distinguished from the lead-{ag in terms of the
seasonal, or trend component. This is very clear in the methodology of the

National Bureau.z4 On the other hand, in econometrics, the relationship

23. The author Is aware of the fact that the problems treated in the
present section need a far more careful study.

24, E. g., 6. H. Moore, "Introduction", pp. xxx-xxxiii, in Business
Cycle Indicators, ed. by G. H. Moore.
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between any fwo variables xt+ and y+ is represented in the form of a

distributed lag with a random: disturbance € ¢

Y+ 7 X+ + a,><1._' + hee + et v (20)

without distinguishing the different time series components, For some
indicators the economic relations underlying them are so vague that the
consideration of (20) is irrelevant, whereas, for other indicators we even
have some theories as to the relationships underlying them, It would be
important to investigate the implications of these ideas from the standpoint
of the cross-spectrum. In the following explanation we assume that {x,]} and
(€.} are independent. so that there is no feed-back effect of {Xt} upon {yt].

However, (et} is not assumed to be a white noise.
When we define any time series component by a weighted average of

frequencies in given intervals of frequencies, a first hypothesis which one
-would naturally think of is that the magnitude of lead-lag between {xf}

and {yf} is constant over an interval of frequency in terms of phase

angle © (or ES ) (explained In Section II B) . This constancy means

that the magnitude of lead-lag in terms of calendar time is in proportion
to the period, l.e., in inverse proportion to frequency. Thus, between
Zé c/m and -zﬁ ¢/m , this hypothesis means that if there is a 2 months
lag at ZL—EIS c/m then there is a | month lag at —2-4I— c/m. Tukey calls this

fixed angle lag. This hypothesis, however, is not general ly consistent

with the econometric relationship presented above. If there is only one

term, apart from €+ » involved on the righthand side of (20) |, e.g.

y.l_ = ahX_i__h + €4 » (2])

then the phase of cross~spectrum between {x+} and {VT} (when looked upon
as a function of f ) s in proportion to f . This should be obvious intu-
iTively because (21) Implies h months of lag of y+ behind x4+ in every

frequency. The constant magnitude of lag in terms of calendar time means that
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the magnitude of lag in terms of phase angle Is in inverse proportion to

the period, i.e., in proportion *o the frequency. Tukey calls such a fag-

relation fixed time lag.25
If the sequence of weights 8gs 8] eo. in (20) is symmetric about
h so that |
ah_' = ah+] R ah__2 = ah+2 3 eoe aO = aZh’ a2h+j = Q0
(3>0)

then the phase of cross-spectrum between {XT} ard {yf} satisfying (20)
is Jjust the same as the phase of cross-spectrum between {x+} and {y+}

satisfying (21). 1In other words, what appears to be h months fixed time

fag on the cross-spectrum could very well be a symmetric distributed lag

with an average lag of h months. This point must be kept in mind in the

interpretation of cross-spectrum,

In the general case of (20) where the weights 38, » @ 5 o». nNeed
not be symmetric, the phase of the cross-spectrum is generally neither fixed
angle lagnor fixed time lag. The author has studied only the case where

aj‘s follow the law of the decaying exponential,

"'CJ

aj =e
where ¢ [s some positive constant. Within the range of values of ¢
which would be reasonable in economics, this phase declines very rapidly as
the frequency moves from zero, and declines more slowly as the frequency
comes to the region that corresponds to the cyclical component., The phase

of the cross-spectrum betWeen'[xt} and {yt}frelated by (20) ik

-1 & “sin 2mf
tan = v

- Ccos 2t

25. G. H. Moore has pointed out to the author that the National Bureau method
has an analogy to both the fixed time lag and the fixed angle lag. The
fixed time lag "occurs when we compare specific cycle peaks with reference
peaks" (quoted from & private communication). Although the lag here is
defined in ferms of peaksand froughs alone, the lag is measured by using calendar
time. The fixed angle lag "occurs when we determine the reference stages
over which a series typically expands or contracts. The stages cover
thirds of a reference phase, not a fixed number of months", (quoted from
a private communication).
...37..



IV, SELECTION OF CYCLE INDICATORS AND REFERENCE SERIES

In Business -Cycle Indicators, Vol. II, G. H. Moore |ists about

seventy cycle Indicators (excluding the diffusion indexes), With his
advice, we selected twenty-nine of them as the objects of our study.
This selection was based upon the following three principles: 1) series
that cover no more than 15-20 years are eliminated, because they are ‘oo
short for the purpose of studying cyclical components by spectral analysis;
2) series which have lost their significance due to the appearance of better
series are Included if they are sufficiently long, because the purpose of
our study is not the prediction of movements in the ecanomy for a few months
‘@head of the fime of this writing; 3) series for which only seasonally ad-
Justed data are ayallable are eliminated. Some of the cycle indicators are
seasonally adjJusted at the source, and not only are the unadjusted data un~
available but the adjustment methods are not known in detail or are extremely
complicated so that Its effect upon the spectrum cannot easlly be ascertained.
Some doubt has been expressed by economefricians as to the effects of the
seasonal ad justment methods on each frequency. Therefore the safest approach
is to avold the use of data which have beén seasonally adjusted until| a large-
scale study of the methods of seasonal adjusfﬁenf is made.26

Of the twenty-nine cycle Indicators, twenty-six are monthly series.
Twenty-three of them start from 1919 or can be so treated without discarding
a significant part of the avallable data. These twenty~three Indicators are
grouped as Class I, Three monthly cycle indicators start before 1919, and
They are included in Class II. Three cycle indicators are quarterly and they
are Included In Class III.

Within each class of cycle Indicator, one indicator is chosen as the

reference time series with which the other indicators in that class are tfo

26, The author Is informed that . M. Nerlove is engaged in a study
of this kind.
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be compared in estimating the lead-lag. For Class I the reference Time
serfes is the Federal Reserve Industrial Production Index; this choice

is made on the advice of G. H. Moore. His suggestion is that this is one of
the best reference series because of the sensitivity of manufacturing and
mining production to business cycle movements., For Class II the reference
Time serles [s bank clearings., For Class III the reference time series is

GNP in current prices.27

The cross-spectrum between the Federal Reserve
Industrial Production Index and bank clearings indicate the absence of |ead
or lag between the two series in regard to the frequencies of the cyclical
component.
V. STRENGTH OF THE CYCLICAL COMPONENT

In This section we shall digress from our main outline in order to
comment on the importance of the cyclical components, as measured by their
variance contribution, relative to the other time series' components. As
Judged from the estimates of spectra of busjness cycle indicators, frequencies
lower than those for the cyclical components contribute far more to +he Total
variance than frequencies for the cyclical components, In other words, the
trend and long waves are far more important components than is the cyclical
component. On the other hand, frequencies higher than those for the cyclical
components contribute less to the total variance than +he frequencies for
the cyclical components for most of the business cycle indicators, (An
exception is, e.g., Department Store Sales for which +he seasonals are
very strong.) In other words, the cyclical components are more important

than the seasonals and other very short-run fluctuations for most of the

27. For many cycle indicators, as for most economic time series data,
there are "breaks" In the series. We have used the longest possible
piece of data without doing the work of "plecing together' a series;
the one exception 16 this rule is the Retail Sales series,

Since recent data are frequently subject to revisions, we have used

data only up to June 1961. Some of the cycle indicator series have been
revised since the publication of Business Cycle Indicators and we have
used the revised data supplied by Dr. Moore.

- 39 -



business cycle indicators.

Another interesting problem is whether or not +he frequency
interval for the cyclical component is well defined by the shape of the
spectrum. If there is a gap in the spectrum between the frequencies for

SC) K

Fige 11l Fig. 12
the cyclical component and the lower frequencies, as I!llustrated in
Figure |1, then the cyclical component can be considered as meaningful on
this basis. If there . is no such gap, as illustrated in Figure 2, then
The cyclical component is not meaningful on the basis of spectrum alone,
The gap which is_belng sought is located, if it exists, In a very low
frequency, which is usually |ess than /ﬁ' for most of the business cycle
indicators. Therefore, this problem cannot be properly solved for most
Qf the business cycle indicators., The general confours of the spectra
of mest of the cycle indicators covering the perfod since 1919, however,
are found o be very high at the very low frequencies near zero, and

steadl ly declining as we move toward the higher frequencies, but the
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decline stops or becomes less rapid or even reveals a slight rise as
we reach the frequencies corresponding to the cyclical components,

In the case of two cycle indicators, the Standard and Poor
Common Stock Price Index and bank clearings, the available data cover
the period from the 1870's o the 1950's and are long enough for study
of the possible gap in the spectrum mentioned above, The spectra of
these two series indicate a peak about Z% c/m and a gap about -Zé c/m.
(The peaks would probably be statistically insignificant although the

significance test is difficult because of non-stationarity.) However,

these peaks and gaps occur over a very narrow frequency interval (about

gé c/m from bottom to bottom or from peak to peak), and are observed
not on the spectra of these series themselves but only on the spectra of
the logarithm of these series. The reason why the peaks and gaps do not
appear in the spectra of the original series could possibly be that the
variances of the original series have increased over time, whereas the
variances of the logarithm of the serjes appear to be roughly constant,
(See the earlier comment on +the pseudo-spectrum of {d+x+} °)28 The
author does not know whether or not any economic significance can be
attached to these extremely narrow peaks and gaps.

Apart from this difficulty of interpretation, the general

indications are that the cyclical component is not a meanjngful concept

on the basis of spectrum alone,

28. As far as the bank clearing data are concerned, the peak at

Z% c/m Is revealed more clearly during the period before 1914

than during the period after 1919. We have also analyzed the
spectrum of logarithm of pig iron production, which Is a very
long t+ime series, although this series is not treated by the
National Bureau as an indicator, Again a peak is revealed about

Z% c/m and its harmenic, Eé c/m, for the periodsboth before 1914
and after 1919,
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VI. RESULTS OF THE CROS5-SPECTRAL ANALYSIS

We héve estimated the cross-spectra betfween the indicators
and Tthe reference time series of the classes to which they belong, Our
main interest lies In the coherence and phase derived from the cross-
spectra, as the coherence indicates how closely each cycle indicator is
related to the reference time series and the phase measures the lead-lag
between the Indicator and the reference Timevseries.

The results of the estimation are summarized in Table |. Let
us study the lead-lag relations In Table |, We first observe that there
are many cases where this relation is very compllicated. In fact, no
models of the relationships which the author knows fit +he results of
cross-spectral analysis in these cases. Second, some indicators such as
lay-off rate and business fallures have an inverse relationship with the
general activity of the economy, This is revealed in the cross—~spectrum
as a nearly 180° phase difference. When the phase difference is
(180° + x9)or  (180° - x©), we show It in Table | as "inverted series
leading (or lagging) by x°M, Third, we observe some examples of flixed
time lead or lag in Table |I. The symmetric distributed lag Is not
necessarily an unreasonable model when a chain of relations is involved,
€.Q., {ZT} depending upon {y4} , and {y+} depending upon {x¢}.
This Is because even if the distribution of welghts in the lag between
{x+} and {y+} and this distribution between {y+} " and {Z+} are very
skewed, this dlistribution between {ZT} and {X+}&is motre ‘symmetric,
Further, symmetric distributed lag-is not necessari}y an unreasonable
model when aggregate data are involved, This is because even if +he
distribution of weights in regard to a single individual economic unit

Is skewed, the different magnitudes of reaction time (the +ime for
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which the weights are zero) tend to make the distribution of weights
for the aggregate more symmetric particularly when a short time unit,
such as a month, is used.

In regard fto the coherence in Table |, we can state that the
cyclical component is the frequency band in which the coherence tends
to be higher than in any other frequency band, except for the seasonal
frequency points. It is true that the cohereénce in terms of the
cyclical component is |ow for many cycle indicators, but these indica-
tors generally have low coherence in all the frequency bands. Thus we

can say that the cyclical component Is a meaningful concept in terms

of the cross-spectrum,

VII. JUDGMENT OF THE CYCLE INDICATORS:
COMPARISON WITH THE NATIONAL BURFAU RESULTS

IT must be emphasized that only about one-half of the cycle
indicators have reasonably high values of coherence (with the reference
time series) in regard fo the frequency band corresponding to the cyclical
component.  The Indicators having low coherence can hardly be treated
as good indicators, whether leading or lagging.

A meaningful significance test for the estimates of coherence
is extremely difficult because of the non-stationarity of the underlying
processes. We might take 0.5 as a point fo distinguish between high
and low coherence. This value, 0.5, is the estimate of the coherence
between the Federal Reserve index of total iﬁdUSfrial production and
the National Bureau zigzag business cycles obtained by connecting
linearly the consecutive reference dates since 1919, This zigzag

cycle x(t) can be defined as
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x(+) = +| if t+ = a peak reference month

x(t) = =t , if t = a trough reference month
x(1) =—4+'1F"7F‘_ s If T, >tz Tt , and if Tj Is a trough
2 reference month and T, Is the next peak
reference month
2(+"T1 ) > > K
x(t) = |- T24T' , If T2 >tz TI , and |f T’ is a pea

reference month and T2 is the next trough
reference month

Among the monthly series that we have studied the following have a high
coherence with the reference series: Average Work Week, Lay-off Rate¥*,
New Orders of Durable Goods, Housing ‘Starts, Residential Building
Contracts, Raw Materials.Spot Price, Employment*, Freight Car Loadings¥,
Bank Debits outside N.Y., Retail Sales, Department Store Sales*, and
Manufacturer's Inventory, (Asterisk indicates series having extremely
high coherence.) Between the two quarterly series we have studied, the
corporate profits affer tax has high coherence.

The direction of lead-lag as measured by the cross~spectral
analysis Is almost Invariably the same as the direction as obtained by
the National Bureau method. Whereas the National Bureau method measures
the lead~lag only in terms of peaks and troughs, the cross~speciral
analysis measures it In terms of all +ime points. Therefore, the coinci-
dence of the two .results Is remarkable. There are three cases, however,
where the results of the two methods do not coincide. One is the In=
dustrial Raw Materials Spot Price Index, which is freated as a leading
indicator by the National Bureau, whereas in our results the phase is
zero on the average over the frequency inferval of the cyclical component,
However, the phase of the cross-spectrum is very complicated in this

parficular case, and It would be worthwhile to describe its details.
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About Zé-c/m » The Industrial Materials Spot Price leads the reference

series (industrial production index) by about 359, f.e., 48 months x

Eé%%as 5 months . About 'Ei c/m , where the coherence Is higher than in
the previous frequency, the Industrial materials spot price lags by
about 509, f.e., 24 months x gg%;g 3 months. However, the appropriate

significance test for the phase angle is very difficult because of the
possible non-stationarity, and the author does not know how much signi-
ficance we can attach to these figures.

Another discrepancy is Retajl Sales. This is treated as a
coincident indicator by the National Bureau, but according to our
results, It is slightly leading in all frequencies corresponding to
the cyclical component. Yet another discrepancy is Department Stores
sales, which Is treated as a coincident indjcator by the National Bureau.
According fo the cross-spectral analysis this series is roughly coinci-
dent about Zé'c/m and teading about Eﬁ' c/m .

In order o make a proper comparison between the estimates of
lead-lag by the National Bureau method and the resul+s of cross-spectral
analysls, the figures in Column (E) of Table | are obtained by using the
reference series adopted above for each class rather than the National
Bureau reference dates. (This procedure was proposed to the author by
G. H. Moore, and he has kindly supplied the results of his calculations.)
Figure || is the cross-tabulation of the lead-lag estimated by the
National Bureau method and the cross-spectral analysis for Classes I
and II. (Class III are quarterly series.) Filgure I3 indicates that

the Two estimates are quite similar. It must be pointed out, however,

that the discrepancy between the fwo estimates can be large In individual

cases. (See, e.g., Class III, (2) of Table 1.)
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cross-spectrum;
column (B3) of Table I¥

-

NBER; .column (E) of Table I

I 1T ITI v v VI
less Than -5.5 -2.0 +1.5 +5,0 +8.5
or equal o o to fo o

to -9 ~-8,5 -5,0 =15 +2.0 +5,5

I

less than ’ [
ar equal te -9

II -5.5 to -8.5 !

III -2.0 fo -5.0 TR x

IV +1.5 to =1.5 | l!lﬁli
V 45.0 to 2.0 | '

VI +8.5 to +5.5 - | L

* The lead-lag in terms of phase angles is converted into months

by using 48 months as The standard duration of husiness cycles,
Thus, the flgures used for the construction of Fig. 13 are
different from those In Table I for such cases as Class I (20).

Fig., 13

VIII. INVENTORY CHANGE AS A LEADING INDICATOR
Economic activity iIn general is based upon expectations as to
the future movement of economic or non—economie "variables". A good
strategy for finding leading indicators would therefore be to search

among the series which are directly and immediately influenced’by changes

in expectations. One such series could be found from those which are
related to the adjustment of labor input. Another serjes could be
found from those which reflect the desired amount of inventory

(especially of raw materials), unfilled orders from the standpoint

of producers and outstanding orders from the standpoint of purchasing
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departments. Although we do not have the data for desired inventory,
we can study the inventory series., In the rest of this paper we éhall
study the series related to labor Inputs and the inventory series.

In Table | we have two series concerned with inventory, Change
in Business Inventory is a quarterly series. The coherence is not +oo
high, and the lead |s slightly over one quarter, which makes the series
a poor indicator. (Incidentally, the National Bureau method gives a
far longer lead.) The other series s Manufacturers' Inventory, for
which the coherence is a little higher even though thls serlies itself
lags. There Is a possibiltity that the change in the series might lead.
The reason Is as follows. Let X+ be the inventory level. Then the

inventory change y+ s

Yy T Xy RS o

a special case of (17). Thus

Sy - II_GIZ‘ITf!Z Sx
(22)
= 2(|= cos 2mf) Sy
phase difference between yi+ and xt Is
e sin 2uf
tanh - ——m————— )
. |- cos 2mf (23)

The numerical evaluation of (22) and (23) for frequencies for the cyclical
component and any lower frequencies shows (1) that 2(I- cos 2mf) is very
small there and (2) +hat the phase difference is slightly less +han 90°,

Yt Ieading Xt o

Using the result shown in Table | we have estimated the lead-

lag between the change in Manufacturer's Inventory and the reference
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series of the class (the Federal Reserve Board production index) to which

this series belongs. The result is that the change In Manufacturer's

Inventory leads by about 8 months at Zé c/m and by about 2 months at
-Ei c/m . However, the coherence is low, about 0.4 at 'Zé c/m and 0.5
at Eﬁ c/m . This makes the change in the manufacturer's inventory a

poor indicator. It might be interesting to note, however, that the

spectrum of the changes in the manufacturer's inventory shows a sharp

peak at Zg‘c/m in spite of that 2(l=- cos 2mf) is very small for the
frequencies lower than or equal to —l'c/m .

48

The series, New Orders of Durable Goods, is also directly in-
fluenced by expectations. Unfortunately this series does not have a high
coherence. Probably some other forms of New Orders might have a high
coherence. A very careful study of New Orders as to its relationship to
expectations and production scheduling is certainly called for in future

studies of business fluctuations,

IX. LABOR INPUT SERIES AS LEADING INDICATORS

The Lay-off Rate is one of few leading indicators having a very
hféh coherence with it4 reference series. Further, the lLay-off Rate has
a number of other clearly connected time series, e.g., average work-week,
accesslon rate, etfc., all of which form the time serjes representing
fabor Inputs in the manufacturing area. Thus, not only the one time
series, but also the relationships among this whole family of [ndicators
could be useful for indicating cyclical movements in the economy.,

Labor input has fthree dimensions: (1) number of workers,
(2) number of working hours per unit of time (usually a week), and
(3) quality of the services rendered by workers. Fortunately the third
dimension, which is the most difficult to treat, seems to be
unimportant for the study of the cyclical component,
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For the aggregate of workers employed in the manufacturing
sector and also changes In the series over time, we have monthly time
series data for (1) the index of total number of (production) workers,
as of the middle of the month, (2) the rate of lay-offs per 100 workers,
as of Tthe middle of the monTh29 » (3) the rate of gross accession per
100 workers, and (4) the rate of quits and the rate of discharge per
‘OO\WOerrS.BO In the present study, we have used the first two series
without any transformation, but we have transformed the last two series
info (5) the rate of gross accession minus quits minus discharge, which
we call the rate of compensated accession, and (6) the rate of gross
accession minus quits minus discharge minus fay~offs, which we call the
rate of net accession,

The reason why these fransformations are made is to get the
variables which appear o be relevant to the cyclical adjustment by
employers of labor input to changes in outputs. Quits are motivated (at
least in the immediate sense) by employeges rather than by employers, and,
we might assume for the aggregate of manufacturing sector that any
changes In the labor input caused by the initiative of the emp loyees,
other things —- especlally cutput -~ being equal, are offset by the actions
of the employers. Thus quits are subtracted from gross accessjon,
Discharge is quantitatively insignificant, and although it is initiated
by employers, the motivation has nothing fo do with the adjustment of
tabor input to the cyclical changes in ouftput, and we might assume that
the loss of labor input due fo discharge, other things being equal, is
offset by accession, Thus, discharge is also subtracted from gross

accession,

29. As of the end of the month before 945,

30. Accession, lay-offs, quits, and discharge are for production
workers only before 1943 and for production and non-production
workers thereafter. This is a kind of non-stationarity which
does not seriously affect the interpretation of the cross-
spectra. See Section II, F, O,
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The reason why the rate of net accession is formed is the
mathematical relation mentioned In (23),i.e., that for any fime series
{XT} » The time series of the change in xt+ , i.e., {XT_X+-1} leads
{XT} by about 90° at the frequencies of the cyclical component.

The purpose of our study is fo find a consistent set of lead-
lag relations between the output and the labor input series (1), (2),

(5) and (6) mentioned above. We have used monthly data for the period
from 1932 to 1958.3! Table 2 summarizes the result. Naturally, the
coherence betfween output and employment is very high. Employment (the
number of workers) lags slightly behind oquuT.SZ Later we shall find
that the average work week multiplied by employment, je€o, The time
series of manhours, virtually colncides with output. (There is some
evidence, however, that the man-hours series leads the output series by
about 4°, of about,5 months at -Zé c/m.) This iIs a somewhat puzzling
result since the fime necessary for a raw material to go through the
production processes of a plant is about 3 months, on the average for
all manufacturing plants. Even after we account for the fact that a
large part of the output data is estimated by using man—-hours data, we
should expect the time series of man-hours to lead output by about a month,

The coherence between output and the lay-off rate is higher than
the coherence between cutput and the compensated accesslion rate in the
frequency band of the cyclical component., Because of This, the coherence
between the output and the net accession rate lies about half way

between the coherence between output and the lay-off rate and the co-

herence between the output and the compensated accession rate.

3. Actually the data for the first 12 months and the last 12 months
are lost because of the filtering process necessary for esTimating
the spectra and cross-spectra. Thus, in effect, the time perijod
studied here is from 1933 to 1957,

32. Gordon says that the estimate of lead-lag by the National Bureau
method also shows a slight lag of employment behind output,
R. A, Gordon, Business Fluctuations, p. 289.
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The high coherénce between the output and the lay-off rate Is consistent
with our knowledge that uﬁder the present industrial man-hour policies
cyclical adjustments of fabor input to output are made mostly Through lay=-
offs and rehiring of laid-off workers. Further, the low coherence between
the output and the compensated accession rate implies elther that the com-

pensated accession differs widely from the rehiring of the lald-off workers

—

or That ﬁhe relation between output and lay-offs is not a reversal of that
between output and rehiring. Lack of adequate data for re~hiring of laid-
off workers prevents us from pursuing these questions. We can conclude
that among the time series concerned with the number of workers (rather
than the number of working hours), the lay-off rate seems to be the best
indicator of business cycles.

Unfortunately, the magnitude of lead of the lay-off rate is not
so large.as one might hope for., Further, the structure of lgfgjtag, as
describea—gg>+he phase of cross~spectrum (see Section III), is a little
complicated Inm this particular case, In the frequency band of the
cyclical componenT; the phase somewhat resembies a fixéd Time lead of
approximately 3 months, It is probably also consistent with some sort of
distributed lag, Over the frequency between O and i'c/m, however, the phase
of the cross-spectrum reveals a remarkable fixed angle ltag, if we Ignore
the small oscillations in the phase diagram probably caused by sampling
fluctuations,.and I f we exclude the harmonics of the seasonal frequencies,

Now, tet us turn to another dimension of |abor input, the number
of working hours. G. Bry has made a very imaginative and Instructive
study of the lead of the average work week in manufacturing using the
National Bureau meThod.33 In terms of peaks and troughs, the average

work week was revealed to be an excellent leading indicator. Table I

33. Gerhard Bry, "The Average Workweek as an Economic Indicator”,
Occasional Paper 69, the National Bureau of Economic Research.
His study includes also the lay-off rate and other serijes.
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indicates Tthat according to the cross-spectral analysis, the average work
week leads output énly slightly and fhe coherence is not impressive.
Thus, in terms of all time points, the average work week is not a very
good indicator. An obvious explanation Is that one of the maln reasons
why the average work week is an excellent leading Indicator in terms of
peaks and troughs, i.e., the removal of overtime when reduction of output
is anticipated, is a fact characterized only by peaks; when all Time
points are included in the study, this important fact is Just washed away.,
Since the average work week times employment is labor Input --
apart from quality change =- let us Investigate this product. First,
the cross-spectral analysis reveals that there is no lead or lag between
output and labor input. The change In the product of the average work
week and employment, which will be written as A(WE) » <can be represented,

in its first approximation, as the sum of

(the change in the average work week) x emp loyment
which will be written as -(AW)E ,

and

(the change in employment) x average work week
which will be written as (AE)W.

Since It Is mathematically known (see Section IX) +hat A(WE) leads WE

by about 90° in the frequency band of the cyclical component, It would

be interesting to see if either (AW)E or (AE)W leads WE by more

than 90°. To represent AE , we have used the data defined as the net
accession rate previously. Our study Indicates that (AW)E indeed |eads
output by more than 90°, The lead of (AW)E over +the output Is greater

than the lead of (AEMW over the output? this is further conf!rmed by

the phase of the cross—spectrum between (AW)E and (AEIW . The

coherence between output and (AW)E is about 0.7 in the frequency band

of The cyclical component. Thus (AW)E may be a very good leading Indicator.
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Finally, one would wonder about the choice between the lay-off
rate and (AW)E . Our study indicates that (AW)E leads the fay=of f
rate although the coherence between (AW)E and the output is a |ittle

tower than the coherence between the lay-off rate and output.

X+ SUGGESTIONS FOR FUTURE STUDIES

Economic relationships are presumably changing over time, and
the magnitude of leads or lags Is also changing. The author's preliminary
study of the changes in The phase angles of economic time series indicates
the drastic changes in the phase angles when the economy engages In war
or Just affer a war. The estimate of leads or lags obtained from cross-
spectra are at best some average of the changing leads or lags over the
Time period covered by the data which are used in the estimation (see
Section II, 0). 1In order to use business cycle indicators for prediction,
we must know how the magnitude of lead or lag has been changing in the
past so that we can say how It will move in the future. There are many
indicatlons that when the lead-lag is defined in terms of all tTime points,
there have been great changes in the magnitude of the lead-lag. Therefore,
we must somehow estimate the changes in the lead~lag over Tlme.54

Yet another problem for future work concerns the comp | icated
lags which we observed for many cycle indicators as Indicated in Table I
The relation of the phase of the cross=spectrum to the frequency s not
linear and therefore no simple lead~|ag relationship holds over all the
frequencies of the cyclical component. This difficulty might be resolved
by distinguishing the frequencies about *i-c/m,and the frequenclies about

48
I

e c/m . In other words the possibility that the behavior of our economy

34. D. Brillinger and J. Tukey have suggested a method for making such
estimates to the author, and a study is now being made by
D. Brillinger and the author.
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about Zé'c/m ~and the behavior about Eﬁ c/m are fundamentally
different must be investigated in future studies of various economic
relationships.

Finally, as a possible suggestion to a large research institution ..
one might :consider an extension of the present study to analyze a far
greater number of bUSiﬁess cycle Indicators. The author feels that the
estimates of lead or lag by the cross-spectral analysis might differ
greatly from the National Bureau estimates in cases of choppy time
series, and also in cases where the slope of the trend in a given series
is greatly different from that of the reference series (Class I1I, (2)
is such a case)., However, any general statement as to the possible
causes of the systematic discrepancies between the estimates of iead—-lag
by the two methods cannot be confirmed without the study of a large number
of Time series. This is because the estimates of cross-spectrum are

sub jected To many kinds of errors and only the average of the estimates

of cross-spectra for many series is reliable.
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¥or the Cyclical Component
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CLASS T
(1) Leading Jan. .19%2- 1 * 1 il .
Average 1.0 June 1961 (35 -€) -(ig+€)c/m‘ 0.55 Fixed time -3 mos.
Work Week Lead 1 mo.
(2) Leadin Jan. 1930- 1 1 *¥x
Gross 2.0 & June 1961 (85 -€) -(§E+€)c/m 0.55] Complicated; -8 mos.
Accession avg. angle
Rate lead in this
freg. band
is ~ 70°
e.g. 48 mos.
0 _
X 336 = 9 mos.
(3) Leading  Jan. 19%0- 1 1 |
Lay-off after June 1961 (ga -€)-(§§ +€)c/m 0.85 Somewhat like
Rate inversion o o ol fixed time ~6 mos.
3.0 1 1 lead 3 mos.
(22 €) i§+€)c/m .6 after inversion
(%) Leading Jan. 1939- 1 1 Complicated;
New k.0 June 1961 (Eg -e)-(§H+€)c/m 0.55 angle lead,,
Orders ~ 250, -3 Mmos.
e.g. 48 mos.
25
X 360 © 3 mos .
(5) Leading Jan. 1939- 1 Sl : .
Housing 5,0 Dec. 1959 ( g -6)-(§%ﬁ€)c/m 0.7 Complicated;
Starts e e e ol oo avg. angle -9 mos.
1 1 ] lead in these
075 €)—(1§+€)C/m 0.45 two bands is
5 850. e.g
k) 85
8 mos. x 360
=11 mos
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TABIE 1 (cont'd)

(4) (B) (c) (D1) (D2) (D3) (E)
(6) ) .

. . Leading Jan. 1925 1l (& Complicated;
Regldgntlal 5.1 Dec. 1956 (48 +€ Je/m 0.7 avg. angle ~-10.5 mos.
Building lead is 900
Contracts &

mos. x
D _
386 = 12 mos.
(7) -
Com'l and Leading Jan. 1925- | 1 1 . . _
Tnd'l Bldg. Dec. 1956 |(G5€)- (ggre)e/m 0.35 (Eézzd time 2 mos.
Contracts 30 mos. 27)
(8) 1 1 l
Business Leading Jan. 1939- (Eg-e)-(§E+€)c/m 0.25 Complicated; -6 mos.
Failures after June 1961 inverted series
since inversion - lead by ~ LOO©
1939 8.0 in this freq.
band; e.g. L
0
48 mos. x 380
= 5 mos.
(9) 1 1
Dow-Jones Leading Jan. 1919 (Eg-e)-(§ﬂ+€)c/m 0.40 Angle lead ~3.5 mos.
Tnd'l 10.1 June 1961 ~ 25° In this
Stock freg. band;
Price e.g. 48 mos.
25 L
X 3_66 = mos .
(10) 1 1
Raw Leading Jan. 1919~ (Egue)-(§E+€)c/m 0.55 Complicated; -1 mo.
Materials 12.1 Dec. 1957 avg. angle in
Price 13.0 this freq.
band is zero.
(1n) 1 1
Employment  Coinci- Jan. 1939- (Eg-e)—(iﬂ+€)c/m .8 Angle is 0 mos.
in Non- dent June 1961 zero
Agriculture 13.0
(12) 1 1
Freight Coinci- Jan. 1919- (EB_E)-(§6+€)c/m 0.8 Angle is ~1 mo.
Car dent June 1961 Zero
Loadings 15.2
(13) 1
Factory Coinci~ Jan. 1919 (35 (——+€ )e/m 0.85 Angle is 0 mos.
Employment  dent Dec. 1958 Zero
135.1
(1L) 1
Bank Debits Coinci- Jan. 1919~ (86_6 c/m 0.75 Angle is +.5 mos.
outside NY dent Dec. 1942 zero
before 1943 18,0
(15) 1 1
Bank Coinci- Jan. 1943 (56 ) l8+€)c/m 0.65 Angle is -.5 MOS .
Debits dent June 1961 zero
outside WY 18.0
after 1943
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TABIE 1 (cont'd)

(4) (B) (c) (Dl) (D2) (D3) (E)
(%) T oL .
Wholesale Coinei- Jan. 1910- [(i +€ c/m 0.5] Compllca;c_edf +1.5 mos.
Prices dent June 1961 avg. ang.e in
» this freq.
21.0 .
band is zero
(17) 1 1
Retail Coinci- Jan. 1935- (Eg-e)-(§E+€)c/m 0.6 Complicated; O mos.
Sales dent June 1961 angle lead is
20.0 ~ 180 in this
band; e.g.
18
)-l~8 mos. X —5—6—6
= 2 mos.
(18) ‘
Dept. Coinci- Jan. 1919- (lLO +€)c/m 0.7 Complicated;  +4 mos.
Store dent June 1961 avg. angle
Sales 20.1 lead is 17°
Lo mos. x
é%% = 2 mos.
(19) 1 1
Wage cost Lagging Jan. 1919- (E6 -e)-(§Z+€)c/m 0.3 ] Complicated;  +7 mos.
per 23,1 Dec. 1958 avg. angle
output lag is 80° i
this band,e g.
40 mos. x
i = 7 mos
360 o8-
(20) 1 1 '
Manu- Lagging Jan. 1939- (38-6)_(i8+€)c/m 0.5 Gomplicated; +5.5 mos.
facturers' 2L .0 June 1961 : avg. angle
Inventory lag is T0°
e.g. 24 mos.
X é%% = 5 mos.
(21) 1 : |
Bank Lagging July 193%9- [about 38 c/m 0.45 Fixed time +6 mos .
Interest basically June 1961 /  lag 7 mos.
26.0
(22) 1 : -
Consumer Lagging Jan. 1929- (Ef- €)=( _E+€ Je/m 0.45 Complicated; +5.5 mos.
Install- 25,0 June 1961 ] avg. angle lag
ment Debt is 45%e.g.
48 mos. x
L5
3% = 6 mos.
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TABIE 1 (cont'd)

(A) (B) (c) (D1) (D2) (D3) (E)

CLASS II
(D) | N
Business Leading Jan. 1894- 0 - (§E+€) ¢/m 0.8 Inverted series
Failures after Dec. 1932 leads, fixed -5.5 mos.
before inversion time lag of
1932 8.0 2.2 mos.
(2) \ 1 N
Standard & Leading Jan. 1871- (§E6 -e)-(§6+€)c/m 0.6 Nothing -3 mos.
Poor Stock 10.0 Dec. 1956 definite
Prices can be said
(1875-1956) about the

phase in this

band

For the Cyclical Component

s
% c/a -7 /g
(A) (B) (c) (D1) (D2) (D3) (E)
CLASS TIIT
(1) 1 1
Corporate Leading lst gtr 193%9- (EE—G)—(g+€) c/q 0.85 Avg. lead is
Profits 9.0 2nd gtr 1961 ~ 40%; 12 gtr
after Tax x 40/360
~ 1.3 gtr
----------------- - - - = - -3 gtr.
1 1 .
(é'e)‘(ET§+€> c/q .70 Avg. angle is
gbout zero
(2) 1 1
Change in Leading 1st gqtr 1939- (Eﬂ—e)'(ﬂ—§+€) ¢/q 0.4 Avg. lead is -9 qgtr.
Business 11,0 2nd qtr 1961 : ~ 36°; e.g.
Inventory 12 gtr x
36/360
~ 1.2 gtr

* The reading of frequency ,1/60 c/m 1s the center of the last frequency unit to which the
description applies according to the estimates of Cross-spectra. Because of the spectral
window, the cross-spectrum at this center frequency actually contains a part of the informa-
tion as to the frequencies lower than 1/60 c/m, and this fact is indicated by -¢ .

*%

The estimates of cross-spectrum at 1/16 c/m contain some information as to the frequencies
above this frequency.

EEX

The frequency bands and the coherence therein are placed within parenthesis in cases where
the coherence is low.

XXX
Abbreviation for quarters per cycle.
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TABLE 2

for the frequency band
for the frequency band 41 ;
of the cyclical component 12 4 c/m excluding the
seasonal frequencies
coherence phase coherence phase
output « factory very high invariably emp loyment lags
emp |oyment app., 0.9 o° very high behind output by
0.8 0.5 months
output «— lay-off very high after in- 0.7 between after inversion
rate app. 0.8 version of —J--iLc/m of the lay-off
the lay=~off 12 6 rate, it leads
rate, it leads| 0.5 between by app. 50°
by app. 500 10
5 "1 c/m
output < net not so high| net accessjon
accession rate app, 0.5 rate leads by low
app. 80°
output «— the rate high the rate of 0.7 between the rate of
of change of app. 0.6 change of —J--J-c/m change of em-
employment ~ employment 12 6 ployment leads
: leads by 0.5 between by about 50°
eTes f
app. 80-90 _% _'i o/m
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APPENDIX I
Errors In the Data and Errors in the Spectral Estimates
as Applied to Economic Studies

We shall ascertain the effect of the errors in +the data upon
the spectrum and cross-spectrum under otherwise ideal conditions, f.e.,
stationary stochastic processes definéd from t+ =~ and + =+ e ,
Since the logic for this procedure is the same for both The spectrum
and the cross—speCTrum, we shal dfscuss the spectrum only,

Let us first note that since the mean is Irrelevant to the
spectrum, the mean of the errors in the data does not affect the spectrum,
This should be a great consolation for the users of spectral analysis in
economics, I+ appearé that a large part of the error in economic data
I's persistent over time. This persistent part can be treated as the mean
of the errors. Thus, The non-zero mean seems to be a ma jor part of the
er}ors. The mean of the errors might have a significant trend component
which, however, affects only the very low frequencies.

Let us now consider the variance of the errors In the data.

Let xt+ be the ftrue value, €+ be the error, so that Xy + er will
be the observed values. Let us assume that E(xt) = 0, and E(ef).z 0.

Let Sy be the spectrum of xi , Se be the spectrum of ey , R

X€

be the co-spectrum between Xt and ey , and Iy, be The quadrature

spectrum between x4+ and e+ . Then

RZ R
Xe  xe -
P 2 Xe ’
5S¢ Ree T Ixe
where C, . I's fthe coherence between x+ and e+ . (All the variables

that appear here are functions of frequency, f , but to simplify the
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notations this is not explicitly indicated.) Let

2
a _ _ RXEZ
X€ - .
2 2
Ree t Ive

Then the spectrum of (xy +ey) =S, + 5, + Rye =S+ S, + 2455, o -

Let us make an "educated" guess of the possible errors in the economic
daTa; Suppose that the relative magnitude between X+ and ey fis |0:]
(l.e., 10F estimation error in terms of the standard deviation excluding
the mean). If the coherence Gyels zero, the spectrum of x4 + et s 1%
targer than Sx » lse., The error in the spectrum of Xy T et is
negligible. It seems, however, that apart from thelr persistent means
the errors in economic data are highly correlated with the true values.
Thus, If Ge 0.8 (i.e., the correlation coefficient is about 0,9), and
Oy 0.8 (l.e., the phases of Xy and et are almost identical), then
the spectrum of (x4 + e+) Is |7% larger than Sy « Under the same
values of Gy and % [f The relative magnitude between X+ and e+
Is 10:2 (i.e., 20% estimation error), the épecTrum‘of (x+ + e4) s
36% larger than S5x « The only consolation in this case s that, if
X+ and e are so much alike (as G 0.8 and % 0.8 ), and if
The same holds for Y+ and its error TN+ , then the coherence and
angle between xt + et and Y+ * T+ must be practically identical
to those between x4+ and Yt .

Thus, although the effect of the variance of the errors in
the data depends upon how the errors are correlated with the true
values, this effect can be uncomfortably large. The author's feeling,
however, Is that the major portion of these errors would be due mainly

to the mean and thus be irrelevant to spectral analysis,
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As for the errors in the estimates of spectrum, assuming no
errors in the data, we must first point out that we never obtain the
unbiased estimate of spectrum from a series of finite length, This is
because we are estimating a welghted average (smoothed form) of the
true spectrum., (See the explanation about the spectral window in
Section II, 6.) All the currently available estimation methods for
spectra and cross-spectra make the assumption of stationarity for the
mathematical derivation of the variance of +he estimates. Since we are
actually dealing with the pseudospectrum in economic studies (see
Section II, 0), we must say that we know practically nothing about the
variance of the estimates in connection with +these studies, This is
one of the important, unsoclved problems in this area. Furthermore,
‘although normal ity s not assumed in its strict form in the derivation
of the variance of the estimates, it remains to be seen whether or not
the none=normality which we actually observe in our economy s well taken
care of by the currently available statistical methods. This Is another

important, unsolved problem.
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APPENDIX IT

Examples of Es+lma+ion of a Spectrum
and a Cross=Spectrum

‘The estimations of spectra and cross-spectra involve a great
deal of technicalities, which are far beyond the scope of the present
paper. We shall illustrate some es+lmé+e of one spectrum and one cross-
spectrum so that the readers can compare the results of specf%al analysis
with the Information which they obtain from other sources.

Fig. L4‘f5 an estimate of the spectrum of the National Bureau
business cycles, on a monthly basis, from 1919 to 1958 obtained by
connecting {inearly the reference dates (see the definition of x(+)

In Section VII). Actually the logarithm of the spectrum is plotfed on
the Y axis. The width of +he unit frequency Interval In the X axis
is Eﬁa c/m . The spectra for the frequencies higher than 240 c/m are
not shown because they are Insigniflicant. The peak of the estimate of
spectrum is located at about Zé-c/m and this corresponds to the
average duration of business cycles, about 50 months, as estimated by
the National Bureau. The harmonics of the business cycles are also

{

observed at -—‘ ( = ) c/m, and — ( =2 ) c/m .
16 A8

Fige. |5 is an estimate of the cross=-spectrum between

+ x+_4 + e

and xt , covering the time points + = 5,6 eae , 300, {x+} is a sample

of a white noise with normal distribution, and, ,{e+} is another sample

of a white noise with normal distribution having the same variance as {x+}.
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€t
Of course, {XT} and {¥$_+} are independent. When we put
g4

z = ><+ + x + ,. + x

+ -1 T-45

- S,{f) , the spectrum of {z+} » and , S, (f), the spectrum of {x+},

are related by

50f) = (I+ 2 cos 2nf + 2 cos 4mf)2 Sx(f) .

Therefore, the theoretical values of the coherence between {y+} and
{XT} » lees The coefficient of determination defined frequency by
frequency, should be

Sz(f) (1+ 2cos 2mi+ 2cos 4mf)2

C (f) = =
S(F)4a2S_(f) (14 2c05 ZMf+ 2cos 471F)%+ 02

because S, (f) = S_(f) . 1In the lower half of Fig. |5 are shown the
values of Ca(f) computed by the above formulae and +the estimates of
the coherence of the cross—spectrum between {XT} and {YG,T} as
obtained from their sample values. The coherence for the frequencies
above '% I's not shown because the spectrum of {VG,T} i;wpof signifi-
cant for these fréquencies. In the upper half of Fig. 15 are shown the
theoretical value of the phase, which is 2n—2n~2f> because ya,T

tags behind X+ by 2 ftime units and the lag relation is a fixed time-
lag, and the actual estimates of the phase of the cross=spectrum
between {x4} and {ya’f} . The estimates for & =] and o =2 are

so close to the theoretical values that they are visibly indistinguishable.
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