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ABSTRACT

Consider a multivariate stationary time series
{Xl(t),...,Xk(t)} in which a number of the components are
possibly identical. The k-th order polyspectrum of this
series is defined to be the Fourier transform of the k-th
order cumulant (which is effectively of order (ksl.) The
polyspectrum may be estimated by three distinct techniques;
(i) Fourier transforming an estimated cumulant with the use
of convergence factors, (ii) forming an appropriate combina-
tion of band-passed versions of the series, (iii) forming an
appropriate combination of the results of complex demodulating
the series. Under appropriate conditions these estimates may
be seen to be consistent and asymptotically normal.

Polyspectra would appear to be of use in the following
two problems, (i) does a particular frequency component in
one of the series under consideration appear to be linearly
related to the product of frequency components in other series,
(ii) is there some function of a series X(t), say F(X(t)}
admitting a simpler harmonic analysis. These two questions
lead to the definition of bolyspectral coefficients which

may be estimated from an observed stretch of series.
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AN INTRODUCTION TO POLYSPECTRA

1. Introduction and Summary

The intent of this paper is to study the higher-order spectra or
polyspectra of multivariate time series. The definition of such spectra for
the case of a single time series has been given in [3], [18], for example,
where various properties of the spectra have been considered as well.

The polyspectrum, in the second-order case of a single time
series, reduces to the power spectrum considered in [2], (91, [14] for
example, whereas in the second-order case of two time series, it reduces
to the cross-spectrum considered in [5], [10]. Finally in the third-order
case of a single time series, the polyspectrum reduces to the bispectrum
recently considered in [8], [16], [19].

The structure of this paper after the present sectiop is as
follows: Section Two is an attempt to motivate the consideration and
estimation of polyspectra. The third section presents basic definitions
and properties relating to polyspectra, while the fourth section is con-
cerned with estimation problems relating to polyspectra. Section Five ig
concerned with elementary statistical Prceperties of a variety of estimates.
The final section containsg an argument delayed from an earlier section of
the paper to the effectbthat for a wide variety of processes it makes more
sense to consider the Fourier transform of the cumulant o%‘the process under
consideration rather than the more elementary Fourier transform of the
product-moment.

Reference should also be made to an early paper [11], related to

the procedures described in this paper.



2. General Motivation

In a heuristic sense, the harmonic analysis of a time geries X%,
means the consideration of a representation of the series of the form,

10 t+i0
X, = TR e & K . (2-1)

This consideration gains some validity from a theorem of Cfamer's,
[4], to the effect that any wide-sense stationary time series X, , with mean

0, has a representation of the form,
iwg ‘
X, = | & anw) (2-2)

where Z(w) is a stochastic set function.
In the representation (2-1) one often thinks of the various terms

in the sum as being independent, perhaps because the 2z(w) in (2-2) is

such that,
*
BE{dz(w) az"(vw')} = o

unless w = w', implying independence in the GauSsian cage. Or perhaps it
is because cne imagines the series ag coming about as the result of a
variety of linear operations on a Wiener process and one knows thaf linear
operations do not allow components at different frequencies to influence
one another (see [13], p. 83, for example).

If one persists in the above sort of thinking, one is led solely
to the power spectrum in the case of a single series or the cross-spectrum
in the case of two series, because there is“ﬁeed of a function of Sglely a

single frequency to describe the behavior of the serie$.




In practice the various frequency components of a time series do
not always appear to be completely independent of one another. TFor example,
many economic time series appear to contain a seasonal effect of persistent
non-cosinusoidal shape. Such an effect is possible only if the seasonal
and its various harmonics remain in some sort of fixed relation to one
another.

A simple form of the"tying together of a number of frequencies

iwkt+i<l>k

would occur if a number of independent frequency components, Rk e ,

instead of simply adding together to produce a series X, as at (2-1), added

ot
together and also beat together in pairs to produce a time series,
iwkt-'ri@k i, i( W W, Yt+i( 0, +@ ﬂ)

X, = XR e + Z A

£ . ke € BBy e . (2-3)

That 1s, we are moving away from an additive model tc a mcdel con-
taining second-order product interactions. This is similar to the procedure
in [6] and [17], where as an alternative to the additive two factor analysis

of variance model,

Vig T RO ARyt (2-4)

iJ 1d

the model,

yij b+ O+ Bj + Caﬁﬁj +oes s (2-5)

J

is considered. The generalization being made is also similar to what Bartlett

did in [1], p. 47, where instead of the usual additive factor analysis model,

X, = m,
a1

i fl + mi £, + m,

ofs s. (2-6)

1 i071i




he considered the model,

by .= mi f. + mief

2 o
1 15 gy T 4y (£] - 1) + m (5 - 1) +m;

o 3t 051

(2-7)

(The two factor case was presented for simplicity. )

If desired, the second-order terms that have been added in each
of the above models may be looked at as further térms in a Taylor series
expansion involving some basic entities of interest.

A hint of what is to come in this baper may be provided by the
observation that in the expression (2-3), the correlation between the pro-
duet of the components at frequencies wk and wﬁ with the component at
frequency wk + W, is one, provided no other pair of frequencies present
in the expansion add up to wk +w,.

One may naturally extend all of the above discussion to a situation
in Which one imagines a number of frequency components, from a variety of
time series Xi(t), cee Xk_l(t) beating together to produce s component
in some additional time series Xk(t). Such a situation may be inquired
into by means of polyspectra.

Another approach to the introduction of polyspectra can be made
through the consideration of nonlinear operations on the series involved.
This approach is analogous to the introduction of power spectra because
of the ease with which the effect of certain linear operations upon the
original time series may be described by their effect on the power spectrum.
If one wishes to describe easily the efféctlbf multilinear or polynomial
(in the sense of [12]) operations, one finds‘oneself led to the polyspectrum.
Tukey in [21] has coﬁmenced the development of a calculus relating poly-

nomial operations to polyspectra.




3. Definitions

Consider a multivariate stochastic process [Xl(t),Xg(t),,.,,Xk(t)}
in which a number of the components may be identical. ILet this process be

such that the product moment,

= E(X(ty).0x (8)) (3-1)

of order k and all lower orders exists.
In the remainder of this Paper the following notation will be

adhered to:

(i) (Hl’Hg"°°’Hz) corresponds to a grouping of the integers
1,2,e..,k into £ groups. (The word group is used to indicate that
order does not matter.)
(i1) t_ = (b, ,b, ,...,t. ) where corresponds to the
T 1,77, 1j

particular grouping (il,ig,.a,,ij); For example if = = (1,8,9),

tT[ = (tl;t8,t9>-
Making use of the above notation, the cumulant of order k may
now be defined as,

0, [teeot) = 2 (-1)PH(p-1): mo (6 )...m (%

IS L 1 P b

The summation in this expression extends over all ways of grouping the

subscripts l...kx .
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The definition (3-2) may be inverted to obtain an expression

for the product moment in terms of the cumulants, namely,

M (t

- (b Jovee (5 ) . (5-3)

7 ki

,.
ok L T

_ov,t ) = ZCT{
b

From this point forward, assume that the series in stationary
through the k-th-order cumulant, that is the k-th-order and all lower-

order cumulants are such that,

P bbby, obr) <o) tnt) L (30h)

for «o <t <w® in the continuous case or t = 0,+l, 42, ... in the

discrete case. This assumption of stationarity implies,

Cr. . x(® Bpreeenty) = Cl...k(tl-tk’tg'tk)"-:o) . (3-5)

The k-th-order polyspectrum of the multivariate time series
{Xl(t),...,Xk(t)} is now defined to be the (k-1)-th order Fourier

transform Cl.,.k(ml’mz"”’wk-l) of Cl“.k(l‘l,’fe,...,Tk_l,O).

In order to maintain +he symmetry of the series involved, consider
instead the k-th-order Fourier transform of Cl k(Tl’TE""’Tk)'

This is easily seen to be
6(&1 + w2+...+gk) Cl...k(wl’we"“’wk) s (3-6)

8(w) being the Dirac &-function and @, & dummy argument added to

Cl...k(wl""’mk—l) such that @ = '(“ﬁ Foeodt wkfl).

At this point the reader is no doubt wondering why the polyspectrum

was defined as the Fourier transform of the cumulant rather than of the




broduct moment. Two feasons may be'given for this choice. The first
reason is identical to the reason why in the second-order case the means
are often subtracted from thé series, namely‘to avoid the occurrence of
spikes. The argument demonsffating that for a wide class of processes
spikes will occur in the Fourier transform of the product moment, but
not in the Fourier transform-of the cumulant, is so lengthy that it has
been postponed until Section 6.

A second reason for considering the cumulant is the following.
In the Gaussiah‘case, ali‘of the ihformation is contained in the first
two moments, consequently a k-th-order product moment, k > 2, has no new
information to pfovide, nor does its Fourier transform. The k-th-order
cumulant is that function of the product moments of order k and less
which is zero in the Gaussian.case. Consequently the consideration of
the cumulant in the Guassian case is not liable to deceive one into believing
that he has gained some information, while in the non-Guassian case it does
provide an indication of the non-Gaussianity. To meke this last statement
quantitative, suppose that the process Xt is the sum of a Gaussian

Pprocess Gt and an independent non-Guassian Pprocess Yts In this case

the cumulants of the process Xt of order higher than two are identical

with the cumulants of the brocess Yt°

Independent of the above reasons; the reader may easily see that

the cumulant and the product moment cannot be "nice". Consider the Fourier
transform of LA (tl’tE"°"tk)' As derived from (3-3) it is,
6(w1+.“+wk) M(w ,.,.,wk) = X a(wTI ).,.-a(wﬂ ) C, (wn )...CjT (wTE ),
1 P 1 1 P
(3-7)
where W = wil + wi2 +oee. + wij if w = (11,12,...,1j) . This expression




is seen to contain many spikes if the lower-order polyspectra do not vanish
(as the ordinary power spectrum must not).
A number of properties of C(wl,.,.,w ) may be written down.

For example if the series involved are real,

C*(wl,...,wk) = C(-wl,...,-wk) . (3-8)
If the series are all identical, then € is completely symmetric in the
variables (wl,wg,...,wk).
Consider now the following discussion relating to the heuristic
model of the beating together of frequency components described earlier.
Let Gi(D) denote the transfer function of a band-pass filter

centered at the frequency wi, that is ideally

i

G (v) Lo o] < 4, Jo;40] < A, (3-9)

il

O otherwise.

Suppose that the Wi are such that X wi = 0. Let Yi(t) denote the
result of passing the series Xi(t) through the filter Gi(D).

If the question at issue is whether or not the compconent at
frequency wk comes about in part as a result of the beating together
of the components at frequencies wl""’mk-l the imagined model is

essentially,

Y (t) ~ OYi(t)...

k T (t) . (3-10)



The usual estimate for O in such a model is

E(Y, (t)...Y (t)}
o = = & . . (3-11)
B{ |1y (¢) ] v T ()]

Using the machinery of [18],

E{Yl(t)...Yk(t)} = b/t.L/\6(ol+...+pk)G1(ul)...Gk(uk) M(Dl,...,uk)dbl...duk .

(3-12)

Assuming that M is effectively constant in the pass-band of

the filters, (3-12) yields,

E{Yl(t)...Yk(tﬂ ~ M(wl,..., wkz/t.L/\s(ul+...ok) Gl(bl)..qu(Dk)le.o.de .

(3-13)

Carrying out a similar computation for the denominator if it is

assumed that the wi satisfy no relation of the form wi +...+wi = 0,
1 J
J < k, yields,

M(wl,...,wk) _b/t'L/\S(Dl+"'+Dk> Gl(ul)..qu(Dk)dbluo,de

ce (w_ )
P e o) B[ e () 1P,

2

(3-14)

where fi(u) denotes the power spectrum of the series Xi(t)°
The goodness of fit of the model (3-10) is often measured by the

coefficient of determination,
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5 [E[Yi(t),,.yk(t)}le
= 5 5 5 . (3-15)
E(|1 () ]"... T (0 By (6)[7)

This is approximately,

(o, ey, ) |2
fl(wl)...fk(wl)

A

2
/i°t/\5<“1+"'+°k) Gl(ul)...Gk(pk)dpl.ffgpkl

U/\IGl(Dl)lg vy ... |Gk(bk)|2 do, - (3-16)

The expressions (3-1L4), (3-16) lead one to the consideration of

the two quantities,

M(w geeoy W )
1 k
, (3-17)
£ (o)t (0 5)
2
M(w,,... 0 )]
and L LS (3-18)

fl(ml)...fk(wk)

The first of these measures the gain and phase involved in the
imagined model (3-10) relating the components at frequencies Wiseee g

in series Xl(t),...,Xk_l(t) to the component at frequency W in the

series Xk(t). The second may be thought of as measuring in some sense
the relative appropriateness of the model (3-10) at various frequency
combinations or polyfrequencies. In this connection it could equally well
be thought of as relating to the beating together of the components at

frequencies w

see0,W, to produce a result linearly related to the result
1 J '

of the beating together of the components at frequencies wj+l""’wk'

i
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In an attempt to avoid spikes we are‘led to modify the definitions
(3—17), (3-18) and to define the polyspectral regression. coefficient of the
series Xl(t)""’xk-l(t) on the series Xk(t) at frequencies (wl,.,.,wk)

as
‘Cl‘ k ‘(wl”“’wk)

) (3-19)

IO NI CHEY)
and the polyspectral coefficient,

2
ICl.;,k (@50 e e,

SOOI

. (3-20)

That this change in the definition has no effect provided the

w's satisfy no relation of the form wi + ... + wi = 0, j<k, may
1 J
be seen from (3-7). That in many situations the change produces a more

reasonable function to be attempting to estimate will be seen later.

As regards the secondary factors in the expressions (3-14), (3-16),
the first approaches 1 for the case of a set of ideal band-pass filters
as the band-width shrinks, while the second approaches O. (This latter
fact may be used to demonstrate the approximate normality of a class of
narrow band signals.)

Another coefficient which may prove useful in certain situations

is the following,

:C w0 )

1...x APy
(x-1) =f, (@ o, ) (3-21)
1

YL E.
11 o1
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where the summatién;in.the denominator extends over the indices ...,k
taken (k-1) at a time. .Thié coefficient results From the following con-
siderations; suppose that one ié interested in a time series X(t). Is
one wise to carry out a harmqhic analysis of X(t) or does some function
of X(t), say log X(t), ha&e a simpler analysis? This question may'be
answered to a certain extent by noting.that many functional relations may

be approximated By a relationship of the form,

k-1 :
X = y+ay s i (3'22)
where O is small. Consequently consider the relationship, -

X6 = ¥8) M), (3-23)

where Y(t) 1is a simpler series than X(t), simpler in the sense that
cumulants of order 2 J, 2< <k are‘negligible. Taking the k-th-order
polyspectrum of (3-23) leads to,

) (3-24)

Cl.,.k(“’l’°_°°’“’k) ~ a(k-1) £t (o, )...fl(m_k_l

1 1

which in turn leads to the coefficient (3*21).

4, Estimation

In'this section three distinet techniques for the estimation of
polyspectra will be proposed.
The first technique follows from the definition (3-6) given in

Section 3. Estimate the product moment M (t tk) and all

Lok 127"
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lower-order product moments from an observed stretch of the series

{Xl(t),...,Xk(t)} by the use of formulas similar to,

1 .
-+ g X, (¢ + tl),..XK(t;+ t) (4-1)

where the summstion id over all Ppossible time points and is replaced bty an
integral in the continuous case (and is carried out for a number of lags).
Next estimate the cumulant ; Clpﬁcéti"'°;tk) by simply substituting
into the expression (3-2). (Some workers will perhaps wish to substitute
into the formulas for Figher's k-statisfics. This wish is in some ways
analogous to the question of dividing by N or N-k in the two-dimensional
case.) If the means have previously beeﬁ subtracted from the original
geries, the expression (3-2) will involve feﬁer terms. |

Ar. estimate of the k-th-order polySpe§trum.may now be obtained
by Fourier transfofming this estimated cumulant. ' Doing this alone howevef
gives an estimate analogous to the périodogram in the twb-dimensional case,
and congequently we are led to the insertion of:convergence factors into

the Fourier transform. The proposed estimate is consequently,

R L T S N T TN
191 k=-1Y%k=1
IR N e c (Gprevesdp )5 (4-2)
Jeeedy L.kl k-1
in which the Aj 3 are the inserted convergence factors and C is
1°°7%k-1

the estimate of the cumulant. The simplest choice for %j 3 would.

- 10 e dky T
appear to be to take it as the product A, ,\. ...A. - of a number of

d17 do dxan

one~-dimensional convergence factors;, e.g., Hanning; however it may also be

desirable to take it to be spherically symmetric.
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A second technigque that may be employed is the following; consider
a time series X(t). Band-pass filter this serieg to a narrow frequency
band about. W > O) to obtain the series X(t;wo). Also obtain an estimate
of the Hilbert transform of this latter series, denoted by XH(t,wO).

(A computational technique for estimating X(t,wo), Xﬁ(t,wo) will be proposed

later.) Define X(t,wo) = X(t, -wo) and XH(t,wO) = -XH(t,-ab) if W,
is negative.
To carry out the estimation of Cla..k (wl,...,wk) where
Z w, =0, first estimate Xi(t,wi), XI-iI(t,wi) for each of the series Xi(t).
Now form the product,
G (6 00) + 1 (6,00)) - (8 (5,0) + 1xii(e,0)) (4-2)

If this product and similar lower-order prgducts are averaged
for a stretch of time, an estimate of the required polyspéctrum.is obtained
by forming the appropriate combination of the averages, i.e., the Eombin-
ation (3-2).

This technique has!the advantage over the preceding technique
that a running estimate of the polyspectrum is obtained and so the presence
of nonstationarities:may be investigated. In addition, once the band-pass
filtered series have been obtained, they may be put to a variety of uses,
for example, in the estimation of polyspectra of varied orders involving
later series that have not yet been collected. The series has to be band-
pass filtered only once provided enough foresight hasibeen shown in the

-selection of the bandwidths of the filters employed.
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A useful technique for obtaining series X(t,wo,,IKH(t,wo)
is presented in [7], pp. 77-78. The series am(t), bm(t) derived théfein
may be used in place of X(t,wo), XH(t,wO) where L) =-%% and the notation
of [7] is being adhered to.. The advantage of using this technique lies in
the fact that am(t), bﬁ(t) are generated by means of recurrence relation-
ships. Thisg reduces the number of operations from the number required in
a straightforward filtering procedure.

Estimates better, in a certain sense, than the am(t), bm(t)
above, may be obtained if some sort of convergence factors are employed,

for example if,

23 8, 1(8) + 5k (t) + .23 8 (t) (4-3)
230y 1(8) + .5k b (£) + .23 b . (8) (4-1)

are employed.

The simplest of the three proﬁbsed<estimation techniques,:so
far as programming goes (the method was in fact programmed very gulckly
by Michael Godfrey) appears to be the foilowing one basged upon the pro-

cedure of complex demcdulation [20].

Consider the time series X, . Let U(t,w ), U(t,w ) denote the

0

result of complex demodulating X£ at the frequency w.; that is J and

0
UH come about as the result of the following steps;

(i)  the series X, cos ugt, X, sin Wyt are formed,
(ii) these two series are smoothed giving U and ™

respectively.
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The desired polyspectrum may now be estimated by carrying out
the steps of the previous technique with X(t,wo), XH(t,wO) replaéed by
U(t,wo), UH(t,w ) respectively.

In connection with the last two‘téchniques mentioned above, the
following deviation from the prééedures déscribed may prove useful in
certain problems. vSuppése that it is felt'that the compohent at freguency

W in the k-th time series comes about as the result of the beating together

1

= w, = 0. The bandwidth of the product seriesg,

‘ Yy
of the components at frequencies w ,;w2,-..., wk 1 in other series where

(5 (6,0) + X7t 00)) 0o (X (5, ) 4 X1 (6:84)) (4-5)
is (k-1) +times the bandwidth of the componént,
05, (6,0) + 1xX(8,0.)) O (w6)

if the sefies have all been filtered with the same bandwidth. Conéequently
it may well be desirable.t§'arrangé for the k-th series to be filtered with
a8 larger bandwidth.

In respect of the poiyspectral regression coefficient and the poly-
spectral coefficient, theSe.quantities may be estimated by inserting estimates
of the relevant polyspectrum and bower spectrum into the expressions (3-19),

(3-20).

5. Some Statistical Properties

Consider the estimatioq of M(wl,...,wk) by time averaging the

preduct of the outputs of a number of band-passed'series, namely the results
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of band-passing Xi(t) to a frequency wi » Where the various wi are
such that =X wi = 0. (Band-passed in this section refers to the passing of
the series through a filter with transfer function = 1 if ]wi-w] <A and

O otherwise.)
If gi(t) (which is complex-valued) denotes the impulse response

of the i-th filter, the output of the filter may be written as,

7(0) = [ g() x (60 ax . (5-1)

(Throughout the present section integrals in the time domain may be re-
placed by summations if discrete time series are involved.)

The time average under consideration may now be written as,

T
%—IT Yl(t)...Yk(t) at (5-2)

I

f...fgl(r gk(’r ) Tf (t- Tl) Xk(t-’rk)dt} dTl“,,di (5-3)

I

f ng g (rm (T maT cdr (5-4)

The expected value of (5-14) may be written (subject to regularity

conditions) as,

\/\..fgl(fl)...gk(rk)ml.”k(rl,...,T )at,...dT_ (5-5)

or in terms of the Fourier transforms as,



- 18 -

f...b/ﬁa»(xl+...+xk) Gl(xl)...Gk(xk).M(Xl,...,xk) Xm...ka . (5-6)

Consequently if the filters are normalized such that,

f.fa(xl+...+xk) Gl(xl')...Grk(xk)dxl...dxk = 1 , (5-7)

and M is approximately constant in the pass-bana of the filters, then the
expected value of (5-2) is approximately the desired M(wl,..,,wk).

_ However, in spite of this result, the reason for the concern evi-
denced in this paper over the presence of.delta functions in M(wl,.,.,wk)
is the expression (5-6). This expression indicates that if éne proceeds
via the indicated technique of estimatibn,‘one must be content with a
weighted average of the expression of interest. Consequently, if delta
functions are present, they will influence, possibly greatly, the estimates
at all frequency combinations.

Consider next another estimate of the term (5-2),

.
515“/; z,()...2,(¢) at (5-8)

where Zi(t) =b/\hi(t-T) Xi(r)dr. The product of (5-2) and (5-8) may be

written,

N AT AT
k/..L/\gl(Tl)...gk(Tk) hl(cl).'.hk(ck){?;i;§4[;lgj Xi(t'Tl)"'Xk(t_Tk>

Xl(s-ol)..ka(s-ck)dtds}dTl...di do, ..

(5-9)

.dao
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for which the expected value is,

J[i';/\gl<Tl)°"gk(Tk) hl(cl)'°°hk(ck>£zzi5§k/l/\mll..nkk

(t-Tl,s—cl,,..,t-Tk,s-ok)dtds} dty...d7 do ...do, . (5-10)

In terms of the Fourier transforms this may be written as,

. s r -
51n(Xl+.,...+Xk)T §1n(€l+°°.+§k)_

f fe<x>.o.k(gml(_cl)a-ﬂk(ék) GO ol (S S

Mll.'okk(xl,g seees k,c ) a(x + g toa X+ Ck)dxlnoakadgl.a,dgk . (5-11)

The covariance of (5-2) and (5-7) may consequently be found by
subtracting the product of the means of (5-2) and (5-£), (as given by (5-6)),
from (5-11). The resulting formula may be written in terms of cumulants if
desired and in this form a working form for the covariance not requiring
the estimation of any polyspectra of order higher than k could be obtained
by simply assuming that these spectra are zero. Fstimation of the variability
does seem to be more important to the design rather than the assessment after
the experiment in any case.

Now turn to the estimation of the polyspectrum. Consider first:
‘the case in which the product moments of order less than k are knowr.

Consider the estimator,

2 p-1 ! T - T )m LN T T 5
(5- >+p§2<1> p1>ffgl<> B 5m, (5, ) om, (3, )3

(5-12)
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in which (Dl,...5bp) denotes a grouping of the integers 1." through k
into p groups.

The expected value of this expression is easily seen to be,

f‘fgl(Tl)"'gk(Tk) Cio..k(Tl)"-'}T ) dTl"'di 3 (5_13)

= Jedf s ) ). e o) Cr (X X) a (51k)

and (5-12) is consequently providing a weighted estimate of the desired poly-

spectrum.

i

The covariance of two expressions of the form (5-12) is identical
with the covariance of the added terms of the form (5-2). This covariance
has been derived earlier.

Consider now the case in which the lower-order product moments
are not known and must therefore be estimated from the data. The formulas
for the means and variances of the natural estimate are complicated even
in the second-order case, see [2] pp. 139-146,

For simplicity consider the second estimate proposed for this case

in Section 4. It was,

2(-1)PH (p-1): ﬁbl(tvl)"'ﬁbp(tvp) , (5-15)

[+ 3}

where the #'s denote the estimated product moments as derived from the

filtered series (Xj(t, uﬁ) + iXﬁ(t, hﬁ)} . (5-15) may be written,
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-1 , N _
5(-1)P (p—l).k/t.L/ﬁgl(Tl)...gk(Tk) fi (Tul)"'mb (TU ) dTl'"'di), (5-16)

v
= J[:.L/’gl(Tl)...gk(Tk){z(_l)P'l(p_l)l’ﬁbl(rbl).,.ﬁ.p(TDp)}dTl..,di. (5-17)

Under regularity conditions allowing the interchange of the oper-

ations of integration and of taking an expected value, the expected value

£ (5-17) is,

Jf b/\g .g (1 HE(-1)P" l(p R (1 )...8 (1 )] ar....d1 . (5-18)
l k l Dl Dp Dp 1 k
Now,
(t ) y - L [T "

no(z )...i (= = JF,../p Y o (t,)e..Y (%) dt....dt , (5-19)

R (27)f Yor v O 1T o Pt UL P
where,

Yb<tj) = Xil(tj + Til) Xig(tj + Tig),ijxiq(tj + Tiq) , (5-20)

if v corresponds to the grouping (il,.o.,iq),

The expected value of (5-19) may now be written as,

(t + T t + T, ) dt...dt (5-21)
(22[)p d/‘ V/; oy - Y “p P

where t + T denotes (Lt + T, , t + T, ,..., b+ T, ) if © corresponds
v i i i

1 2 q

to the grouping (il,...,iq).
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This may be substituted into (5-18) to obtain an expression for
the required expected values. A further simplification will be obtained
later in this section. The reader may gain some confidence in this result
if he notes that in Appendix 1 it is shown that for a wide class of processes,

(5-21) - mblﬁbl)...m%(%l)) , (5-22)

as T — o,

Up to this point the formulas have been derived relative to the
second estimation technique of Section 4. To derive the corresponding
formulas for the first technique let,

il i +twi ), (5-23)
G(o,eew) = 2 e P11 Kk
1o iy

and substitute G(wl,...,w ) wherever the product Gl(wl)...Gk(wk) ocecurs
in the results derived above.

For the third technique simply substitute,

Gi(w) = Li(w - wi) , (5-24)

into the results where Li(w) denotes the transfer function of the low-pass
filter employed in the complex demodulstion of Xi(t).

This section will be concluded by a brief investigation of the
asymptotic behavior of the proposed estimates including a sketch of a
proof of their asymptotic normality.

Consider the estimate (5_17)., In terms of the spectral representa-

tion of the process, this estimate is equivalent to,



f...fel(wl)...ak(wk) 00y, 0) le(wi)...de(wk) , (5-25)

Opnseesu) = S(-1)FHpa1)l ——= R (5-26)

E{le(wl). de(wk)} = a(wl+. wk) M(wl, .,,mk) SCIPPRC (5-27)
= B(-DP 1)t 88 ) 8(E ) ¢ (u )ec, (0 ) a5 (5-28)
1 p 1 1 P D

the expected value of (5-24) may be written,

J/:.L/\Gl(wl),..ek(wk) @T(wl,...,wk) £(-1)P"L(p-1)! a(Gﬂl).,,a(a
P

/
)...C (w.) Q@ ...dw . (5-29)
1 ™ P P :

The function ®T defined by (5-26) may be seen to have the

property that,b

83, ). 8(3, ) ogluy,pu) = 0, q>1 (5-30)

I
e/
~—
E
+
£
.
g
o
—
€
\»
£
o
pa—

Q=1 (5-31)
for grourings (Dl,..,,uq). Using this property the expected value of (5-25)
is seen to be,
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J[Z'L/\Gl(wl)"'Gk(wk) ®T(wl+...+mk) C(wl,...,wk) dwl...dwk , (5-32)

which as T —», tends to,
‘/;'L[\Gl(wl)°°'Gk(wk) a(wl+...+wk) c(wl,...,wk) dw...dw (5-33)

as desired.
In order to investigate the asymptotic distribution of the proposed
estimate (5-25), consider its j-th-order cumulant. This cumulant may be

written,

f...f@T(wl)...@T(wj) GH(wh).. .09 (o) (... 4)

1 3 1. 3
C(l...k)...(l...k)(w geee, W) dw.,dwd (5-34)
where,
Wt = (wg_l:-"ww]r{l) ’
l, n n b1}
G(w) = Gl(wl)...Gk(wk) ,

1 J . .
and C(l...k)...(l..mk)<9 yeee,0Y)  is the j-th cumulant of le(wl)...de(wk).
This cumulant may be expanded in terms of the cumulants of the basic process
and is seen to involve delta functions. However, because of the relations
(5-30), (5-31) these delta functions actually drop out leaving an expression

of the form,



- 25 -

d/ﬂ...‘/\%(wl)...@T(wj) aH(wh). . ad (W) (Bl .4 D(wh, ..., 0d) awl..iald
(5-35)

where D 1is bounded if the cumulants of the original process are bounded.
Assuming that the filter functions G are bounded and integrable, (5-35)§

in absolute value is less than,

oo

for some constant M.

gin @ T...8in 0.T
@ Toeoo®,T
J

e

1
5(@1+'°°+@j) ae .d®j + O =) (5-36)

7P

Because,

J[ Jf sin ©;...sin ©_ Sin(®l+.a.+®m) )
e de,...de_ , (5-37
@...0 (@l+...+@m) 1 m

is absolutely integrable (as may be demonstrated by arguments simular to

those in [23]).

sin @ T gin ®jT
Jf Jf ( e 5 6(®l+...+®j) d@loo,d®j = of ;3—— ) . (5-38)
1/2 (5-25)

Consequently under the above conditions the j-th cumulant of T
approaches O for j>e.

1/2

Consider now the 2nd cumulant or variance of T (5—25), It is,

Tb/t';/NQT(“l) o(«7) H(u) &®(P) (& + &)

(whe?) -y (@D (P st (5-39)

e l...k

1...k,1...k
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As T — e, this expression may be seen to approach,

(wﬂ)...cJt (wu ) dwlaw? s (5-%0)

11 P p

f...fGl(wl) 62 (o) Z8(B_ )...8(8 ) C.
1 P

under regularity conditions upon the G's and C's as a result of a theorem
of [22]. The summation in (5-39) extends over all groupings of (wl’wQ) such
that each unit of a grouping involves terms from both wl and w2.

In summary of these last calculations, it has been demonstrated
that the proposed estimator, (5-25), under regularity conditions is asymp-
totically normal with mean (5-33) and variance % (5-40).

That estimates of (3-19), (3-20) and (3-21), obtained by substituting
estimates of the polyspectra as obtained above, will be asymptotically normal
follows from the asymptotic normality of the polyspectral estimates and a

Slutsky type theorem.

6. Moments or Cumulants?

The Tirst possible definition of a polyspectrum likely to come to
one's mind, is to define it as the Fourier transform of the product moment,

that is by, )
_ ’ v i(wltl+...+wktk)
8(w1+...+wk) M(w ,.,.,wk) = \/t.L/\ e ml...k(tl""’tk)dtl"'dtk'
| (6-1)

(The reader is reminded that the delta function is introduced by the

stationarity condition,

m (Bt b)) = mx(tpreeosty) for all t.)
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This definition has the disadvantage that the function M contains
delta functions for a wide class of processes. To see this, consider M upon

a surface of the form,

(6-2)

In this case,

i(w to+.. 040t ) '
171 k 'k L
6(wl+. +w)M( seoe,W ) =f.,.fe _ m(tl,tg,.,..,,tk)dtlo.,dtk,

(6-3)

10(w,t, 7)
J[i'h[‘ e m(tl,.,,,tk)dtl.,ndtk , (6-4)

for all Tl,...,Tj where,

o} = e : o o . T .
(w,,1) {wl(tl+rl)+ +wkl(tkl+Tl)} + +{wkj+l(tkj+l+rj)+ wk(tk+rj)}

(6-5)
Meking the change of variables t + T =t in the integral (6-4)

leads to,

(w IAIRERRR tk) ’
Jf Jf (t,r).dtl...dtk , (6-6)
where,
m(t,T) = m(b =T, 000 b =T ;.00; € mT.,eeeyt =T.) . (6-7)
171 kTl kT k™3

The 7T's in the integral may now be averaged out without affecting

the value of the integral giving,
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(Wb e e 0t 7
J[:'L/\ el( R Y (—= b/“‘L/T m(t, 1)1, .7 }dk, ... db, (6-8)

(er)dlr Ly

Letting T - «, under conditions presented in Appendix 1, the inner

1 1 ﬂJ J

grouping of subscripts (1,2,...,kl;...;kj+l,...,k). The limit of (6-8) as

term in (6-8) approaches m (’c]I )...m (tTr ) vwhere (ﬁl;...;ﬂj) is the

T = 1ig consequently seen to be,

S(wﬂ )...B(wﬂ‘) M (wﬂ )...Mﬁ.(wﬂ.) . (6-8)
1 J 1 1 J J
(The reader is reminded that W= W . W for example.)
i ﬂl 1 kl :

By inspection one notes that the additional delta functions in

(6-8) might have been avoided by taking the Fourier transform of,

ml...k(tl""’tk):_‘mﬁ (tﬁ )"'mﬁ (tn ) 6-9)
. 11 Jo 3

rather than simply 5ml_..k(tl,;..,tk).

Consider the problem of finding an expression involving the product
moments that does not have awkward delta functions in its Fourier transform.
If one subtracts the terms causing delta funétions on suﬁfaces of the form,

8 =0, % =0 , (6-10)
Ul 02 _ ‘

one is led to,
m (tyseeert ) =Im (£ Im (t_) , (6-11)
l...kY 71 k 00170y 0,

where the summation extends over all possible groupings of 1,...,k into

two groups.
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Unfortunately this expression still possesses spikes on surfaces

of the form,

& =0 & =0, ® = 0, (6-12)

for consider the Fourier transform of (6-11) on this surface. It is

BT ) 8, ) o0, ) wg (o ) 2t () o (o)

- [ [ ® w w w , 6-
5(3,2) ¥ ﬂl) 8( ,12) 8( “3) M“l( “1) an,( ﬁg) M ( “3) (6-12)

where 8(3,2) denotes the number of ways of putting three different things

into two like cells. The contribution to (6-12) from m, k(tl’°'°’tk)

has been derived at (6-8). The contribution from ¥m_(t_ ) m_(t_ ) results
91 Y1 P2 B2
from the fact that any individual term in this sum which is not such that

thr grouping (ﬂl, ﬁz, n_) 1is a refinement of its grouping leads to a

3
Fourier transform of zero, while if it is a refinement a contribution of
the form,
5(% )o@ )T )M (v )M (o )M (o ) , (6-13)
T, n3 N> n3 n3
is obtained (use the device of inserting dummy parameters and Appendix 1).
. The number of refinements is 8(3,2).
The delta functions in (6-12) may be removed by subtracting an

appropriate expression. This leads one to the consideration of,

m

l...k(tl""’tk) - Im (tD ) m (tb ) + 2% (tD ) m (tD ) m (tD ) . (6-1h)

1 -1 2 72 1 "1 2 "2 3 3 ‘
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Suppose that one continues in this way until he is considering the
expression,
Ty elByse sty ) + Tzzmul(tul) mbg(tD2)+...+Tn_12mbl(tbl)...mbn-l(tbn_l) p
(6-15)
where Tl =1, T2 = -1, T3 = 2, this expression being such that it has no
delta functions on surfaces corresponding to grouping the integers into n-1

or fewer groups. Consider its Fourier transform on the surface,

mﬂ = 0, ,,ﬁﬂ = 0 . (6-16)
1 n
It has the form,
B, ) ) £
3(W. )oo.d(W )M (w )o..M (0 ) x T S(n,p)} (6-17)
ﬂl Ttn ﬂl Trl -ﬂn ﬂn =L P ]

where 8S(n,p) denotes the number of ways of putting n different things
into p like cells with no-cells empty. That S(n,p) is the appropriate
coefficient of Tp follows from the fact that the terms of the form,

mul(tul)...mbp(tup) , ' (6-18)

transform to a term of the form,

o5, ) 8B ) 1, (0 )en (0 ) (6-29)
1 n 1 1 n n
whenever (nl,...;ﬂn) is a refinement of (Ul,...,up) and to zero otherwise

as a result of the theorem of Appendix 1. The number of such non-zero terms

is 8(n,p).
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To avoid the delta functions a term of the form,

n-1 :
(£ T8(n,p)} {Zm (@ )...m (o, )} (6-20)

S
p=1 P 1 "1 n n
must be subtracted. This means that,
‘n-1

= - . 6-21
T, pil TpS(n,p) ( )

In Appendix 2 it is shown that (6-21) implies

T = (-1)*(n-1)!

One is consequently led to the consideration of the expression,

5(-1)2 Y (p-1)! mo (6 )eem (8) (6-22)
‘ 1

which is the expansion of the cumulant

Cl...k(tl"°"tk)
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Appendix 1

'The following lemma will be required in the proof of the theorem

of this appendix.

-Lemma. Let {Xh}' be a sequence of random variables approaching u in
pfobability. Let Y. bea random.variablé such that for some & > 0,

+8 ,
(i) E]Y[l exists; (ii) for n sufficiently large .E](Xn-u)Y|l+8

exists, then, EXnY - LEY.

Proof:

X yuEr| = [BGC-wY] , | | (a1-1)
< Bl )] - (a1-2)
= &/qIXn-H] |¥] dPn(x,y) , | : (A1-3)
= 'XHZ:l,fe lxn‘_“l [Yf dPn(X,'y) + IXﬁ[;PG |x_-u| || dP?(x,y)

(A1-4)

where Pn(x,y) denotes the joint probability function of X end Y. The
first term in (A1-4) is < €E|Y| and coﬂsequently may be made arbitrarily

small by a choice of e . The second term is,

</

(¥ ([ x M v g o)V (s
an'H ‘>€
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The first term in (Al-5) may be made arbitrarily small as a result of the
convergence in probability of {Xn} to i, while the second term is bounded;

consequently (Al-4) may be made arbitrarily small and the lemma follows.

Theorem: Let {¥(t), Z(t)} be a stochastic process such that
(i) EY(t) and EZ(t) exist and equal - W, respectively,
(ii) E{Y(tl) Z(tz)} exists and equals myz(tl’tE)’

(iii) (¥(t)} is ergodic in the sense that,

1im = fTY(t+T) art 2 W (A1-6)
e 2T g y o '
T T
(iv) E[Z(tz) E_Jé[T Y(tl+T)} = %IT E{Z(tE)Y(tl+T)}dT R (A1-7)

(v) E[Z(t2)|l+8 exists for some 8 > 0, and

T :
(vi) E|z(t )(;L Y(t,+7T) dT-p )|l+6 exists for T sufficiently large.
AN | y

Under these conditions,

T
1
lim ——b/\ m (£, 4T, t,)dT = Wp . (A1-8)
T oo 2T Lo V2 172 Yy z _

Proof:

1 [T 1 [T | .
-é-f‘[T myz(tl+r, t2)d1 = _ET[T E{Z(tE)-Y(tl+T)}dT , (Al-?)
= E{z(t,) g;L/WTY(t‘+T)dT} ' | | (A1-10)
27 2T -T 1 ’

from (Al-7). (A1-8) now follows immediately from the lemma.
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Corollary 1. Let {Xl(t)’°°°’xk(t)} be a stochastic process with Xk-th-

order product moment,
mlogak(tl,..,,tk) = E{Xl(tl)...Xk(tk)}

Under conditions immediately deducible from the preceding conditions (i)
to (v) by setting Y(t) = Xi(tl+t)..,Xj(tj+t) and

Z(t) = Xj+l(tj+l+t)..,Xk(tk+t) ,

T
1 _
linm ﬁ[,_[, vmlgoﬂk(tl+T,.a.,tj+T,tj+l,.a.,tk)d’f

Tos oo

l...j<tl"'°’tj) mj+l...k(tj+l""’tk) ) (Al'll)

Corollary 2. 1In the same notation as Corollary 1, and under assumptions

immediately deducible from the theorem,

. T : '
1
%iﬁmQT»/; w J(t Floeees by T, L. ,tJ) m(tj+l+r,...,tn+T,tn+l,...,tk)dT

My gy ty) mﬂ+l...j(tz+l”°"t') my

LTI W PRTRPL T (A1-12)

There exist similar relations to (Al-12) if the integrand is the
product of more than two terms.

Corollaries 1 and 2 provide another indication that the product
' moments are perhaps not the relevant quantltles to be analyzing in many

situations. The corollaries indicate that for a variety of stochastic
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brocesses, expressions involving lower-order Product moments are immediately
deducible from a producﬁ moment. This presence of lower-order infqrmation
may prove distracting to one Who‘has been following a step-by-step inquiry
into the process.

It seems appropriate to‘end this paper on the folling not of pessimism.
Experience with real random variables indicétes that higher order moments
are typically not efficient estimates of scientifically relevant parameters;
consequently as the specifications of stochastic processes become tighter

polyspectra are likely to brove less pertinent in a similar manner.
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Appendix 2

Theorem: Let S(n,m) denote the number of ways of putting n different

things into m 1like cells with no cells empty. If,

n

‘ n-1 :
I, = - Z T8(n,p) , (A2-1)
n p=1 P
for n> ;_ and Tl~= 1, then,
T o= (-1)" (1)t

Proof: Assume that this result is truevfor n < N-1 and seek to prove
it for n = N. That is, seek to prove,
‘ N-1 p-1
Iy = - Z (-1)" " (p-1)! s(mw,p) . (a2-2)
=1
Now S(n,p) = Apon/pl , see [15]. The right-hand side of (42-2)
is consequently, .

N-1

- . _l ] ) . ’
= - = (-1)PT ARy (a2-3)
p=1
N-1 -i N-1 -1,.N-1
= - = ()PP Pl (a2-4)
Y
N-1 N-2 |
= = = (<P PNt LS (1)P APl (82-5)

(_l)Nll A}VFlON-l , (A2-6)

= (w1 (¥t (82-7)
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