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ABSTRACT

Two exact tests are presented for testing the hypothesis
that a linear [ratio] model explains the relationship between
variables as opposed to the alternative that the ratio [linear]
specification is correct. The first test is parametric and uses
the F - statistic. The second test is nonparametric and uses
the number of peaks in the ordered sequence of unsigned residu-
als. In conclusion, the results of some experimental calcuia—

tions of the powers of the tests are discussed.



TESTS TO DISCRIMINATE BETWEEN LINEAR AND RATTIO MODELS

1. Introduction

The formulation of economic hypotheses frequently involves the

choice between two concrete models:

Yy = ag fagXyy f oo bax o+ (1)
and
y. x
Ei = ao—-:L + al—ih e ta + VL (2)
mi %y i

where the following assumptions are made irrespective of which model is
true:

(a) The error term (u in (1) and v in (2)) is normally dis-
tributed with zero mean, constant variance and is serially independent.

(b) The independent variables are nonstochastic and identical in
repeated samples, or if not, are distributed independently of the error
term.

Three illustrations from an economic context will suffice to show
the importance of the choice between (1) and (2).

(a) Assume that we wish to predict for some product the effect of
advertising on sales on a cross-sectional basis by states. Let Si be

total sales in the ith state, a; the number of dollars expended on

1. A somewhat less general alternative to (1) is discussed by Valavanis, S.,
Econometrics (McGraw-Hill, 1959), pp. 152-153, who writes (2) with

a = 0.
o
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advertising in the ith  state and Pi the population in the ith

state. We may then hypothesize either

S, = a+ bA, + cP,
1 1

1
or
S A
i 1 i
-I-)'-'.'—a?+b—PT+C
L 1 1

(with a possibly equal to zero).

(b) Much attention has been devoted to the problem of predict-
ing aggregate consumption on the basis of aggregate income on a time
series basis. Let Yi be dollar income in the ith period, Ci con-
sumption in dollars in the ith period and Pi a measure of the price
level in the ith period. Investigators frequently face the choice

between the following models:

C. = a+ bY, + cP.
1 i i
or
C. Y,
1 1 i
- = ag— + b + c
Pi Pi Pi

(with a possibly equal to Zero), thus relating either consumption in
money terms to money income or real consumption to real incomes.

(c) Recently a great deal of interest has centered on analyzing
the portfolic behavior of various economic units. In particular, port-
folios have been decomposed into broad asset categories and the changes
in asset composition over time have been examined. In these models it
is frequently assumed that the equilibrium holdings of all assets are
homogeneous.of degree one in dollar magnitudes. If A 1is the dollar

magnitude of the asset in question, W the dollar magnitude of the total
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portfolio, r the rate of interest and Xl’X other variables, meas-

2

ured in dollars, affecting A, the hypothesis can be expressed as

either
X X
A 1
W_a+b—ﬁ-+c—w—+dr
or
X X
1 2
A—W(a+ b—TIJ—'FCTJ—-i-dI').

The purpose of thié paper is to state two simple exact tests of
the hypothesis that (1) [(2)] is the true model against the single alter-
native that (2) [(1)] is the true model. Section 2 is devoted to & dis-
cussion of the tests. Section 3 presents and discusses some experimen-

tal results concerning the power of the tests.

2. Some Exact Tests

We shall consider the two models in the following form:
Y=XB+U (3)

where Y and X are respectively nx1l and nx (m+l) matrices of
observations, B is the (m+l) x1 vector of coefficients and U is

the nxl1 veector of error terms and
= 1
[Y/x_] (x/x 1 + v (k)

where [Y/Xm] and [X/xm] are matrices differing from Y and X
only in that they contain the elements of Y and X each divided by
the corresponding element of the last column of X . Of course the
ratio hypothesis is meaningless if any X - value is zero; typically in

economic applications the X -variable used as deflator is strictly
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positive. The ratio hypothesis is obtained directly from the linear
hypothesis by division by xm; hence if the linear model (3) is true
and the ratio model (4) is fitted, the assumption of homoscedasticity
of the residuals from the correct model implies that the residuals from
the incorrectly specified model cannot be homoscedastic. To distin-
guish between (3) and (4) it appears natural to test both models for
homoscedasticity. The following possibilities arise: (a) we cannot
reject the hypothesis of homoscedasticity in either case. We shall
then suspend judgment as to which model is preferable. (b) We reject
the hypothesis of homoscedasticity for one but not the other case. We
shall then accept the formulation leading to homoscedastic residuals
as the true one. (c) We reject homoscedasticity in both cases. We are
then again (as in (a)) unable to choose between the ratio and linear
models but are forced to consider an enlargement of the set of possible
alternatives.

To test for the homoscedasticity of (3) we may proceed in one of
two ways:

A Parametric Test. On the assumption that the error terms are

normally distributed a test can be constructed in the following manner.
(a) Order the observations by the values of the variable x
which is the potential deflator; i.e., we renumber such that x
if and only if i < j and we then index the remaining variables so
that the index values correspond with those of the X 5
(b) Given some choice of the number of central observations, k,
to be omitted, we fit separate regressions (by least squares) to the

first (n—k)/2 and last (n—k)/2 Observations, provided also that
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(n-k)/2 > m+1l, the number of perameters to be estimated.

(c) Denoting by Sly and 8, the sum of the squares of the
residuals from the regressions based on the relatively small and rela-
tively large values of X, respectively, we form

R = 5
1

n-k~2m-2 n-k-2m-2
2 ’ 2

The gquantity R clearly has the F-distribution with <
degrees of freedom under the null hypothesis. Under the alternative
hypothesis values of R will tend to be large since, if the ratio
hypothesis is true, u = v~ and Var(u) = xi Var(v) = xi constant.

The followiﬁg observations are relevant:

(a) Since the sum of the squares of the residuals can be ex-
pressed as a quadratic form in the true errors,5 the ratio R is homo-
geneous of degree zero in the true error terms; hence the ratio is
independent of o under the null hypothesis and o, if the alterna-
tive hypothesis is true.

(b) The ratio R is independent of the regression coefficients

(c) We normally cannot use the standard test for the homogeneity

of several variances since we generally do not have repeated observations

2. An analogous procedure holds when we test for the homoscedasticity of
(). The ordering procedure, of course, is carried out with l/xmj

rather than X

If the linear model is true, then Var(v) = Var(u)/xi . However,
since we order by l/xm for the ratio model, R would also tend to
be large if the linear hypothesis is correct and we estimate a ratio

model.

3.5 0° 2 ' (I - X(X'Z) K.
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for given x's.4 In addition, the number of observations is frequently
too small for an analogous multiple division of a given sample.

(d) The power of this test will clearly depend upon the value of
k ; for very large values of k the power will be small but it is not
obvious that the power increases as k tends to O.

(e) The power of the test will clearly depend on the nature of
the sample of values for the variable which is the deflator. Thus, if
the variance of X, is small relative to the mean of X the power
can be expected to be small and conversely.

A Nonparametric Test. A nonparametric test can be constructed

in the following manner.

(a) Fit both the linear and the ratio models to the entire
series of data. If the data were generated by the linear [ratio] model,
the variances of residuals from the ratio [linear] model will be monoc-
tonically declining [increasing] as the value of the deflator variable
increases.

(b) Confining our attention to the residuals from the linear
model,5 let ﬁi be the 1ith residual corresponding to the ith value
of the deflator variable X5 Thebset of residuals, {ﬁj}, is assumed
to be ordered in the following manner. First, we order the values of
the deflator variable X, S0 that X1 s ij if and only 1if 1 < j.
We then index the residuals ﬁi so that the index values correspond

with those of X5 Thus if i < J then ﬁi appears to the left of

k. Goldberger, A. S., Econometric Theory (John Wiley and Sons, Inc.,
1964), p. 243,

5. Analogous remarks are valid if we confine our attention to the resid-
uals from the ratio model. For a full test both procedures are
undertaken.
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ﬁj in the ordered 1list of residuals.

(c) Define a peak in the ordered residuals at observation 1 to
be an instance where lﬁi[ 2 Iﬁj[ for all J < 1.

(d) If the residuals are heteroscedastic such that the variance
increases with X the number of observed peaks will tend to be large.

(e) Otherwise, under the null hypothesis of homoécedasticity we
can calculate the probability of 0,1,...,n-1 peaks in a sequence of
n residuals as follows.

Define N(n,k) as the number of permutations of n absolute
values of residuals yielding k peaks. For convenience we define
N(1,0) = 1. We make the observation that adjoining an nth  residual
to n-1 others can create a total of k peaks in two ways: (1) if the
preceding n-1 residuals ylelded k peaks and the last one creates no
new one, and (ii) if the preceding n-1 residuals yielded k-1 peaks

and the ith one does create an additional peak. This ylelds immedi-

ately the following recursions:

N(n,n-1) = 1

N(n,n-2) = (n-1)N(n-1,n-2) + N(n-1,n-3)
N(n,k) = (n-1)N(n-1,%k) + N(n-1,k-1)
N(n,1) = (n-1)N(n-1,1) + N(n-1,0)
N(n,0) = {(n-1)N(n-1,0).

Since 1  absolute values of residuals can appear in a total of n'
permutations the probability P(n,k) of n absolute values of resildu-

als yielding exactly k peaks 1is
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1
P(n,k) = 5N(n,k)
, k
The values of P(n,k) and of the cumulative probabilities % P(m,1i) are
i=0

displayed for selected values of n and k in Table 1.6

The concrete process for applying this test is then as follows:
(a) We fit least squares regression lines to the data according to both
the linear and ratio models; (b) we order the absolute values of the
residuals from each regression such that the number of peaks will tend
to be large if the hypothesis employed in fitting the particular rela-
tion (linear or ratio) is false; (c) we count the number of peaks in both
series of residuals and compare them with Table 1; depending on the out-
come of the comparisons we accept one or the other or neither hypothesis
analogously with the procedure discussed under the F - test.

It should be noted that this peak test is not a general test of
homoscedasticity. It is such a test only under an alternative hypothe-

sis which states that Ou is monotonic in Xm

3. An Bxperimental Calculation of Power

Sampling experiments were performed on a simple model with one independ-
ent variable in order to obtain (experimental) estimates of the powers
of the two tests. TFour parameters were varied: (a) the total number of
observations was either 30 or 60; (b) the number of (central) observa-
tions omitted was O, 4, 8, 12, or 16 for the parametric test; the omis-

sion of central observations is not relevant for the nonparametric test;

6. It is noteworthy that the recursions above also yield the number of
permutations of n objects with k+1 cycles. The numbers generated
are therefore the unsigned Stirling numbers of the first kind. See
Riordan, J., An Introduction to Combinatorial Analysis (John Wiley
and Sons, New York, 1958), pp. 66-T2.
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(c) the independent variable was identical in repeated samples and each
particular sample of x's was chosen from the uniform distribution
with mean B = 10, 20, 30, 40, 50, and (d) standard deviation o, =

5, 10, 15, 20, 25, 30. Only those cases were used in which the range
of the actual sample of x's generated did not overlap the interval
(-m, 1). For each MO combination one sample of x;s was gener-
ated and for each such sample 100 samples of 30 (or 60) wu-values

were generated from the normal distribution with zero mean and unit

variance. Corresponding samples of 7y - values were calculated from

.= a_ + a.x. + u.
yl o] 171 i

.

and the resulting samples of x and y values were used to calculate

the F -ratio for both

N (3-1)
and
3.
1 A~ l A
X_.- = aoz-. + al . (5‘2)
i i

Two statistics are of particular relevance: (a) the relative fregquency
(in 100 trials) of cases in which the false hypothesis (3-2) is rejected,
this being an estimate of the power of the test and (b) the relative
frequency of cases in which the correct statistical decision is reached,
i.e., (3-1) is not rejected and (3-2) is, this being also an estimate

of the power of the test. Since in the present experiments there is vir-
tually no difference between the two statistics, we shall concentrate

our attention on (a).

Tables 2 and 3 contain experimental estimates of the power of the
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parametric test for n= 30 and n = 60 respectively. Each case —
cases being numbered on the left — represents 100 replications of the
experiment for a particular choice of a sample of x’s. TFor each case
we rank the powers for the five values of k ; the number of omitted
central observations. If Kendall’s coefficient of concordance W is
calculated for each table, duly taking into account the number of ties,
we find W= .379 for Table 2 which is significantly different from
zero on the .05 level and W = .170 for Table 5 which is not. Most of
the significance of W for Table 2 is due to the last column. The
average powers over all cases are displayed in the last line of each
table; if we pretended that we could use the ordinary test of the
hypothesis that two percentages calculated from two independent samples
are the same, we would find that the largest actual difference is sig-
nificantly different from zero in Table 2 but not in Table 3. On the
whole we cannot reject the null hypothesis that — within the ranges
examined — the number of omitted central observations leaves power un-
affected with the possible exception of the case where the number of
omitted observations becomes very large compared to the total number of
observations. It is nevertheless interesting to note that the highest
mean power figures occur for k=8 when n= %0 and k = 16 for
n = 60.

We thus concentrate now on k=8 for n = 30 and k = 16 for

60. Tables 4 and 5 display the experimentally calculated power of

1l

n
the parametric test tabulated by the parameters of the distribution from

which a sample of x’s was chosen for each set of 100 replications.7

(. The two tables do not contain entries in all corresponding positions
since no calculations were performed when s sample of x’s chosen
happened to contain an x value less than one.
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The tables confirm the conjecture that an increase in O relative to
M improves the power of the test. If we calculate the sample ratio of
the mean of x +to the standard deviation of x and plot 1t against the
power we obtain Figure 1 which further confirms the result. Tables U
and > and Figure 1 also provide an estimate of the increase in power due
to an increase in n .

Analogous results hold for the nonparametric peak test. Estimates
of the power are displayed in Table 6. As expected, power generally
increases with n and cx/uX - Perhaps more unexpectedly, the powers
compare quite favorably with the parametric test, particularly when
ox/hx and n are both large. In fact, over a comparable subgset of
cases computed for n = 60 the power of the peak test is 63 per cent of
the power of the F -test. It appears thus as a sensible alternative to

the F -test when the distribution of residuals is not known.

L,  Conclusion

Two tests have been proposed for testing the hypothesis that a
linear rather than a ratio model explains the relation between variables.
A parametric F -test and the nonparametric peak test both rely upon
testing residuals for homoscedasticity as against the alternative that
residual variances are monotonic in the independent variable. It should
be noted that the peak test can also be used as a two-tailed test when
one examines whether the residual variances are monotonically increasging
or decreasing in the independent wvariable. Finally, it should be men-
tioned that we have not dealt with the case treated by Theil where the

variance of the residuals is proportional to the square of the mean of
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The power of both tests is estimated from

sampling experiments and found satisfactory.

TABLE 1. Cumulative Probabilities for the
Distribution of Peaks
P (number of peaks S x)
n) x=0 x=1 x=2 x=3 x=UL x=5 x=6 x=7 x=8 x=9 x=10
5[.2000 .6167 .9083 .9917 1.0000
104.1000 .3829 .TO61 .9055 .9797 .9971 .9997 1.0000
15|.0667 .2834 .5833 8211 L9433 L9866 .9976  .9997 1.0000
20].0500 .2274 .5022 .7530 .9056 .9720 .9935 .9988 .9998 1.0000
25(.0k00 1910 .Lhkk1 .6979 .8705 9559 L9879 .9973 .9995 .9999 1.0000
201.0333  .1654 .LOO1 .6525 .8386 .9395 .9815  .9953 .9990 .9998 1.0000
351.0286 .1k62 .3654 .614L 8098 9234 .97h5 19929 .9984 .9997 .9999
40[.0250 .1313 .3373 .5818 L7837 .9078 .967h .9903 .9975 .9995 - 9999
hsl.0222 L1194 .3138 .55%6 L7600 .8930 .9601 .987hk .9966 .9992 ., 9998
501.0200 .1096 .29k0 .5288 .7383% .8788 .9530  .98LLk 9956 .9989 .9998
551.0182 .101k .2769 .5068 .718Lk 8653 .9oks6  .9813 .99kl .9986 .9997
60{.0167 .094k 2620 L4871 7001 .852k  .938k 9780 .9932  .9982 .9996
TABLE 2. Relative Frequency of Cases in Which False
Hypothesis is Rejected for n = 30
Case k=0 k=14 k=8 k=12 k=16
1 ST 150 .L50 . 100 . 390
2 .eko .190 .240 .210 .210
3 .820 . 840 .810 . 820 . 730
4 . 990 . 990 . 990 . 990 .980
5 . 980 . 990 . 990 . 990 . 990
6 .140 .1ho . 100 .130 .080
7 .70 490 .520 .530 . 430
8 .860 . 920 . 920 . 900 .800
9 . 980 .990 1.000 1.000 . 990
10 .150 .150 .150 .150 . 060
11 .370 . 360 . 330 .24o .190
12 .L450 .k90 . 510 .510 . 500
13 . 920 . 900 . 900 .870 .810
1k . 9ko . 950 . 950 . 960 .930
15 .990 . 990 1.000 1.000 .980
Aversge 6L .656 .657 647 .605

8. Theil, H. "Estimates and Their Sam ling Variance of Parameters of Certain
» P

Heteroscedastic Distributions," Revue de 1'Tnstitut International de

Statistique, 19 (1951), 1k1-147.
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TABLE 3. Relative Frequency of Cases in Which False
Hypothesis is Rejected for n = 60

Case k= k=1 k=8 k=12 k=16
1 1.000 1.000 1.000 1.000 1.000
2 . 700 . 720 .690 .710 . 780
3 1.000 1.000 1.000 1.000 1.000
L . 500 480 . 510 . 480 . 500
5 . 960 .970 .970 . 960 . 960
6 1.000 1.000 1.000 1.000 1.000
7 .290 .290 . 300 . 320 . 340
8 .ThO . 750 .ThO 770 770
9 .970 .970 .980 .970 .970
10 1.000 1.000 1.000 1.000 1.000
11 .310 .290 . 290 . 310 .310
12 .550 . 560 . 550 .610 .580
13 . 920 . 920 . 920 .9Lko . 960
14 . 960 . 960 . 960 . 970 . 970
15 1.000 1.000 1.000 1.000 1.000

Average .793 .79k .79k .803 . 809

TABIE 4. Power for k = 8 and n = 30 Tabulated by the
Parameters Characterizing the Independent Variables

by 10 20 30 40 50

X

5 L4150 .2Lko .100 .150
10 _ . .810 . 520 . 330
15 . .990 . 920 .510
20 . 990 1.000 . 900
25 - 950
30 1.000

TABLE 5. Power for k = 16 and n = 60 Tabulated by the
Parameters Characterizing the Independent Variables
F\ AN

M 10 20 30 40 50
g~ X

5 1.000 . 780 . 500 . 340 . 310
10 1.000 - . 960 .770 .580
15 1.000 . 970 . 960
20 1.000 . 970
25 1.000
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TABLE 6. Power of the Nonparametric Test

for n= 30 and n = 60

10

15

20

25

50

BB BB BB BB B8 BB

o

I

wou

]

30
60

30

60

30
60

30
60

30
60

30
60

10 20 30 40 50
.. .27 .16 .16 .10
.75 .37 .2k .18 - .21
.. .33 .30 .18

.86 .38 .29 .22

.56 .45 2k

.84 .54 .5k

.53 .54 bl

.. .78 .69

.52

.78

6L

.86
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