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Abstract

The kernel of a cooperative n-person game is defined. It 1s a subset
of the bargaining setoﬂ(’(i). Its existence and some of its properties are
studied. We apply it to the B—persdn games, to the U4-person constant-sum
games, to the symmetric and n-quota games and to games in which only the
n and the (n-l)-person coalitions are allowed to be non-flat.

In order to illustrate its merits and demerits as a predictor of
an actual outcome in a real-life situation, we exhibit an example in which
the kernel prediction seems frustrating. The opinions of other authors are

quoted in order to throw some light on this interesting example.



1. TIntroduction.

In [1], R. J. Aumann and M. Maséhler introduced the various bargaining
sets for n-person cooperative games. These are meant to assign payoffs to
the various coalition in structures which mske them stable in some sense.

In [T 1, B. Peleg proved that for each coalition structure there
exists at least one payoff which mskes it stable, in the sense of the bar-
gaining set ,ﬂq (i). Whether it is possible to single out a unique element
in 6/77 (i), for each coalition structure, which has interesting strong sta-
bility properties is still unknown. Perhaps, a better approach to this would
be to.decompose the bargaining set into various subsets — each of which rep-
resents a specific "way of thinking" that may cause the players to end up
within a particular set of outcomes.

In this paper (Section 2), we define a particular subset of the bar-
gaining set L/W((i), which we call the kernel of the game. We study some of
its properties in Section 3 and prove its existence in Section 5. In Section
L ye study the kernel for the 3-person game and show that it can be given
an interesting dynamic interpretation. These results are generalized in
Section 7 to games in which all sets other than the n-1 and the n-person
coalitions are flat.(l)

It is easier to compute the kernel than to compute the bargaining
set of a game, although even for the kernel, the computation may be tedious
and may require non-systematic short cuts. In Section 8 we characterize com-
pletely the L-person constant-sum game. In Section 9 we treat the symmetric
games and cite B. Peleg's analysis of the m-quota games.

Is the kernel interesting in itself as a predictor of possible out-
comes? Is it in some sense more plausible that the players will end up with

an outcome in the kernel instead of another outcome, say, in the bargaining set?

(1) A coalition is called flat if its value is equal to the sum of the
values of its members - considered as l-person coalitions.
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We do not think so, although, in Section 7 (and as a matter of fact, in all the
other sections), we do our best to Justify the kernel. We do so by showing that
the outcomes of the kernel seem reasonable in some games, and we also try to
Justify the definition as a method of reaching a compromise. In thig interpre-
tation, however, we need an assumption of interpersonal comparison of utilities.

Nevertheless, we believe that the kernel throws light on a wealth of
interesting compromise aspects of n-person games. We also believe that its
mathematical properties deserve further study.

In Section 7 we describe an analysis of a certain weighted majority
game according to which one arrives at outcomes which, at least at first glance,
seem "unintuitive," although they are in the kernel. This analysis was pre-
sented to several experts on Game Theory, who were asked to express their
opinions. It turned out that these opinions summarized various schools of
thought that exist today in Game Theory, concerning its applicability to real
life situations. We have. therefore decided to quote the answers here. We
wish to express our indebtedness and gratitude to the authors. The reader

will undoubtedly benefit from their contributions.



2. The kernel of a cooperatiye game.

Let ' be a cooperative n-person game, described by the ordered pair

(v; N). Here N = {1,2, ..., n} is the set of the players and v = v(B) is the

characteristic function of the game. We do not assume that v(B) is a super-

additive function.
The non-empty subsets of N are called coalitions and we require that
they form the domain of v(B), and that v(B) satisfies

(2.1) v(B) > O for each coalition B,

(2.2.) v(i) =0 for(l) each l-person coalition {i}.
An outcome of the game will be denoted by

(2.3) (x_;zg ) = (Xl’ Xpy eee X3 Bl’ BE’ cee, B ),

n m

where Xi _denotes the payoff to the ith player andzs = (Bl, BE’ ceey Bm) represents

the coalition-structure which was formed.

Thus, 73 is & partition of N, hence it satisfies

, m
(2.4) ‘B,NB_ =0 if j+k, U B, =N,
J k oy I
J_

and the payoff vector x = (Xl’ Xos ..ngxn) is assumed to .satisfy:
(2.5) x, 20, 1=1,2, ..., n (individual rationality)
(2.6)  x,=v(B.), =1, 2, ... m.

Lo 1 Jj s

The symbol (5(.525) will be called an individually rational payoff configuration
(i.r.p.c.).
If we fix.the coalition structure 13, then the set of all the payoffs X

satisfying (2.5) and (2.6), is a cartesian product of m simplices:

(1) We write v(i) dinstead of v({i}). It turns out that (2.1) and (2.2)
cause no real loss of generality. (See the beginning of section 3 and Remark 3.1).
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(2.7) sz(:ﬁl)sslxsgx”. X8,

where

(2.8) Sj': {{xi} yéR l X, >0, 2 x, = V(BJ,)}, J=1,2, ...;m.
dJ ieBJ.

Definition 2.1 Tet (X ;“6) be an i.r.p.c. for a game I, and let D De an

arbitrary coalition. The excess of D with respect to (;( ;6) is

(2.9) e(D) =v(D) - = X, .
ieD

The excess of D therefore represents the total amount that the members of
D gain (or lose, if e(D) < 0), if they withdraw form (2 ; 8) and form the coali-
tion D. Clearly,

(2.10) ' e(B,) =0, j=1,2, ..., m.

Let k and 4 be two distinct players in a coalition Bj of ﬁ 5 we
d_enbte by Tk 2 the set of all the coalitions which contain player k but do not
2
contain player ’F/; l.e.,

(2.11) T T (D/pC W, xeD, £ 4 D)

Definition 2.2 Let (X ,ﬁ) be an i.r.p.c. for a game I, and let k and L be

two distinet players in a coalition BJ_ of ‘B - The maximum surplus of k over 4

with respect to (= ; 76) is

(2.12) Sk,/l')/ EDD;I;X e(D).
k, 1

maximum
The/ surplus, therefore, represents the maximal amount player k can gain

(or the minimal amount. that he must lose), by withdrawing from (X 5\6) and Jjoining
&.coalition D which does not require the consent of 4 (since {«%D), with the under-
standing that the other members of D will be satisfied with getting the same amount
they had in (< 56)-

Definition 2.3 Let (:[,,8) be an l.r.p.c. for a game [, and let k, L be two

distinet players in.a coalition B . of ﬁ . Player k 1is sald to outweigh player
. : 3 ‘ ——iEoat

4 with respect to (X ; 8 ), and this is denoted by k >> 4, or, equivalently, by



1 <« x, if
(2.13) S, 4 > 8, and x£,+ 0.

If neither k >4 nor 4> k, we say that k and 4 are in equilibrium. For the
sake of completeness we define each player to be in equilibrium with himself. Similarly,
we also regard any two players, who belong to disjoint coalitions ofiza,.as being in
equilibrivm. We write k ~4 4if k and 4 are in equilibrium.

Note the special role a player possesses if he gets 0 in (X ;'Za)n In

this case, no player can outweigh him.

Definition 2.4 ILet (_1'5‘13) be an i.r.p.c. for a game [. A coalition Bj of“za
1s said to be balanced with respect to (X ;{3), if each two players of Bj are in
equilibrium.

Clearly, a l-person coalition hazaj if such occurs, is always balanced.

Definition 2.5 The kernel J(: of a game [' dis the set of all the i.r.p.c.'s having
only balanced coalitions. Or, equivalently, (X ;7<3)e:](:, if and only if each two
players are in equilibrium w.r.t. (:f ;‘ig)ﬂ

Corollary 2.1 It is easy to verify that

(2.14) _ k >> 4 if and on}y if (sk’{,- S{@k) xp >0
and that

(2.15) k ~ 4 if and only if (sk)/& - s&k) xp <0 and (s&k - sk;/&) x_ <0,

We shall study in this paper some of the properties of the kernel in an
as
attempt to find out to what extent and in what context it may serve a useful tool in

Ypredicting" the outcome of a game.
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5. Elementary properties of the kernel, the pure bargaining game.

In principle, one can compute the kernel of a game by solving systems of
inequalities of the form (2.15). In practice, unless the number of the players is
small, this may be an enormous task in view of the huge number of possibilities
which have to be considered.

It is clear from the definition that the kernel does not depend on the

labeling of the players.

If (v; N) and (w; N) are strategically equivalent games, and if
(3(;‘8) and ( & ;6) are corresponding i.r.p.c.'s in (;(;76) and (¢ ,’ﬁ),
respectively, then the corresponding excesses of the various coalitions, with réspect
to the two games, are proportional, (with a positive factor of proportion). Therefore
(x ;zS ) Dbelongs to the kernel of (v; N) if and only if ( & 513 ) belongs to the

(1)

"kernel of (w; N). Thus, the kernel is invariant under strategic equivalence.

' 2
The simplest game which we shall now consider is the Dbure bargaining gameg( )

namely, a game in which all the coalitions, except, perhaps, the grand coalition N,
are flato(B) For reasons of future convenience, we shall not require the normaliza-
tion (2.2), and therefore (2.1) will take the form:
(3.1) vIN) >v(1) + v(2) + ... + v(n).

Tt is easy to verify that (x ;755)‘€;H£;f01"13 + N, if and only if
X, = v(i), 1 =1, 2, ..., n; and that' (X ;765) e:}i if and only if
(3.2) x, = v(i)+ [v() - v(1) - v(2) - ... - v(n)l/n, i =1, 2, ...,n.
Remark 3.1 We shall dispose of the case when (3.1) is not satisfied by treating a

j
more general case: If the value of" & coalition is smaller than the sum of the

value of its members, then this coalition cannot occur in any L.r.p.c. Also, such

(1) Obviously, the O's in (2.5) and (2.13) should be replaced by v(i)
and v(l), respectively.

(2) The name is suggested from L. S. Shapley [ 81 -

(3) A coalition B is called flat if v(B) = & v(i).
‘ ieB
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a coalition can be omitted from 'Tk,{z without changing sk){,(see (2.11) and (2.12)),
because its excess is less than the excess of the l-person coalition k. Its actual
value has no influence on the kernel. M§reover, if we replace its value by the sum
of the values of its members, we do not change sk){; Therefore, the following rule
may be applied:

If a coalition B in a game [' makes less than the total « gained by
its members acting as l-person coalitions, replace its value by o (i.e., make it a
flat coalition) and compute the kernel for the new game. The kernel of the original
game will then be obtained by removing from the new kernel all the i.r.p.cg'é in which
B appears in the coalition structure.

We shall later encounter the situation in which players, confronted with a
game (v; N), will "decide™ to treat instead s pure bargaining game (u; N) with

u(B) =0 for B 4N, ul)

1l

v(N), yet the decision on the split of v(N) among the
players will be based on a "recognition™ that the "strength" of a player i is a
certain real number Vs i=1,2, «.., n, which is derived, in a certain way from

v. The sum of the wi’s may be smaller, greater or equal to v(N). To be precise

we define:

Definition 3.1 A pseudo bure bargaining n-person game is the triplet (u; N; Wis Woy eee W )
where N 1is the set of the rlayers, )
(3.3) u(B) =0 for B 4N, u() > o0,

and w.,, 1 =1, 2, ..., n, are real numbers. A share of u(ll), based on Wys o eee W is

defined to be (x ; N), where

(3.4) X, =W+ [u() - Wom e - wh]/n, i=1,2, ..., n,

Provided that Xi‘E O for each 1, i=1,2, ..., n.

If the last condition is not satisfied, we shall define the share inductively
as follows: Take a player io who has a smallest (and therefore negative) Xi and

give him the amount O. The share for the other players will then be based on the

i
pseudo pure bargaining game(l) (u”O; N, w cees W -1, W,

1 . zl, cee, Wh)'

O

(1) The reasons for such a definition will become clear later. It is
independent of the particular player io which we choose.



Intuitively, a player i acts as if he could make v, by himself, (compare

(3.2) with (5.&), but since this amount is fictitious, the players are not bound by the

individual rationality condition X5 > W They still respect the condition x5 >0
.which, when violated by a player io’ forces him to leave the bargaining and permit

the rest of the-players to share v(N) among themselves.



L. The 3-person game.

The 2-person game is a particular case of the pure bargaining game,
discussed in the previous section.

The following lemma will be useful subsequently:
Lemma 4.1. TLet (X ;i@) be an i.r.p.c. for a game I' , and suppose that the
coalition B, B, GB, is balanced with respect to (X ; ﬁ) Let (} : 6)
be another i.r.p.c., having the same coalition structure (8, with the same pay-
off's to the players outside of Bl’ and with only player in Bl getting strictly
less [more] than what he received in (jC 3ﬁ) Under these conditions, the
coalition Bl Will not be balanced with respect to (;g ,'@)
Proof: Suppose that player k was the only player in Bl’ who received in (y 3 8)
less than he did in (I ;ﬁ)o By (2.6), Bl contains at least one other player,
say, 4, who received in (y ,28) more than he did in (( ; 6) Using (2.6)
once more, we find that the excess of each coalition in Tk,/f/ (see (2.9), (2.10))

increases in the transition from (J( ,36) to (2{ 3‘6) by the amount y/ﬁ - x/& >0,

- at least. However, the excess of each coalition in T’f/ K decreases in this trans-
2

ition at least by the same amount, and by (2,5), g > 0 ; hence player *k outweighs
player 4 with respect to (;? ;ﬁ), and Bl cannot be balanced., 7
If player | k was the only player in Bl who received in (g ,@) more
than he did in (4 ; 6), assume that (?( ;78') is balanced, interchange the
roles of (.J( ; 8) and (7 ;6) in the first part of this proof, and you get a
contradiction. This cor'npletes the prdof.
«»Wé shall prove later that for éach coalition~-gtructure ﬁ_’ in a game T ,

there éxists at least one payoff vector AL s such that (J( ,26’) e]C Granting

this, we shall now prove:
Theorem 4.1. For each coealition structure 6 » in a 3-person game, there exists

a unique payoff vector X such that (2 ;ﬁ) 5 ]‘( _
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Proof: Each coalition in\za contains at most 5_players. Also, at most one
coalition has more than one member — the others, if such exist, receive the fixed
amount O . If (X ;ng) eJﬁ:/ and (;{ 5‘15 ) is a different i.r.p.c., having
the same coalition structure{Zﬁ s then the paymeﬁts to members of only one coali~-
tion could be changed and either only one player's payment increased or one player's
payment decreased. By Lemma 4.1, (91.513)‘ cannot belong tC)7{f°

| In general, it is not true that for each coalition structure 13 there
exists a unique payoff vector Z having the property that (2 5?53) ejﬁi .
Example 4.1. ILet T' be a 4-person game whose characteristic function is
v(12) = v(23) = v(34) = v(14) = 100 and v(Bj = O otherwise. Clearly, every
p.c. of the form (x, 100 - X, X, 100 - x ; 12, 34), 0 <x <100 , belongs to
the kernel of this game.

Having computed-the kernel of the general 3-person game, treating the
various possible cases, we were somewhat surprised to realize that the various
results could be given a reasonable dynamic interpretation. The purpose of this
section is to describe it. Proofs will not be given,.since this game is a special
case of a case which will be studied in Section { « Let us say at once that we
do not regard this dynamic interpretation as a justification of the kernel. Other
plausible procedures may iead to different outcomes. Yet, the fact that such a
procedure exists (and can be generalized to éther cases) seems interesting. In
treating the general 3-person game we shall assume that
(b.1) v(12) < v(13) < v(23).

I. The coalition structure (1, 2, 3).

There can be only one i.r.p.c. having this coalition structure, namely
(o, 0, 0;1, 2, 3). It belongs to the kernel of the S-person game.

II. The coalition structures (12, 3), (13,2), (23, 1).

Suppose e.g., that the coalition {12} is formed. TIts members know that
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player 3 must get the amount O . In order to determine the share of v(12) among
them, they consider the pseudo-pure bargaining game (see Definition 3.1)

(u; 1, 2; v(13), v(23)), where u(12) = v(12), and share accordingly. The "reason"
for choosing v(13), v(23) as a basis for their strength lies in the fact that a
player i can make "almost" v(i 3), i = 1, 2, by joining player 3 and offering
him a positive small amount. True, both players cannot achieve this value simul-
taneously, but they do not want to join player 3, since they want the coalition
{12}. Under these circumstances they compromise by regarding v(13) and v(23)

as the basis for negotiation. A similar situation occurs when {13} or {23} is
formed. In computing the outcome, two cases should be distinguished:

A.. If v(12) + v(13) > v(23), then, in view of (4.1), the p.c.'s in the kernel

are. ((Dl; (D2, 0 3 12: 5)
(4.2) (@), 0 5 ay; 13, 2)

(o 3 (-02: 0333 1, 23)

where o = [v(12) + v(13) - v(23))/2, @, = [v(12) + v(23) - v(13)]/2 and

@, = [v(13) +v(23) - v(12)]/2 . '

Note that (ai, 0,5 w5) is the quota(l)of‘the game in the sense that
@ + o =viijg), 1,3 =1,2,3, 1#].

B. If(g)'v(l2) + v(13) < v(23), player 1 is deleted in the pseudo bargaining

game, if {12} or {13} forms, and the outcome, which is in the kernel, is:

(0, v(12) , 0; 12, 3)
(4.3) - (o 0, v(13) 5 13, 2)
(0, . wy @ 1, 23).

III. The coalition structure (123).

In this case, one of several procedures will determine the outcome.

(1) The term is suggested from L. S. Shapley [ 8 ], although its meaning
here is somewhat different. See also [ L].
(2) In this case player 1 is weak, i.e., has a negative quota.



These procedureé will be described and we shall "rationalize" the choice from
the various procedures.

Procedure A. If +v(123) is "large," the players will d;sregard the 2-person
coalitions and will simply share v(123) equally. Thus,

(b .k) (v(123)/3, v(123)/3, v(123)/3 ; 123)

will result. This will be the situation, provided

(4.5) v(123) > 3v(23).

If (4.5) is not satisfied, the players 2 and 3 which form the strong-
est 2-person coalition (see (k.1)), will together make more by adopting the next
procedure.

Procedure B. If v(123) < 3v(23), but v(123) is not "too small," then, at
first, the strong coalition {23} will form and act as one player, playing against
player 1 in the game (u; 1, {23}), where u(l) =0, u({23}) = v(23),

u(1{23}) = v(1é5). This will determine the payoff o« = [v(123) - v(23)]1/2 to
player 1. Knowing player 1l's payoff, the players 2 and 5 will determine their
share of [v(123) + v(23)]/2 1in accordance with the pseudo-pure bargaining game

*

(see Definition 3.1), (v'; 2, 3; Vo W ), where v* (23) = [v(123) + v(23)1/2,

)

W, = Max (0, v(12) - a), Wy = Max (0, v(13) - @). Thus the threat to join

player 1 1is used only if it is preferable to playing alone.

This procedure will be used as long as player 1 "has nothing to say;"
votherwise, - other procedures will arise ksee Procedures C and D). To be more
preciée, the range for Procedure B is
(k.6) 2v(12) + 2v(13) - v(23) < v(123) < 3v(23)
it v(12) + v(13) > v(23), end
(3.7) v(23) < v(123) < 3v(23)

(1)

otherwise.

(1) Note that in either case both (L.6) and (4.7) nhold.
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Thé variants of this procedﬁre are as follows: If

(4.8) 2v(13) + v(23) < v(123) < 3v(e3) ,

both w, and Wy are equal to zero and the final outcome is

(%.9) ([v(123) - v(23)]1/2, [v(123) + v(23)1/%, [v(1 + v(25 1/k 5 123).
If |

'(A'.lo) 2v(12) + v(23) < wv(123) < 2v(13) + v(23),

then w, = 0, wé = v(13) - @ , and the final outcome is

(k.11) ([v(1e3) - v(23) /2 [v(123) - v(13)1/2, [v(13) + v(23)]/2 ; 123).
Finally, if
(4.12) Mex (v(23), 2v(12) + 2v(13) - v(23)) < v(123) < ev(l2) + ‘v(EB),
then w, :zv(lE) -a, Wy = v(13) - @ and the final outcome is
(k.13) ([v(1?5)-v(25)]/2,[v('125)+v(23){uzv(lz)-ev(lB)]/u,[v(125)+x}(25)+2v(15)-2v(12)]/%125).
Remark 4.1 We noted that if v(123) < 3v(23), players 2 and 3 will make more together
by using Procedure B instead .of Proéedure-AJ ﬁowever, it is possible that one of them
kplayer 2) will do worse!
If, e.gs, v(12) = 6, v(13) =12, v(23) =15, v(123) = 21, then (k.12)
ié satisfied hence, by (4.13), the oubcome (3, 6, 12; 123) is in the kernel. Here
player 2 gets less thén Q(lQB)/B = 7_, which would have resulted if Procedure A was

(1)

used. This strikes us as a fiaw in the bargaining of Procedure B.
Procedure C. This procedure occurs if and only if v(12) + v(13) > v(23) and
(h.10) Cov(23) - v(12) = v(13) < v(123) < 2v(12) + 2v(13) - v(23).
Unlike the situatioﬁ in Procedufe B} where player 1 é%ayed idle in the
"first round," allowing for the coalition {23} to form first, he now enters the first

round demanding that his voice be heard at the stage in which 2-person coalitions are

formed. We have seen (see (L4.2)), that the outcome of such a round assigns to

(1) The formation of the coalition {12} or the coalition {13} will not
"work," since, again, one of the two members of the formed .coalition w1ll obtain
eventually an amount’ smaller than 7.
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player i a quota “ﬁ which he manages to get if he succeeds in entering a 2-person
coalition. In this situation there is no priority of one coalition over another. The
players "therefore" decide to regard the quotas as the basis of negotiations in the

), where u(123) = v(123). This

pseudo pure bargaining game (u ; 1, 2, 3 ; l’ 2, 3

Yields the outcome
(4:15) (o +Iv(123)-0)-0-0,1/3, @ 4(v(123)-0-0,-0,1/5, @ +v(123)-0 -0~ w;1/3 ; 123),

where W, and o, are defined immediately after (4.2).

R 3 .
In this procedure, therefore, player 1 undermines the coalition {23}, causing
its breakdown and a compromise on the quota as a basis for the pseudo pure bargaining

is reached. Player 1 would not: interfere if (4.6) holds because, by interfering, he

would not gain in this range. On the other hand, it is to his advantage to interfere
if  v(123) < 2v(12) + 2v(13) -'V(EB), as one can-easily verify.
Procedure D. If, however,
(k.16) o v(123) . < Mlm (v(e3), av(23) - v(12) - v(13)),
both Procedure B and Procedure C would yield player 1 a negative payment. This he can
certainly avold since he éan always assure himself the 0 payment. The players 2 and
5 will then be faced with the pseudo pure bargaining game  (v** ; 2, 3; v(12), v(13)),
. where v¥%(23) = v(lEf). Note that this case has two variants:

ir
(h.17) v(13) - v(12) <v(125) < Min(v(23), 2v(23) - v(12) - v(13)),
only player 1 is "deleted" (see Definitionfﬁgl), and the outcome is
(4.18) (0, [v(123) + v(12) -v(13)]/2, Av(123) +v(13) - v(12)1/2 ;5 123).

If
(k.19) : v(123) < v(12) - v(13),
player 2 would do at léast as well by leaviné the bargaining, and reaching the outcome

(4.20) (0, 0, v(123) ; 123).
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Discussion. We do not claim that the above procedures Jjustify the kernel for the
5-person game. In order to claim this we should have shown that these procedures
are more natural than others. For instance, if we allow in Procedure B for the
strong coalition {23} to act as single player, why should not one consider other
coalitions acting similarly? Yet it is interesting to note that these procedures,
which on first sight seem unrelated among themselves and would certainly be rejected
as an a priori analysis of the 3-person game, stem, in fact, from the same kernel

concept, and perhaps should not be rejected a posteriori.

The actual outcome of the 3-person game, however, seems to us intuitively

reasonable and useful for the following reasons:

(1) The quota occupiles a central role when a 2-person coalition is

formed.

(i1) The "right" order of payoffs when the 3-person coalition is formed
is preserved; namely, player 1 does not receive more than player 2

and player 2 does not receive more than player 3.

(1ii) Two-person coalitions have no influence on the outcome if 123 is
formed and v(123) is relatively large, but their influence be-

comes more  and more decisive if v(123)" becomes smaller.
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5. Existence Theorems.

In this section we assume that the reader is acquainted with the Bargaining
Set 0/%»(i)’ which is studied in M. Davis and M. Maschler [2 ] and [5]. This and
other bargaining sets were first introduced by R. J. Aumann and M. Maschler [J_],

where a discussion of some of their properties ig given,-

Theorem 5.1. The kernel of a game is contained in the bargaining set L/¢Z(i),
Proof: Let (X ;13 ) e]«i for a game I' . "Let k and 4 7pe any two players be-
longing to a coalition B of Qf3 - Under these circumstances, it follows from (2.15)

= = > =
that Sk;% s&,k or that x% 0 and Skfﬂ s&,k or that Xk 0 and

Lk~ x4
~ In the first and second cases player k has a counter objection against any

objection of 4 , if such exists, by joining a coalition Dh in Tk,{, which has a
maximum surplus. Indeed, if there exists an objection of 4 against k then there
exists a coalition in Tﬁ,k with. a positive surplus; hence, sk,{'z Sﬂ,k >0 . Let
S be the intersection of D with the coalition used by 4 in his objection against
k . The players of S » 1f they exist, get together in.the objection less than
59k gbgve the amount they had in (J(v3239’ Player k can therefore offer them
at least what they received in the objection and give the rest of the players in D
at least what they had in (x ;23), because Sk,{,z s{’k and because<l) skf& >0

In the. third case, player k can counter object by acting as a l-person
coalition.

A similar argument shows.that 4 has always a counter objection against
any objection of k . Thismcompietes ﬁhe proof of the théorem.

Lemma 5.1. The relatioh > > with respect to an i.rnp.é° of a game (see Definition 2.3)

is a partial order relation.

(1) This last® relation is important in case S is empty.
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Proof: If k >>4 with respect to (X ;6) in a game T , then, by (2.14),
(Sk,/ﬁ - S/&,k) Xp > 0 ; hence, since Xy >0, x%z o, it.follows that (S/ﬂ,k - Sk,/ﬁ)xk:# 0.
Thus 4 > >k cannot. occur. Hence > > ig an antisymmetric relation.
We shall now prove that this relation is transitive. If this werebnot the
case, then there would exist three players k, fﬂ, m, such that k > >4 ,~/E >>n
and either m > >k, or 'm ~ k, with respect to (.{’,8) in a game T'. By (2.14)
- and (2.15) this would mean that k, 4 and m belong to the same coalition B Ofﬁ, and

that the following relations (5.1), (5.2) and (5.3) hold.

(5.1) xﬁKsk,{,‘ S{9k> >0

§5-2) | Xm(s{,m - Sm,{) >0

(5.3) Xm(sk,m - Sm,k) <0 ‘
Since X >0 by (5.2), Sk,m - Sm,i{ <0

If we take the set of coalitions containing at least one but not all of the
players k,-ﬂ( and m, and consiaer thése coalitions in the set that have the largest
surplus, we find that player k is in each of them and ﬁ is in none of them. Indeed,
if D is one.suc@ coalition having a maximum surplus and LeD » then k €é D by
(5.1); and if me D, then LeDd by (5.2). Theréfore, Sk,m > Sm,k ,» a contradiction.
This proves that the relation > > is transitive.

Example 5.1. The relation =~ is certainly symmetfic bﬁt it need not be transitive.

Let (v ; N) be a b-person game; where v(13) = v(23) = v(2k) = 80, wv(123k) =
and v(B) = 0 otherwise. Clearly 1 = 2, 23 but 3 >>1 with respect to the
p.c. (25, 25, 25, 25; 123k).

Y

Lemma 5.2. Let E, = EU‘({X.} s ¢B ;B sV € B € 6 be the set of points

—'L’* E S. (see -(2.8) for whlch player v elther outwelghs or is in equili-

brlum with each of the other players with respect to the i.r.p. c. .x ;ﬁ), where

A
X, = X ,' i €B 5 then EW is a closed set in the simplex Sj’ and contains the

1

face Xy = 0
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Proof: It follows from the relations (2.14), that x*€ E,, if and only if C% 3B,
with %i = xi* for i éjBJ , satisfies
' A
. - > . .
(5.4) (%Df& 5&;0) X, >0 for each 4, {,ejBJ

Thus E v 18 a union of a finite number of closed convex polyhedra, each of which

contains the face Xy ¥ o .

Theorem 5.2. The kernel of a game 1s a union of a finite number of closed convex

polyhedra.
Proof: This follows from the relations (2.15).

Theorem 5.3. Iet (X 515) be an i.r.p.c. for a game I', and let Bj be a fixed

coalition inxfgu It is possible to modify the payoffs to the players in Bj’ while

changing neither the payoffs of the other players nor the coalition structure, in

such a way that Bj will become balanced (see Definition 2.%) with respect to the

modified p.c.

The proof follows from Lemmas .1, 5.2 and it is completely analogous to

the proof given for Theorem 4.1 in [ 2].
Theorem 5.4. ILet 765 be a cpalition structure for s game I', then there exists a

payoff vector A such that (X ;76) ef(.

One can prove this theorem in a.way completely analogous to the proof given
by B. Peleg in [ 71, which concerns’ the bargaining set\/ﬂ((l). We shall present
1
here a somewhat different proof, which like Peleg's proof, is based on his

Lemma 5.3 (B. Peleg (7 1), . Let ClCt), 02(1), couy Gm(:L) be non-negative

continuous real functions defined for 9(€ X (E”, where Bv is a coalition structure

for an n-person game I', and X (Zg) is defined by (2.7) and (2.8). If for each

2 in X (@), and for each coalition: Bj in 13 » there exists a player in Bj , such

that cl(JC) > X; , then there exists a point ¢ E(gl, 62’ ceey &n) in X (B) such

that (¢) > &, forall k, k=1,2, ..., n .
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Proof of Theorem 5.4: Since the kernel is invariant under strategic equivalence,

there is no logs of generality in assuming that v(B) <% for each coalition B .
It follows that [e(B)] < 3% for each coalition B .
Let

Ay ) .
(5.5) (X)) = ?1n Xi(si,j Sj,i) tx,, 1=1,2, ..., n.

JEB) D1, 1
Obviously ci(ll) are continuous non-negative real functions for X X (13). By
(5.4), Ci(JC) > X; 1f and only if player i is not outweighed by any other player,
with respect to (¢ 513). It follows(l)from the transitive property of the relation > >,
that for each i.r.p.c. (2 5763) and for each coalition Bj in'za s there exisgts a
player i in Bj who is not outweighed by any cother player, with respect to (;z,;jf3),
Thus, ci(J() satisfy the conditions of Lemma 5.2, and there exists a p.c. (& ;13)
such that ¢ () > ¢

Xk for all k , k =1, 25 +v., n. Thus no player is outweighed

by another player with respect to (¢ ;13), and therefore (¢ ;73) ej%i. This com-

Pletes the proof.

(1) The proof is indirect. See also Proof of Theorem 4.1 in [2].
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6. Me and my Aunt

Tt seems that the kernmel has at least one merit, namely, in many cases
it is easier to compute than to compute the wider bargaining set¢JOZ(i). Indeed,
in order to compute the bargaining set of s game, one has to solve g system of
inequalities, while, in general, equalities of the type sij = sji occur in
computing the kernel, as long as in the final outcome, xi >0, Xj >0 . Thus,
in cases in which it is hard to compute the bargaining set, one may still hope
to obtain some points in it, by computing the kernel.

In this section, we consider whether the kernel is interesting for its
own sake, as a predictor of realistic situations. One way to decide this is to
examine the definition of the kernel in order to Judge whether it renders an
appropriate "translation" of real life situations. If this fails, one may try
to examine the outcomes to see if, and in what sense, they are intuitively reas-
onable. If this turns out to be the case, one may say that the kernel is Justi-
Tied since it yields reasonable outcomes. Of course, even one counter example,
which yields unintuitive outcomes, will, in this case, lead to reject the kernel.
Such a situation is not uncommon in the sciences (where "intuitive" is to be re-
placed by "observable"). |

Examining the definition of the kernel, one observes that the maximum
surplus is given as a measure of a player's strength. Indeed, each of any two
players in such a coalition is credited with the maximum amount he can hope to
gain or the minimum amount he must lose, in a coalition which does not contain the
other player, and the payoff is distributed in such s way that both players have
equal gains (losses).(l) Of course, regardless of his maximum surplus strength, a

player may not be deprived of what he could obtain by himself.

(1) One might think that s competition element is absent from the definition.
This is not the case, because if two coalitions which render maximum surplusses to
two players overlap, then any amount given by one player to the intersection of the
two coalitions could be matched by the other player, without changing the difference
of the corresponding excesses. .
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This principle of "strength assumes that utilities are interpersonally

compared. Indeed, we assume that an cutcome will be rejected, if one player is

in a position to show another player that if they part his maximum gains (minimum
losses) are less than (greater than) the other's. This approach may be criticized
on the ground that a theory of interpersonal compérison of utilities is not vet
developed, and therefore, it is meaningless to compare such utilities.

However, if fhe values of the .various coalitions represent money, then
the outcome of the kernel may be achie§ed in real life situations, since in many
respects, money does serve as a common utility worth for a group of people.

One might criticizevthe kernel theory on the ground that only pairs of
Players are considered and not, say, triplets. It seems to us that taking ac-
counts of more sets of players should result in obtaining a smaller set of Pre-
dictions. We have not succeeded so far in narrowing satisfactorily the kernel
to exactly one point in each coalition-structure.

The outcomes for the 3-person game seem to us quite reasonable. More-
over they reveal some interesting dynamic procedures which are a pleasant bonus
to the theory. However, if one examines other games one encounters situations
where the predictions of the kernel seem to be unintuitive at least on a FTirst
impression. An example of such a;game will subsequently be given. We have asked
the opinion of several experts concerning this game and we inted to quote briefly
their opinions and analyze the example beyond the general scope of this paper.(l)

Let us say at once — we defend here»an outcome to which very few would
agree. This outcome looks strange even to us, but wevdo not sée any flaw in our
“intuitive interpretation. We hope that at least this discussion will reveal in-

teresting aspects of Game Theory.

(1) Unfortunately, not every author quoted here was told the same story,
and therefore we may be wrong in attributing the quotations to the story told here.
Before submitting this paper for publication, we shall ask the authors to revise,
if necessary, their opinions. : ' :




My aunt (player A) and I (player I) can enter a partnership in which
we shall both win 100 units. "In principle,” we agree to form the partnership,
brovided that we reach an agreement on the split. Each of us have other alter-
natives, which are shown in the figure. One can see that my aunt need convince
one, and any one, of three players P, @ and R, while I need the agreement
of all these players as my only alternative. Intuitively, my aunt is stronger
than "I and it seems that she should get more than 50, if we both form a coa-

lition. If so — how much more?

The bargaining set uﬂ(Kl) yields
1
(x, 100-x, 0, 0, 0; AT, P, Q, R),
for the requested coalition structure,

with 50 < x < 75. The kernel yields

(50, 50, 0, 0, 0; AI, P, Q, R).

We shall try to defend the 50:50 split, assuming<l)that communication ig
perfect!

Indeed, if I is offered less than 50, I can convince P, Q@ and R
to join him with a (50, 50/3, 50/3, 50/3) split. Each of them knows that A
wants more than 50, and, therefore,.would offer one of them less than 50. Since
they are three players, each has an expectation of less than 50/5 from A .
Since ‘I offers more,‘eaéh of them would agree to join him (instead of getting O
if I -Jjoins A). This shows that perhaps i can protect his 50. We shall now show
that A cannot protect more‘than 50. In fact, suppose that she wants 60 (any

amount above 50 would do), then she may try to Convince R +to accept a 60:40 split. .

(1) We also assume that the coalition AT has no inner value, due to
family relations — it Just happens to occur during the negotiations. Also, we
assume that if AT’ forms, it would not pay outsiders. (Othérwise, we -would say
that a bigger coalition was formed.)
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Realizing this, P and Q would try to save eomething for themselves. They
would therefore agree with I on, say, a (50, 3, 5,“k5) split. Thus A seems_
to be strong enough to determine who, if I P QR forms, will get more than the
others, but the result is that she gets O Ev Trying to flip a coin with an equal
probability, in order to decide which player to bribe, would not help her, as we
saw previously. Declaring that she would take the first player who agrees on s
60:40  split would not help, since all of them, at best, would rush to her -—
and so where do we go from here? As a last resort, suppose A approaches R
with a take it or leave it firm, -irrevecable promise to split 60:AO,'threatening
to give the same offer to player Q — if R does not agree, hoping that R
will not believe the (50, 3, 35 4k) split, since Q will have & better offer.
This will not help, since I,.P,FQ and A..will approach R with a similar
firm, irrevocable promise to (50, 3, 3, Lk), |
Against this interpretation, we .would like to gquote ‘briefly other experts.

H.W.Kuhn. If every one wants to maximize his own profits, A will bevable to
force I +to give her 75." ]
B. Peleg. "I think that A is much stronger than I , and I am glad that the
bargaining set reflects this." . . '
R;J° Aumann\° "I believevthat fne 50:5Q split is justified. There are reasons
which indicate that A ig stronger, but there exists also an argument which shows
that I is stronger: if tne'players P, Q, R Join.vﬂ(; then this coalition is
more stable, because none of them will feel’deprived, and everyone knows this.
However, if one joins A, he himselfkis not sure that this coalition will last,
because he will be afraid that the others will feel deprived."” |

- In a second letter R.J. Aumann writes: On a second thought, perhaps A
is stronger, since each of the remaining.players will only receive 25, 1f I P Q R

forms. Therefore, it will be difficult for ‘I to demand more from A."
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Jd. C. Harsanyi. "I think that A . should be able +o obtain 75. If A and T

exclude all other players fromﬁsharing in the payoffs, then we may speak of g

discriminatory agreement. If the players reach an agreement giving symmetric

roles to all players and to all subsets of the players, then we may speak of a

non-discriminatory agreement. I wish to argue that in the case of a non-discrim=-

inatory agreement esch Player will obtain his Shapley value for the game. In
contrast, under s discriminatory agreement the members of s dlscrlmlnatlng
coalition are usually able to obtain more than their Shapley valte. I want

to argue that in this case each member of the discriminating coalition will

receive an egual bremium above his Shapley value. In this example, the Shapley
value of the 5—§erson game is 60 to A and 10 to each other player. If A
and I reach a discriminatory aéreement 80 as to divide the whole 100 between
them, then they "should" split equally the surplus of 30. Thus I will get
10 + 15 =25 while A will get 60 + 15 ='75a (If we regard the Shapley values
as the main alternative to s diecriminatory agreement, then this equal-premium
rule fellows from Nash's bargaining solution. )"

The case fOr a 25:75 split between I and A, if they discfiminate
against the other blayers, is further reinforced by considering what would happen

if I, P, Q and R reached a discriminatory agreement against A . The four of

I, P, Q and Rj each of them would presumably get 25. Thus T should get the
same payoff of 25 whether he joined A alone or Joined ‘P, Q ana R. "

Answerlng our questlon — why should the players regard the Shapley
value as the main alternative, and not, for example, other dlscrlmlna Uory solu~- .
tions, J.C. Harsanyi answers that this would make no'difference if the new alter-
native would include A and "I in g winning coalition. Ir, however, one player
would argue in favor of a discriminatory solution in which he is in a.winﬁing coa-

lition and the other is in g losing coalition, then the other player‘would argue
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in favor of a discriminatory solution in which the roles are interchanged.

L. 8. Shapley. "The issue, as I see it, turns on the relationship between two

kinds of utility that appear in the problem. The first is the utility that makes
the units of payoff desirable. The second is implicit in the statement: ", . .but
since we are relatives, we both want the partnershipe‘(l)

Thus, at one extreme, if the blood ties are so strohg that no other
partnership is thinkable, then offers by A and I to the other players will
not be credible. The symmetry’between A and I will then dlsappear and the
50-50 split is the only fair solution (if a solution must be unique).

At the other extreme, if the disutility of failing to form the coalition
AL were negligible compared to 100 units of payoff at stake, it would appear
that players I;P,Q and R are on an equal footing. One merely wishes to know
what A's "proper" share 1s, if 1t happens that she manages to form s partner-
ship. (Note: A good deal depends here on the extensive form of the game, i.e.,
on whether the game is actually presented to the players as a pure coalitiOﬁw
forming exercise (as“you seem to have assumed.), or whether there is a structure
of moves and strategies which Just happens to_yield the indicated characteristic
function. The passage from v extensive (or normal) form to characteristic
function form is not without pitfalls; its validity depends to some extent on
the nature of the.solutionmooncept that is appliedvto the characteristic fuﬁction,)

But let me assume, that the,"standard of behavior" in this situation
dictates that the players shall negotlate untll a single w1nn1ng set of players
declares 1tself hav1ng settled how the proceeds are to be Spllt among its members.
Also, we must ev1dently assdde!tﬁat the standard of behav1or prevents the ult1~

mately w1nn1ng coalltlon frOm maklng any payments to outs1de partles

(1) L.s. Shapley dld not see the remark on p. 20 . Moreover, the above state-
ment is replaced in this paper by the statement: "Tn pr1n01ple, we agree to form
the partnership, provided...". Nevertheless, we quote L. S. Shapley's remark since
it may be relevant even w1th this formulation. :
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Under these two assumptions about the "standard of behavior," the

Von Neumann-Morgenstern concept of main simple solution applies quite naturally.

Since the game in question is the homogeneous weightéd majority game [3, l,l,l,l]h
players I and A will split 25:75 if their partnership forms.

In summary, if the coalition Al is very valuable in itself, apart from
the payoff it obtains, then the 50:50  split seems right. If it is valueless
in?itself (but, perhaps, "very likely" +o form, in some sense), then the 25:75
split seems right. One can imagine intermediate cages between these extremes.
But if the ﬁargaining brocess can include side payments, enforced penalties, con-
ditional agreements, etc., then it's hard to 88y -- we need more specifications
of the model. One possibility is certainly the (Shapley - Harsanyi) value,
giving a 10:60 split with side payments of 10 each to players P, Q, R."
RB.D.Luce. "I find that I am slightly perplexed by your formulation of the problem.
It is clearly Phrased in an asymmetric fashion, in which I appears to have g
special relationship to A different from that of P, @ and R, whereas in
terms of payoffs to coalitions, they are completely equivalent. The asymmetry
seems to be introduced via the suggestion that I and A have sz bias to form
a coalition (although this seems to be denied by your footnote). Thus, for ex-
ample, your argument for the 50-50 split depends on the assumption that I and
A want to form a coalition, but also rests upon the power each exerts by threat-
ening to form other coalitions. It seemsfto me that this argument does not take
sufficiently seriously A's threat not to form 'a coalition with T at all, in
which case he may getvzerog My feeling is that the problem is not really the
bargaining between I ang A , which is only a limited part of the total situ-
ation,but rather, whether or not that coalition is at all stable. I would guess
that a "reasonable" analysis would lead to the conclusion that I, P, @ and R

would form a coalition against A and split the proceeds equally. It is not that

this is really stable — for A can offer any of them more — but that any coalition




involving A is equally unstable ang quite asymmetric. Each of the “"weakepr"
players will see this and ultimately agree to the symmetric solution.

I do not know how to formalize this sort of brocess, but I suggest it
sometimes occurs in real life. If one does not introduce an "I give up; lets
divide it equally" type of mechanism, I don't see how such s problem can poss-
ibly be solved. The bare structure is inherently unstable.

I doubt that this helps much, but I have always felt that these prob-
lems, when cast in such abstract form, eliminate some of the "glue" that makes
real situations work."

R.M. Thrall. "Your game presents an interesting challenge. My intuitive feeling
is that -your aunt is entitled to somewhat more than half of the proceeds in any
two-person collection. On the other hand, the five way split with 50 per cent
for auntie and the balance divided equally among the remaining gamesters seems
not unreasongble, "

M. Shubik refused to commit himself, declaring that he does not want to fall
into the trap. M. Shubik demanded more information about the rules of the game,
holding to the position that one cannot predict anything on a game given solely
in terms of the characteristic function form.

The issues, as we see them,boil down to the following items:

(i) Is it meaningful to ask how a coalition will split if it forms?

If it is meaningless since this coalition may not form, then how can we decide
whether a coalition may féfm,(iaeq, is stable) without knowing if, and how much,
the players may expect out of it "if it does form”? It is hard for us to accept
R.D. Luce's view that any 2-persoan coalition involving A will not form gince it
is unstable. Such an argument, we feel, may at most force A to offer his poten-
tial partner a large payoff.

(ii) Is it legitimate, in a case of perfect information, to single out

one coalition (in a more involved game, one coalition structure), and decide on the
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splits by comparing the power exerted by each player threatening to depart from
the coalition? We believe that this is the case in real life situations. The
players may negotiate mntil eventually a coalition "starts™ to form, its members
refuse to listen to other offers, and yet they dec1de on the split according to
their relative threat=pos31b1l1tles

(ii1) Tf AT happened to start formlng - will thls fact place player
‘I 1in a better bargaining p031tlon, compared to P Q and R ? On thls point
we do not wish to commit ourselves. This phenomenon 1s certalnly observed in real
life situations, but it may be due to communlcatlon dlfflcultles and to solid-
arity feeling; these we purposely try to avoid in this model.

If AT decide on the‘split basing their‘arguments on their relative
power prior to the formation of AT, then the 75:25 seems to follow (if one accepts
the Von Neumann- Morgenstern intuitive feeling that player I should get the same
amount in this simple game, if he succeeds in part1c1pat1ng in a w1nn1ng coalition,
or if one accepts Harsanyi's argument to view the Shapley value ag the main alter-
native).

If, however, the decision on the split is based on the relative powers of
the players after I has been put in the asymmetric role, then the argument, for
the 50:50 split seems to hold. . )

The bargalnlng set seems to refléect the range of these extremes, ‘Whereas
the kernel ylelds one of them.

If the asymmetry, caused by the fact that AT are'currently considering
a split, is accepted, we can present a set of "rules" as requested by M. Shubik.(l)

In order to decide on the split oetWeen A and I, these players are

allowed to threaten as follows: Each of them sends messages to P, Q@ and R in

(1) We apply M. Shubik's ideas on how these rules should be given,
though we modify them slightly. ' ' »




which he states any offer he wishes, and also states what his alternatives are,

if the other player makes a certain offer. The messages can name special players,
or only specify a "choosing by lot" procedure. They can also contain alternstives
for the cases in which the players refuse an offer.

These messages are given simultaneously to the players P, Q, and R,
who are allowed to negotiate until they reach a conclusion, and can also make
binding agreements. The offers, however, must be such that each of the two
rlayers will demand for himself that amount he wishes to protect. With these
rules of the game, we feel that our arguments show that I will be able to
protect 50. Note: This will not be the cage if communication is not perfect.

At one extreme, if A can approach P, @ and R before I can get hold of
them, then it seems that 75:25 split would result. On the other extreme, if T
can approach P, Q and R before player A can get hold of any one of them,
then reasons similar to ours show that Player T can secure 50 for himself.

For other coalition structures, the kernel yields other outcomes, the

most important of which are:

(25, 25, o5, 25, 03 IPQR, 4)

(22400 100 100 100 100
[ A A A

ATIPQR)

These outcomes are unique for the corresponding coalition—structures, and are not

unreasonable.
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7. Games in which only the n-1 and the n-person coalitions are/flat.

In this section we shall consider n-person games whose characteristic
function may take positive values only for the n-1 and the n-person coagli-
tions, the value of the other coalitions being O . Thesge games include the
general 3-person games.

Clearly, only coalition structures of the form (N-{i}, i) and (W)
may possess more than one bayoff, and therefore only these will be studied.
Moreover, it is clear from the definition of the kernel that the value of the
coalition N is immaterial when one studies which p.c.'s having a coalition
structure of the form (N-{i},1), are in the kernel.

The bargaining set for such games  yggq studied in [5], by a

method of deleting players. We shall make use of this'method also in studying

the kernel.

Definition Let I = (v;N) be an n-person cooperative game, n >3, and
*)

let g(;jg) be a p.c. in this game. A game F( = (v¥;N- {1}) is said to

be generated from I and. (33;23) by deleting player 1 , if its set of players

is N- {i} and its characteristic function v* satisfies for B(C N- (i} :

v(B) if B e Zg,
(7.1) v¥(B) =4 v(B) - X, if Bu {i} e B
Max (v(B), v(B U {i) ) - Xi) if B, By (i} ¢ 75

The expression (L * ;fb*) with respect to I'* will be said to correspond to
(x ,ﬂ) under this deletion, if, for B 1[: d) > 1 45 B, B Gf)* » Whenever B 66,

or BU{i} ¢ 73, and if Z.* = (x Note that, in

l,.--, .Xi_l, Xj_+l’ cs ey Xn)-
d (2.2
general, I'* will neither satisfy the normalizationg (2,1?? nér‘wgll the value

of a coalition be greater than or equal to the sum of the values of its members.

We shall call such game - a pseudo game.

Similarly, (:[*5{3*) is not a p.c. It satisfies the analogue of (2.6),
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it also satisfies (2.5) literally, but this latter condition is not individual

rationality. Fur such pseudo payoff configurations » we shall still use 1it-

erally, Definition 2.3, where 0 1in (2.13) would mean zero angd not v¥({L).
For games that will be treated in this section, these remarks will be pertinent

only if n = 3,

Lemma 7.1. If I* ig obtained from I and (:t;i%) by deleting player i ,

if k>>72 [k~0] with respect to (1,;73) o and ', k, 441, then

k>> {»[k N{J also with respect to the corresponding pseudo p.c. CL*;f3*O

and I'*,

EEQQE' The deletion of player i neither changes the maximum surplus of k over
{, nor does it effect the occurrence or non-occurrence of these players in the
same coalition.

If there exists a unique payoff vector 2 , such that (41;23) e.}(jin
', and if we know the va lue Xi » then we can define the game I'* obtained by
deleting player i with respect to T and (1L;73), and the probleﬁ of com-
puting the other elements of 2( reduces to the problem of computing the "pseudo™
kernel of I'* . We can use this method inductively on the games defined in the
beginning of this section, since a deletion of g player in such games, for n > b
will reduce such n-person games to ﬁfgigson games of the same type. For coa-
lition structures of the type (W - {i} » 1 ), the reduction is immediate, since
we know that player i must obtain O . The case n = 5 can be easily checked

(see the outcome in (4.2) and (4.3)). We shall therefore be concerned only

with a payoff to one player, when the coalition structure is W .

Theorem T.1. Let ' be a game in which only the n~1 and the n-person cosli-

tions may be non -flat. Then there exists a unique payoff vector 4 s such that

(1;76) belongs to the kernel of the game .
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/\ .
Proof. Let (N ) and (x;N) be two distinct i.r.p.c.'s in 7{'; then

. A A
there exists players k and 1 , such that X, < X and xp > Xp s

A A A

_ A A
X = (xl, Xpy +vey xn) , X (xl, Xy < x-n). Clearly, x_>x >0 .

Consequently, by (2.15), s > sp with respect to (X ; N). Therefore,
kL = Pk
8. 4, > 8 Pk with respect to (Q;N), since the maximel surplusses are always
2 2
achieved via either the 1 or the (n-1)-persoun coalitions.
A

On the other hand, xp >=xp >0 . Therefore, by (2.15), 1 <<k
with respect to (Q;N)y‘which contradicts our assumptions,

The existence has been proved in Theorem 5.4

- Without loss of generality we can assume that

(1) o (2)

(7.2) v > v > ... >y 5 v. =v( - {(i}), 1 =1, 2,

Lemma 7.2. Iet [ be a game in which all coalitions other than the n-1 and

the n-person coalitions are flat. Let (Xl’ Xy eees X 3 N) e 7’(, and (7.2)

hold. Then x. <x. < .., <X .
l1-"2- —n

Proof.(l) Let Xk, £ be two players, k < 1 , Then

(7.3) sk;{ = Max (—xk, V({J=V(N) + xﬁ)

(7'4) 8k = Max (-—x,g, v(k)—.v(l\T) +-xk)

We distinguish four cases (which may overlap):

A Pt T T % Le~ "X
It follows from (2.15) and (2.5) that X, =%

B. ‘Sk,/ﬂ = - %, S/E/,k = v(k)— v(I7) + %

By (7.3) and (7.4), this case can occur only if

(7-5) V(N) - v(k) S Xk + X/KS V(N) - V(/P/).

(1) A somewhat shorter proof could be given. We have chosen this one
since the arguments are needed later on.
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By (2.15), four subcases occur:

(Bl) X, = [v(n) - V(k>]/2 , which, by (7.5), implies x{/Z X,
(B,) x, =0 and VIO ) g , which implies xy >x_ since xp >0 .
(BB) xp =0 and x < [v(N) - v(k)]/Q, which, by (7.5) implies Xp > X
whence Xk <0 , a contradiction.
(BM) X, =X =0 .
)
C. = - - = -
sk,{, v v(N) + xp s{qk Xp

By (7.3) and (7.4), this case can occur only if

(x)

(7.6) x +xp < v(N) - v <v(N) - v Sx fXp -

Therefore, in this case

(7.7) v = v and X, +xp = v(N) - v(k)

By interchanging the names of k and {,, we find ourselves in Case B. Ixam-

ining the subcases, we find that X, = Xp oo

D. Sk,{,: v‘a) - v(N) + xp s{?k = v - v(N) + X, -

(k) _ ) e ,
(Dl) X, + v =xp +V » which implies x_ < xp
_ ‘@) _ . (k) o
(D2) X, = 0 and Xp + v < X otV s Which implies X{,E.Xk P
since X{,E o .

(D) Xp =0 and x_ + V(k) < xp + v(%) which contradicts v( ) > v(k)

3 % 13 L 2
(D)—L) Xk = X/& =0 .

This completes the proof.
In analyzing the kernel of the games of this section, it will be relevant

to consider the (n—l)-quotasgl) i.e., the n-triple (w

15 Oy ey wn)y satisfying

(1) The term is suggested by G.K. Kalish [3]. We use it here in the
sense of B. Peleg's [6].



(7.8) DINONES V(i) 5 V(i) =v(@-{i}), 1 =1, 2, ..., n.
yH

One easily verifies that

and therefore, in view of (7.2), there are no weak players in the (n-1)-quota

of the game, namely players having negative quotas, if and only if the

"generalized" triangle inequalities (see [ 51]).

(7.10) (n-1) v/ < + v R
hold. Clearly, in view of (7.2),

. < 0o
(7.11) @ <o, < <w

The payoff vectorsl , such that (X ; N) € t”, are obtained in a
similar fashion to the corresponding payoffs studied in Section 4. We shall,
therefore, refrain from repeating much of the verbal discussions which de-

scribe the various procedures.

Procedure A. If
(7.12) v@) > v/ (a2,

Then all the (n—l)-person coalitions are discredited and the p.c.
(v(N)/n, v(W)/n, ..., v@@)/n; N) e 7%50

Proof. The maximum surplus of k against 1 may be obtained either via {k}
or via N-{£}.

e(N-{L} = v({J

- (1) v/a < v L (mel) v@)/n < [ (0-2)v ()= (n1)
v(N)l/n = - v(N)/n = e(k). Therefore the maximum surplus of any player k against

any other player 4 is equal to - v(N)/n.
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Procedure B. Ir

s (1) (1) (1) (1)
(7.13) Max (2 iél v - v s (me2)v* ) < (n=2)v(N) < v/,
then players 2, 3, ..., n, acting as a single player, first play against

player 1 in the game (u ; 1, {23...n}), where u(l) =0 , u({23...n}) = v(l>

(

u(1l{23...n}) = v(N). Player 1 receives [v(N)-v l)]/E, and the rest of the

players then participate in the game obtained by deleting Player 1 and his
payoff from the original game. (See Lemma 7.1.)

Proof. Ilet (Xlﬂ Xy wees X3 N) ¢ 75/} then, by Lemma 7.2, X, <x . We

n
examine the alternatives used in the proof of Lemms 7.2, for k = 1, 4 =n.

A. This case implies X =X, and therefore X) =Xy = ... =X 0= V(N)/n.

Hence, by (7.4), v(N)/n < [v(N) - v(l)]/E which contradicts (7.13).
C. By (7.7), v(l) = v(g) = v.. = V(n)j which contradicts (7.13).
D. Clearly, by (7.13) and (2.1), v(N)> 0 ; hence, by Lemma 7.2, x >0.

This leaves us with subclasses Dl and D It follows from (7.3%) that we

X

can assume

2

(7.14) x +x >v() - + (@)

since, 1f equality occurs in (7.14), we may consider the case to be B.

If x, =0, then (7.14) implies e(N- {n}) > 0 , and therefore

Siﬁkz O for each 1, i £ n. Consequently, by (2.15), s . >0 for each i, i+ n.

: . 1) (1)
In particular, 5, >0, e, v( "Xy Eymoeee =X =V - v(N) >0,
contrary to (7.13).
I x > 0 , then x> O for each i, i =1, 2, ..., n. Relation (7.14)

implies e(N - {n})>- x > - x, , hence Sin x4 £ n. By (2.15) also

1

S .28, >=-XxX >=-X ,and s, =58, , 1 % n. Thus, the maXimum
ni = "in i= n

o ol
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surplusses are equal and are obtained via the (n-1)-person coalitions; hence,

v(l) - v(N) + X, = v(l) - v(N) +x, ,each i, i #1 . Thus,

(7.15) nx, = v(N) + v(l) + V(E) + e+ v(n) - nv(i) i=1,2,...,n,
and therefore, by (7.14),

(7.16) 2v(N) + 2 ; V(i) - nv(l) - nv(n) > nv(N) - nv(n)
i=1

contrary to (7.13).
B. Exactly as in the analysis of case D, we find that X, % 0. Clearly, sub-
case (Bg) cannot occur for k =1, since V(N) > V(l). Therefore (Bl) is the

only subcase which can happen; i.e., X, = [v(N) - v<l)]/2 .

Remark T7.1l. It follows from (7.10), that condition (7.13) can be stated as:

(7.127) 2 5 v(i) - nv(l) < (n-2) v(I) < nv(l), if no player is weak,

(7.18) (n-2) v(l) < (n-2) v(I) < nv(l) s 1f there exists a weak player,

Procedure C. If

(7.19) nv(l) - ; v(i) < v(W)<[2 ; v(i)— nv(l)]/(n—E),

i=1 o i=1
then the players decide to regard the quota as the basis of negotiations in the

pseudo pure bargaining game (u; N; W5 By veey mn). Thus, the final outcome 1is

(7.20) x, =W +c, i=1,2, ..., n,
where W, is defined by (7.9), and

o (1)
(7.21) c=v(@)/n -2 v'"//a(n-1).

i=1

Proof. It follows from (7.9), (7.20) and (7.21) that
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n

(7.22) x, = [v(N) + 15 v(i)]/n-vfi) i=1,2, ..., n.

Clearly, =X, + X_ +...+ X = v(N) and by (7.19), x, 20, 1=1,2, ..., n.

1 2
Let k and 4 be two distinet players, then
(7.23) e) -+ L e+ g v,
(7.24) e - (3) = v(P . x| <y = X % - B s xp =
s (1)
[iél v ~(n-1) v(N)]/n.

By (7.19) and (7.2), e(k) <e(M - {£}), and therefore S, p = e(M-{£}) .
b
This expression, as shown in (7.24), is independent of k and 4 , hence
(Xl, X5 eees Xng,N) € 7Rj.
Remark 7.2. Relation (7.19) implies relation (7.10); therefore, this procedure
can occur only if no player is weak in the (n-1) -quota.

Procedure D. If

(7.25) v(N) < Min (v(l) , nv(l) - ii <i)),

lV
then player 1 obtains the O payoff, and the rest of the players then partici-
pate in a game obtained by deleting player 1 and his payoff from the original

game. (See Lemma T7.1.)

Proof. Let (Xl, Xyp eee, xn;N) € 7%5 , and suppose that X, >0 , then
v(N) >0 . By Lemma 7.2, x, >0, 1=1,2, ..., n. We shall examine all the

cases treated in the proof of Lemma 7.2, for k=1, {zn, and arrive at a con-
tradiction each time.

. i = h = = .. 0= = .
A In this case X =X and therefore X, = %, X v(N)/n >0
- v@)/n and e(W - (13) = [ov ) o (ne1)v(N)]/n.

Therefore, e(n)

By (7-%), - v(W) > nv(l) - (n-1) v(W), which contradicts (7.25).
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B. Only subcase (Bl) need be considered. In this case x, = [V(N)-v(l)]/Q,
and, by (7525), this amount can be non-negative only if Xl = 0, A contradiction.
C. It follows from (7.6) and (7.25) that this case can occur only if

X =X, = 0, a contradiction.

D. Only subcase (Dl) need be cénsidered. We prove that relation (7.15)

holds, in the same fashion as it was proved in the case of Procedure B. By

(7.25), it then follows that x can be non-negative only if x. =0 . A

1 1

contradiction.

Remark 7.3. It follows from (7.10), that condition (7.25) can be stated as
n .
(7.26) v(N) < nv(l) > v(l) s, if no player is weak,

(1.27) v(IT) < v(12 if there exists a weak player,
therefore, all the possibilities were examined.

The following "motivations" can easily be verified.

(1) In the domain of Procedure A, the players 2, 3, ..., 1, would

(1)

have received together a smaller amount, had they acted along the rules of
Procedure B.

(i1) In the domain of Procedure B, the players 2, 3, ..., n, would
have received together a smaller amount, had the rules of Procedure A been
adopted. Moreover, player 1 would have received in this domaina smaller
amount, had he interfered as the rules of Procedure C or D require.

(1ii) TIn the domain of Procedure C, player 1 would have lost,
had he acted "passively" as described either by Procedure B or by Procedure D.

(iv) In the domah of Procedure D, the rules of Procedures B and C

would have yielded player 1 a negative amount.

(1) We ignore now and further on the border cases, in which neither
a Jloss nor a gain occurs.
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8. The UL-person constant-sum game.

Wé have seen in Example 4.1, that in a U4-person game it may well
happen .that a payoff X such that .(2' ;73) € _7( is not unique. We shall show
that it is unique in the case of a constant-sum game.

Let ' Dbe a UL-person general-sum game. By Lemma 7.1 and Theorem k4.1,
there, if 6 contains & l-person coalition, 7]1’_186115 unique payoff X such that
(I,ﬁ) € 73‘/ s since the player in this coalition must get a 0 payoff.(l)

We shall therefore be interested only in coalition structures of the form

(8.1) 6
B

Let ﬁ satisfy (8.1), and let (X ,B) and (y ;73) belong toj{ 5

% and L being distinct payoff vectors. Let gi =Vt X, , We can name the

(i3, ¥0), 1,3,k,4 mutually distinct, or

(L 23 4).

players in such a way that

(8.2) E) SEy S5y,
By (2.6),
(8.3) € +Ey +E5+E) =0 .

We can assume that players 1 and 4 belong to the same coalition
in ﬁ . This is trivially true if 76 =(123L4). If i is player 1, then,
since E’i + Ej =0, and Ek + E’/F/ = O,' §j cannot be smaller than any other
E) so that without violating (8.2), we can name him player k.

We d te D | X) and s the maximum surplus of over

e deno v Sa),u( ) V;H(y)l TP v b

with respect to (X ;6) and (’g ;78), respectively. (See (2.12)). Similarly,

(1) The proof of Theorem 4.1 (and Lemma 4.1) applies also to pseudo games.
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we denote by e, (D) and e, (D) the excesses of D with respect to these

d

payoff configurations, respectively. (See (2.9)).

It follows from (8.2), (8.3) and ¢ + 77 , that
(8.4) ga <0<E§ ,
and therefore, by (2.5),
(8.5) x, >0 and ¥y, >0 .
Thus, by (2.15),
(8.6) 31,4(1) > s%l(z) and Sl,h(y) < shgl(y)a

In view of (8.3) and (8.4), e_(D) <e, (D) for De Tl i (see (2.11)),
P

JC( #*
.since El + 52 < EB + gu and El +‘§5 < EE + ‘ELL . Moreover, ex(D) = eg (D),

DeT ) , if and only if D = {1,3}, and
2

(8.7) E‘l + E5 = 0 and therefore §,2 + ElL =0
Consequently,
(8.8) sp,u) 28y, @

and equality occurs if and only if (8.7) is satisfied and the coalition (1,3}
has a maximum excess among all the coalitions in Tl I both with respect to

2
(1,'15) and. to (g ;78)0

In a similar fashion, (the excesses decrease this time), we prove that

(8.9) 1) S s, 00

and equality occurs if and only if (8.7) is satisfied and the coalition {2,4} has

a maximum excess among all the coalitions in Tu 12 both with respect to
7

(1;5) and to (H ;‘6) . By (8.6), (8.8) and (8.9) we find that



(8.10) Slyh(g) = Sl,hcn) = shjl(xd = Sh,log)

Therefore, (8.7) is satisfied and, in addition,

(8.11) s, =8 ), (y) = e (13) = e?f (13),
= e ) =

(8.12) s%l(x) Sh,l(/g) ex(2+) e (2h)
Consequently,
(8.13) ?[ (13) = ex (2h).

It also follows from (8.2) and (8.7) that £), = E5 =- &, = El s
and, therefore, ﬁf must be of the form:
(8.1k4) Y, =% =08, ¥, = X, - 8, 3 =X + 5 v, =%, +8; & >o0.

This must hold in the k4-person general-sum game. Suppose now that T
is a constant-sum game, then %<(15) +-?((24) = v(13) + v(2Lk) - X =HpmXzoX) =
v(L234) - v(123Lk) =0. By (8.3) it follows that e%(z) = 0. But

624(1) = Sh,l(x)<2'e(254)=v(l 23 4) wx -x -X) =X contrary to (8.5).

2 73 1’

We have thus proved:

Theorem 8.1, Iet ' be a lL-person constant-sum game, and let £3 be an

a:bitrary coalition-structure in T ; then, there exists a unique payoff vector

%, such that (X;73) ¢ A .

In order to analyze the structure of the kernel for the h-person constant-
sum game, some observations should be made.

Only coalition structures of the form (801) should be discussed, since,
balancing other coalition structures reduces, by Theorem 4.1, to the case of a
3-person (psuedo-) game.

Let I' be a U4-person constant-sum game.
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We shall assume that v(N) >0 , since otherwise the computation of
the kernel is trivial. Without loss of generality, we can assume that
(8.15) v(34) > v(2h) > v(1h), v(23) > v(13) > v(12).

Clearly, v(ij) .+ v(kl) = v(ijk) = v(N), for every mutually distinct
i,j,k,{/o Thus, if Za contains two 2-person coalitions or one L-person

coalition, then for any i.r.p.c. (QL;ZS),

(8.16) e(ij) +e(xl) =0

(8.17) e(ijk) = xp > 0, e(i) =-x, <0,

(8.18) e(ijk) - e(ij) = v(123k4) - v(ij)—(xi+xj+xk=xi=xj) = v(kl) -x .
(8.19) e(1234) = 0, , e

Here, and in the rest of the section, i,j,k,{f will denote mutually disjoint
players. It follows from (8.17) that only 2 and 3-person coalitions need be

considered when computing the maximal surplusses.

A. The coalition structure ig

= (123 4),
Al If
(8.20) v(3k)/3 > v(13) + v(23) - v(12),
then
(8.21) (7 513) = ([3v(1k) - 2v(eh) - 2v(3h) + 2v(125k)]/5,

[Bv(2k) - 2v(1lk) - ov(3k) + 2v(1234)]/5,
[3v(34) - 2v(1h) - 2v(2k) + 2v(1234)1/5,
[v(1h) + v(24) + v(34) - v(1234)]/5;51234) ¢ K .

Proof. Clearly, X, + X, + X5 +X) = v(). It follows from (8.15) that
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X, 2 X

B
3[- v(23) + (v(ek) - v(3h)) + v(34)/3] = 3[- v(23) + (v(12) - v(13)) + v(34)/3] = O.

> 2% - Also, by (8.20), 5(xu-x5) = 3v(14) + 3v(24) - 2v(3k) - 3Fv(123Lk) =

Finally, by (8.20), 5%, = (Bv(1k) - 3v(3L)) + v(34) + 2v(13) = 3v(12) - 3v(23)
+v(34) +2v(13) > 5v(13) >0 . Thus, (L;¥) is an i.r.p.c. Let us now
check the excesses of the various relevant coalitions. By (8,20),

e(1k) = e(24) = e(Bh) = e(123) = x) >0 ; hence, by (8.16), e(23) = e(13) =

e(12) <0 . Also, by (8.17), e(123) > e(12h) > e(134) > e(234). Consequently,

51,2 = 81,5 = 34,2 = 34,5 = e(]_lk),.sgyl = 82,5 = Shyl = e(2L),

850 = 85 1 = e(34), Sy) = 8p ) =85 = e(123), and (x;0B) € »Zf'.

AE' It

(8.22) v(23) < v(3h)/3 <v(e3) + v(13) - v(12)

then

(8.25)  (3B) = (& v(12)ar(1h)-v(20)] + v(3:)/6, L [v(12)av(2h)-v(11)]
+v(38)/6, v(38)/3, v(34)/3; 1234) €K

Proof. Clearly, x; +x, + Xz k%) = v(1 23 L), and by (8.15), (8.22),

X, = XB'E X, E’Xl > 0 ; hence, (JL;{B) is an i.r.p.c. Moreover,
e(34) = e(123) = e(12h) > e(134) > e (123) >0, and, by (8.15),
e(1h) = e(2h) = 2 [v(2h) +v(1k) - v(12) - v(31)] = 2 [v(2k) - v(13)] > 0 ;

hence, e(12), e(23), e(13) <0 , by (8.16).

Finally, by (8.18) and (8.22), .e(12k) - e(2Lk) = v(13) - X, =

[6v(13) + 3v(ek) - v(34) - 3v(12) - 3v(14)1/6 = [3v(23) + 3v(13) - 3v(12) -
v(34)1/6 >0 , and’ e(1h) - e(13L) = x5 = v(23) = v(34)/3 - v(23) > 0 ;

hence, checking all the relevant excesses, we find that (J(_;Za) € 7fv .
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In a similar fashion we prove:

A It
)

(8.24) v(13) <v(34)/3 < v(23),

then

(8.25)  ([v(12) +v(13)1/2, [ev(2k) + v(12) - v(13)1/6,
v(3k)/3, v(34)/3 5 123 4) < 7{

(1) _
Proof'? 51’5 =8

SB,l =-SB’2 = Sh,l = SA,E = e(34), 5291 = e(gu),,sl,g
e(3h) = e(12h) = e(123), e(2h) = e(13h).

2,5 = S 3 = e(12k) S1,4 = 8 ) = S35y = e(123),

e(13k),

Aﬂ' Ir

(8.26) v(12) <v(34)/3 < v(13),

then

(8.27) C(v(34)/6 + v(12)/2, v(34)/6 + v(lz)/2; v(34)/3, v(34)/35 1235 4) e .

Proof: 51,5 =~32?5 = 54,5 = e(124), sl,h ::SQ’A = 85,4 = e(123)

®5,1 = 53,0 = 8y,1 T 8y p = e, sy 5 = e(1Bh), s, ) = e(23h)

€5 = €1py = e1p3 s e(23h) = e(13L) .

A If
(8.28) v(3k)/3 < v(12),
then
(8.29) (v(1234) /4, v(1234)/k, v(123h)/h, v(1234)/h; 1234) ¢ A .
Proof: s, 5= e(ikl) = v(1234)/4  for each mutually distinct 1i,3j,k and 4.

J

Clearly, these cases exhaust all the possibilities.

(1) From now on, cnly outlines of the proofs will be given.
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B. The coalition structure (14, 23).

B,. If

(8.30) ov(12) > Max (v(1k), v(23))

then

(8.31) (v(1k)/2, v(23)/2, v(23)/2, v(1k)/2; 1b, 23) 3*?.
Proof': 8 = e(123) = V(lh)/Q,‘su 1= e(234) = v(14)/2, 8y 5 = e(124) =
v(23)/2, 85 , =e(13h) = v(23)/2.

B,. If

(8.32) ev(12) < v(23) - 2v(1lh),

then

(8.33) (0, v(23)/2, v(23)/2, v(1k); 1k, 23) € j{f-

Proof: s = Max (e(24), e(3%)), s = e(123) = e(34); Hence, 1 =~ L, since
— L1 77,0

x, = 0. Also, 52’5 = e(124) = v(23)/2 and .35,2 = e(134) = v(23)/2, hence 2 ~ 3.
BB° If

(8.3k4) Max(2v(1lh) = v(23), v(23)-2v(1k)) < 2v(12) < v(23),

Then

(8.35)  ([ev(1k) +2v(12) - v(23)1/4, v(23)/2, v(23)/2, [2v(3k)-v(23)]/L;

14,2%) e\]tj :

Proof: s, | = e(34) = [2v(34) - v(23)]1/4, 8y = e(123) = [2v(34) -v(23)]/4;

hence 1=~ L. Similarly, .s

0,5 = S(124) = v(23)/2, s , = e(13) = v(23)/2;

hence 2 = 3,

Bun It

(8.36) v(23) > v(12) + v(13) and v(34) < 3(v(14) - v(13)),
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then
(8.37) ([3v(1h) 4v(12) - v(EM)]/ll.’ [v(2h) + v(23) - V(BLF)]/E,
(v(34) + v(23) - V(QM)]/E, [v(34) + v(2k) - V(EB)]/LL; 14, 23) e yi .

Proof: e(2h) = e(34) = e(123), 8y 4 = e(123), ‘Sh,l = e(34); hence 1= L.
52’5 = e(2h), 3552 =e(34) = e(24); Hence 2= 3.

%
B5. If f
(8.38) Max (2v(12), 2v(3h4)/3) < v(1k) < 2v(13),
then
(8.39) (v(1k)/2, [ev(23) + 2v(12) - v(1k)1/k, [2v(3h) - v(1k)1/4,

v(1h)/2; 14, 23) e K .

e(123); hence 1 = L.

Proof: 5, ) = e(123), 8y 1 T e(23h), e(234) =

— s ’ :

Also, 52,5 = e(lEM), 55’2 = e(34) , e(124) = e(34) ; hence 2= j.

B6n It

(8.40) v(12) + v(34)/3 <Min(v(e3), v(14)), v(1k) <v(13) + v(34)/3,
then .

(8.41) (v(1h) - v(34)/3, v(23) - v(34)/3, v(34)/3, v(34)/3; 1k,23) V-
Proof: 81,4 = e(123), ’Sh,l = e(3kh), 52’5 = e(;EM), 55’2 _ 6(54),

e(123) = e(124) = e(34) ; hence 1=L, 2= 3.

.137. If

(8.42) vy 2 ov(13) , v(12) +v(13) + v(1k) > v(123k),
then

(8.43) (v(14)/2, [v(23) + v(2h) - v(34)1/2, [v(ek) + v(34) -v(2k)]/2,

sz, 23) e K -
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Proof: s, ) = e(123), S, 1 = e(23k), e(123) = e(234); hence 1 =~ L.

1, 51
82’5 = e(2h), ‘85’2 = e(34), e(2h) = e(34); hence 2= 3.

Tt remains to show that these seven categories exhaust all the poss-
ibilities. ILet us assume that there exists a characteristic function v which
is not in any of the above categories. We shall consider three cases.

I. If  v(23) > v(ik), then
(1) ov(1iz2) < V(Qj), gince v is not in Blo
(i) ov(12) > v(23) - 2v(1h), since v 1s not in B,.

2
(iii) 2v(12) < ov(ik) - v(23), since v is not in BB, and the other
relations are satisfied by (i) and (ii).
Tt follows from (iii) that +v(23) < 2v(1k) - 2v(12); hence, since
v(23) = v(1234) - v(1k) = v(12) + v(34) - v(1k),
(iv) v(34)/3 < v(1k) - v(12).
(v) 3(v(14) - v(13)) > v(34), since v is not in By, and the other
relation is satisfied by (iv).
(vi) v(23) <v(12) + v(13), since v is not in By, and the other
relation is satisfied by (v).
Clearly, v(23) > v(1e3k)/2 > v(1k). Relations (&i) and (i) imply
v(13) > v(23) - v(12) > v(23)/2; hence, 3v(1k) -2v(13) < 3v(1k) -v(23) <2v(1h)
< v(1234). On the other nand, by (v) and (8.15), 3v(14) - 2v(13) > v(34) + v(13)

> v(34) + v(12) = v(1234), and a contradiction is established.

IT. £ v(14) > v(23) and v(23) < v(12) + v(13), then
(i) wv(ik) > 2v(12), since v 1is not in B
(i1) v(14) < 2v(13), since v 1is not in B, and the other relation
is satisfied.
By our assumption, -v(13) <v(12) - v(23) = v(14) - v(34); hence

(ii1) v(1s) >v(34) - v(13).
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(iv) v(13) > v(34)/3 follows from (ii) and (iii).
(v) wv(1k) <2v(34)/3, since v is not in B_ and the other relations
are satisfied by (i) and (ii). Therefore, by (iv) snd (v), v(13) > v(34)/3 +
(v(1k) - 2v(3k)/3), or
(vi) v(13) > v(1h) - v(3k)/53.
(vii) v(23) < v(12) + v(34)/3, since v is not in By, and the other
relation is satisfied by (vi).

Tt follows from (vii) that v(34) < v(14) + v(34)/3, or

ov(34)/3 < v(1k), contrary to (v).

III. If v(14%) > v(23) and v(23) > v(12) + v(13), then
(1) v(34) >3(v(14) - v(13)), since v is not in B), and the other
relation 1s satisfied by our assumpbion.
(i1) v(23) <v(12) + v(34)/3, since v is not in By and the other
relation is satisfied by (i). Relation (ii) implies
(i1i) v(14) > ev(3Lh)/3, because v(3k) - v(1k) = v(23) - v(12) < v(34)/3;
and relation (i) implies 2/3 «v(34) > 2(v(1k4) - v(13)); hence
(iv) 2v(13) >-V(lh)o |
(v) v(13) > v(34)/3 follows from (iii) and (iv).
Tt follows from our assumption that v{(34) - v(14) = v(23)-v(12) > v(13);
hence
(vi) v(34) > v(1k) + v(13).
However, by (v) and (iii), v(13) + v(1k) >v(34)/3 + 2v(34)/3 = v(3L),
and this contradicts (vi).
Thus, évery characteristic function must belong to (at least) one of the

gbove categories.
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C. The coalition structure (13, 24).

c,. if

(8.44) v(eh) < 2v(12),

then

(8.45) (v(13)/2, v(2h)/2, v(13)/2, v(2k)/2; 13, 2k) e ;7§:¢

Proof': e(ljk) Z e(ij) for {lyj} ]"é [lgB} 9 [591} ) {294} > {472} °

Cpe If

(8.46) v(ak) < ov(34)/3,

then

(8.47) (v(13) -v(3L)/3, v(eh)-v(3k)/3, v(34)/3, v(3k)/3; 13, 2k) e 7%:‘
“Proof . Sy 5 = e(12k), S5 = e(34), e(12h)= e(34); hence 1 = 3.

Soy T e(123), Sy 5 = e(34), e(123) = e(34); hence 2~ L.

C,. If
(2.48) Max (2v(12), 2v(3k)/3) <v(24) < Min (2v(23), 2[v(12) +(13)]),
then
(8.%9) ([4v(13) -2v(3h) + v(24)]/4, w(24)/2, [2v(3k) -v(24)1/4,
v(2k)/2; 13,24) e 7kf?
Proof : s = e(124), = e(34), e(124) = e(34); hence 1= 3. Sp.) = e(123),

1,5 '85,1
Sy o T e(13h), e(123) = e(134); hence 2 =~ k.
P

CM' Ir

(8.50) v(12) + v(1k) > v(2h), v(2k) > 2v(23),

Then

(8.51)  ([v(13) + v(14) - v(34)1/2, wv(2k)/2, [v(13) +v(34) - v(14)1/2,
v(2h)/25 13,24) € /L .
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Proof: 51,3 = e(lh), 531 = e(34), e(1h) = e(34); hence 1 =~ 3.

SE,A = e(123), SMJE = e(134), e(123) = e(134); hence 2 = L.

Cge If

(8.52) v(2k) > Max (2[v(12)}v(13)], v(12)+v(1k)),

then

(8.53) (0, v(eh)/2, v(13), v(2h)/2; 13, 24) e K.

Proof: e(34) > e(12), e(1k), e(12k); hence 551 > 5.5 - Thus 1=~ 3
since x, =0 . s2’lp = e(123), 5492 =e(134), e(123) = e(1234); hence 2 =L,

In order to show that the five categories exhaust all the possibilities, we
shall assume that a characteristic function v does not belong to them. We shall

distinguish two cases:
I. If v(ek) >v(12) + v(1k), then

(1) v(2k) > 2v(12), since v is not in C,-

(i1) 2v(34)/3 < v(34), 'since v is not in C2°
(111) v(24) < 2[v(12) + v(13)], since v is not in 05.

(iv) wv(24) > 2v(23), since v is not in C5 and the other relations are
satisfied by (i), (ii), (iii).
By (iii) (iv) v25<< Vit V3 OF Vo < Vio T Vo, contrary to the

assumption.

II. If v(2k) <v(12) + v(14), then
(1) v(2k) < 2v(23), since v is not in Cy,-
(i1) wv(ek) > 2v(12), since v is not in Cl°
(1ii) 2v(34)/3 < v(2k), since v is not in C,-
(iv) v(2k) > 2v(12) + 2v(13), since v is not in CB’
and the other relations are satisfied by (i), (ii) and (iii).
Our assumption can be written in the form

(v) v(23) <v(12) + v(13),

and, therefore, by (iv), v(23) < v(2k)/2, contrary to (i).
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Thus, there is no characteristic function which does not belong to one of

the five categories.

D. The Coalition structure (12, 34).

Let (Xl’ Koo Xz %3 12, 3k) e ?if. We shall show that Xz = %) = v(3h)/2.

Indeed, X+ X, = v(12), nence X, %y < v(12) <v(13), v(14), v(23), v(2k). By (8.18),

e(123) > e(23), e(13) and e(124) >e(2h), e(1k). Thus, S5 = e(123%) = x), and

*h,35 7 104 T *3°
Clearly, v(34k) >0, since v(1234) >0 and v(3k) > v(12); therefore,

Xy + % > 0. By (2.15), (xlL - x5) x, <0, (x5 - 4) Xy < 0, hence %y 4 0, x), 40

and consegquently x5 = Xh'

Applying now Lemma 7.1 twice, we obtain the following cases:

Dl. If

(8.54) v(3k) < 2v(13),

then

(8.55) (v(12)/2, v(12)/2, v(3)/2, v()/2; 12, ) e K .

D2. It

(8.56) v(3k) > 2v(2e3), v(2k) < v(12) + v(1k4),

then

(8.57) ([v(12) + v(ik) - v(24)]1/2, [v(12) + v(2h) - v(1k)]/2, v(34)/2, v(3k)/2; 12,34) ¢ K.
D5. If either

(8.58) v(3k) > 2v(23), v(ek) > v(12) + v(_m),

(8.59) v(3h) < ev(23), 3v(i2) + v(13) < v(ak),

. then

(8.60) (0, v(12), v(34)/2, v(34)/2; 12, 34) e

DM' It

(8.61) ev(13) < v(3k) < ev(23), v(2k) < 3v(12) + v(13),
then

(8.62) ([hv(12) - 2v(2h) + v(34)]/4, [ev(2h) - v(3h)]/4, v(3h)/2, v(34)/2;5 12, 34) e f/.
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9. Symmetric and Quota Games

A game is symmetrie if the characteristic function satisfies
(9.1) V(Bl) = V(BE) whenever Bl and 32 have the same number of players.

Theorem.9.l(l). Let (v; N) be a summetric game then a p.c. (X ; Zg) € }{. if

and only if

(9.2) X, = x, whenever i, j e B ¢ ?%

i J
Proof. Obviously, (X ; fi) € fi, if (9.2) is satisfied.. If (X ; Zg) € 7ff,
let x, LeBe/s, k+4d 1If x> xp, then e(D U (k) <e(d u ({}), vhenever
'k, £ ¢ D; consequently Sk,{,< S{vk. By (2.15), X, = 0, which is impossible since
X%/E’O. This completes the proof.

(2)

A game is an m-quota game s 1 <m<mn, if there exists an n-tuple

(ml, Wy +ees ah) such that
(9.3) v(B) = iZp @, > 0 whenever B contains m players,

v(B)

0 otherwise.
i . - i i i d k pl . A
A player 1 whose m gquota mi is negative is called a weak player |
coalition structure which contains a maximal amount of m-person coalitions will be

called maximal.-

B. Peleg reports that the following theorem is true:

(3)

Theorem 9.2. Let I' be an m-quota game and let n-2em. Let 7gv be a maximal

coalition structure, and let (X;?ﬁ ) e Zﬁ . Under these conditions, X, = 0 if

i _1s a weak player, and none of the non-weak players receives more than his quota.

Under the condition of the theorem there exists a unique payoff ¢ 5

such that ( < ,75 ) € /ﬁ . It is explicitly characterized by B. Peleg.

(1) This theorem was independently proved also by B. Peleg (written communication).

(2) The term was first introduced by L. S. Shapley [8] and G. K. Kalish [3].
We use here the definition given in B. Peleg [6].

(3). This assumption is not required if no player is weak.
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