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Abstract Conditions are given for the existence of competitive

equilibria in markets with a continuum of traders.



1. TIhtroduction

In three previous papersl we 1ntroduced the notion of markets with a
continuum of traders, and demonstrated their significance as mathematical models
for the intuitive concept of "perfect competition". In particular, it was shown
that under very wide conditions, the core of such amarket equals the set of its
equilibrium allocations.2 On the other hand, these theorems:do not establish
the existence of competitive equilibria; it may well happen thaf both the core
and the set of equilibrium allocations are empty. It is the purpose of this
paper to lend additional substance to the results of the previous papers, by
giving conditions for the existence of competitive equilibria=—and thus for the
non-emptiness of the core~-in markets with a continuum of traders.

The assumptions we make, though far stronger than those of MCT I and IT,
are similar to those used by other authors, in connection with finite markets.3
Thus we here assume that preferences are transitive, complete, continuous and
convex; these assumptions are perfectly standard in the literature, but of them,
only continuity was used in MCT I and IT. Two theorems are proved, using (in
addition to the asbove assumptions), different variations of assumptions con-
cerning the initial bundles, the desirability of commodities, and saturation of
desire. In Theorem A we assume that each trader holds a positive amount of each
commodity; that the goods are "desirable" in the sense that no matter what

bundle is held by a trader, he wants more of at least one commodity, unless his

lAumann 1962, I, II, III. These papers will be denoted MCT I, MCT II,
and MCT IIT respectively.

2An equilibrium allocation is one which, when combined with an
appropriate price structure, yields a competitive equilibrium. For definitions
and an intuitive discussion of "core" and "competitive equilibrium", see
section 1 of MCT I.

3See for example Arrow and Debreu (1954), Gale (1955), Nikaido (1956),
McKenzie (1959), Debreu (1959), and Karlin (1959).
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current holdings saturate his desire;4 that saturation/never takes place unless
more is held of each commodity, than in the initial bundle; and that each trader's
desire is "commodity-wise saturated" by some bundle y, in the sense that under
no circumstances does a trader want more of any commodity than is present in y.
In Theorem B we assume only that each commodity in the model is actually present
in the market, in the sense that a positive amount of it is held by some trader;
to compensate for this weakening of the "initial resources” assumption, we
strengthen the "desirability assumption" to say that no matter what bundle is
held by a trader, he wants more of every commodity, unless his current holdings
saturate his desire; and as in Theorem A, that saturation never takes place
unless more is held of each commodity than in the initial bundle. There is no
"commodity-wise saturation" assumption in Theorem B. Theorems A and B are
approximately comparable to the "special” and "general" theorems of McKenzie
(1959) -

Theorems A and B are parallel to Theorems A and B of MCT III, but the
latter use considerably weaker assumptions (for instance they do not use
convexity or that the preferences are quasi-orders, nor the notion of "commodity-
wise"saturation). Precisely: Theorem A of MCT IIT holds under the conditions
of Theorem A of this paper, and similarly for Theorem B,Tb@% not conversely.

The proof of our Theorem A follows McKenzie's hesutiful proof for
the case of finitely many traders (1959); but there are several points at which
the passage to a continuum of traders is not routine. Of particular interest

is our use of Banach-Space methods, in Section 4 and again in Section 6.

This sounds tautologous, but is not; it involves the assumption of
"free disposal®™, i.e. a bundle with fewer commodities is not preferred.



We also establish the existence of competitive equilibria under
conditions that specialize those of the main theorem of MCT II.

In Section 2 we describe our model and state Theorems A and B.
Theorem A is proved in Sections 3 through 5. In Sections 6 and T we apply
a limiting process to deduce Theorem B from Theorem A. Section 8 contains
a comparison of our proof with McKenzie's and Section 9 mentions counter-
examples 1f some assumptions are weakened. Finally Section 10 establishes
our Theorem C, which deals with conditions that spécialize those of MCT II.

We wish to emphasize that this is not merely an extension, for its
own sake, of known theorems for finitely many traders to‘the case of a continuum
of traders, If that were the case, it would hardly be worth doing. The
purpose of this paper is to complement and lend substance to MCT I, IT, and
IIT; and the theoremé proved in those papers are true only for a continuum

of traders--they are false for finitely many traders.

2. Mathematical Model and Statement of Results

The set of commodity bundles is the non-negative orthant € of a fixed
Euclidean space R". A member of R" is called a vector, and its coordinates are

denoted by superscripts. A price vector is an n-tuple of non-negative numbers,

not ali 0; though formally it is in @, it should not be thought of as a
cammodity bundle. The inner product Zgziv pixi is denoted p-x. Relations
between vectors and operations on vectors are to be taken coordinate-wise,
unless otherwise specified. Thus x >y means xilz yi forall i, x>y
means xi > yi for all 1, and if X 1is a vector function, then

[X = (JX, .o, 5 .



The set T of traders is the closed unit interval [0,1] with
Legesgue measure W. The words>"measu£é“5 "measurable"”, "integral", and
"integrable" are to be understood inthe sense of Lebesgue. All integrals
are with respect to the variable +t, and in most cases the range of integration
is all of T. We will therefore always omit the symbol dt 1in an integral,
will usually omit indication of dependence of the integrand on +t, and will
gpecifically indicate the range of integration only when it differs from all
of T. Thus [X means fTX(t)dti A null set is a set of measure 0. Null

sets of traders are systematically ignored throughout the paper. In view of

this, we adopt the following conventions, which simplify the exposition con-

siderably, but which must be constantly kept in mind by the reader.

Conventions

i) A statement asserted for "all" traders, or for "all'traders in

2 _certain set, holds for all such traders except possibly for

a null set.

i1i) If it is asserted that there "is" a trader satisfying a certain

property, or that the property is satisfied for "some" traders,

this means that there is a non-null set of traders satisfying

the property.

Convention ii), though perhaps less familiar than i), is its natural
complement. It is particularly this convention that enables a quite considerable
shortening of the exposition, with a corresponding gain in clarity.

An assignment is an integrable functiom on T to €. There is a fixed

initial assignment I; it will be assumed to satisfy either the strong or the

weak form of the following condition (depending on the theorem being proved):
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(2.1) Strong Form: I(t) >0 for all t

Weak Form: f1 > 0.

The strong form asserts that each trader comes to markef“with a positive amount of
each commodity. The weak form asserts only that no commodity is totally absent
from the market. Both forms occur also as (2.1) of MCT III, where a complete
intuitive discussion is given. The weak form will be recognized as the analdgue
of assumption 5 of McKenzie (1959, p. 58).

For each trader t there is defined on { a relation Xt called

preference-or-indifference. This relation is assumed to be a quasi-order, i.e.

transitive, reflexive, and comgletea5 From Ebt we define relations 7t and

Tt
called preference and indifference respectively, as follows:

. . .
X >t y 1if x r%% y but not Yy X ¥
~ i N
X LY if x ;Zt y and Vo X
The following agssumptions are made:

(2.2) Continuity (in the commodities): For each y € Q, the sets

{x:1x S y} and {x:y >% x} are open in the relative topology of Q.

(2.3) Measurability: For all 'x, y € Q., the set [t :,XP>£ ¥}

ig measurablé.

For a given trader t, a bundle y is said to saturate desire, or

simply to saturate, if no bundle in @ is preferred to y by t. The next

5A relation 5? is called transitive if x&y and yA&z imply x&?z;
reflexive if x&?x for all x; and complete if for all x and y, either x&?y
or yAX. '



assumption, like assumption (2.1), is stated:in two forms; which form is used

depends on the theorem being proved.

(2.4) ‘Desirability (of the commodities):

Strong Form: Unless y saturates, x >y and x f y dmply x >£ Ve

Weak Form: Unless y saturates, x > y’ implies x ;>t ¥

For each t, let T(t) = {y: not y > I(%)]}.

(2.5) Saturation Restriction: No bundle in T(t) saturates.

The last assumptionvis

(2.6) Convexity: For each « such’that 0<a<l, x > vy inmplies

ax + (1-a)y >y T

An allocation is an assigmment X such that [X = [I. A competitive
equilibrium is a pair consisting of a price vectﬁr p and an allocation X,
such that for all t; X(t) is meximal w.r.t. >, in the "oudget set”

{x € Qip-x <p-I(t)} .

In assumption (2.2) we may avoid referring to the relative topology
by replacing » Dby 2z » @nd "open" by "closed". Unlike MCT I, II, and III,
this paper actually uses the second half of the continuity condition. Together

(2.2)

with the assumption that ézt ,1s a quasi-order, assumptionkyields the existence

of a continuous utility function Dt(x) on § for each fixed trader +t. Then
assumption (2.3) says the Oy can be chosen so that vt%(x) is measurable in t
for each fixed 'x. This version of the measurability assumption looks slightly

weaker than the version used in MCT I, II, and ITII; but in fact, under the

stronger conditions of this paper, the versions are equivalent (see lemma 7.1).
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The strong form of assumption (2.4) says that until saturation is
reached, each trader wants more of each commodity; the weak form only says that
he wants more of at least one commodity. Of course 1t i1s not implied that

saturation is ever reached. ZIEither form implies

x > y implies X

o Y
7

for all y; the weak form is equivalent

cussed in MCT III.8

to it. The two forms are further dis-

The set T(t) is illustrated in Figure 1. It is the union of all
budget sets of t for all possible price vectors. Most of the analysis will
take place within this set. Thus the saturation restriction (2.5) says in effect

that saturation does not occur in the area which interests us. Outside this

area 1t may or may not occur.
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If y does not saturate this follows from continuity. If y saturates,
suppose x>y and y . X. On the straight line joining y to x, let =z be
the last pdznt that saturates. Then for w between 2z and X on the line and close
to z, we have w . X, x >w and w does not saturate. But this contradicts
the first conclusion.

TThis uses (2.6).

8(2.4) and (2.5) together are essentially the same as (2.4) of MCT III. The
assumptions here are slightly stronger, but the difference is unimportant.




The convexity assumption is the usual one in“economics; it is often
called the "law of diminishing returns". Geometrically, the condition asserts

9

that the indifference levels are convex surfaces”’ having no "thickness"--except
at saturation, where the indifference level is a convex set with thickness.
There is another condition on the preferences, which however is used

in only one of our theorems. Let N be an assignme@t. We say that t's desire

is commodity-wise saturated at N(t) if for all bundles x and commodities 1

such that x= >N (t), we have

In other words, changing the value of the ith coordinat%iabove Ni(t) does not
change the indifference level. Intuitively, this means that desire for the ith
commodity is saturated when the quantity of that commodity is Ni(t) , though
trader t may still want more of other commodities J of which he holds less
than Nj(t). To rephrase the condition, let A(t) = (x € Qix < N(t)} ve

the "hyper-rectangle" of bundles that are < N(t), and define a mapping u, from
Q@ into A(t) as follows: ut(x) is the bundle formed from x Dby replacing
by Ni(t) all coordinastes x. of x that exceed Ni(t), Then commodity-wise
saturation at N(t) asserts that ut(x‘) ~ ¥« It follows that the entire
preference order is determined by its behavior in the hypercube. A(t), since

X ,2% y .if and only if ut(x) 2 ut(y). A preference order with commodity-
wise saturation is illustrated in Figure 2.

The existence of an N(t) which commodity-wise saturates desire is

intuitively very acceptable; it simply means that there is an upper bound on the

A "convex surface" is the boundary of a convex set of full dimension.
It is not in general convex as a set. We will not use the term "convex surface"
in the sequel.
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(The light lines are indifference curves. The lightly shaded

area, to the northeast of N(t) constitutes a single indifference

"curve".)
amount of a commodity which can be profitsbly used by an individual, no matter
what other commodities are or are not availsble. The demand that N Dbe an
assignment, i.e. integrable, means that "the market as & whole can be commodity-
wise saturated"; more precisely, it means that there is a bundle (namely fm)
that can be distributed among the traders in such a way as to commodity-wise
saturate each trader's desire. This too is intuitively very acceptable. If

there 1s an assignment N such that each trader's desire is commodity-wise

saturated at N(t), then we shall say for short that each trader's desire can

0
be commodity-wise saturated.l

loUse of this phrase will entail integrability of the saturating
function.
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Theorem A  Assume the strong form of condition (2.1), and the weak form of

condition (2.4). Assume further that each trader's desire can be commodity-wise

saturated. Then there is a competitive equilibrium.

Theorem B Assume the weak form of (2.1) and the strong form of (2.4). Then

there is a competitive equilibrium.

5. Outline of the Proof of Theorem A

The starting point of the proof is the preferred set Fp(t), defined
for each trader t and each price vector p to be the set of elements preferred
or indifferent to all elementéfof the budget set; formally, denoting the budget

set {x € Qipx <p.I(t)} by Bp(t), we define

Fp(t) = {y € Qifor all x € Bp(t), N gzt x}
(see Figure 3). Next, define ¥ Y
pr = {[X:X is an assigmment such that X(t) € Pp(t) for all t} ;

this is called the aggregate preferred set. fFQ is the set of all aggregate
bundles that can be distributed among the traders in such s way that each
trader is at least as satisfied as he is when he sells his initial bundle and

buys the best (by his standards) that he can with the proceeds, at prices p.

Iet c(p) De the uniquell point in pr that is nearest to [I , and let

n(p) = c(p) - [T ;

h(p) is the vector at which the minimum distance from [I to pr is attained.

llThis section is an outline. Unsupported or unclear statements made
here will be clarified in the sequel.
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FIG. 3

‘Let I be the simplex of price vectors normslized so that their
sum is 1, d.e.

I = {p e O n i -1 .
I tp ¢ O Zizl P 1}

The central idea of the proof is to use h to construct a continuous function £
from I +to itself, and then to apply Brouwer's fixed point theorem;lg the resulting
fixed point--denoted g--turr.s out to be an equilibrium price. More precisely,

T 1is defined by

-
léBrouwer's theorem asserts that every continuous single-valued function

f from I to itself has a fixed point, i.e. a point p such that f(p) = p.

For a proof, see Dunford-Schwartz, Section V.12, p. 468.
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We will show later that
h(p) > 0.

Therefore the denominator in the definition of f does not vanish and f(p) € 1II

for all p € II. Suppose q is a fixed point of f. Then

a1+ 2 (@) = q+nla),
1€
(3.1) h(g) = aq,
where because h(p) > 0,
a £/ n(a) > o.
We wish to show that
(3.2) n(q) = oO.

Indeed, suppose (3.2) is false. From the definition of h and the convexity
of pr it follows that for all p, the hyperplane through h(p) 4 fI per-

pendicular to h(p) supportsl5 pr « Applying this for p = g, we obtain
(v = J2)-n(q) > nl(q)*n(q)
for all y € qu. Because (3.2) is false, O > 0; so by (3.1), we obtain

(y - [I)*ag > dP(q-a),

lBIndeed, this is a standard method of constructing a supporting
hyperplane. An explicit proof is given by McKenzie (lemma T(1), p. 61).
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and hence
(3.3) (y - [I):a>0a(q-q) >0 for all ye frq-

‘Now if for each t we let X(t) be a point in the budget set Bq(t) which

is maximal with respect to +%'s preference order, then on the one hand we have
(X(t) -I(t))+q < 0, and on the other hand X(t) e rq(t). Hence by integrating

we obtain (JX - JI)'q <0, and [X ¢ ffq; this contradicts (3.3), and
establishes (3.2).

(3.2) says that [I e qu, i.e. there is an assignment X such that

X = [T and X(t) ¢ Fq(t) for all t. So X is an allocation, and X(t) is
preferred or indifferent to all elements of Bq(t). To complete the proof

that (q,X) is a competitive equilibrium, it is only necessary to show that

X(t) is in Bq(t) for all t. Suppose now that q-X(t) < q.I(t) for some t.
Then X(t) is in T(t) , and therefore does not saturate. -Applying the weak
form of (2.4), we find that X(t) + (&, ..., B) >£‘X(t) for & > 0. But

for © sufficiently small, we will still have

a- (X(t) + (8,...,8)) = q-X(t) + & < qg-I(t) ,

so X(t) + (B,...,0) € Bq(t); this contradicts X(t) € Fq(t). So

q.X(t) < q.I(t) is impossible, and we conclude that q:X(t) > q-I(t) for all +t.
If the > sign would hold for some T, we could deduce fq-X > fq-I, contradicting
[X = [I. So qgX(t)=q-I(t) for all +t, and it follows that X(t) e Bq(t) for

all t. So (g,X) is a competitive equilibrium.

The foregoing is simply an outline of McKenzie's proof, with the notation
changed and integration substituted for summation over the set of traders. However,

there are some points in this outline that stand in need of verification, and it
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is in these points that the proofs for the finite and continuocus cases diverge.

Let us list the points in question.

(3.4) h(p) is uniquely defined for each p € I , and is continuous as a

function of p.

This is needed to show that Brouwer's fixed point theorem is applicable.

(3.5) h(p) >0 for each p € I.

(3.6) There is an assignment X whose integral [X contradicts (3.3).

The point of (3.6) is that the function X defined above for this purpose was

net shown to be measurable.,

4, Properties of h

Let N be a commedity-wise saturating assignment. This section is
devoted to the proof of (3.4) and (3.5); that is, the existence, uniqueness,
continuity, and non-negativity of h. All these will be proved approximately
simultaneously at the end of the section, but before we get there, we must
develop a considerable amount of machinery. A major tocl is the notion of

"continuity" of a point-to-set function:

Definition A function = from I to subsets of { 1is upper-semicontinuous
if for each convergent sequence {pl, Pos <..} in I, every limit point of

every sequence {xl, X5 «++} for which x, € :(pl), %, € :(pg),..., is in

E(limkmoo pk). It is lower-semicontinuous 1f for each convergent seguence
{pl, 159 ce.) in I, every point in =(lim 00pk) is the limit of a sequence
{xl, X5 .«.} for which X, € E(pl), %X, € E(pg), ... . It is continuous if

it is both lower- and upper-semicontinuous.



-15-

. In principle, the existence, uniqueness and continuity (in p) of h
follow from the closedness, convexity and continuity (in p) of pr respectively.
Non-negativity follows from the weak form of (2.4). However, in carrying out
the proofs, the unboundedness of the Fp(t) and of pr causes difficulties.
We therefore prefer to work with the bounded SetsllL Alt) N Fp(t), which we

will denote by Ap(t) , and with
pr = {fX:X is an assignment such that X(t) € Ap(t) for all t} .

We pass back to ff§ only at the very end of the section.

Lemma 4.1  The Ap(t) are closed and convex, and pr ig convex.

Proof The Fp(t) are closed because of the continuity condition (2.2) for

preferences, and convex because Bp(t)(: T(+) ‘and the convexity condition (2.6).
A(t) is obviously closed and convex. Hence Ap(t) =Alt) N Pp(t) has the same
properties. The convexity of pr follows from that of Ap(t). Incidentally,
pr is also closed; but the proof of this lies deeper, and is postponed until

later.

Lemma 4.2 For each t, Ap(t) is a continuous function of p.

The reader should have no trouble verifying this lemma. It is proved
by McKenzie, (lemma 4, pp. 57 and 68), on condition that every Bp(t) has a
maximal element which is in A{t). But this holds here; for if =x . is maximal

in" Bp(t), then by commodity-wise saturation so is wu, (x) , and this is surely

t

1h Alt) = {x:x < N(t)}. See section 2.
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in A(t). In the proof of this lemma, McKenzie uses what we call the strong
form of (2.1); this is our only important use of that assumption.

In the sequel we shall have occasion to construct functions and prove
them measurable. In order not to have to digress at that place, let us now say
a Tew words about the general technique of proving a set or a function measurable.
Often the set in question is given in the form {t: (t)} , where (t) is some
"sredicate™--i.e. a statement whose truth or falsity depends on the value of t.
We will say that 7 itself is measurable whenever (t:  (t)} is measurable.
Usually, of course, we do not know a priori whether or not 6¢/is measurable.

is often a rather complicated statement--built up from simpler component
statements by means of connectives like "or", "and", "implies", "not", etc., and
the quantifiers "there exists" and "for all". A basic principle is that all

predicates built up in this wa§ are measurable, provided that the component

predicates are measurable and the quantifiers have at most a denumerable range.

For example, suppose ﬁ”l, 572, e« and <§l, (@2, ... are measurable predicates;

let 7/ (t) be the statement "for no j do We have j(t) and not \ij(t)f' Then

(b2 =(e)) = T-U, ) [t o ()3 N (T= (e (0)D],

where "-" denotes set-theoretic subtraction. Note that "and" transforms into

intersection, "not" into complementation, "there exists" into union and "for all"
into intersection. The reason that quartification must be over a denumerable
range is that intersections and unions preserve measurability only if they are
denumerable. Incidentally, note that "(é?implies %" is equivalent to "

or not‘§;~", so that also "implies" transforms measurable predicates into
measurable predicates. Finally, recall that a real function ¢ on T is

defined to be measurable if and only if {t1p(t) < @} 1is measurable for each

real .
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As an application of these ideas, we prove

Lemma 4.3 For a fixed € Q , the predicates "o € Fp(t)" and "w € Ap(t)"

are measurable.

Proof "w € Ap(t)" is equivalent to "w € Fp(t) and o < N(t)"; the second

statement is measurable because N(t) is a measurable function, so we need only
establish the measurability of "w € Fp(t)". Because of the continuity condition
(2.2), this is equivalent to "For all rational points r in Bp(t), © r"

(a rational point is a point with rational coordinates). This can be restated

in the form "For all rational points r in Q, r € Bp(t) implies 2% r".
There are only denumerably many rational points in Q; "r € Bp(t)" is equivalent
to "prr < p+I(t)", so its measurability follows from that of I; and " ,%£ r"

is measurable because of the measurability condition (2.3) on the preferences.

Therefore "w € Fp(t)" is measurable, and the lemma is proved.

Temma 4.4 pr is a lower-semicontinuous function of p.

Proof ILet py, Py, +-- Dbe a sequence in II with limit p, and let x € pr.

Iet X be an assignment such that X(t) € Ap@ﬂ:fareach t, and [X = x. For

each k and t , let. Xk(t) be the point in Ap (t) that is closest to X(t);

15 k

the existence and uniqueness of this point follows from the closedness and

convexity of Ap (t) (lemma 4.1). By the lower semi-continuity of Ap(t),
k

(lemma %.2), we have Xk(t) —> X(t). If X,_ 'is measurable, then because

k

15For an explicit proof of uniqueness see McKenzie, lemma 6, p. 61.
c
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it is;bounded by N it is an assignment. For the same reason we can apply
Lebesgue's daminated convergence theoreml6, and obtain ka —> [X = x.
Since ka € prk , this establishes Fﬁe lower-semicontinuity of pr; It
therefore remains only to verify the measurability of Xk.

First note that lle - X|| is measurable, where || || denotes

the Euclidean norm in RY (i.e. the distance from the origin). Indeed, the

statement "lle(t) - X(t)|| >a" 1is equivalent to "for no rational point
r e Q dowehave ||r-X(t)|] <a and re Ap (t)"; +the measurability of
k
!le - X|| +then follows from that of X(t) and of "r € Ap (t)" (lemma 4.3).
k

Next, let {rl,r s+.+} Dbe an enumeration of the rational points in & , and

2

for each positive integer J define ij(t) to be the first rational number

in Ap (t) whose distance from X(t) is at most I|Xk(t) - X(8)] ] +-% .
k
Let ‘ﬁm(t) be the statement 'r € Ap (t) and
k
||rm - X(6)]] < Ile(t) - X))+ % "; then from the measurability of

"rm € A.p (t)" (lemma 4.3), of X and of HXk - X||, it follows that 75; is
k

measurable. Now "ij(t) = rm" is equivalent to "T%Jt) and for 4 <m,

takes only rational values, it follows that ij is

(t) =X () for all t, and the limit of measurable
k 2

not ‘7%(t)". Since ij

measurable. But lim, X .
J=e kj
functions is measurable. This completes the proof of lemma 4.L.

We must now prove that pr is an upper-semicontinuous function of
p. Let 4]: denote the set of all assigmnments X such that X(t) < N(t) for
all t. We are given a point-to-set mapping =:I —> Q, which takes a given

point p of I into the subset pr of Q. Actually, = 1is the composition

16This asserts that if @, 1is a sequence of integrable functions that
converges for every t € T, and if Jeor some integrable function ¥ we have
lo.(t)] < ¥(t) for all +t, then limijpj = flimj¢j. See, for example, Dunford-
Schwartz, p. 151, IL.6.16.
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of two mappings: a point-to-set mapping Al — j(y, which takes a gilven
~point p of I into the subset (X:X(t) € Ap(t) for all t} of J'; and
a point-to-point mapping f;:X?—€> §l, which takes a given point X aij? into
the point JX of Q, This raises the possibility of demconstrating the upper-
semicontinuity of = by proving separately that A is upper-semicontinuous and
that [ is continuous, and then proving an appropfiatgﬁtheorem about the
composition of upper-semicontinuous point-to-set functions with continuous point-
to-point‘functions. This will indeed;be our methed.

The basic ingredient of the definition of continuity is the notion of
"convergence". We know what convergence means in II and in Q , but in JZT
convergence can be defined in a number of ways. The most appropriate for our

AN

purposes- is what is called "weak" convergence.

Definition Call a measurable set of traders a coalition. A sequence Xl’XE""

of assigmments converges weakly to the assignment X, if for each coalition S,

fS X, — fS X. Henceforth we will assume that ;(0 is "endowed with the weak
topology", that is, when we talk sbout convergence in ;Kf we shall mean weak
convergence; in the definitions of continuity and upper-semicontinuity, weak

v

convergence is meant wherever the concept of "convergence" occurs.

Lemma 4.5 Let {@k} be a sequence of real-valued measurable functions on T

which are bounded from below by an integrable function ¥. Then for each

coalition S,
lim inf > Jg lim inf

oo 1%k koo Pk

17For those familiar with functional analysis, we are working with weak
convergence in the Banach space of-n-dimensional vector-valued functions on T, with
the Li-norm ||X]|| = =8, JIX|. One can think of this space as LM (nT), where T
is the disjoint union of n copies of T. (i.e., @I = {1,...,n} X T; the corres-
pondence is given by Xi(t) = X(i,t)). X is a subset of this space. ‘
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Proof When % =0 this is Fatou's lemma (see Dunford-Schwartz, III.6.19, p. 152).

-

In the general case, we have from Fatou's lemma that
Lim inf, fs(wk - > fS lim 1nfk_9oo(cpk - %),

and the result follows on adding fsw‘ to both sides.

Lemma 4.6 Let [Xl, XE’ ...} Dbe a weakly convergent sequence in 7, with weak

limit X. For each t, let &(t) be the set of limit points of xk(t) as k- o.

Then X(t) is in the convex hull ©(t) of &(t) for all +t.

Proof If the lemma is false, then X(t) # e(t) fof t in a non-~-null coalition

S. For each t, &(t) is a set of limit points, and is therefore closed; since
it is bounded by N(t) if is compact, and therefore its convex hull @(t) is
also compact. So for +t € S, we may apply the separéting hyperplane theorem to
obtain a rational point r(t) € R such that for all x € O(t) ,

r(t)-x - r(t)«X(t) > 0. Since there are only denumerably many rationals and S
is non-null, there must be some rational r and a non-null subset R of ©

such that r(t) =r for all t € R, i.e. such that
(h.7) r+x - r*X(t) > 0 for all t € R and x € 6(t) .
Now from the weak convergence of Xk to X it follows that
fR rX  —> fR reX .

Since the Xk are bounded from above by an integrable function and from below

by O, it follows that r'Xk is bounded from below by an integrable function.

So we may apply lemma 4.5, and obtain
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(4.8) | fR rX Lim, fR r‘Xk

lim infk fR reX

]

k

> Jg Lim inf, reX .

Suppose now that for some t € R, lim i’nfk rﬂXk(t) < r«X(t). We can then
find a sequence of k such that r«Xk(t) converges to a value §¢~X(t), and
a subsequence thereof such that Xk(t) converges. The limit of Xk(t) as k

ranges over this subsequence is a member x of @&(t), and we have r«x < r:-X(t),

contrary to (4.7). Hence 1lim inf

K r*Xk(t) > roX(t) for all t € R. Hence

Jz Yim inf, rX > fR rX

contradicting (4.8). This proves the lemma.

Lemma., h.g A is upper-semicontinuous.

Proof Let p, —>p , X =« A(pk), X, —>X weekly. By lemma L6, X(t) is

in the convex hull of the limit points of [Xk(t)} for all t. By upper-

k

Ap(t). Since Ap(t) is convex, the convex hull of these limit points is

semicontinuity of Ap(t) (lemma 4.2), all limit poimts of (X (t)} are in

also in Ap(t), and so X(t) € Ap(t) for each t. But this means X € A(p),

and the lemma is proved.

Iemma 4.10 Let A, B, ¢ be topological spacesl“8 withi B compactlg, AtA —> B

an_upper-semicontinuous point-to-set mapping; 1B ——>,C a continuous point-to-

point mapping. Then FfA is upper-semicontinuous.

Spaces in which a notion of convergence is defined.

1
9Every sequence has a convergent subsequence.
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Proof lLet {Xk} and. {zk} be sequences in A and C respectively, X — X,

2, —> 2, 7y € fA(xk); we wish to show z € fA(x).. Let Y € A(xk) be such

that f(yk) = z,. By the compactness of B, the have a limit point y.

Tk
Then from the upper-semicontinuity of A it follows that y € A(x). If (yk }

J
is a subsequence of {yk] that approaches y , then from the continuity of f

we have

z = lim 2z = limj z = limj £y, ) = f£(y) e £A(x)

. Ty |
J j

This completes the proof of the lemma.

Lemma 4.11 7 is compact in the weak topology »

Proof This follows from the fact that all elements of ;{: are bounded in

absolute value by the integrable function N. See for instance Dunford-Schwartz,

IV.8.9, p. 292.

Lemma 4.12 pr is an upper-semicontinuous function of p-.

Proof We must establish the upper-semicontinuity of the composition = of [

and A. [ is clearly continuous. The lemma now follows from lemmas 4.9, k.10,

and 4.11.
Lemma, 4.1% ﬁAp is closed.

Proof We must show that the limit of a convergent sequence in pr is in

pr. This follows from upper-semicontinuity (Lemma 4.12) if we set Py =Py = sor

= P.
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For each. p in 1 , let: d(p) be the point in pr that is closest
to [I. Such a point exists because fAb is non-empty (it contains [N) and
closed (lemma 4.13); it is unique because pr is convex (lemma 4.1). To prove

that it is continuous in p, we need the following lemma:

Lemma 4.14 Tet = be a continuous point-to-set mapping from II to subsets

of @ , such that Z(p) is uniformly bounded for p € I. Let w € Q be

arbitrary but fixed. Then the point in Z=(p) +that minimizes the distance to w

is a continuous function of p.

The reader may verify this without difficulty. It is also proved in
McKenzie, lemma 10, p. 62.

Now pr is uniformly bounded (by JN) and continuous in p (lemmas
L.t and 4.12), and so we may apply lemma 4.14 and deduce that d(p) is continuous

in p. Next, we have

Lemma 4.15 TFor each p in I, d(p) > JI.

Proof If not, then d(p) has a coordinatew-without loss of generality let it

be the first--such that dl(p) < fIl. Now d(p) = JX , where X(t) € Ap(t) for
all t. Let ﬂt)=(ﬂ1w,xghb ver, X2(t)). Then Y(t) >X(t) and

Y(t) < N(t) ; therefore Y(t) e Ap(t) for all t. Therefore
(1w, a%(e), wens @) = Y e JA .

Now dl(p) < fIl and le > fIl ; so there is an O with 0 <@ <1 such

that Gt + (1 - a)at(p) = JI'. Setting Z =¥ + (1 - @)X and z = JZ,

we obtain z € fAP (by the convexity of pr), and
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. o (f;}, dggp), er, &) .

n

Denoting the distance between pointsffx and .y in. R Dby ||x-y|| and noting

that (dl(p) -’fIl)2 >0 , we have

[z - 21?2 = 2 (ale) - f1h?

< = (@) - J1H?

Thus z is closer to [I +than d(p) , a contradiction. This proves the lemma.

Let g(p) = d(p) - [I. We have established for g(p) all the properties
that we set out to establish for h(p): existence, uniqueness, continuity, and
non-negativity (the last by lemma 4.15). So with the following lemma we achieve

our aim:

Proof Fix p, and write g = g(p), h = h(p), ¢ =c(p);, d =d(p). If g=0

there is nothing to prove. Otherwise, by the definition of g, +the hyperplane
through 4 perpendicular to g supports pr (see footnote 13).

This means that

(4.17) x-g > |lg||® for all x e In - T 20

(Of course (4.17) also holds’when g = 0.) Suppose there is a point in [T
that is nearer than d to 'I. This means that there is a point y in

pr - [I +that is nearer than g to O. Then

A

®OHere "-" means algebraic subtraction, not set-theoretic.
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2 2
(+.18) Hyll= < [lell® -~
.. _ )
Furthermgre IIY||2 - 2y-g + llglle = IIY'€l| > 0
Hence ||Y||2 > yeg + lyg - llgll ]
It yeg - ||g[|® >0, then it follows that ||y||® >y > |lel|® , contradicting

(4.18). Hence

(4.19) e < |lgll® .

(4.19) expresses the gecmetrically obvious fact that any point nearer than d to
fI must be on the near side of the hyperplane through d perpendicular to g.
Now y = X - [I , where X(t) € Fp(t) for all t. Then by commodity-
wise saturation, ut(X(t)) € Fp(t) for all +t. Purthermore ut(X(t)) <X(t) ,
and ut(X(t)) <N(t). Setting Z(t) = ut(X(t)) s we cbtain [Z € fA.P and
Jz - JI<y. Since g>0 (lemma #.15), it follows that (fz - [I)*g <y's.
Hence by (4.19), (fz - [I)*g < ||g[|2. But since [Z - JI € pr - I, it
follows from (4.17) that (JZ - [I)-g > ||e||%, snd this is the contradiction
that proves our lemma.

This completes the proof of (3.4) and (3.5).

5. Completion of the Proof of Theorem A

In this section we prove (3.6), thus completing the proof of Theorem A.

To prove (3.6), we first show that for all +t, thefe is a maximal
element in Bq(t) , which eo ipso is a member of Fq(t). Indeed, A(t) N Bq(t)
is compact, and therefore from the continuity condition (2.2) for preferences,

it easily follows21 that it has a maximal element y. Then because of commodity-

2lAn explicit proof is given by McKenzie. See Lemma 1, pp. 57 and 67.
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wise saturation, y is also maximal in Bq(t).- Indeed, suppose z € Bq(t)
is such that z > ¥ Now z € Bq(t) means that q-z < q-I(t); therefore
q-ut(z)lf q-z < g-I(t), and therefore also ut(z) € Bq(t). But by definition

of U £

u, (z) € A(t); therefore u_b(z) e A(t) N Bq(t). Finally,
ut(z) ~ 2 g Ve Thus ut(z) contradicts the meximality of y in A(t) N Bq(t).
So the existence of a maximal element in Bq(t) is proved.

In section 3, we said that the integral of an assignment that assigns
to each  t a maximal element of Bq(t) will contradict (3.3). However, the
construction that was used there involves the axiom of choice, and thus may
lead to a non-measurable function. It is possible po avoid the axiom of choice
by singling out a specific maximal element of each Bq(t), but even then the
proof of measurability is quite complicated. We will circumvent these diffi-
culties by defining an assignment X such that X(t) € Fq(t) and X(t),
though not actually in Bq(t) , is very close to it. Then [X will still
contradict (3.3) as desired.

Let (rl,rg,...) be an enumeration of the rational points in .

For each t, 1let X(t) bve the first rational point r in this enumeration

such that
(5.1) r € Fq(t) 5
(5.2) (r -I.(’i-;)v)'q < a(g+q), and
(5.3) r < 2N(t)

There is such a point: for if y € A(t) is maximal in Bq(t) , then y € Fq(t),

(y -I(t));a £ 0, and y < N(t).
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So we can find a rational point -X(t) >y sufficiently close to ¥
to satisfy (5.2) and (5.3), which by the weak form of (2.4) will also satisfy
(5.1). To show that the function X(t) so defined is measurable, we first
note that (5.1) is measurable (lemma 4.3); that (5.2) is measurable (because
I 1is measurable); and that (5.3) is measurable (because N(t) is). Then
since X takes only rational values, its measurability follows as in the
proof of measurability of the ij at the end of the proof of lemma k4.h.

From (5.3) we get X(t) < gN(t), so X is an assignment. From (5.1)
and (5.2) we get X(t) € I‘q(t) and (X(t) - I(t)).q <a(g.q). Integrating,
we get [X € qu, and ([X - [I).q <a(qg.q). So (3.3) is contradicted, and
the proof of (3.6) is complete.

This completes the proof of Theorem A.

6. Proof of Theorem B

We now assume the weak form of (2.1) and the strong form of (2.k4).

Our procedure will be to define a sequence of markets >fi, /72, ..., wWith
the following properties: If Ik is the initial assignment in >ﬁk’ then
(6.1) Ik ——> 1 uniformly for all t;
(6.2) Ik(t) >0 for all t;

There is a sequence of assignments {Nk} such that for all ¢,

(6.3) N () —> =,

and (6.4) Nk(t) commodity-wise saturates t's desire in fﬂk;



~28-

and (6.5) The preferences in %7k coincide with the preferences in the original
market ?7; for all x and y such that x,y < Nk(t) and

y € 'I‘k(t)

Intuitively, the ?7k are "approximations" to By which satisfy the conditions of

Theorem A. Application of Theorem A yields competitive equilibria (qk, X for

)
the %yk; it will be shown that the (qk, Xk) have a (weak) limit point (q,X)

that is a competitive equilibrium in ?y.
For each t, let T'(t) be the set all unsaturated bundles. By

continuity (2.2), T(t) is open. By the saturation restriction (2.5),
T(t) C v (t).

The are defined as follows: Let 571, oy ...} be a sequence

~

of positive numbers for which

(6.6) —_— 0 ,

UN

Define the Nk by

(6.7) N (t) = I() + (e, -oes %)

The Ak(t) and u, ) — Ak(t) are defined in the obvious way.

Ky

Now T(t) N Ak(t) is compact, and is contained in the open set Tt (t). So
every sufficiently small neighborhood of T(t) N Ak(t) is still in T*(t);

in particular, if we choose Sk(t) >0 sufficiently small and set

" (6.8) Ik(t) = I(t) + 8k(t)
and (6.9) Tk(t) = {yinot y > Ik(t)} 5
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then

(6.10) : "l‘k(t) n Ak(t) C () .
We define I Dy (6.8), so as to satisfy (6.1), (6.10), and
(6.11) L) <m (t).

Then (6.2) is also satisfied. Also the Sk can be chosen to be measurable;
indeed the statement "w € T!'(t)" is measurable for each w € Q , because it
means that there is a rational that is preferred to w; and 6k(t) can be
chosen to be the first positive rational (in a fixed enumeration of the

rationals in Q) which is, say, < l/7k and satisfies (6.10) and (6.11).

The preference relations )>k

. ‘ify; .
Zy i are defined by

"

(6.12) x(é% y  if and only if ukt(X) P ukt(y)

This completes the definition of the markets '?i. These markets satisfy the
conditions of Theorem A; in order not to disrupt the continuity of the proof’,
we put off the verification of these conditions to the following section.

By Theorem A, each market '?1 has a competitive equilibrium (qk’ Xk).
Because of the compactness of II , the sequence {qk} has a convergent sub-
sequence, and we may suppose wW.l.o.g. (without loss of generality) that this
subsequence is the original sequence. Let ¢ = limk Q. - The following is

the crucial lemma:

Lemma 6.13 q>0

Proof  Suppose, on the contrary, that some coordinate of q vanishes, say

ql =0. Since g €I and [I >0 (2.1 weak form), q-JI = fq-I > 0.




Iet S = {t:q-I(t) > 0}; then S is non-null, and we denote its measure by u(S).

Define

A' = [(x:for all i, x < 2f Z?zl IJ/“(S)}

We claim

(6.14)  For all t €S, there is a k, such that X, (t) LN

0
for all k > ko.
Indeed, if (6.14) is false, then by the compactness of A' , there is

a trader t in S such that (X (t)} has a limit point x in A'. W.l.o.g.

k
assume that x is actually the limit of {Xk(t)}. Now because (qk,Xk) is a

competitive equilibrium in ,7?, we have
(6.15) q-x = lim q X (t) = limq 'L (t) = o-I(t).

Hence x € T(t) , and so does not saturate. So (2.4) (strong form) applies.
Hence x + {1,0,...,0} f>£ x. By (6.15) and t € 8, there is a coordinate

J such that xj >0 and qJ > 0; since ql = 0, we may assume- w.l.o.g.

that Jj = 2. If for sufficiently small & >0 we define

y =% + {1,-8,0,...,0} , then y € @ and by continuity, ¥ >% X. Again using
continuity, we deduce y . Xk(t) for k sufficiently large. Since (qk,Xk)
is a competitive equilibrium in %Vk’ we obtain QY > qk-Ik(t). Letting

k > o and applying (6.15), we deduce
q-y = limgq .y > lim q L (t) =q-x .
. 1 2
But since ¢ =0 and ¢ > 0, we have

2
q-:x + ql -0gq = grx - 5q2 < grx ,

il

qa-y

contradicting q+y > q-x. This proves (6.1L).

e
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From (6.1k) it follows that for t € S and k > ko(t) , there is an i

such that Xi:(t) > zfzsz/ugs). Hence ziXi:(t) > efz;ijﬂ(p(s) for k >k (t).

Hence
(6.16) lim inf ):ixi(t) > efzjlj/u(s) for tesS .
Hence
2,1t = flimk):ili - limkuiIlj{‘ = lim [£X] > [ lin inf, %.XI
> Jq lim inf zixli{;a;, > fs[zfzjlj/u(s)] = (EIEJIJ)(fSl)/u(S)

J
2f<ZjI .

The justifications for these inequalities are as follows: (6.1); (6.1)--uniform
convergence; Xk is an allocation in ?7&; Fatou's lemma (lemma 4.5);
SCT; (6.16); the integrand is a constant; fSl = u(8).

Since fZiIi > EfZJIJ contradicts [I > 0 , we have proved lemma
6.1%.

Since - —> q >0 , there is a © >0 such that q; >9% for k
sufficiently large and all i. W.l.o.g. assume qi_f  for all i and k.
Furthermore, by (6.1) assume w.l.o.g. that Ii(t) < Ii(t) +9® for all i, k,

and t. Hence for all 1, k, and t,
i
8-%.(8) < q X (t) < q I(t) < q I(t) +d

0o
< BT (t) +5 .

Hence

i n J /
x(8) < BT (£)fo +1
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Here the right side is integrable, so the Xk have a weak limit point, which

we call X (compare lemma 4.11). W.l.o.g. X, —>X weakly. Then
(6.17) /X = lmfx, = linJL = [I

(weak convergence, X, is an allocation in ;?k’ (6.1)), and so X is an

allocation. Next, for given t, let x be a limit point of [Xk(t)] , say

X = J.immxk (t) . Since
: q X (t) < 4 "I (t) ,
m m T m

we deduce by letting m — « that

This holds for all limit points x of {Xk(t)} , 50 by lemma 4.6, q-X(t) < g-I(t)

for all t, i.e.
(6.18) X(t) qu(t) for all t.

Finally, suppose that for some t, there is a y € Bq(t) such that

v )% X(t). Then there is also a limit point x of {Xk(t)} such that
MDA S

for if x Ezt y for all such limit points x , then by convexity (2.6), any
point in the convex twll of all these x 1is also 23t ¥y , and so by lemma 4.6,
X(t) ;tt y , contrary to our supposition. Clearly ¥y f O; suppose w.l.0.g.

that yl >0. If for ® >0 sufficiently small we define Vg =V - (5,0,...,0),

then we still have

(6'19) YS >t X »



Moreover, since
. . 1 . . .
limqy ¥y = @V - €8 < gy < qlIlt) < limgq I (t),

it follows that

4 Vs S gL (t)

for all sufficiently large k, say for k > kO' N.ow since x 1is a limit point

of {Xk(t)} , there is a subsequence {Xk (t)} converging to x; hence for m
- m
sufficiently large,

Vg e (8

(by (6.19)). If we also pick m so large that k >k, , then ys contradicts
the maximality of X, in {y:qk DA (t)} . So the supposition
m B 7

. t
Y 7y X(t) has led to a contradiction, and we conclude that X(t) is maximal

in Bq(t) for all +t.

Combining this with (6.17) and (6.18), we deduce that (q,X) is a
competitive equilibrium. Ail that is now necessary for the completion of the
proof of Theorem B is the verification that the markets ?&. satisfy the

hypotheses of Theorem A,

T+ Verification of the Preference Condibilons in ?ZK

We show here that the %?k satisfy the conditions of Theorem A.

To demonstrate continuity, recall that a quasi-order .- on
satisfies (2;2) if and only if it has a utility function, i.e. a real function
v on € such that x>y if and only if wu(x) > v(y) (cf. Debreu (1959),

4.6 (1), p. 56). So there is a utility function v

+ for )it . Then v

Mgt
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is a utility function for 2:t , and therefore ;:t ~is also continuous. The
proof of measurability (2.3) of gﬁf requires a number of straightforward
manipulations that use the measurability of ;:t and of N(t) , and the

following slight strengthening of the measurability assumption (2.3) for P

Lemma, 7.1 For all assignments X and Y , the set ({£:X(t) >% ¥(t)} is

measurable.

Proof Because of continuity (2.2), the statement "X(t) > Y(t)" is equivalent

to "There is a rational point r such that for all positive integers m there

is arrational point s such that

X(¢) »r, r > s, and ls ~ Y(£)|| < Y/m ."

The lemma then follows from (2.3) and from the measurability 6f X and Y.
Lemma 7.1l coincides with the statement of assumption 2.3 in MCT I,
II} and IIT. Here we make use of the fact that g:t is a quasl-order, which
was not available there; also of two-sided continuity, which was not available
"in MCT ITI.
To prove the weak form of (2.4) for 2&% , let x >y, where y does
not saturate in )ii . Since y does not saturate, at least one of its components
yi is < Ni(t) . Then uit(y) = yi < min(xi, Ni(t)) = uit(x) . PFurthermore

for all j‘ we clearly have

uit(y) = min(yJ, Nﬂ(t)) < min(xj,vNi(t)) = ‘uit(X) .

22Composition is meant, not multiplication. That is,
(o u) (x) = v lu(x)).
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So

(7.2) u (x) > u () end w(x) £ o)

Next, the non-saturation of y in 2}; means that there is a 2z such that
7). Cix . b .2
ukt(z) i ukt(y) So ukt(y) does not saturate in ?vt Hence by (7.2)

N

. k
and. the strong form of (2.4) for 7t s ukt(x) et ukt(y). Hence x >‘t v o,

and the weak form of (2.4) is established for ?l;

To prove the saturation restriction for z'l‘c& s let "y e 'I‘k(t). Then
L .
u (y) e 1 () N.A(e) C 27(%)

S0 ukt(y) does not saturate for > . Since y € 'I‘k(t) , we have yi < Ii(t)
for some 1i. Hence ulict(y) < yi < I}jg(t) < Nlii(t) , by (6.11). So by adding

a small amount to the i’_c._p_ coordinate of Ukt(y) , and nothing'to the other
coordinates, we obtain a z such that z Zukt(y) , z f ukt(y) , and z € Ak(t)
Since ukt(y) does not saturafe for Zt » we conclude from the strong form
of (2.4) for > that =z >t ukt(y) . From z € %(t) we conclude

ukt(z) =2z , 80 Ukt(z) >t uk‘o(y) , i.e. 2 }1,; v« So y does not saturate,

and the saturation restriction is proved.
Finally, to prove convexity (2.6) for >1_E ; let x )lé v« Then

ukt(x) >t Ukt(y)’ and hence
(7.3) aw, (x) + (1-o)u  (v) > w(y)
Now clearly ax + (l-a)y > Otukt(x) + (1-a) ukt(y) ; hence

uglox + (1-a)y) > u (o (x) + (l-a)ukt(y))

It

o (x) + (1) (v)
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since the right side is in (t). Therefore, because of the strong form of (2.4)
2 X

for >% 5, we deduce

u . (ox + (1-a)y) o (x) + (1~@) u_ (y) ,
kt A e, Kt

where the ~ sign is there because of the possibility of equality. Combining

this with (7.3), we deduce
. (ox +»(l-04)y) e e () s

and hence ox + (1-a)y )>i y , as was to pe proved.
That Nk saturates commodiﬁthise in ?yk follows at once from the

definition.

8. Comparison with McKenzie's Proof

Sinée these proofs are based on McKenzie's (1959) for the finite case,
it is worthwhile to point out some of the differences; Perhaps the most
important are in the passages framproperties proved for individual traders
to the corresponding properties for the aggregate of all traders. These
passages are almost trivial in the finite case, but in ours they require the
use of function spaces and their properties. ILemmas 4.6 and 4.11 are the
principal tools in this connection. An example is the continuity of the
aggregate preferred set as a function of the price vector; this is a trivial
consequence of the continuity of the individual preferred sets in McKenzie's
paper, but in ours it requires all of section k4.

Anothér significant difference is in the matter of boundedness. In
the proof of Theorem A the set of bundles under consideration must ﬁe in. some
sense bounded in order to establish the continuity-~and indeed the existence--

of the individual preferred sets. McKenzie does this by noting that no
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individual trader can have more goods than the whole market. This is no
longer available here, because anyway each trader's bundle is infinitesimal
compared with the Whole market. We therefore neeq the notion of commodity-
wise saturation, which does the job of bounding for us. In Theorem B we don't
have commodity-wise saturation; here we first deduce from strong désirability
that all priées must be non-vanishing, and this bounds the bundles under
consideration to a finite simplex.

A relatively minor difference is that the construction of allocations
for various purposes (e.g. lower semi-contiguity) involves somewhat laborious

measurability proofs here, whereas there is of course no such problem in

McKenziet!s work.

9. Counter~Examples

Counter-examples to the existence of a competitive equilibrium were
given in section 4 of MCT III for the following cases:
(a) Assumption (2.1) is dropped entirely, even though the strbng
form of (2.4) holds.
(b) The weak forms of\both (2.1) and (2.4) hold, but the strong

form of neither holds.-

10. FExistence of a Competitive Equilibrium under the Conditions of MCT 1125
It is possible to establish the existence of a competitive equilibrium

under the conditions of MCT IT, if in addition to the conditions assumed there

QEReaders not familiar with MCT IT should omit this section, as the
definitions will not be repeated.
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one assumes convexity and that the preferences are quasi-orders. The advantage
of this is that it allows saturation for bundles that are "very large"
(precisely, greater-than MM(t)) in at least one coordinate, without demanding

that they be >I(t) in all coordinates. The precise theorem is:

Pheorem C Assume the conditions of this paper, with the weak form of (2.1)

but without any form of (2.4). Instead, assume that there is a A such that

for all +t , the relation "

obeys Mdesirsbility at all y <M(t) . Then

there is a competitive equilibrium.

Proof  The basic tools in the proof are two lemmas from MCT I and MCT II.

Both were proved under hypotheses considerably weaker than those of Theorem Bj;

therefore they hold under the hypothesesvof Theorem B.

Lemma 10.1 Every equilibrium allocation24 is in the core.

Lemma 10.2 If X 1is in the core, them X(t) < NM(t) for all t.

Iemma»lo.l is the contents of section 3 of MCT I. ILemma 10.2 is
lemma 5.5 of MCT II.

First assume that I(t) % 0 for all t. The procedure is to modify
the given preference orders so as to satisfy the strong form of (2.4) as well
as the other conditions of Theorem C.  Then the conditions of Théorem B are-
satisfied. In the course of this modification, care is. taken not to change

the given preference orders in or near the hypercube

ok

See the introduction.
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K%(t) = {x:x < NM(t)}. Applying Theorem B, we obtain an equilibrium point (q,X)
for the modified preference orders. Because of lemmas 10.1 and 10.2, we have
X(t) € &%(t). If (9,X) were not a competitive equilibrium for the original
preference orders, there would be a trader t who could do better within his
budget than X(t). But then by the convexity condition (2.6), he could also
do better by choosing a commodity bundle in his budget set quite close to X(t),
sufficiently close to be in the region where the modified order coincides with
the original order. But then (q,X) would not be a competitive equilibrium in
the modified order either, contrary tc our construction.

The original orders will be denoted, as always, by Tt Define
E(t) = {x:\M(%) T4 x}; E(t) is the corner of € that is "cut off™ by
the indifference surface on which AM(t) lies (see Figure k). The modified

orders », are defined as follows: Within E(t), coincides with

%

FIG.4
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In Q - E(t) , the indifference surfaces of ‘Zz “Bre’ scalar multiples of the "last"
indifference surface in E(t) , i.e. the one that passes through NM(t). Formally:
if %,y € 9=E(t),let x',y' be such that x' ~i h&(t), y'~t ANM(t), x = ax',

y = By' for some scalars O and PB. The existence of such x',y', @ and B follows
from the continuity condition (2.2), since x > AM(t) > O ;. and so some scalar
multiple of x must be indifferent with AM(t). Furthermore x',y', and hence

a,B are unique, for otherwise the convexity conditon (2.6) is violated. We

now defines x :>

~t
*
we define x> .

% _
¥y if and only if a>pB . If x e Q - E(t) and y e E(t),

The straightforward verifications that &: satisfies (2.2) through
(2.6) are left to the reader. The remainder of the proof is as in the outline
above, except for the follo&ing point: The proof depends on the fact that for
any equilibrium allocation X and all t, X(t) can be surrounded by a
neighborhood in which the modified order and the original order coincide. This
follows from X(t) € A¥(t). For if X(t) # NM(t), thén from A-desirability
it follows that MM(t) > X(t) , so that X(t) is in the interior of E(t).
Moreover, X(t) = NM(t) is not possible for any t. For since I(t) # 0, it
follows that M(t) > 0, and hence NM(t) >M(t) > I(t). Therefore AM(t)
cannot be in the budget set Bq(t). Since (X,q) 1is a competitive equilibrium
for the modified orders, it follows that X(t) € Bq(t) , and so X(t) £ AM(t).
Finally, if I(t) = O for some +, we first obtain a competitivé
equilibrium (q,X|S) restricted to the set § = {t:I(t) % 0}. This is
extended to all of T by defining X(t) = 0 when I(t) = 0. Clearly X is
an allocation and X(t) € Bq(t) for all +; +that X(t) is maximal in Bq(t)
when t ¢ 8 follows from g > O , since this implies. Bq(t) = (0} for t § S.

This completes the proof of Theorem C.
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