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ABSTRACT

This paper is a summary of part éf a report written by several people
for Mathematica, a subsidiary of Market Research Corporation of America,
under a contract for the Arms Control and Disarmament Agency. The model was
that of Professor Frank Anscombe. The results and comments of Professor
Anscombe have been used so freely that it would be difficult to acknowledge

in detail my indebtedness.




VERIFICATION OF DISARMAMENT BY INSPECTION ¢

A GAME THEORETIC MODEL

Introduction

The problem that originally motivated the construction of the model below
was to determine the "proper" behavior of two parties to a disarmsment agree-
ment : one, the inspector attempting to either inhibit evasion or to maximize
the probability of detecting any evasion should it occur, the other, an evader
-Or possible evader, attempting to evaluate the possible gains from evasion, the
possible losses in being caught evading, and thus deciding whether to evade or
not, and if deciding to evade, how to do so with the least chance of being caught.
In an actual agreement, either party may find themselves in both the roles of in-
spector and (potential) evader, i.e., playing two games simultaneously.

The model will of course be a simplification of reality and one simplifica-
tion we will make initially is to assume that the evader has decided to evade ang
has but to choose the "proper" manner. This obviates the necessity of balancing
the disadvantages of being caught cheating with the gains from such activities
(along with their respective probabilities) - variables very difficult to define
and quantify. Perhaps such decisions are best made in g less formal manner. As
an input to such decisions however, it is important to know the consequences of
evading, so that the problems we consider logically precede the ones we will
ignore. The model we consider will have an inspector and evader with diammetric-
ally opposed interests, trying to raise and lower, the DProbability of detecting
evasions, respectively. In the terminology of Game Theory, this is a Zero-sum

game which simplifies the mathematical analysis considerably.




General Description of the Model.

We assume there exist a number of individual units where both evasion and
inspection may take place, their number and significant characteristics being
known to both parties; each evasion will be assumed to take place in one such
unit. The units themselves may be factories, geographically defined locations,
bower plants, or any part or union of any of the above, etc. It will be assumed
that the inspector will have some restrictions on his ability to inspect these
facilities: explicit restrictionsg spelled out by the terms of a treaty berhaps,
financial restrictions on personnel and mobility, etc., but in any case in our
model he will have some fixed allotment of inspections which will be all that he
will be allowed and all of which he will be assumed to take. The "cost" (in terms
of his inspection allotment) will vary from unit to unit. The evader will be
assumed to be able to gain from each evasion g certain amount of evasion units
again dependent upon which unit he chooses to evade. In a given unit he has only
the choice to evade or not evade; quantitative variations of evasion within a
given unit will not be considered. The various evasion units will be assumed to
be comparable ang additive for our purposes but not necessarily comparable to any
other unit, €:8., money. The evadef will be assumed to evade & fixed amount de-
termined in advance and may evade neither more (perhaps to minimize the chance
of his being detected) nor less (perhaps because evasion less than s certain mini-
mum is pointless).

Although this model grew out of one particulsr situation it can be applied
to a considerably wider class of problems.

It is essentially a type of Colonel Blotto game and the model may be used in

determining the best strategies for smugglers vs. border police, police patrols




vs. burglars, a spot checking auditor vs. an embezzler, eéce

We will assume that the choice of units to be inspected and the choice of
units for evasion are chosen simultaneously or that one choice ig made in a
continuous random fashion and the other at a single point in time. (Police are
continually patrolling various areas although not necessarily the same areas
whereas a burglary will take place at a single point of time). The analysis is
applicable in either case.

We alluded earlier to the term "proper” behavior with respect to the evader
and the inspector and before going into a formal description of the model it
might be well to discuss what the criteris might be for determining whether be-
havior is proper. Since we have assumed already that there will be evasion it
seems that the goal of the inspector will be to inspect s0 as to max;mize his
effectiveness in detecting evasions and it will be the goal of the evader to
elude as best he can the inspections that are made. “"Proper" behavior then will
be behavior that seems directeqd toward these goals. We have been deliberately
vague in defining what we mean by effective inspections since there are many
plausible ways this might be done. 1In our analysis we have chosen two possible
ways of measuring effectiveness, i.e., the payoff function will have two differ-
ent definitions giving rise to two different models and we will say a word about
the situations the two models are weant to reflect. If one envisions a border
patrol where there is constant sporadic smuggling, the expected number of evesions
detected seems a reasonable criterion for judging effectiveness; If one is polic-
ing a test ban treaty, a disarmament treaty, etc. where the essential problem is
to detect the good faith of the inspected, the number of violations detected is
secondary; what is really important i; that you determine that there are violg-

tions (or that there are not) and that you then may act in accordance with




reality. It would seem then, that the probability of detecting at least one
evasion would be g reagonable payoff in such g situation, and this is what was
chosen in the secongd model. Finally, the probability of detecting an evasion
will depend upon the manner in which the inspector and evader choose the units
in which they will inspect, evade, respectively. The strategy of the inspector
will depend upon what he thinks the evader will do which in turn depends upon
what he thinks the evader will think he will do, etc. To avoid these circular
traps we accept the standard procedure for solving zero-gum games: minimax stra-
tegies for the two players. We very briefly describe the Properties of such
strategies.

We allow first of a1l the inspector to inspect a definite set of units of
each type and this we shall call g bure strategy. He may also choose to define
some probability distribution over the set of gets of units that he may inspect
(iae,, all aggregations of units whose total cosgt when added together equal his
inspection allotment) and this we call s mixed strategy. If we insist that any
strategy the inspector chooses, pure or mixed, must be ANNOUNCED TO THE EVADER,
who will then act to minimize the Payoff function, and if the inspector then
chooses g strategy so as to maximize these minimums, we have g value for the pay=
off function which is é security level for the inspector, i.e., he can certainly
ensure that he can get this much (it is assumed the higher the payoff, the better
Off the inspector, the worse off the evader). If we likewise insist the evader
announce his strategy, we may calculate hig security level; it turns out that BOTH
SECURITY IEVEIS ARE IDENTICAL; this common value for the security levels is cglled
the value of the game (the equality is for the expected value of the outcome; not

the outcome itself). These ideas will be illustrated in our subsequent analysis.




The Formal Model

Assume there are a total of N units which are broken dovn into T types

k

same pertinent characteristics Ay C, T, which we willl define below.

with N units in the kth type. Within each type all units will have the

As we indicated earlier we assoclate with each unit an inspection cost, eva-
sion cost and s probability of detection in the event that there is both an in-

spection and an evasion at a given unit. We define

Ai = the gain in evasion units to the evader if there is an evasion of a unit
of the ith type.

Ci = the cost to the inspector if he inspects at a unit of the ith type.

fi = the probability of an inspection detecting an evasion that occurred at a
unit of the ith type.

Ni = the number of units of type 1

T = the number of different types of units.
T

N = z Ni
i=1

Pure Strategies

For & single play, the evader's pure strategy will consist of choosing Ei
units of type i in which he will evade where 1 = L2500..T Similarly, the
inspector's strategy will consist of choosing Ii units of type i which he
will inspect. (Note: +the strategies given sbove are not actually pure in that
once the inspector (evader) chooses the number of units of type i in which he
will inspect (evade), the actual units within the type will be chosen randomly;

there is clearly no advantage to be gained, however, by doing otherwise.)




Although it is conceivable that the inspector not use all his inspections,
we assume that in this model he will (he may not of coursé use more than his
allotment of inspections )% We also assume the evader will evade some fixed amount

(in evasion units).

So we define,

A = The sum of all the evader's evasions (in evasion units).

Q
il

The total number of inspection units alloted to the inspector.

This yields our boundary conditions:

T

2 I.C, = ¢

. 1 1 O
i=

T

z Ai Ei = AO
i=1

Finally, we assume that all barameters are known to both parties and that

both are using the same payoff function.

MINTMAX STRATEGIES AND VALURE

The thing to do if one wishes +to determine which road to take, is to decide
first where one wants to go (as the Cheshire cat pointed out to Alice). Similarly,
if one wishes to choose 1 "good" strategy the Tirst thing to do is to decide what

one wants. As was mentioned earlier we will use two payoff functions as possible

goals:
XD = the probability of detecting at least one evasion, and
D = the expected value of the number of detected evasions.

In both models it will be assumed that the ilnspector (evader) is trying to maximize

(minimize) the payoff function.




First Model - Payoff XD

In this model we denote the pure strategies of the inspector, evader, by T-

dimensional vectors of the form (Il’IE’ e IT)’ (El’ By .. ET), respectively.
For the two such pure strategies just given we will derive the value of XD.

We first note that in type Xk the probability that there are exactly j

units in Ekﬂ Ik is
("k)( k)
()
Ek /

no detection is the sbove multiplied by (1 - fk)J - The probability of no detec-

and so the probability of there being J wunits in common with

tions in the kth type is therefore

jbi [(jk> <Z§:jk> (l-fk)JJ
N
%)

where M = Min., [ I » B ] 5 Hence, the probability of detection in at least

one unit,

]

Xy = 1 - (the probability of detection in no unit)

T th
=1 - #  (the probability of no detection in the k unit)
k=1
J
T M < > < >(l'fk)
=1- =n L Z
k= =

7 ()
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where the probabilities of detection in two different units are assumed to be
independent.

The XD as given is exact but unfortunately is in g form with which it ig
- difficult to work. Coﬁseqﬁently, we will make some assumptions about XD and
on the basis of these assumptions make an approximation to XD and use this

approximation for further analysis.

First Approximation: The Linear Model.

The first and crudest approximation is obtained by assuming

Ik Ek Tkaka
— s T, and ————— gye g1] < < 1 for all k . Since the Ek P Ik P
Nk Nk : Nk, : )

depend upon the strategy chosen and we don't know in advance what they are, we
must assume that the amounts AO P CO are sufficiently small to ensure the

approximating assumptions.

M-I, oL JJD' E +1-3 }
<EK“J'> <Ek > T .f{l\kaIk-Ek+is» ;
o B
by assuming ﬁ; 5 ﬁ; are émall we may neglect
3 “Ek I ¥'j
igl Ne - I - E +1 for 3 >2

Also, under the same assumption,




k ’ k I N LBy
= [ l - = = ] = l - N
(Nk > i=1 Nk - i+ 1 k
B
N - T M - Iy T (1-r1)
T :“ !“" \?'E > . E l k
~ : i l.("‘f":“,s A k"'l o 5
XD = 1 - 1 ~ - T
k=1 N e < k > .
B, -
<Nk had Ik > l ?3:-
T E I E
S 1. 1 < Nk > <’l-3§, le [l-fk}>
k=1 < k > B
By
N T L :kmk IkEk kaka
= 1 - I 1l - T 1+ T i
k:l '~ k. "\ k k
~ T kaka ~ T kaka T
= 1 - 1 1 - T = X = bX QkEka
k=1 k k=1 k k=1 -
TfET
since Kk k << 1
N

where

% T w —

)
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C A,
If we let the strategy for the inspector be Ii = S lA G
J_J
% E TR
J=1 J
T —
then the resulting probability of detection XD = X I.E.Q
3=1 Jd JJ
T
T C A, z AJEJ
= 5 O 1 EQ =C J=1
i= T A.C y i1 o] T AC
J=1 J J=1 J
AC
= 0o (by the boundary conditions independent of what
T A.C
5 JQJ
J=1 73
_ AOCi
the evader does; similarly, if Ei = 0 AJCJ
% I g
J=1 J

T
T _ iil clli A CO
Xp = I LiEQ = A T AG =TT Ac
i=1 5 Jd d s JJ
. Q. . Q.
J=1 J J=L 73

so I. , E. are minimax strategies and

O
@]

is the value of the game .

b=
Q

™M
e
O

. e

for i=1 to T



- 11 -

T AC
s _dd
T . Q.
. = - Jg=1 J _
Finally, .Z IjCJ = CO T AC = Co
J=1 y  _dd
=1 Y
T AC
z
T - .
and £ EA, = A =t = A
. 33 o T AC, ol
J=1 s -dJ
=Y

80 the two boundary conditions are satisfied.
It should be noted in the linear model we have Just examined that there exist
pure (as we have defined the term) strategies that are minimex for both parties.

This will not in general be the case as will be seen in what follows.

Second approximation: The Non-Linear Model

In the Linear Model we assumed that the number of inspections and evasions
were both small compared to the total number of units within any type. We will
relax these assumptions somewhat in that we will alow the number of inspections

to be large -~ the number of evasions being limited as before.

N-E
We first observe that 5 ® ( 1- I) (the derivation of this and
() N
I

what followg is very similar to the derivation of the Poisson distribution from

the Binonial distribution)° Also we note:

I-k I 7, N - E - I-j+l+k
J=1
-F
O (o,




= ]2 =

N-E .
ST (o) - mepFE L
( N ) ~ N N-T - NE
I
Finally, noting that
(xy <Ek: Ty () (f "
3 e d o e - d
Nk Nk
(%) (5)
k k
we have
Iy J
N T K (Ek> By 5 ;
= 1- 1 [ = ' /@m -1) (L-1)°]
%D AP B E,_ K
Nk
. T B (Ek) (, - IK)EK“J(Ik{l-fk}J
= 1- 1 [ = b ]
k=1  j=0 I By
Nk
T (N, - T)+ I (1-F) B
k K k k
= 1- 1 [ T ]
k=1 k
T kak Ek T Ek
= 1= I [ 1- T ] = 1- I (1- LQ,)
k=1 'k k=1
So XD will be assumed to be
N T E,
Xy, = 1 - I (1-1 Qk) in our subsequent analysis in this model.
D k=1 k

(A similar approximation for XD may be obtained in the case where E is large

end I is small.)
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Solution of the Non-Linear Model

In this model we have the same boundary conditions as before but now

T E,
X, =1 - I {1-14q)
o 1%

We will prove the following:

(a) The minimax strategy for the inspector is to choose the vector

I = (Tl, T2’°°"IT) (where fj means we choose Tj units at random from the

Nj units of type J ) satisfying the T equations:

/A, 1/Al
(1) (1 - IJQJ) - (1 - 1,9,) j=2 to T

(i1)
k

Cka - Co

™M 3

1

(b) The minimax strategy for the evader is E where E is a mixture of T

pure strategies where the jth pure strategy is to put all of the evasions in one
A v

type of facility, i.e., there will be evasions in the jth facility and

d
no evasions in any other facility. We denote this pure strategy by EJ » and the

minimex strategy, E , uses Ejg kgh of the time where the kj“s satisfy the

following T equations:

k., = k for j =2 to T

(c) The value of the game 1is
Ao/Al

1-(1-T71 Q)

1
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Proof:

Let the inspector choose I as his strategy. Then the probability of

detection given any arbitrary strategy for the evader: E = (ElEg,a,v,ET)

is given by

T _ B
Xy = 1- 1m (1- )
> - Te,

T E A /A

= 1- T (l-IlQl)kk .

k=1

SEa 1

[ =& 1/a

B Vg

which is independent of the evader's strategy.
In other words if the inspector plays what burports to be his minimax
strategy he has s probability of detection of precisely

- AO/Al
1- (1 - IlQl) regardless of what the evader does.

Now suppose the evader chooses the mixed strategy E . We have again, for

an arbitrary inspector strategy I B
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I I.)

where XD is the expeéted probability of detection and T = (I PYRRRFR

l)

is some arbitrary pure strategy chosen by the inspector.

Let
Ei be a unit vector in the direction of increasing Ii
Ui o= L-aI
Ypo= Lo eI
= T -
vV = 3 aimi be an arbitrary unit vector in the hyper-
i=1
plane
III .
% C.I, =¢
. i1 o
1=
We shall outline the proof.
T
We will show that if we take the point in the hyperplane 3 CiIi = CO (i,en,
i=1

the set of I's +the inspector is allowed +to choose if he is to restrict himself
to the boundary condition limitations) where the directional derivatives are zero
in every direction, we find that the point is I =1 » Wwe Tind the second
derivative is less than Zero in all directions so I =T yields a maximum ex-

bectation for the probability of detection and XD for I =1 is

A /A
1- (1 - IlQl) ol for any E , and so for E = E in particular. This means
the evader may be assured that the'probability of detection is at least as high
A /A
as 1 - (1 - IlQl) S this is the value of the game.
N T N T
Proof: We note first that if V. = ¥ a.m 1is in the hyperplane % ¢.I.= c_,
j=p 11 jo1 174 o]

T

it follows that & a.C. =0 ;
i=1 bt
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3%, T Xy
—_— = 2 a,
Os . i oI,
v i=1 i
T Ao
= - 7 al[ kl
i=1
(since an {o if i # j}
BIJ ~Q, 1f 1 = 3
J
. g 2395, Uy
T o . U, A
i=1 11
B _ 1/ 1/Al
Now at I =1 , (recalling that Uj J = Uy )
X, AkQ T LA /a
ds |- A C.U z ClallUl
17171 i=1
Vv
k.Q, k
(since lil = éQE )
Ui B4 1viUp 1
Ax QU Aol T
o 17171
A C.T (2 Clai) =0
171-1 i=1
. kI'LQi lelCiUi
Also since R = P
i UlAlCl
X Ak Q T A /A -1
BSD L= 2Ll 5 a,0,c,0, ©
v AlClUl i=1
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and since a5 Ui’ Ci are constants and Ui is only a function of Ii B

we have

) Ak Q T
. = 221 r .2F (g0 (A /. - 1)y, A/A 2
ds° = AC.T i=p * 0+ 171 ot *
\ 17171
If we assume
0<rf (so Qi\>0)
k.> 0
i
>
Ao Ai for all 1
U.> 0
i
A.,C., >0
1771
T 2
and A ,C >0 (s0 = a. >0 )
o’ "o . i
i=1
I =1 is a maximum for XD which was to be shown.
Note: All the above assumptions are very natural, e.g., f. =0 implies

1

there is no chance of getting caught. AO = Ai means that the evader may use
every facility of a type to evade which was ruled out by earlier hypothesis,

ki = 0 means you never evade in a given type facility which with a little thought
is shown to be absurd for if this is really minimax the inspector should never

inspect in his minimax which means the evader should evade after all, etec.
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Second Model: Payoff D

We consider the same basic game with the following changes: the payoff
function is D (the expected number of evasions discovered), and we consider
& population of U individual units rather than g population divided into
types (this is of course no loss in generality). A strategy for the inspector

will consist of his defining a U-dimensional vector Il’IE’°"’IU where the
jth component denotes the probability of choosing the jth unit to evade at
a given play. These probabilities are of course not independent; one may think
of a wheel with the units marked off along the circumference with lengths pro-
portional to the probability of choosing the jth unit (or component size)
twirling a pointer choosing a unit, deleting it, starting again, and continuing
until the quota of inspections is exhausted. The expected number of inspections
6]

is then ¥ ¢.I. =

'j=lJJ O

In a similar manner we define g U-dimensional vector for the evader with an

analogous interpretation. Again U _
2 A, B, =A
j=1 T 71 e}
We then have
_ CoAi
(2) I; = T AC
£, 5 —4d
1,
J=1 J
B Aoci are the minimax
) B = — A0
i by
i . T,
J=1 73

strategies (or weights) for the inspector, and the evader, respectively, and

C A
(¢) D = T alo is the value of the game.

373
= =7
3

3=1
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Proof: We first note that
T —
Z C.I, = ¢ and.
. 1 1 O
i=]
T —
Z EBA, = A
. 1 1 (@]
i=1

Suppose the inspector plays

_ . COAi
Ii = - 0 AJCJ 5 then
fi .Z T,
J= dJd
T —
D = 2 £IE (rET is the expected number of detections at unit i
j-1 17174 i7i71
if Ii, Ei are the respective weights given by the inspector,
evader)
T
T COAi 1§l EiAi
TR (e = o
i=1 JJ T A.C,
r, = J_J
i, . 2
J=l 7 . f,
J=1 J
C A
B 00
T T AC, ’
z g
=1 7y
C A . s
so that D = 00 which is independent of what the
T A.C
PN J_J evader does.
=L 73
Similarly, if the evader plays
— AC.
E. = _——.031_ we have




. = ! AoCi
DI OERLT = 2 0 (— INGH )1 oLf
f. X
L, f,
J=1 J
T
% iglCiIi AL
= T ; c = T A 8 which is independent of
by Jf by JfJ
J=1 J=1 J

what the inspector does.

Since either the inspector or the evader may enforce

AOC
D = AC.
Jd d

1 fj

this is clearly the value of the game and the strategies

n Mg

J

given are minimax.
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Summary:

We have tried to give the first approximation of the solution of a complex
problem, or rather to part of a complex problem, above. It is hoped that this
will yield some qualitative insight into the actual problem -- little else should
be expected at thisg stage. There were assumptions that were uneasily made and
which might be relaxed in any subsequent extension. We mention g fey.

While it was assumed that at a particular unit there was or was not an
evasion or an inspection, it might be more realistic to let the intensity of
evasion vary within s unit (and possibly the inspection as well) and let f s Tor
a particular unit, depend on the intensity of the evasion and inspection therein
rather than be fixed. Perhaps we may also assume that some Parameters are not
known to both parties, €.8., that the inspector know only the lower bound to the
amount of evagion (anything below which he would be willing to ignore). Finally,
if we are dealing with an unorganized Opposition, €.8., police vsg. burglars, or
individual smugglers, one might consider solutions other than the pessimistic

minimax ones.




