Issued Under Office of Naval Research
Contract No. Nonr 1858(16)

RETAINTHISCOPY
LY5 £

A SPECTRUM ANA y OBy rives

USE gU8 i st v
SEASONAL ADFISEMENT K voum BiLLs

@ TO EORDER
Michael D.1 Chdfre:
7659:6Y
. 7/
Herman F. Karreman o
‘4}2’,—5 i“!‘ 2 P" L
wed N {%Mg‘ljja Lot

[ 158 v mE AR YT 4
TR

Econometric Resehrch Rﬁpggﬁm}1964 %

Research Memorafdum No ;
April 1196k _

{

The research described in this paper was
Supported by National Science Foundation
Grant NSF-GS 30, and the office of Naval
Research. The computer facilities used
are supported by National Science Founda-
tion Grant NSF-GP579. Reproduction, trans-
lation, Publication, use and disposal in
whole or in part by or for the United
States Government is permitted.

Princeton University
Econometric Research Program

92-A Nassau Street

Princeton, N. J.




(i

Abstract

This paper applies the methods of Cross-spectrum analysis to the prob-

lem of the seasonal adjustment of economic time series. In all, four methods
are analyzed by means of empirical analysis of the results of applying the
methods to artificially generated time series of known composition. Three

of the four analyzed seasonal adjustment methods are known in the literature
while the fourth method was developed on the basis of analysis of the other
three. The three methods are: Hannan's method, Wald's method, and the Census
Method. The fourth method is termed the rational-function method.

It is found that there exigt considerable differences in performance
between the various methods when the seasonal varies with time. Hannan's
method estimates (in an efficient, unbiased way) a constant seasonal, and thus
is unsuited to the estimation of variation in the seasonal. The Wald and
rational -function methods are able to estimate relatively more rapid changes
in the seasonal amplitude than is the cage with the Census Method. However,
the Census Method ang the Rational-function method both estimate changes in
seasonal pattern which Wald's method takes as constant.

Ultimately which method is termed best, or better, depends on one's
view of the character of seasonal fluctuations and one's evaluation of what
constitutes important information in the particular time series (or class of

series) under study.




1.0

4.0

5.0

6.0

A SPECTRUM ANALYSIS OF SEASONAL ADJUSTMENT

Introduction
1.1 The Objectives of Seasonal Adjustment

1.2 Scope of the Method of Analysis

The Generating Process for the Time Series Used

Discussion of Digital Filtering and Extrapolation for
Seasonal Adjustment

3.1 Digital Filtering

3.2 Extrapolation

Description of the Seasonal Adjustment Methods
4.1 Hannan's Methog

L2 Wald's Methog

4.3 The Census Methog (Method IT - X-10)

h.L A Rational Transfer-Function Method

Outline of Computations

Experimental Results
6.1 Hannan's Method
6.2 Wald's Method

6.3 The Census Method

6.4 The Rational Function Method

11

1h
1k
15
20

21

27

29
34
39
o)

b7



7.0 Conclusion

Appendix A:

Appendix B:

Derivation of Wald's Method

Details of Computations

61

64

73



*
A SPECTRUM ANALYSTS OF SEASONAL ADJUSTMENT )

1.0 Introduction

The problem of dealing with the apparent seasonal variation in time
series has historically been treatéd by a large number of research workers.ﬁthfLEQE?]
One of the most interesting of these treatments has been that of Abraham Wald. [27]
On the basis of criticisms put forward by Oskar Morgenstern of the then current
methods, Wald first analyzed the statistical bagis of the most important of
these methods and then put forward a new method. This method has received
relatively little attention énd almost no practical utilization. [ 20, pp. 151-176]
Therefore, we analize this method and present its derivation (Appendix A). 1In
addition we treat the most widely used method, the Census Method, along with
& newer method, as put forward by Hannan. 00] And finally we treat g fourth
method which is developed on tﬁe basis of the analysis of the three Previously
mentioned methods.

This paper is Principally concerned with the analysis of the com-
parative performance of various methods of seasonal adjustment. The approach

taken is to generate the components of an additive seasonal model:

A
where Y£ - Observed time series
C, - "trend-cycle" components
St - "seasonal" components
I, - "irregular" components .

*) While & number of' people have commented on carlier drafts of this baper, the
authors would prarticularly like to thank Professor John Tukey and Dr. David
Brillinger for their many helpful suggestions.




The "trend-cycle" plus "irregular" (Ct + It) and the "seasonal" (St) are
generated separately in order that each seasonal adjustment method may be tested
in terms of its effects upon a process, the components of which are known
separately. |

The experimental technique of actually generating series and applying
the seasonal adjustment methods to them was adopted partly because of the
analytic difficulty of fully analyzing the broperties of thege methods, some
of which are intended to adjust non-stationary series. However it is alsoc
felt that this approach would help to give some further insight into the
analytic problems of seasonal adjustment. It also may contribute in some way
to a more direct understanding of +the possible effects of seasonal adjustment
as commonly applied to actual dats of unknown composition.

In order to discuss the significance of the results of this analysis,

it is first necessary to discuss the rationale of seasonal adjustment.

1.1 The Objectives of Seasonal Adjustment

An heuristic statement of the objective of seasonal adjustment might
be given as: The elimination of variations in a time series which are
attributable to Predictable seasonal events in order to display more clearly
the more impoftant underlying variations. This statement, while not a rigorous
definition, has two interesting implications. The first implication is that
the seasonal variations are Predictable and not.of interest to analysis of
the underlying system. The sécond is that these seasonal variations are

-

separable from the rest of the series. The acceptance of these implications




1s a matter of open debate. Their acceptance is normally related to the use

to which the data are to be put. If the data are to be used for the estima-

tion of econometric models, it isg normally assumed that the seasonal variation'

is of interest and its contribution to the explanation of the variation of the
dependent variables is provided for through the use of seasonal variables and

the application of the model to unadjusted data. Tf on the other hand the

data are to be used for single time series extrapolation one would be indifferent,
within the context of linear theory, as to whether the seasonal were removed

and treated separately or left in the data.

Finally, if the data are to be used to bresent a time series which
"best" represents the realizations from some underlying process (which does
not involve strictly periodic terms of period one year) for burposes of, say,
government policy decisions, then seasonsal adjustment may be Justified.

It is from this last viewpoint that we approach the problem of deter-
mining criteria for measuring the performance of seasonal adjustment methods.
In a verbal form our criterion for the methods may thus be stated loosely as
follows: That method is Judged "best" which, when it operates on a time
series composed of "seasonal" and other variations, produces a series which
most closely approximates the other variations in the original series. This
criterion will be more accurately specified and elaborated upon in Section 5.0,
However, a difficulty with this criterion should be introduced at the point.

If we consider the spectrum of g seasonally adjusted series,it is intuitively
clear that the subjective significance which may be attached to contributions
to the spectrum of "errors" in the seasonal adjustment will change consider-

ably depending on the frequency at which the error occurs. It is natural to




suppose that "errorg" introduced by seasonsl adjustment which occur at low
frequencies would be considered as more undesirable than such "errors" occurring

at high frequencies. Underlying this problem is the idea that information at

certain frequencies is more important than information at certain other frequencies.

1.2 Scope of the Method of Analysis

Since we base our analysis on the analysis of spectra, we are restricted
to the analysis of the linear information in the time series and linear depen-
dence between two series. This restriction prevents the full analysis of non-
linear operators. However, the severity of this restriction is reduced by the
fact that nonlinear operators may be, at least partially, analyzed in terms
of their effects on linear information; and by the fact that in some cases
transformations of the brocesses involved may yield linear relationships.

Another restriction is that of stationarity. Strictly, the spectral
estimates used only have meaning for second-order stationary Processes. How-
evey spectrum methods have been shown to give useful estimates under g fairly
wide range of non-stationary conditions. [12] Thus we assume that our estimates
have meaning if the time averaging property of the pseudo-spectrum as described

in [12] is kept in mind.

2.0 The Generating Process for the Time Series Used

The underlying process for the time series used is defined by a

second-order autoregressive scheme of the following form:




= + +
oo T NTpg Yoy ot e 2.1
where Oi, Qé - parameters
et - normally distributed random independent numbers.

This corresponds to the conventional trend-cycle and irregular components of

the seasonal adjustment model. The coefficients of the autoregressive scheme
may be chosen to yield time series which in terms of spectral analysis, appear
similar to many economic time series. Tt has been found in the course of various
ahalyses of economic data that the series may frequently be well represented

by a low order autoregressive. It is most commonly found that a first- or
second-order autoregressive may be used to approximate the estimated spectra
quite closely. Interesting discussions of this point occur in [8 and 21]

where it is mentioned that a characteristic root of the estimated autoregressive
is frequently very close to unity. Thig point has further implications both

in terms of the implied stability of the generating process and in terms of

the sampling variance of the estimates of the process.

The seasonal component was generated by one of the two following

processes:
The first process is defined by the following equations:
— -+ :‘ M —— ,g o
si}k Sl)k(l V121+k) k=1, 12; i = 1, 2.2
V. = v. o+ e, 2
J J-1 J 3
where Si x seasonal factor of kth month of ith year
2
vj - disturbance term
€, - normally distributed random numbers.
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This process produces a seasonal with a constant pattern (given by Sle) but
with a changing amplitude. The amplitude ig determined by the first order
autoregressive scheme given by equation 2.3. The variance of the random term,
€ determines the amplitude of the variations in the seasonal amplitude.

The second process is defined by the equations:

= + =1,...,12; i =1,...,8 %
Si,k BSi-l,k pi,k k=1, ,12; 4 1, , 2
12
= + , .
"i,0 T Pi1x 2 % Claneg 2.2
th .th
where Si xk ~ Seasonal factor of k" month of i year
2
pi,k - disturbance term
en = normally distributed random numbers
CJ,B ~ Pparameters.

Seasonal serieg generated from thig brocess vary both in amplitude and pattern.
Clearly the values for‘the ej coefficients determine the amount of correla-
tion between g change in one month's seasonal and g change in the seasonal of
neighboring months. At one gxtreme one may have simply twelve independent

first-order autoregressive brocesses for the twelve monthly factors; or, on

that the seasonal pattern changes very little.

It is felt that these brocesses fairly describe a large class of
Possible seasonal components. In particular the first process is in close
agreement with Wald's assumptions, while the second seems to fit the assumptions
of" the Census Method. The assumptions of Wald's method are discussed below

(Section 4.2 ang Appendix A). The Census Method is fully described in (20].




3.0 Digital Filtering and Extrapolation for Seasonal Adjustment

3.1 Digital Filtering

It has recently been recognized in the field of Sseasonal adjustment
[10] that the application of moving averages is an example of the application
of a time-invariant linear operator which may be characterized by its traﬁsfer
function. From thisg observation stems Hannan's important observation that,
since the effects of the operator are completely described by its transfer
function, it ig possible to correct for any unwanted effects when the operator
is applied to a time series. Hannan specifically points out that the Spencer
15-point formula affects the amplitude of not only very low frequencies but
also the seasonal and higher frequencies. Thus the simple estimate of the
Seasonal amplitude is biaged by the attenuation introduced by the Spencer
operator. Hannan goes on to show explicitly the calculations required to
compensate for this attenuation.

Rather than use simple unweighted moving averages or particular
weighted values (such as Spencer's formula) we have, using the Spectral approach,
employed a somewhat more general filﬁering technique for the purpose of
elimination of low frequencies. Thesge techniques have been used in conjunction
with the Hannan, Wald, and rational function methods which were all brogrammed
by the authors. The Census Method was received in completely programmed form
from the Bureau of the Census and no functional modifications were performed
on it. (Since the Census Method has been so extensively used for routine ad-
Justment of actual dats it may be used as a standard of comparison. )

Inspection of the transfer functions of the simple 12 month moving
average and the 15 point Spencer formula (Figure 3.1) shows clearly that the

latter is to be Preferred on the basis of elimination or frequencies below
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Figure 3.1




the fundamental seasonal. The fact that it eliminates some of the variance

at 1 cycle per year 1s unimportant because this is easily corrected for in

the final estimate. However, the Spencer formula does have the disadvantage
that more observations are logt at the end of the series. Thus the problem
of producing estimates for the last months of the series when the seasonal

is allowed to vary 1s aggravated. In addition one feels that it would be
desirable to have g Tilter whése broperties were, in some sense, optimal for
the problem at hand. For the sake of simplicity in handling phase information
it was decided to restrict the class of filters that would be congidered, for
the initial high-pass filtering operation, to symmetric moving averages. This
class of filters is, of course, characterized by transfer functions with phase
identically equal to zero at all frequencies. On the basis of previous analysis
it seemed natural to adopt the minimum mean square error criterion put forward

by Parzen [ 22]. Thus we were led to use the convergence factor given by

it

M) = 1o e( X2 4 6([X))3 0<v<y

2(1 -

AN
B

v 3 m

which satisfies this criterion for a specified class of functions. Thisg function
is discussed by Parzen [25§ in connection with spectral windows. It was
arbitrarily decided to restrict the filter to g 12 month average. However,

it was still possible +to vary the bandwidth of the filter to arrive at a "besgt"

value. After some experimentation it was found that the properties of the

the following transfer function was settled upon:
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in k
Alw) = 1. y Sin AV Nv) cos wy
v=1 v
3.1.2
T
where k = 5

The moving average coefficients corresponding to A(w) are obtained by taking
the inverse Fourier transform:
T ,
D. = = £ A(w) cos Jjw J=0,1,...,6 3.1.3
w=0
The gain of this filter isg shown in Figure 3.2, The gain is about 0.57 at
1 cycle per year. Very little variation at frequencies below 1 cycle per

year will pass through the filtering operation.

1.0f o

Aw) /

/6 /2 ﬂ

frequency

Figure 3.2
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3.2 Extrapolation

After the filtering operation the resultant series is lacking points
which correspond to the first and last six observations of the original series.
In the context of seasonal adjustment this does not present a problem if only
fixed seasonal factors are being estimated. However, if a moving seasonal is
being estimated as in the Wald and rational-function methods, then the filtered
series must be extended in some way to the last observation of the original
series. Wald [26] analyzed this problem in connection with his seasonal adjust-
ment method and incorporated extrapolation of the moving average into the method
as 1t was used in Austria. The extrapolation method is fully described in [26]a
However, like the monograph on seasonal adjustment [ 27], this Paper has not
been translated and no longer seems to be.referred to in the literature. There-
fore we will briefly outline the technique.

The extrapolation method is based upon three assumptions.

Define the 12 month moving average, W(t), of a set of observations
o(t) by
k+5

L o, .+ i(<1>.
j=k-6 1sJ 2° 1

+ &

,k-6 i,k+6)

v 3.2.1

i,k 12

Defining s(t) as the seasonal component and z(t) as the random component

of ¢(t) we may define s function f£(t) by:

t(t) = o(t) - s(t) - z(¢t)
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The first assumption is then that:

k+4

~ o, b =2,3,4 5, 3.2.2

The second assumption defines the seasonal component as it has been defined in

Wald's seasonal adjustment method. (See Section h.2) Therefore the seasonal

is given by:

s(t) = A(t) p(t) 3.2.3

where p(t) is a strictly periodic function and AMt) varies only slowly over

time. The third assumption restricts the random term by the following approx-

imate equation:

k+m

J=k+Z 15

~ 0 . 3.2.4

The values of m for which assumption three may hold will vary with

the kind of data being used.

From these assumptions the following expression for the extrapolated

*
values, V' (t), of V(t) is derived:

k+6

Z ‘®i,j B wi,k'
* - o, , - =5 (o ., -
1,k+6-4 il k+6 : i-1,4 i-1,k+6-4)

j:§_5 JCIDi-l,j ) IJ’i-l,k’

3.2.5
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k+6
by @i i
i=k+Ho ’
where . P J=kt6-24
+ 24 + 1

This expression is valid under the three assumpsions (equations 3.2.2, 3.2.3,
3.2.4) for 4 = 34,5 if (3.2.4) is assumed valid for m > 7; and is valid
for £ =2,3,4,5 if (3.2.4) holds for mz 5. For £ =0,1 and possibly 2
this equation cannot be used. To arrive at estimates for fhese values of £
Wald applies simple linear extrapolation of the last values of the series V(t)
and the extrapolated values given by equation 3.2.5.: In the case of 3.2.k
being taken to be valid for m =7 +this leads to extrapolation using the 5

values

* *

*
Vi ka1 v ik Vi ey IIIi,k+2 ’ Il’i,k+3

Thus, defining

* *
2wi,k+3 . ll’i:,k-l) +

10

,k+2‘" wi,k)

3.2.6

and u = the arithmetic mean of the five values, the last three values of

*
Vv (t) are determined by:

Vijgey = Bt 30

* + )4_ o)
Vijws = b+ ko 3.2.7
*

v = u+ 5A
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4.0 The Analyzed Seasonal Adjustment Methods

4.1 Hannan's Method
The first method that hag been examined is the one developed by
Hannan [10]. Here, only its main features will be discussed. The basic model

- 1s given by the additive relation:

v(t) = () + s(t) + x(t)

where p(t) - the trend-cycle component
s(t) - the seasonal component
x(t) - the residual.

x(t) is assumed to be stationary, though this is not essential for the method.

The seasonal component is assumed to be unchanging and of +he form:

2nk

6
s(t) = % [a(x)cos Mx)t + B(k)sin AMx)t], Nx) = 5

k=1
ho1.1

To remove the low-frequency components (trend-cycle) from the series
Hanﬁan considers}using the spectrum.approach, several well-known operators.
Using the notation I-A (where A is a moving average operator) for an
operator which removes lOW'frequencies, the trend-cycle removed series, y'(t),

is given by:
vi(t) = [I-A] y(t) . b,1.2

The preliminary estimates of the seasonal u'(j) for J=1,2,...,12 are

derived by calculating the mean for each calendar month:
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m
1
sy L = t s .
n'(y) = = § Vipges Tor J=1,2,...,12 4.1.3
t=1

where m equals the number of (full) years for which the series y'(t) is
computed.

The 12 u'(j)'s are then adjusted to add to zero by subtracting
their mean . 5 the new estimates are called u(j).

The final seasonal adjustments a(j) for j =1,2,...,12 are
then estimated by taking a moving average, with welghts v(k), of the pu(k):

12

a(d) = = ux) v(k-3) j=1,2,...,12 b1k
k=1

where v(k) = v(k+12) for k < 0. wv(k) is given by:

v(k) = = él L e-lsgk
12 1 - hw
s=1 s
where h(w) = transfer function of the operator A. The function

v(k) is the transformed inverse of the transfer function of the operator T-A.
Thus the application of v(k) to the R'(k) corrects the seasonal weights
for any change in the amplitude of variation of the original series at the

seasonal frequencies which the operator I-A may have introduced.

bh.2 Wald's Method

The second seasonal adjustment method that has been analyzed is the

one developed by Abraham Wald in 1936. Wald was at that time associated with
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the Austrian Institute for Business Cycle Research, under the direction of
Oskar Morgenstern. The method was published as Contribution No. 9 of that

Institute, under the title "Berechnung und Ausschaltung von Saisonschwankungen."

[27] There does not seem to be an English translation of this monographl),
which might help to explain why this method is not well-known in English-
speaking countries. The method is also known as the moving-amplitude method
and has been characterized as being able to produce better results than other
methods when the seasonal amplitude is thought to change relatively rapidly
from year to year. Rapid amplitude changes have been notes in a certain number
of agricultural crop series.g)

The assumptions of Wald's method require that the seasonal pattern
(i.e. the DProportionality relationship between the seasonal at each month and
the seasonal at each other month) remain constant over time. Thig constant
pattern is used to estimate changes in the amplitude of the seasonal. This
approach permits the estimation of more rapid changes in the seasonal amplitude
than would be Possible if no assumption about the stability of the pattern
were made.

Because Wald's method does not appear to be well-known, we will give
an outline of it here with s full description of the derivation given in _
Appendix A. The technique which Walg developed after the publication or [27i
for extrapolation of the moving average series hasg been discussed separately
in Section 3.2. This extrapolation method was incorporated in the adjustment
method as it was employed in Vienna in order to improve the accuracy of the
current estimates of the seasonal factors, and has also been used in our compu-~

tations.

1) A very brief summary and application of the method can be found in G. Tintner,
Econometrics, John Wiley & Sons, 1952, pp. 227-233.
2) T20T . &L, .
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The basic model for Wald's method is that the functions of time
which represent seasonal variations, the trend and business cycles, and the

random terms are additive. In Wald's notation

ot) = £(t) + s(t) + z(t) for t=1,2,...,n 2.1
where @(t) - observed monthly serieg

£(t) - "trend cycle" component

s(t) - S8easonal fluctuations

z(t) - Tregidual.

The first step is the removal of the "trend-cycle", £(t). This
is accomplished by subtracting the l2-month moving average of w(t) from

the original series o(t). This yields the series V(t):

V(t) = o(t) - @*(t) for t = 7,8,...,(n-6) h.o,2
where: ¢ (t) = QE=6) *+ 2[q(t-5) + "54+ O(t) * --- + o(t+5)] + o(++6)
for t=17,8,...,(n-6) . 4.2.3

*
Replacing @(t) and ¢ (t) in this expression by their components
*
(where ® indicates the operation of taking the 12-month moving average), we

find:
V) = £(8) - £5() ¢ s(t) - sT(e) 4 2(t) - 2(t) . K2y

Since f(t) represents the "trend-cycle", we may assume that (t)
can be well approximated by a straight line over Periods of 12 months. There-
fore f(t) ~ f*(t) |

With respect to the seasonal fluctuations s(t) ;» Wald rejects the

assumption that it is merely a 12-month periodic function. The hypothesis that
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it is a periodic function, which is multiplicative with the original observa~

tions (t) or the "trend-cycle" £(t) is also rejected. Thus the models:
s(t) = p(t) - dt);  s(t) = p(t) - £(t)
or s(t) = p(t) * o(t) + q(t)

where p(t) and q(t) are 12-month periodic functions, are all considered to
be unsatisfactofy, Wald instead assumés that s(t) = .%(t) p(t). %(t) is
an arbitrary function, the value of which will slowly change over time, and
p(t) is a 12-month periodic function with meén = 0. In other words the
intensity (amplitude) of the seasonal fluctuations, indicated by the function
K(t), changes slowly with time, but is not sysfematically related to other
variations in the series. The pattern of the seasonal fluctuations, indicated
by the funection p(t), is however assumed té remain constant over time. The
allowance for change in the intensity of the seasonal fluctuations is based

on the observation that this intensity is influenced by the trend and the
business cycle. However, since there is no a priori reason to expect that
this influence follows a well-defined scheme, €.g. that the intensity of the
seasonal fluctuationsg is proportional to the trend, the function AMt)  is
left arbifrary.

On the basis of the model s(t) = %(t) p(t) it is observed that
fs*(t)] > the absolute value of s*(t) ;> Will be the smaller, the smaller the
fluctuation of A(t) within the period of 12 months, and that s*(t) = 0
ir A(t) is constant. This leads to the assumption that ‘s*(t) ~ 0,

Equation L4.2.k ig new reduced to:
V(t) ~ s(t) + y{(t) for t=17,8,...,(n-6) h.o,5

where y(t) = z(t) - Z*(t)
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It is convenient at this point to introduce the matrix V(i,x),
the (i,k)th element of which refers to the kth month of the iJGh year. Let
the corresponding values of s(t) and y(t) be similarly arranged in two
matrices, the elements of which will be d681gnated s(i k) and y(i k).
Computing now the arithmetic mean of the values of the k-month of W(l k)
as well as of s(l,k) and y(l,k) one obtains, after substituting

Ai,k) p(i,k) for s(i,k) in equation 4.2,k

m m m
2 ¥(i,k) % Mi,x)p(i,k) Z y(i,x)
i=1 o i=1 + i=1 M.2.6
m m m
for k = L,2,...,12
. = 0 _
where @ m = 5 1.

From these assumptions Wald arrives at the following expression for the estimateg
seasonal;:

k+5
2 (i,5)a(y)
i=k-6
12
5 [a(s)]?
4=1

s(i,k) = a(k)

N m
where: a(k) = - =z V(i,k)
i=1

for the m by 12 matrix of seasonal coefficients.
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4.3 The Census Method
The third method that has been examined is Census Method II, which
will only briefly be described here.s) The trend—cycle, seasonal and irregular

components are assumed to be combined multiplicatively. It is sometimes ingi-

cated that this is the commonest form of seasonsl relationship for the broad
mass of economic time series.i'L> However, this model may be transformed into
the additive model by taking logarithms. This transformation may introduce
certain problems, Particularly with Trespect to its effect on the distributions
of the variables in the model. However, on the basis of computed comparisons
of the performance of the Census Method with and without taking logarithms
there was no evidence that, for the king of series dealt with here, any diffi-
culties would be caused by the logarithmie transformation.

An important characteristic of the so-called "moving seasonality™
which is incorporated in the Census Method ig that no restriction is placed
on the nature of any relationships between the changes in amplitudes in succes-

sive months. The method can therefore take care or changes in the battern of

im amplitude.B) However, the changes in both amplitude and pattern of the
seasonal ratios gre assumed to be gyadual and smooth. The method in its
original version was not successful when applied to series with drastic changes

in 8- (Seasonal—Irregular) ratios6) as, for instance, total unemployment. Nor

3) For a more elaborate description, the reader is referred to Julius Shiskin's
baper, "Test ang Revisions of Bureau of the Census Methods of Seasonal Ad-
Justments," Bureau of the Census Technical Paper No. 5, November 1960. This
paper was incorporated (pp. 79-150) in [20].

‘Ref. [20], page 58,

Ref. [20], page 259, footnote.

Seasonal—irregular ratios are the ratios of the original observations to the
15-term Spencer trend-cycle curve.

o\
Nt
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could it satisfactorily adjust series with constant seasonal patterns but
sharply varying amplitudes as, for example, agricultural stocks and farm employ-
ment series. However, later versions of the method contain devices which can
take better care of series with extreme S-I ratios than could the original.7)
For this study version X-10 has been used as this was the version which was,

according to our information, the most highly developed in early 1963.

4.4 A Rational Transfer-Function Method

The purpose of this method has been to develop a simple method,
based on spectral concepts, for comparison with the other methods. The method
involves the extension of Wald's method to treat a changing seasonal pattern,
and the inclusion of the basic ideas of Hannan's method.

The first step of the method is the conventional one of applying a
linear operator to remove low frequency variations. As with the Hannan and
Wald methods the operators and notation used are discussed in Section 3.0.

Next it is assumed that the seasonal pattern may be represented in
the form of a set of twelve mixed moving average autoregressive Processes with
identical coefficients. This is a natural assumption if, for reasons of
simplicity, the processes which generate the seasonal coefficients are taken
to be linear. Thus the seasonal pattern coefficients are given Dby:

n m

S. = X A.S, .+t Z

Loy, 1
J-:l J 17k_J J':O

B.rv. .
J 1,k-j

7) Suggestions for modification of the method were given in [20], pp. 257-311.
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where Si k- seasonal pattern coefficient of month k, year 1
2
Y. - random disturbance term
i,k
A., B, - coefficients.
d J
Thus it is natural to attempt to estimate Si K from the filtered series by
J
% n m )
S. = 2 A.S. .+ = BV, . b oy, o
17k j:l dJ l)k_J j=l dJ l)k—cj
*
where Si k estimated seasonal
2
Wi,k - filtered seriesg
Aj’Bj - coefficients.

i

If the Z-transform operator(defined by Z(Xt) Xt—l> is applied to the above

equation and the terms rearranged we have:

by sz'J
_ j=0_°
sl)k = = - wl’k 4,oh.3
1- % A7
g=1 7

From equation 4.4.3 it is clear that we are simply applying a time invariant,
linear, rational function operator to the 12 geries wi,k (i = 1,...,2
k=1,...,12).

The coefficients Aj and Bj might be estimated for each series on
the basis of a minimum mean square error criteripn, However, in the interest

of simplicity and generality the coefficients were in fact determined on the

basis of more general, and in part heuristic, criteria. The transfer Tunction
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defined by equation 4.%.3 should have a gain characteristic which in some
*
sense minimizes the error of the estimate Si Kk One may assume that Si Kk
J J
has relatively high spectral density at low frequencies, while the spectrum

of vy k is relatively flat. Then the two spectral densities will be of the
J

form given in Figure 4.1.1.

Si ok

\ 71,x%

\

Figure 4.k.1

The transfer function given in equation L.4.3 should then take the form:8>

£ (w)
Alw) =
£ () + £ ()
where A(w) - transfer function of filter
fs(w) - Spectrum of seasonal coefficients Si K
2
i=1,...,4 for all k
fb(w) - spectrum,of random term Di,k

i=1,...,6 for all k

Glven the above assumptions A(w) will take the form indicated in Figure L.L4.2,

8) For an exact description of the optimal filter transfer function cf.
The Extraction of Signals from Noise, L. A. Wainstein, V. D. Zubrakov,
Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
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Figure L.4.2

It seems reasonable for many economic series +o assume that =n/k
falls in the range of about .2 to -3 cycles per year. This gain character-
istic could be approximated by a symmetric moving average filter in a way
similar to that applied in the Census Method. However, the rational function
filter seems more natural given the assumptions made about the way in which
the seasonal variation is generated.

In deciding on the transfer function given in equation hoLh,3 it
- would be de@irable to apply general analytic criteria in terms of both the
gain and phase characteristics. However, appropriate general methods based
on some practical error of estimate concept are not yet available. Therefore
the coefficients were simply chosen on the basis of inspection of%the transfer
function and experimentation.

To this point the method has been analogous to the Census Method
in that the seasonal coefficients have been estimated from the twelve annual
series. However, we now make the assumption that the seasonal coefficients
are intercorrelated. We will, in fact, assume that for relatively high
frequency variations the seasonal factors vary proportionally. This is analo-

gous to Wald's assumption of a constant seasonal pattern. However, as



- 25 -

previously assumed, we allow the seasonal pattern (i.e. the proportionality
factors) to vary relatively slowly. Thus we attempt to combine the assump-
tion of the Census Method that each seasonal coefficient may change very
slowly but independently of the others with the assumption of Wald's method
that the amplitude of the seasonal Pattern may vary relatively rapidly.

In order to derive the estimate for the seagonal amplitude we have

simply paralleled Wald's derivation. This results in the following expression:

k+6
S. % S, LV,
* le J':_k_5 l)J\lflJJ Ll' )_J- u
: Si,k B k+6 5 ' T
z (8 )
J=k-5

*

To complete the adjustment brocedure the estimated seasonal, Si Kk
)
is corrected for any bias introduced by the original filtering operation and

is then subtracted from the original data.

The actual equations computed are as follows:

First the low frequencies are removed by:

6
v, = ¢ - £ D0 . hoh.5

t j=-6 J t+j
The last six values of Wt are extrapolated, and the Dj's are determined,

as described in Section 3.0.

Then, starting values for the rational function filter are computed

by averaging the first four available years of the series wt

1
3 = I V.
1,k jep i,k

i

L.k, 6
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Next the rational function filter is applied according to

= + + + + R
Si,k AlSi—l,k AESi-E,k Blwi,k Bewi—l,k B3¢i—2,k T
1i=3, ;'Z) k=1, 12
These estimates of the evolving seasonal pattern are then used
to estimate the seasonal coefficients according to:
k+6
. L L
g - J . 4. k4.8
ik k+6 5
(s )
j=k-5 *29
. *
Finally, the Si x are corrected by:
2
12
*1 *
S, = X .8, . .l 9
i,k =1 J i,k-j

where the aj’s are determined by the inverse of the transfer function of the
Dj's given in equation 4.4.5. The equation 4.4.9 is extrapolated to the ends

of the series.

Then the seasonally adjusted series is formed by

7 = @, - 8 . k. h.10
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5.0 Qutline of Computations

As shown

in the flow chart given in Figure 5.1 the typical computation

consisted of the following steps:

5.1 The
set
5.2 The
and
5.3 The

computation of the underlying and seasonal series for a
of specified parameter values.

seasonal adjustment of the sum of the underlying series
the seasonal.

computation of the spectrum and cross-spectrum propertiesg

of the following pairs of series:

5.3.
5.3.

5.3.
5.3.

1 The adjusted series and the underlying process.

2 The adjusted series and the sum of the underlying
Process and the seasonal.

3 The adjusted series and the seasonal.

L The seasonal series and the difference between the
sum of the underlying process and the seasonal on the
one hand and the adjusted series on the other. This

computation is, then, a comparison of the actual seasonal

and the seasonal estimated;by%the seasonal adjustment method.

On the basis of the general statement that the quality of the seasonal

adjustment method may be measured by its ability to accurately recover the under-

lying process from the sum of the seasonal and this DProcess the following ideal

results may be identified in terms of these calculations. For calculation 5.3.1

the perfect adjustment method would produce spectra with identical shapes, and

& cross-spectrum with unit gain and zero Phase at all frequencies. The coherence

should be one at all frequencies. For calculation 5.3.2 the cross-spectrum will
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depend on the seasonal component. The reason for including this calculation
is not to provide a direct test of the seasonal adjustment method, but to present
the cross-spectrum for comparison with the Qross—spectrum which may be computed
from actual series with unknown seasonals. The perfect adjustment method would
Produce for calculation 5.3.3 a coherence consistent with the hypothesisg of
independence of the series. Therefore, the cross-spectrum should not be signifi-
cant. Finally, in calculation 5.3.4 +the perfect method should produce a unit
correlation, as in calculation 5.3.2.

Imperfections in the various methods may show up in a considerable

variety of ways as will be discussed in the next section.

6.0 Experimental Results

In determining the experimental procedure for these computations it
was necessary to decide on the values of two sets of parameters. One set involved
the values of the autoregressive scheme while ghe other was the correlation
vector for the seasonal pattern. Through the computation of several pilot runs
it was found that the seasonal adjustment methods were not very sensitive to
changes in the autoregressive parameter wvalues over a considerable range (i.e.
those yielding characteristic periods from about 2 yvears to ). Therefore the
calculations were mainly performed with only one set of values. The values of

the parameters used in equation 2.1 are:

o, = 1.4
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It is interesting to note that the roots of the characteristic equation of
equation 2.1, for these parameter values, are both real with one equai tb 1.0 and
the other equal to 0.1L, Thusjthe solution of the equation is not oscillatory.
However, the time series generated by this.process éppear to be better approxi-
mations for a wide class of economic time series than series generated using
parameter values which give an oscillatory solution.

For the seasonal processes it was, howevef, found that the methods
were sometimes differentially sensitive to the brocess and parameter values
used. Therefore the computations were performed with several sets of values.

The first process (equations 2.2, 2.3) gives a seasonal with a
constant pattern. The only variable parameter is the variance of the error
term. Several values for the variance were used. This process will be re-
ferred to as Type 1.

The second process (equations 2.4, 2.5) allows the seasonal pattern
to vary slowly but may preserve some correlation between months. Two sets of

values for the Cj were used. The first set ig:

c(1) = 0.6
c(2) = o.2
c(3) = 0.1
c(d) = o0.05
¢(5) = 0.05
c(i) = o i=6,...,12

This process will be referred to as Type 2. The second set of values allows

each month to vary independently of the other months. These values are:
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¢c(1) = 1.0

c(1)

1

0.0 i=2,...,12 .,

This process will be referred to as Type 3. For each of the sets of values for
the vector C(i) several values of the variance of the term €j were used in
order to give several different levels of amplitude change in the seasonal. TIn
addition values of B other than one were used in order to introduce trends

in the seasonal amplitude.

The results of these computations show that all of the methods per-
formed quite well when the generating process conformed to the assumptions on
which the particular method wag based. In the simple case of the constant
seasonal (Type 1 with no error term) Hannan's method was definitely superior.
Wald's method performed well for a constant seasonal pattern but changing ampli-
tude. The Census Method performed well when both amplitude and pattern were
changing if the changes in amplitude did not become large or relatively rapid.
The rational function method tended to combine the ability of the Census Method
to adjust for very slow changes in pattern with the ability of Wald's method
to estimate changes in amplitude. As the characteristics of each method are
considerably different we will now discuss each method separately in greater
detail.

First, however, it is necessary to explain the general Fform of the
graphical results. Each page of graphs (Containing either four or six graphs)
displays the results of the analysis of two time series. Viewing the page of
graphs with the figure label at the bottom, the top row of three graphs dis-~
plays the two time series nsed in the computation. Each graph is divided in

half horizontally. The upper half of the graph shows the series resulting
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from the seasonal adjustment process while the lower half shows the original
generated series. Nine vears (or 108 observations) are shown on each graph.
Thus the second graph is a continuation of the first for observations 109
through 217 of each series. The third graph completes the series of 300
observations. The lower row of graphs gives the spectra of the two series
and the cross-spectrum between them. The first graph‘in this row gives the
spectra of the two series. The spectrum of the series from the seasonal ad-
Justment process is labelled Y while the other series is labelled X. 1In
some cases, as in Figure 6,01.1, these two spectra lie on top of each other
and are not distinguishsable. If, in addition, the two series were not sig-
nificantly different at any frequency in terms of the cross-gpectrum, as for
Figure 6.0l.l, then the graphs of the cross-spectrum are not shown. The
deletion of the two graphs following the graph of the spectra implies that the
coherence between the two series was not significantly different from unity
at any frequency. 1In the cases where the two series were gignificantly different
the graph following the graph of the spectra gives the coherence between the
two series. The last graph shows the transfer function of the two series
where the original series 1s taken as the input and the series from the
seasonal adjustment procegs as the output. The upper half of the graph gives
the gain while the lower half displays the phase.

The following index lists each of the figures and gives the two
series used in each case ag well as the type of seasonal and the name of the

seasonal adjustment method.




Figure No.

6.01.1

6.01.2

6.01,3

6.02.1

6.02.2

6.03.1

Adjusted
Adjusted
Seasonal
Adjusted
Seasonal
Adjusted
Seasonal
Adjusted
Seasonal
Adjusted
Seasonal
Adjusted
Seasonal
Adjusted

Seasonal

and

and

and

and

and

and

and

and

and

and

and

and

and

and

and
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Index to Figures

Series Seasonal
autoregressive Type 1

(error term =0)

sum of autoregressive and seasonal Type 1
estimated seasonal Type 1
autoregressive series Type 1
estimated seasonal Type 1
autoregressive Type 2
estimated seasonal Type 2
auvtoregressive Type 3
estimated seasonal Type 3
autoregressive Type 1
estimated seasonal Type 1
autoregressive Type 2
estimated seasonal Type 2
autorégressive Type 3
estimated seasonal Type 3

Method

Hannan's
method

Hannan's
method

Hannan's
method:

Wald's
method

Wald's
method

Wald's
method

Wald's
method

Wald's
method

Wald's
method

Census
method

Census
method

Census
method

Census
method

Census
method

Census
method
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Figure No. Series Seasonal Method

6.08.1 Adjusted and autoregressive Type 1 Rational
Tfunction
method

6.08.2 Seasonal and estimated seasonal Type 1 Rational
function
method

6.09.1 Adjusted and autoregressive Type 2 Rational
function
method

6.09.2 Seasonal and estimated seasonal Type 2 Rational
function
method

6.10.1 Adjusted and autoregressive Type 3 Rational
function
method

6.10.2 Seasonal and estimated seasonal Type 3 Rational

function
method

6.1 Hannan's Method

As was remarked above, Hannan's method provides the "best" seasonal
adjustment of a series which contains a constant seasonal. The seagonally
adjusted series is nearly identical to the original autoregressive series as
is clearly indicated in Figure 6.01. When the seasonal changes, Hannan's
method simply takes an arithmetic average of each month's values and estimates
this constant average seasonal. Thus Hannan's method continues to perform
satisfactorily only as long as the variations in the seasonal can be adequately
represented by their time averages.

In this context it isg important to mention the effect of the Hannan
method on a non-stationary seasonal. To take the simplest case of a linear

trend in amplitude, it is clear that the estimated seasonal has a constant
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amplitude equal to the average amplitude of the actual seasonal. Thus, for

the case of a linear trend, the error of the estimate reaches a maximum at

both ends of the series and a minimum at the mid-point. In this case the
performance indicated by cross-spectrum analysis may also be somewhat misleading
due to the time averaging property of the spectrum estimates. The cross-
spectrum shows the average error of the method over the sample. If, however,
one 1s not only interested in the average error but also in the expected error
of the estimate for the last observation (or final set of 12 observations) then
the cross-spectrum alone does not give a complete measure of performance. As
was mentioned previously this problem, and others relating to non-stationarity,
are problems where the concept of the pseudo-spectrum may be applied. It has
not been possible in the present paper to pursue this analysis in detail.

The practical limitations of Hannan's method are obvious. First, it
is not often felt to be the case that the seasonal can adequately be repre-
sented by a set of constant monthly coefficients. Second is the fact that the
use of stationarity leads in this case to the result that if the method is

sequentially applied from year to year to a set of data to which each year
12 new observations are added the seasonally adjusted series will in general
have different values for corresponding months not only in the current or
recent years but from the beginning of the series. As has been frequently
observed this leads to the necessity of continuing revisions.
Clearly, the major contribution of Hannan's method is not to be given
in terms of its potential application to actual data but rather in its
explicit treatment of effects of linear operators in terms of frequency decomposi-

tion. Given a constant seasonal, Hannan's technique of adjusting the seasonal
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factors for any effects of the initial filtering operation leads to better
estimates in termé of bias. This technique, obviously, is not restricted

to Hannan's method. It is applicable to any method which employs a linear
operator before estimation of the seasonal. In fact this adjustment technique,
as mentioned previously, was experimentally applied to Wald's method and was

used in the rational transfer function method. For a recent development by

Hannan, which arrived too late for analysis in the present paper, see [11].

6.2 Wald's Method

Wald's method, since it employs certain nonlinear operators, affects
the linear information in the series even when the actual seasonal is constant.
However, these effects are typically quite small and are evident only at
relatively high frequencies.

At the low frequency end of the spectrum Wald's method produces, for
a constant seasonal, an estimate of the autoregressive series very nearly as
good as Hannan's method. As is well known, the point at which Wald's method
breaks down is when the pattern of the seasonal is allowed to change. Wald's
method estimates a constant average pattern (as does Hannan's method) and
uses this constant pattern to produce a "best" estimate of the change in ampli-
tude of the seasonal for each year. This approach provides relatively very
good estimates of the change in amplitude (particularly for rapid changes in
amplitude) of the seasonal when the assumption of the constant pattern is met.
In comparing Wald's method with a method which does not rely on the relationship
of the seasonal in one month to the seasonal in each other month it is clear
that (again assuming the constant pattern) the use of the information contained

in all twelve observations for a given year will lead to a better estimate than
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the use of only the series of annual observations for each month independently.
Figure 6.02 shows the results of the application of Wald's method to a series
containing a seasonal of constant pattern but varying amplitude. Figures 6.03
and 6.0k show the results of the use of Wald's methods when both the amplitude

and pattern are allowed to change.

6.3 The Census Method

The Census method is more general than either of the two previously
discussed methods in that it does not make use of the assumption of either a
constant seasonal amplitude nor a constant seasonal pattern.

However, there are two respects in which the Census Method appears
to be comparatively inferior to the two methods above. First no uce is made
of Hannan's technique of correcting for the bias introduced by the application
of a linear operator to the original data. Since the Census Method uses the
Spencer 15-point formula for this operation, the 12-month component is
attenuated to 20% of its original value. This bias is not clearly evident
in the results because Spencer's formula is applied only after most of the
seasonal has been removed using a éimple moving average. The use of Hannan's
correction procedure eliminates the need for a two (or more) stage process as
used in the Census Method. The second weakness of the Census Method is its
poor response, when compared to Wald's method, to relatively high frequency
variations of the seasonal amplitude. Part of the reason for this relatively
poor frequency response characteristic is the large number of observations for
a single month which are required in order to form a stable estimate (in the
sense that the estimate contains very little spectral power at high frequencies)

of each monthly factor.
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The observation of overriding importance which must be made about
the Census Method is, however, that it performs reasonably well under a wide
range of conditions. Only when the seasonal amplitude changes very rapidly
is the seasonal not completely removed at least in the sense of removal of
the peaks in the estimated spectrum. However, the method does allow sharp
changes: in the seasonal to appear in the adju§ted series. In addition, under
certain conditions, the method alters the series at frequencies other than the
seasonal. Thus the coherence between the adjusted and the autoregressive
series is sometimes quite low at low (but non-seasonal) frequencies. The gain
is also sometimes considerably different from 1 at low frequencies. However,
the phase is uniformly close to zero even under extreme conditions. The fact
that the phase of_the autoregressive gseries igs not significantly altered by
the seasonal adjustment method is of greatest importance for the interpretation
and use of the adjusted series. Since the series may be used by the government
for stabilization policy measures, it may be important to the stability of the
system that a phase lag not be introduced. Figure 6.05 shows the performance
of the Census Method for a constant seasonal pattern, while Figures 6.06 and
6.07 show the result of the same method when béth'the amplitude and pattern of

the seasonal change considerably.

6.4 The Rational-Function Method
This method produces results that are quite naturally similar to the
results obtained by Wald's method. While the method is in many ways similar

to Wald's method, it represents an inovation in the use of a rational-function
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filter for the estimation of the monthly seasonal factors. This removes the
need for the use of g long moving average of the observations for each month
and also reduces the requirement of extrapolation of the final values at this
stage. The rational-function filter which has been used requires only observa-
tions which are coincident with or Precede the gstimate in time. Thus the
estimates for the last twelve months in the series‘are produced exactly as

the previous ones. Therefore no correction of the -estimates is needed as mo%e
data become available, except the correétioﬁlrequired by the initial filtering
of the data. In addition only the last three years of data and the initial
values for the filter estimates are required for the estimation of the adjusted
series for the current year.  After the adjustment method has been applied to

a series then the final values of the rational-function filter estimates may
be saved so that as new dats become available it is only necessary to use

these estimated values and the last three years of data for the new estimation.
The only figures-that will be revised in the entire computation are the last

12 months of each estimation. These are the estimates which are based upon
extrapolations of the 12-month moving average which was applied to the original
observations.

The use of Wald's least squares technique for estimation of the seasonal
amplitude makes the. performance of the rational function method comparable to
Wald's method when the seasonal pattern is constant but the amplitude is under-
going rapid ghange. Figure 6.08 shows the performance of the method under
this condition. Figures 6.09 and 6.10 show the performance of the method when‘

both the seasonal pattern and amplitude  are changing.
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7.0 Conclusions

On the basis of the criteria put forward in the Introduction to this
baper and the computations Presented in Section 6.0 we have been able to compare
the relative performances of various seasonal adjustment methods. The most
important conclusions to be drawn from this analysis are as follows:

7.1 For the case of g constant strictly Periodic seasonal it is

difficult to see how it would be possible to improve upon Hanﬁan's

method. 1In addition, the use of transfer function analysis as

applied in Hannan's method is of general applicability to seasonal

adjustment methods which use moving averages.

7.2 Wald's method, which is unique in its use of the interco?rela-
tion of the monthly seasonal factors, definitely displays the value
of the use of thig intercorrelation when the assumption of g constant
seasonal pattern is met. When the amplitude (but not the pattern)

of the seasonal varies relatively répidly, Wald's method produces

the best estimate of the underlying autoregressive series.

7.3 The value of the Census‘Method is that it fulfills the statéd
objectives reasonably well under all éonditions, It continues to
provide an adjusted series which closely approximates the auto-
regressive series even when both the amplitude and the pattern of
the seasonal vary considerably. Thig result is not at all sur-
prising given that the method uses a moving average estimate of the
change in the seasonal and that it does not rely in any way upon

intercorrelations between the monthly seasonal factors. However,
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there are two points at which the Census Method is relatively weak.
The first is that no correction is made for the bias introduced

by the use of the Spencer 15-point formula. As mentioned Previously,
this correction could easily be made in the Census Method without
any change in the bagic method. Therefore the bresence of this

blas in the current version of the method is not a fundamental
criticism. The other weakness of the Census Method is that the
frequency Tesponse of the moving average used to estimate the moving
monthly seasonal factors is very low even at quite low frequencies.
This characteristic Produces a very stable estimate of the seasonal
factors but a poor estimate of relatively rapid variations in the

amplitude or pattern of the seasonal.

7.4 The rational-function method——basically an extension of Wald's
and Hanran's methods --ig an attempt, shown to be at least rartially
successful, to remove the two weaknesses of the Census Method men-
tioned above, while maintaining the generality of the assumptions
on which the Census Méthod is based. The method is very simple both
conceptually and computationally. In addition some of the problems
of treatment of the end values of the series are avoided through
the use of an asymmetric, single-sided, filter function. This
method is not intended as & complete new method of seasonal adjust-
ment, but is simply presented to show the potential value of the
application of simple ideas of frequency decomposition to seasonal

adjustment.
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Finally, mention must be made of the cost involved in the use of g
seasonal adjustment method which estimates relatively rapid changes in the
seasonal. It is not possible to estimate rapid changes in the seasonal with-
out, in some way, affecting the information in the series at frequencies near
to the seasonal. Thus the more "flexible" the seasonal estimator, the greater
the disturbance to the series at non-seasonal frequencies. In attempting to
estimate a changing seasonal, it would generally seem to be desirable to use
a method that does not completely remove the seasonal in order to reduce the
amount of distortion at non-seasonal frequencies. The exact trade-off between
removal of a varying seasonal and distortion of the series is something which
needs ultimately to be determined in the context of the intended use of the

information in the series.
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Appendix A: Derivation of Wald's Method

This appendix pbresents the derivation of equation 4.2.7 which defines
the estimated seasonal coefficients. We continue the notation established in
Section 4.2 ang DPresuppose the statement of the assumptions given in that
section.

e th .

The values of p(l,k) for the k" month are the same for all i

since p(t) is a periodic function. Replacing these values by a common value

p(k), we‘obtain from equation 4.2.6:

M B

m m
¥(i,k) % NMi,k) Z y(i,k)
i=1 ~ p(k) lzl l=l

i

+ Al
m m m

for k = 1,2,...,12,

Now let
m
£ A(i,k)
i=1 = (k) for k = 1,2,...,12. A.2
N
Also, let
12
= Ak)
=L = A(0)
12

Then substituting in equation A.2: .




12 m
2 AMi,k)
=1 i=1 - )\(O) . A3
12m
H . ! 12:1 '
Replacing the A(i,k) in A.2 by i% & OB(i,k) §(1,%)
=T k=l
where: 8(i,k) - thedeviabion- . of AMi,k) from its mean,
results in: _ _
12
" kil Mi,k)
z + 8(i,k)
i1 12 7
2= - : = A(k)
m
or
m 12 m
bX 2 A4,k) % 3(i,k)
i=1 =1 4 _i= - k(k)
12m m
Using A.3 this becomes
m
8(i,k)
A0) = Ax) = - 71 . AL
m

Let us assume that the maximum deviation of Mt) within a year is v} of the

mean of that year:

12
Z AMi,k)
v k=l

. A.5
100 1

|8(1,k)| <




- 66 -

Taking the absolute values of the left and right sides of A.4 one finds:

' m m 12
S 9(i,k) bX S AMi,k)
. _ i=1 ) i=l k=1 _ o)
MO) - M| = S o0 = Too MO)
m 12m
A.6
m
% 8(i,k)
In general, the 6(i,k) will have alternating signs and =1 will

m
therefore be considerably smaller than Ig5 AMO). This justifies the assump-

tion that:
Mk) ~ A(0) for k = 1,2,...,12 A.7

Consequently, one can write for A.1:

m m
5o¥(i,k) Z yli,k)

i=1 ~ p(k) A(0) + =L ) | A.8

With respect to the residuals 7Z(t) the following two assumptions are made:

12
Z z(i,k)
1 k=1

12m

M8

i

and further A.9

5 2(i,k)
i=
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By definition y(i,k) = 2(i,k) - 2%(i,k). Therefore:

n o m
E y(i,k) = % z(i,kx) - % z*(i,k) . A.10
i=1 i=1 i=1
Since g
12 m
X T 7(i,k)
n k=1 i=1
T 7Z¥(i,k) = P

i=1 12

equation A.10, after dividing by m, becomes:

m m m 12
z y(i,x) < z(i,k) bX % z(i,k)
i=1 ) . _d=1 _ =1 k=
m m 12m
From A.9Q:
m N
% oy(i,k)
= ~ 0 .
m

Hence, A.8 can be replaced by:

=

v(i,k)
1

™

i

~ A0) p(k) for k = 1,2,...,12. A.11

The 12 sums, one for each month, on the left side of A.11 can be obtained from
the w(i,k) series. What is left to be done is to split these sums into the

two components A(O) and p(k), where AN0O) is a constant, being the arithmetic




mean of all A(i,k). The A(i,k) and p(k) are, however, still to be deter-

mined. From 4.2.5, we can write, after replacing s(t) by M) p(e):

V(i k) ~ AMi k) p(i,k) + y(i,k) for i=1,2,...,m
k=1,2,...,12 ,

or, since the function p(t) 1is periodie:
V(LK) ~ A(4,k) p(k) + y(i,k)

Then

Viax) ~ M 0) p0 ¢y

or, from A.1l1

m
o) % v(i,k)
‘s . AMd,k i=] .
~ . +
1lf(l}k) 7\(0) m y(17k>
and
IlJ'(i,k) ~ M(i;k) ’ a‘(k) + Y(j—Jk)
where
m
I V(i,k)
w(i,k) ~ A3, x) and a(k) = =L
A0,
Now the u(i,k) remain to be determined.
A.12 may also be written:
y(i,k) ~ ¥(i,k) - u(i,k) a(k) for i = 1,2,...,m
k=1,p, ,12

A2

A.13
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Since y(t) may be assumed to be g normally distributed random variable,
the u(i,k) may be determined so as to minimize:
m 12

2 [W(i,k) - p(i,k) a(x)]® |
i=1 k=1

The additional condition to be imposed on the function u(t) = %%g% is that

its value will change only slowly over time. Thisg leads to the assumption
that the u(i,k) may be approximated by minimizing:
J=k+5 5
Z o [W(4,3) - n(i,x) a(3)] J=1,2,...,12 A1k
J=k-6
subject to the condition that for each point + in time, the value of u(t)
will be constant in each period (t—6, t+5) for t = 738540..,(n- 5). 1)

Rather than minimizing the expression [¥(i,k) - u(i,k) a(k)]g with
respect to u(i,k) over the whole period t+ = + 7,8,...,(n- 5) it is minimized
over consecutive l2-month periods. The first period includes the time points
758,...,18, the second one 8,9,...,19 etc., the last one (n-16), (n-15),...,
(n-5); there are, therefore, n-6 periods all together. The condition imposed
on the u(t) assures that the 12 u's related to the first period,

(1), w(z), ..., u(12) will all have the same value, say C(1). Similarly,
the 12 u's related to the jth period, p(j), u(j+1),..., p(g+11), will
have the same value C(j), where, in general, C(l) % 0(2) % cee % C(j), A
particular u, say u(i), is deterﬁined when the minimization of equation

A.1%  hnas been performed for the 12-month period 1.

1) It should be noted that if, in A, 15 the index j of W(i,g) and a(j)
becomes < 0, the former are replaced by (i~ -1, j+12) and a(J+12)
and if j > 12 by V(i= 1, j-12) and a(j- 12),
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Replacing the 12 u(i,k)'s in A.14 by & single u(i,k) and

differentiating that expression with respect to that u(i,k) we have:

k+5
=y v(1,3) a(y)
u(i,k) = JZE; , A.15
£ [a(3)1°
J=k-6

The seasonal fluctuations: s(i,k) can now directly be derived from these

p(i,k)ts:

k+5
Z V) a()
k) = al) k(Lx) = a) Zk , A.16
- la(i)1?
J=k-6

Since the same 12 a(k)'s appear in the denominator repeatedly,

formula A.16 can be stibl further simplified to:

1c+5
Z o ¥(4,3) a(y)
s(i,k) = a(k) Jzkig , A.17
£ [a(4)1°
£=1

Now, the s(i,k) can be obtained from the original observations o(t)
via the series of differences w(t) and the ‘a(k) derived from the w(t)a

Wald also includes in his monograph the following scheme for carrying
out the computational steps:

1. Pirst $*(t), the 12-month moving average of @(t)) is computed.

*
2. Then the differences V(t) = P(t) -9 (t) are formed and put
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in the form of a matrix with 12 columns, one for each month.

At this point, it should be remarked that if in actual situations
the values of some of the V¥(i,k) are too extreme, due to
Special circumstances (strikes, for example), then these w(i,k)
may be excluded from the rest of the computations.

For each month k(k = 1,2,...,12) the arithmetic mean a(k)

of the values of V(i,k) which appear in the kth column of

the matrix is then computed.

This is followed by an adjustment of the a(k) according

to the formula:

a'(k) = a(k) - |a(x)] la(i§T)++(:§§§]++a::.++afi%ig)7“' A'ls

12
so that = a'(k) = 0.
k=1

Then the series F(i,k) = b'(k) w(i,k) is formed where

a'(k)
12 5
5 [a'(e)]
£=1

b' (k) =

Adding the first 12 values of the series F(i,k) will give u(1),
the lst term of the u(t) series. Subtracting from u(l) the
lst term of F(i,k) and adding to it the 13th term of F(i,k)
will give u(2), the 2nd term of the u(t) series. This pro-
cedure is continued till the last term of F(i,k) has been

added and the (last—lE)th term of F(i,k) has Dbeen subtractéd
from p(t-1) to give u(t). After the up(t) series has been
computed, it is arranged in the form of a matrix with 12

columns, one column Tor each month.
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The seasonal fluctuations s(i,k) are then computed according
to the formulsa:

s(i,k) = a'(x) u(i,x) . A.19

It is not possible to obtain values for p(t) and s(t) for
the last 11 months this way, which is a serious drawback in
practical applications. Wald suggests in [27] +that the
simplest solution to this problem is to add 11 more terms

to the p(t) series, all equal to the last computed u(t).

This will then make it possible to compute the s(t) for the
last 11 months on the basis of A.19. However, the extrapolation
technique described in Section 3.0 is shown by Wald to be a
better procedure.

Finally the seasonal series s(t) is subtracted from the

series 9(t) to give the seasonally adjusted series.
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Appendix B: Details of Computations

While analysis using the computation of spectra and Cross-spectra is
becoming more widespread in economics, the technique is neither completely
accessible to all mathematical economists nor is it fully standardized. There-
fore the following definitions and equations will be stated.

The correlation coefficient for two series, Xy and Yy s (which may

be identical) is defined by:

N-S _
z (Xt - X)(yt+s - )
R (s) = b=l s =0 m
Xy N N 1/2 Pt
-2 2
= (xt - x) 2 (y£ - v)
t=1 t=1
Where: N - number of observations.
- L x
N t=1 t
y = —= § .
N £=1 t
Rey(s) = B ()
RXX(S) = RXX(—S)
The spectrum is then given by:
o iws
ny(w) = 5 ny(s) A(s) e




-7k _

where:
Ms) = 1-6(2)% +6()2))3 s < 2
= 2(1 - |2])] s > B
Due to RXX(S) = RXX(—S),
m
Fxx(w) = RXX(O) +2 3 RXX(S) Ms) cos ws

s=1

Writing ny(w) in terms of its real and imaginary parts we have the real part,

the co-spectrum:

ch(w) = ny(o) + 5

oo [ny(s) + Ryx(s)] A(s) cos ws

and the imaginary part, the quadrature spectrum:

m
QXy(w) = 3 fﬁxy(s) - Ryx(s>] As) sin ws
_ s=1
From these we define:
1. Coherency

|7, ()]
2 _ Xy
Sr(®) = 7 (O)F,_Ta)

2. Gain
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3. Phasge

All of the series computed for thig Paper were made up of 300 observa-
tions. - 100 lags were used. Thus N = 300, m = 100.

All of the computations were Fortran bProgrammed for the Princeton
University IBM 7090. Extensive use was made of the on-line graphic display
and recording facilities on the computer. Tn fact only Summary statistics
and identifying comments were output on tape for subsequent brinting. A1l
other results, of which the figures in the Paper are examples, were recorded
directly on 35 mm microfilm, Without thig graphic output facility, the develop-
ment of the various brograms would have been much slower, the analysis of
results vastly slower and more laborious, and the analysis and development

of the rational-function method nearly impossible within the time available,
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