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PREFACE

"Economics is an unfinished science”
‘ F. Zeuthen,

It can be considered that economics relates to that rart of the activities
of a society which derives from the exchange of commodities. Thus the ultimate
generator of economic activity is the need for possession, or, more essentially,
for consumption. Accordingly there is, at least in principle, a dependence of
theory of an economy on theory of the consumer; and this obtains a special
importance for the consumer in economic theory.

In consumer theory there is in the first instance the scheme in which the
consumer is pictured. Here this is embodied in the concept of an expenditure
system, which is to express the idea of a consumer behaviour, and which is to
become the object of mathematical elaboration and investigation.

The furnishing of this abstract concept of an expenditure system with
various auxiliary concepts and structural featuresyand the definition of
some special conditions on it which have an empirical source, builds up the
matter of the subject, which is nothing more than an exhibition of the logi-
cal working of a theoretical image of the consumer. To put it in another way,
it presents a mathematical subject, consisting of Fformal definitions, pro-
Positions and demonstrations. This is the content of Part I of this investi-
gation, as contained in this first Report.

Such a theory can in itself tell us nothing about what we should of
necessity expect of the consumer. The consumer can do what he likes; and
no condition of behaviour can be mentioned but that he is at liberty to
escape from it. However, it gives the basgic language for treating the
consumer. It should eventually show how to observe, and to formlate know-
ledge of the consumer, and find a basis for valid expectations; and also
to give systematic concepts for often obscure, but nevertheless indispen-

sable notions which are entertained.



Thus, Part IT of this investigation, to be given in the next Report, approaches
the old "index-number problem". It develops the very frequently used, but not suf-
ficiently ~ articulate ideag of standard and cost of living into a cbherent scheme
of analysis, by which is meant a scheme for measurement by observation,; together
with principles for the interpretation.

For something of the form of this analysis, some features of which are per-
haps unexpected but nevertheless natural, a brief, very fragmentary and incom~
plete suggestion of it is to be found in Afriat [2], the second page, just as
the first page there refers, though again quite incompletely, and in some de-
tails speculatively, to the matter elaborated in this Report.

The conceptual engineering needed to make something of the index-number
problem, in a sense to define the cost of living, is made possible by some
algebraical propositions, which show the way through the familiar and seem-
ingly hopeless impasse in the subject (Sammelson [4h], pp. 146 ££.) to arrive
at a concept of measurement. An impediment to much of the usual thinking lies
in the exclusive use of a graphical approach, which merely reveals apparent
difficulties, and not the intrinsic possibilities. In any case, in this par-
ticular problem, the usual picture is in fact a serious illegitimacy, since it
misrepresents the nature of the jproblem, and the crucial determinacies and in-
determinacies involved; and dimension, which is inescapable in any geometrical
figure, is a thing which is eventually to disappear, in the form of the
algebraical analysis. For the generally elusive matter of the measurement
of the "level" of prices, and individual and commmal "welfare", there seems
to be needed the attitude that there is a right way of doing a thing, even
if that thing is impossible. For, in this matter, whether it is possible or
impossible, it has to be done. It is at the centre of Trade Union negotia-

tions, and all guestions about the fitting adjustment of wage for a change



of" prices. It is required in the définition of real wage, and as a component in
the Keyneslan concept of national income. It is the source of Judgement for
questions about inflation. The vague but indispensible notions of standard and
cost of living are much needing conception as systematic terms of measurement.
In all this tangle of questions, there is called for that expert treatment which,
according to a familiar definition, recognizes not jé%t how much is enough, but
also how little will do. It is such a treatment that has to be attempted in
Part II;but it will be with the aid of some algebraical and other propositions
that will make the whole task much more approachable.

The matter for Part II, on the analysis of expenditures, while related and
complementary to the investigations of Parts I and II, is more of the nature of
statistical method. The concern igs with theory of models, the paramenters of which
“Blve a problem of estimation — the avoidance of which can be considered one
of the central points of Part II. Begide predictors of distributions of ex-
penditures, a special interest is in thettechnique of actually finding statis-
tical maps for scales of consumer preferences, even a construction for what
fits the idea of the much discussed "social welfare function", at any rate a
function which is supposed to give the standard of consumption in terms of
its composition.

Throughout all the work in Parts I-III, there is no occasion for recourse
to the ideas of utility theory—as distinct from the mere matter of prefer-
ences—-such as are found in the earliest thinking on the subjéct, and also
in newer theordes such as that of von Neumann and Morgenstern [52]. oOf course,
historically, utility theory has been very much part of consumer theory, but
with an entanglement of distinct ideas which often belong together but on
occasions ought to be separated. The Familiar long drawn-out cardinalist-

ordinalist controversy is the result of this tangle; The concern is so far
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only with preference in the sense of a relation, though there are auxiliary con-
cepts, such as, most typically, a numerical function which is a gauge of pre-
ference. Therefore the word utility has been avoided, in order to prevent any
linkage with the large and confusing literature which 1s taken up with concepts
of marginal utility. For an historical account of this, reference is made to
Stigler [48].

However, with the subject taken thus far, the pattern is not complete. ‘
There is not the means of representation for phenomenon such as that a venny
to a rich man is not quite the same thing as a penny to a poor man, or for
considerations about incentives, of saturation, and so forth, with many impor-
tant related phenomens; or, to take another line, there is the currently much
considered matter of behaviour in the face of risk. To give account of these
and kindred patterns in behaviour (and with the work of Professor Savage [47]
there must be included among these the practice of statistical analysis) it
is necessary to introduce the ideas of utility theory, including that impor-
tant instrument in the theory which is given by the von Neumann-Morgenstern
utility index. This is the subject for Part IV. With cardinal utility, after
its periodic expulsion and rehabilitation, at present suffering official ex-
pulsion from consumer theory (which it partially deserves for trepassing where
not needed — and which expulsion has been presented by some writers as a kind
of discovery?!) it has to be established in its proper place. Then we shall be

in the company of those whom Professor Samuelson (A Comment!, Survey of Contem-

porary Economics, Vol. II, p. 38) has described as "a few utilitarians, drunk

on poorly understood post-Newtonian mathematical moonshine", by whom he must
mean those investigators of that form and method of analysis which goes with
the ideas of utility theory. Has not Professor Samuelson thrown out a baby

with the bath-water?
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Professor Hart, of Columbia University, on being guestioned about who ex-
- actly "the consumer"” was, said that in the literature the consumer and the
individual were often synonymous, but that this was Just because many of +the
workers on consumer theory happen to have been bachelors. It is convenient
now to be abstract about the matter, and take the consumer to be any agent
whose action is to consume diffeérent amounts of certain commodities on various
occasions when they have given prices, thus including within the widest possi-
bility the individual, the family and the population as possible objects of
discussion.

Here there arises that troublesome aggregation pseudo-problem, concerned
with derivation of the preferences of a soclety from those of the individuals
comprising its population. Professor Arrow [6], for example, has studied
certain abstract questions of social choice and individual values. However,

a serious point that ' may not have been expressed plainly enough by welfare
economists is that the one can be irrelevant to the other. A society cannot
sensibly be considered as a mere sum of individuals, and this is not merely
out of comsideration for the celebrated Duesenberry Effect (the observation
of Professor Duesenberry [14] that individuals influence each .other, which
caused a minor revolution in consumer theory})

The concept of an expenditure system: x = x(u) (u'x=1), which is here
presented is essentially the traditional concept: x = x(p,e) (p*x=e), homo-
geneous of degree zero, with built-in recognition of the absence of "mone-
tary illusion", which requires that the actions of the price and expenditure
variables p and e be merged in the action of the relative price variables
u = pfe. With this done — and it is in any case natural to eliminate redun-
dant variasbles — pitfalls which attend the thinking of prices and expenditure

separately are automatically avoided.

1 Robert W. Clower, 'Professor Duesenberry and Traditional Theory!. Rev.
Econ. Studies 19 (1952), 165-178. T
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The literature of consumer theory is full of faults and inconveniences which
begin here. TFor an important example, Professor Hicks? arguments about Income
and Substitution Effects need reformulation in this respect. In any case, his

statement in Value and Capital [22], p. 209, § 75 is wrong. The change in ex-

penditure (which there is called income) is not such "as would enable the con-
sumer, if he chose, to buy the same quant;tiesvof all goods as before". It is
& change which would leave the consumer on the same indifference surface; in
which case, therefore, unless prices be parallel, the original point on the
surface would not be attainable, except at greater expenditure, by virtue
of the convexlty of the surface. It is more appropriate to consider a
general change, due to joint changes in prices and expenditure, and resolve
it into a change which results in indifference, and a change which can be
obtained by a change in expenditure at constant prices. In the account which
is to be given here, such a general resolution of any small change is natu-
rally effected by a pair of complementary obliqge projections.

Contrary to what seems to have been common, there is considered just

distribution of expenditure on any set whatever of commodities, rather than

the spending of income, on all commodities. This is more general; and it is
more appropriate, seeing that income is not always spent — it may even be
overspent — and also that we are never sure what all the commodities really
are. This is formally a small step, but from the point of view of method an
important one. Also it makes systematic analysis in terms of several com-
rosite commodities possible, and convenient. It means that a self-contained
analysis can be given for any assigned group of commodities, selected from
among all those that are available, including savings. Of course the com-
modities and other factors outside the group, along with the usual sun-spots
and other mysterious influences, may or may not have an important bearing on

those within the group.
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A scale applied to a set, which is to be defined as a binary relation be-
tween its elements with the properties of antisymmetry and complementary transi-
tivity, is logically the same as the preference relation considered by Pro-
fessor Arrow [6], in fact as the complement of a complete and transitive rela-
tion. However, preference is observable, through the relation of a selected
object to a rejected one; and so, from the point of view of method, it is more
logical and fitting to put the preference relation first, rather than its com-
plement, which can only be formed when all preferences are decided. Pro-
fessor Arrow gives a number of the properties of a preference relation accord-
ing to his stated definition, but not the complete set of essential properties,
which are gathered together in the most important, and apparently not altoget-
her immediate theorem, that a preference scale is, according to the axiomatic
definition, what we in any case want it to be? structurally the same thing
as a complete order of the components of a partition of the set. .The in-
difference relation defined for the scale — as its symmetric complement —
is proved a relation of equivalence, the classes of which, defining the in-
difference classes of the scale,‘férm.the partition which is to be completely
ordered. A scale appears as a special kind of order; and, in general, a
consistent set of preferences form an order which is not a scale, but which
can, In general in a variety of" ways, be refined to a gscale. Thus we seldom
deal immediately with a relation satisfying the properties of a scale, as
distinet from those of an ordinary order; angzzzzédiately with .a relation,
such as Professor Arrow's, which is the complement of a scale. One of +the
remarkable properties of a differentiable expenditure system is that, if its

preference relation is an order, then it turns out to be a scale.



The crucial feature of an expenditure system is the assemblage of its choices,
and their revealed preferences; and the natural thing to consider abouﬁ these pre-
ferences is the relation obtained by taking their transitive closure, which in-
cludes, with all preferences forming a chain, the preference between the ex-
tremities of the chain,here defining the preference relation of the system. If
the preferences revealed by each of the choices separately can possibly belong
to the same scale of value, which condition defines the coherence of the choices —e
and which possibility is the principal consideration —~then the preference rela-
tion must be in order. Thus there arises the order condition applied to an
expenditure system, expressing the consistency condition for the revealed pre-
Terences, — which is eguivalent to the hypothesis that the preferences can all
together belong to the same scale, and to the coherence condition for the choices.
It is the same as the condition which Professor Houthakker [24] has called semi-
transitivity, and is called by Professor Samuelson [46] the Strong Axiom of
revealed preference, to distinguish it from his own Weak Axiom. This order
condition, and the method it carries in its.dérivation, is inseparable from the
real substance of the revealed preference idea, unfortunately missed by Pro-
fessor Samuelson, who seems however to bérmuch assoclated with that idea, but
formulated, though again somewhat incompletely, in regard to the basic method
carried in the principle of the derivation, by Professor Houthakker. The
principle of the derivation is that all the different choices, say at differ-
ent times, are results of the operation of the same scale of value; in other
words, that the choices admit a common motivating scale Whose: operation per-
sists through and determines each of them. Contradiction of the axiom con-
tradicts the original hypothesis and gives information on changes of preference.
It is plain that Pareto [36] well understood the idea, though he did not say

much about it. This has also been indicated by Professor Georgescu~-Roegen [19].
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The nature of the mathematical investigation which is here set out is, in
an important aspect, to show the structure of expenditure systems with con-
sistent preferences. In order to proceed to the wanted conclusions, it has
been necessary to suppose some further conditions on an expenditure system.

The first such condition is that of regularity, or that the mapping u-x(ulx=1)
given by the system, of expenditure balances u into commodity compositions x,
subject to the balance condition wu'x=1l, 1s moreover a one-to-one correspondence
u <> x(u'x=1) between balances and compositions, defining a duality between them,
by which balance and composition become interchangable terms in any definition
or proposition. This condition is generally fitting in the subject, as will
appear; and it gives the mathematically useful principle of dvality, which is
an instrument in many of the demonstrations. It yields a perfect analytical

to the analogy
developmenq(between producer and consumer. analysis on which comment has been
made by W. J. Baumol and H. Makower [8]. With it, and with no further assump-
tion, not even continuity, there is obtained the theory of the critical sur-
faces and value frontiers, which mark out the relation of any given composi-
tion to all other compositions, according to the supposed consistent relation

of preference. A substantial amount of analysis goes to proving that these

surfaces are strictly convex — a tangent at a point of a surface cutting the
surface just in that point — and smooth — there being just one tangent at any
point — thus showing that such surfaces are just as economists almost always

draw them. Also, various logical features in the nature of these surfaces,
which have several different possible definitions, are shown as a result of
the investigation. These features have, directly or indirectly and in
different measures,been the concern of many writers, including Hicks and

Allen [21], Samuelson [45], Houthakker [24], and Little [27].
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The critical surfaces are the integral surfaces of the differential equa~
tion uldx = O, associated with the expenditure duality defined by a regular
expenditure system. . There appear to exist a pair of them at every given
point, the inferior and superior value frontiers, every point to the one
side of one being inferior to the given point in preference, . every point to
the other side of the other being superior, while every point on or between
them is neither inferior nor superior, but indifferent.

The supposition of differentiability, or the weaker condition which is
defined, and called uniformity, and which is implied by differentiability,
implies that there can be at most one critical surface on every point. There-
fore, the pair of value frontiers must coincide, and be identical with the
indifference domain, which now appears as the unigue critical surface through
the point. There is thus obtained the classical picture of a continuous
series of smooth, strictly convex indifference surfaces to represent the
preferences of the consumer.

However, with this graphical map of a system of preferences, in which
it is exhibited as a scale»whosé indifference domains are integral surfaces;
there is still to be found the differentiable function which is to be a
gauge for preferences, the often so-called utility function, which has been
almost invariably the starting point for expositions of consumer theory.

For this, an appeal has to be made o theory of differential equations, and

it is here that that will-o-the-wisp of Professor Hicks (Value and Capital

[22], p. 19, footnote), integrability, enters, and even dominates the picture.
The existence of the value frontiers as critical surfaces obtains the

integrability of the differential equation utdx = 0, in the sense of the

existence of an integral surface through every point. Now, given differen-~

tiability, or the less stringent condition of uniformity, the integrability
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of the equation is equivalent to the integrability of the form utdx, in the sense
of the existence of a function "M, the integrating factor, and a differentiable
function %, the integral, such that A ufdx = df. The level surfaces of any
integral of the form, that is the surface on which it takes a constant value,

are identical with the integral surfaces of the equation, and thus with the
indifference surfaces of the system. By a continuity argument, any integral

of the differential form appears as a gauge of preferences.

There is thus the result that, with differentiability, which is funda-
mental anyway in other parts of the theory, + or with the weaker uniformity
condition, the hypothesis of consistent preferences leads to the representé-
tion of behaviour by a numerical objective function, on which consumer theory
has always relied. It could be such a kind of result that Professor Houthakker
[2k] sets out to consider. However, he is not fully explicit; and, besides, he
says at the end of hié argument that he joins Professor Hicks in the conclu-
sion that integrability is a 'will-o-the-wisp®. A strange conclusion, and a
strange concept, especially seeing that it is around the c;ndition of integra-
bility that the general mathematical argument turns. It is through that con-
dition that the theory in relational-gecmetrical terms links with the arith-
metical theory, which gives an equivalent of the consistency condition in terms
of the partial derivatives-of’the gystem — these entering through the forma-
tion of the substitution coefficients; or "residusl variability” coefficients
of Slutsky [48]. This equivalence‘is,one~of‘the,main results of this theory.

It 1s mainly that the local condition, given by the symmetry and the negativity

1 It 1s in the definition of differentiability to eliminate the difficulties
suggested by J. Mosak [34].
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conditions on the substitution matrix s = X, (l-ux?t) everyvwhere, is equivalent
to the global condition, given by the non-reflexivity of the preference relation
of the system.

In a recent statement, Professor Arrow [7] has informed us that Professor
Georgescu~Roegen [18] "coneclusively showed that the real issue behind the in-
tegrability problem wWas the question of transitivity". However we have to
consider transitivity anyway, for a system of preferences. The important
thing then is antisymmetry; and with this integrability is obtained. Many
other writers seem to share the view that transitivity is the all-important
criterion. But a transitive relation can always be cbtained by suitably
enlarging any given relation. The significant criterion is antisymmetry,
which is the expression of consistency. Profegsor Arrow also tells us that
"A good deal of effort has gone into finding assumptions on the demand func-
tlon which would imply the existence of an ordering from which it could be
derived”. It belongs to the most fundamental understanding of demand func-
tions and revealed preferences that this is the so-called Houthakker Strong
Axiom. This is well substantiated by Professor Houthakker [24]. Professor
Arrow then goes on to tell us that "Despite a common .opinion, it has not yet
been shown that the Weak Axiom is not sufficient to insure the desired result.
The question is still open.” Now, the so-called Samuelson Weak -Axiom is, it
so happens, weaker than the so-called Houthakker Strong Axiom. Therefore,
with the Strong Axiom necessary, the Weak Axiom cannot be sufficient. But
perhaps I have not undergtood Professor Arrov.

A special reference should be made now to the work of Eugen: Slutzky,
and other ideas which involve it, since he appears to be the first to have
presented a significant new and distinct mathematical concept for consumer

theory, beyond those ideas of Pareto and his predecessors, which have more



closely to do with the form and the primitive terms for such a theory. The
maximized numerical objective function, the so-called utility function, which
for a long time had bean about all there was to consumer theory, was supposed
not directly "observable", but in some way to have an implicit existence in
behaviours which satisfied appropriate "observable"conditions. To translate
to the presently used terms, let an expenditure system which is thus assoc-
iated with & function by the condition that for any expenditure balance u

the corresponding commodity composition x give a proper maximum of the func-
tion under the condition wu'x = 1, be said to have the function as objective.
The condition that a function be . an objective breaks into two rarts, the
equilibrium condition, that it be stationary, and then the stability con-
dition, that the stationary value then be a proper maximm. The equilibrium
condition, which 1s Immediately seen as the same as the often considered
integrability, was shown by Slutzky to imply the symmetry of a certain matrix,
involving the partial derlvatives of the system, but not involving the objec-
tive function at all. The symmetry condition would thus seem to be “observ-
able", and necessary for the existence of the uncbservable objective. Slutzky
also gave .a stalement of the stability condition in terms of the derivatives of
the .objective function; buty, so far ss I can gee, he does not seem to have ob-
tained its transformation into a condition .on that same matrix of coefficilents
for which he had arrived at the symmetry. Such a condition appears in Hicks
[22], and again in Samuelson [bli]. The condition, to give it precisely, is
that the matrix of Slutzky coefficlents be negative definite for points
different in direction from the balance point. This negativity condition

is transformable into a set of inequalities in thé~81utzky coefficients.

While Slutzky [48] deduced the symmetry condition from:théleguilibrium struc-

ture’ af:-the system, by direecb.differentiation of the equilibrium equations,



and thus showed the symmetry to be necessary for.such a structure, he ignored
the tougher question of the sufficiency. This is considered in Samuelson [46],
where there is stated an identity which would show the equivalence of Slubzky!s
symmetry condition with the integrability conditions, given in the form of
Antonelli [5]. In this form they are also expressed as a symmetry, but asg
applied to an unsymmetrical system of coefficients, in which one coordinate
needs to be arbitrarily distinguished from the rest. Here T give another
proof, in which the Slutzky symmetry condition is shown directly equivalent
to the classical integrability conditions, here described as acyclicity.
This is by deriving identities which exhibit the antisymmetry coefficients
-as linear functions of the cycle coefficients. Thus the Slutzky symmetry
condition is necessary and sufficient for the integrability, which gives
the equilibrium structure to the system,

The importance of the concept given by Slutzky, in the definition of
his coefficients, is shown in the result in which they reveal their real
power for the theory. This result is that the symrnetry and the negativity
condition on the matrix of these coefficients is necessary and sufficient
for the preferences revealed by the system to be consistent. There ig a
substantial mathematical content in this result, especially when it is taken
along with the supplementary resultsy and it is proved at some length in this
report, though still with one or two features left only briefly sketched. T
notice that the negativity condition is sometimes neglected, asg part of the
conditions for a consistent system of preferences to be defined. However
it is necessary, along with the symmetry, and inseparable from the opera-
tion of condistent preferences in all the choices. Also there seems to Dbe
held the idea of the independence of the gymmetry conditions. This is im-~

portant in knowing the freedom left in a system after the requirement that
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it satisfy the symmetry conditions. That only a proper subset of these conditions
can be independent follows even from their equivalence with the integrability con-
ditions and the number of these that can be independent. Here there will be given
results which moreover show exactly the system of dependencies between them.

It seems worth considering, as a conjecture, that uniformity and consis-
tency globally may imply differentiability locally. Then it would be possible
to say that, given uniformity, & necessary and sufficlent condition for con-
sistency is that the partial derivatives exist everywhere, and satisfy the sub-
stitutional symmetry and negativity conditions.

L. W. McKenzie [31] has presented an idea for the derivation of  the Slutzky
conditions, by twice differentiating the support function of the convex body
formed by the set of compositions not inferior to a given composition. Though,
as with Slutzky's own derivation, it does not jield the gufficiency, it is
valuable for added insight it glves into the Slutzky conditions; and it seems
to be almost alone as,a‘clear,and distinct idea contributed to the subject since
Slutzky's paper of 1915.

The fittingness of the use of the word rational which has become customary,
and which meskes a Fitful appearance here, may well be questioned. It is too
sweeping to call a person rational merely because he apparently consumes accord-
ing to a well-defined scale .of values. It seems permissible to allow that a
consumer could be a perfectly rational berson, and yet reveal outrageously in-~
consistent preferences, within any prescribed framewrok for observing them.

The realities of actual choices have depths which no formula for deciding
them can reach. A1l that is meant by consumer ratlonality is a rigidity of
revealed preferences — themselves an artificiality in the particular form
by which they are decided — or.a constancy of motive in consuming, which

does not express the proper essence of rationality. The rational seems
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more to have to do with the way in which account 1s taken of objective ends and
means, by the facullty of reason, this being specifically with a conscious, and
logical process of thought. Retiocnality is, in any event, a form of regularity;
and to this extent there is an appropriateness in the use of the word. It is

a tempting word, and using it gives the impression of having cut through an

old and knotty problem — though nothing could be further from the case. In
game-theory however, when preferences, themselves neither rational nor irra-
tional, are given in advance, a strategy which belongs to a golution of a

game does represent the strategy, logically implicit in the ends and means,
which 1t is well fitting to call rational.

Enguiries often relate to the question of the "realism" of certain central
"assumptions" of consumer theory. The question may be asked of the condition
of consistency of preferences. However, a consistent consumer is a concept,
like a particle with uniform motion in a straight line under no forces, such
as Newton introduced — though not because he expected ever to see such a
thing anywhere, but in order that he be able to explain the motion .of a
particle through deviation from uniformityy and make an equivalence between
dynamical acceleration and ccnfigurational force. Accordingly, consistency
of preferences is just to -be observed; whereas inconsistencies are also +o
be observed but may also be explained. Everybody knows that preferences
change: the important thing is to have the analytical machinery which grasps
when they change, and in what manner. In fact, the supposition that con-~
sumer theory has to contain‘universal,empirical.assumptions‘or'propositions
is not appropriate. Its purpose is purely for the elaboration of the forms
in which it is fitting to observe, and to analyse.

We have, from a well-known rhilosopher, something to the effect that

"There is nothing good but‘thatvdesiring~makes it so"™. This would seem
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to deny ahy meaning te ethical guestions; or it turns them into the elaborate form-
of deciding what it is good to desire, and then defining the good through identity
with that. Consumer theory has ndthing to do,with vhat it is good to desire;
merely with what is desired. Thus it has nothing ethical about it, comtrary to
turns in the argﬁments,of‘certain writers, such as Dr. Little [28], which make
an interesting, but misleading involvement. .There is, in a general sort of way,
no better guide to the precise nature of Utility and All That than Professor
Robertson [39, 40], in his well-known essay with that title, and its sequel
Utility and All What? It is as well to remark that there should not be geen
in this work a further inflating of that "vast parti-coloured mathemabical
balloon® towards which Professor Robertson says he feels such allergiaj; rather,
a Tying of that balloon safely where it belongs. There is also in it the pur-
pose of trying to show consumer»theory as a legitimate and interesting mathe-
matical subject, instead of fantastically disordered sphere of discussion,
strewn with mangled propositions — it is too much to say false, they are not
always precise .enough.

It is instructive of something in the state of economic gcience, not
treated amply enough by Professor Koopmans [26], to follow Dr. Little [28],
who says (p. 1) "Economists have used no methods of scientific research in
arriving at their conclusions about economic welfare; and since there are
no methods of scientific research involved there can be no methodology™.
What then can be the nature of welfare economics, if it is not science? Too
obviously it is not pure art, though Dr. Little (p. 1) delicately pretends
Just to "the exposition, the criticism, and the appreciation™ of his gubJject.

In his excellently scientific book Economic Theory and Method, . Profesgsor

Zeuthen opens with the remark "Economics is an unfinished science." This

also gives the spirit and perspective of the presemt work. It seems that
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more elementary questions need to.be considered before reaching many really prob-
lematic ones, which are already much discussed. So many economic concepts —
national income is a good example — depend on others, the~ﬁeaning of which is
far from clear, and which ought to be.settlaifirst; if the subject is to be
properly founded. Exploration of form is .an instrument of discovery. It isg,

if anything, the universal method in science; and has to be entertained as the
real authority, rather than a citation from the learned literature — which,

in the present sphere, however ‘authoritative", has been somewhat inconclusive.
Any science carries an essential element of its recommendation in its own form.
This is conspicious in the fundamental mathematical sciences, physical and other-
wise. It seems very plausible that economics, as ordered formal knowledge, will
eventually find a place among these, with its own peculiar characteristic con-
‘ceptions, such as are only ‘just beginning to emerge at all distinctly. Al-

ready the Theory of Games and Economic Behavior of von Neumann and Morgenstern

has given an instrument of great univergality which has still to be fully
exploited as fitting, in the formal theories of economics. An important step

in this direction is represented by Martin Shubik?®s recent book Strategy and

Market Structure (New York, 1959).

Dr. Little, in his remark (Critigue, p. 2) "T do not attempt to deduce any
new theorems”, signals another troublesome confusion. There do not seem to be
any proper theorems at all. in Dr. Little’s book — at most a few somewhat
tentative, and even incompletely understood definitions. Usually, a theorem
has an hypothesis, and a conclusion. It is a mathematical proposition, and
for such there may be consulted the well-known definition of Bertrand Russell
[41].  In any case, the idea is well enough understood by anyone who has

understood elementary Fuclidean geometry.
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However, many statements which are called theorems in the economic litera-
ture are nothing of the sort. What exactly is Professor Hicks?! Index-Number
Theorem? ([23], p. 181). It could be a hypothesis, or a conclusion; it could
be true, and even false; and it has some, dg it happené there unstated, sense;
but the hardest thing at all to see is that it is a theorem. The same i1s true
generally throughout Professor Hicks! Revision [23]s it is difficult to dis-
tinguish an intended hypothesis, or conclusion, and rather often even a per-
fectly definite sense. It is true — to be Fair — that, in spite of their
language, these writers may in fact be participating in that fine search for
empirical propositions. But the muddle is more than onme of mere speech:
though Dr. Little would not like it, it is of method. 7

For further instruction, let us now contemplate Dr. Little's remark
(Critigque, p. 1) "I believe that any further extension of welfare theory is
unlikely to be at all valuable; except as a mathematical exercise™. Does
this mean that the subject if hopeless within its present conception; or
thet it is complete, with the last word, presumably Dr. Little's, as having
been said? Has a significant line now been drawn between "ordinary"™ and

"mathematical” language and thought? These are interesting questions, but
for the moment slight comment only can be made, mostly on the Jasts;to a
certain point. Familiarity with a mathematical concept makes thinking in
terms of it "ordinary", and, moreover, such concepts .can be seen operating
everywhere in thought. With all this and generally, there is no profound
burpose in distinguishing two kinds of economics, one of which ig called
mathematical, Thus thefpresentuWdrk?ié?mathemaﬁics;gand also economics,
and it" cannot be parcelled ihto thé one and. the other. It has been a
Tashion with economistyto lumﬁ"éll'formulae“éndﬂﬁhihgé”thét look ‘1ike

‘that together) 'and get them, out of the way ih a Mathematical Appendix.
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In this work it would have seemed an inspiration to have had an Economical Appendix.
But then I should surely have had to answer that question which economists will
often ask "What is the economic significance of it?", and still I do not yuite

know what is meant.

Mathematics i1s more than a language. Indeed, if we are to believe L. E. J.
Brouwer [12], who says "Mathematics is an.essentially languageless activity of
the mind .....", it is not even that. It is objective thought; and certain of
such as is needed in economics is to Dbe found novhere else. . It does not merely
give a language with which, if one chooses, 1o express what may happen anyway
to be in economic theory; but it can itself be indivisiBle with such theory.
Professor J. A. Schouten, in the final speech at the International Congress of
Mathematicians at Amsterdam in 1954 (Proceedings, Vol. I, p. 157) remarked that
.. ... 1t is much easier to avoid misunderstanding in the field of physics than
in the field of economics or political science.” Now mathematics is in one of
its aspects the scilence of exact formﬁlatian and that means that better under-
standing may arise when problems can be formulated mathematically". This re-
mark gives the key to changes which are taking place in economics and, which
will, as seems to be the inereasingly established opinion, continue to act
towards the establishment of economics asg a science whose rigour is equal to
its apparent. importance.

It is to be taken as true ~— regarding a disdain for further mathematical
effort such as has just been noted — that the careful statement of the obvious
is not a negligible part of systematic exposition; But, if problems of the type
such as arise in welfare economics are to proceed beyond such a stage, new forms

and methods of precise statement,'even new. theorems, are just what is needed,

1 Some further discussions which are relevant appear in 0. Morgenstern,
"Professor Hicks on Value and Capital". Journal of Political Economy

49 (19h1), 361-393.
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allowing that, in the end, it may only be possible to look very critically at some
of" the guestions, and to decide that, by their nature, only the simplest and most
obvious things are worth doing and appropriate. That seems to be a kind of cri-
tigue that is finally needed, and such as it would be well to develop. There
always stands out the fact that all the general notions. with which are built
the many unavoidable questions in whigh value features as a critical term —
it 1s difficult to exaggerate their number or thelr importance — .call for
every analysis that will make them better understood.

Preferences between objects are not absolute but conditional: priorities
.can be reversed when conditioning factors change, like, for a simple and famil-
iar example, swords and Ploughshares, in peace and war. Also, value is a con-
cept in a form of analysis the application of which we are free to try, and to
accept or reject: it is possible to argue that the thinking of behaviour in
terms of preferences is a nice, but unprofitable artificiality, or alterna-
_ tively, that preferences may be real enough, but very unstable. However,
values are the only means we have of making sense of human behaviour. (And
it could be for that matter of any living activity. What other abstract prin-
ciple has Darwin given us, but that there are preferences in creation. Let us
note also the idea working as a principle in the detection of crime — it is
-elementary to suspect anyone with a motive?)

The genesis of a particular mathematical subject is in.essential forms,
elicited from perceptions,in some  sphere of experience. Here that sphere is
the activity of consuming, together with the idea of analysis in terms of values.
The data for any knowledge of the consumer is market data, giving prices of com-
modities, and quantities consumed at those Prices, in a certain, necessarily
finite number of occasions. Theory of the consumer should lead to statements

of" what questions can be asked of the data. It should give a general method-
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ology about such questions, how they and their answers are formulated, and their
conceptual meaning for different possible issues. As .a subject in itself, at
least 1n its fundamental terms, it seems to have fairly conspicuous natural
1limits, the tracing of which is one of the present interests.

There is not intended to be an approach from a particular point of View
or subject, but rather, as far as possible, one just in accordance with the
nature of the matter in itself. This makes for difficulties in the exposition,
as regards ready communication. But is is impossible to do real justice to
a reader without first doing Justice as far as possible to the subject. It
may of course be that in getting intrinsic difficulties out of a subject,
which. 1is by appearance comparatively simple, everything may become unexpect-
edly more difficult; but these new difficulties may well be mostly bound up
with familiarity and training, which the subject itself does not, so to speak,
care about. This exposition i1g mostly concerned with getting a subject stated,
on terms which are entirely its own, with the hope that in due course it will
get any further exposition it needs to make it accessible where wanted.

It is hardly possible or fitting to record every occasion which has been
for the advancement of this work. But it can be recorded that some talks with
Mr. Robin Marris in Cambridge, about the "spread” between the Paasche and
Laspeyres indices, were the background for thinking which finally led to this
general investigation of concepts. The scrutiny of principle is sometimes no
doubt an impediment to action: probably if we thought about index-numbers too
much; they would never get compiled. But index-numberg are supposedto stand
for something. They seem almost in present days to have attained to the
character of a sacred institution; but they are, in the nature of what they
pretend to be; not a mere convention. To agk that the principle of their

calculation be conceptually correct 1s a reduest which has to be respected
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—— even 1If we can only admit that we are then left at sea. The request itselfl can
be made intelligible only by something of a theory of Index-numbers, and it cer-
tainly calls for just such a theory to answer it. However, there does not seem
to be a general show of such concerns among those who profess to the job of cal-
culating the index-numbers. It could be of course that they are too busy meas-
uring those all-influential "weights™. Dr. Prais (before the Royal Statistical
Society, April l6thy 1958; the Journal, Series A, 121) remarks, apparently with
perfect confidence, "... practitioners have tome to substantial agreement on
what a cost-of-living index number should to-day measure in principle ...".
What deep satisfaction for the practitioners? The fact 1s, they have no idea
whatsoever about such a principle. L For a gulte simple immediate discomfort,
the Paasche and Laspeyres indices seem to compete on an equal footing to re-
present the same thing. Yet they are never the same: between them there is
that unfortunate “spread". There are other discomforts; but the next Rebort
has these for examination; together with exposition of a theory of index-
number calculations for which the present material has been set out as a
preparation. In this Report, as is altogether normal in the field, there is
hardly any trace or suggestion of calculation. The view has bean expressed
Morgenstern [33]) that "It may well be said that a modern economic theory will
now no longer be considered finished until it is clearly shown how it can give
numerical results”. Consumer theory has hardly ever satisfied such a condi-
tion: 1t is a field ruled by authoritative expositions and disputes — in
which the personal equation hasg been a large eguation, in the balance between

imponderables. Methods of index-mumber calculation and of demand analysis,

1 For an exact and informative statement relating to the situation,
reference is made to W. Leontief “Composite commodities and the
Problem of" index number”, Econometrica U (1956), 39-59.
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which should most perfectly in Pprinciple. have their source in such a theory, have
with but few exceptions. been without such foundation. Subsequent parts of this
investigation are concerned with theories of measurement and calculation which
have their origin preclsely in the here described formal theory.

Concern with proofs of theorems ig a very necessary requirement which, once
discharged, can more be left aside, and the attention can then be given over
entirely to problems of methodology. There is needed a further exposition in
which there is not the sometimes intricate diversion of dealing with proofs, but
only with concepts and principles; and it is hoped this may be supplied eventually.

This work in part had its beginnings in the Department of Applied Economics,
Cambridgey and the interest even earlier, in a collaboration with Mr. J. R.
Bellerby of the Agricultural Economics Research Institute, Oxford. It was con-
tinued, intermittantly, during-a Fellowship in the Department of Mathematics of
the Hebrew University, Jerusalem,: in 1956-58., However, it is only since
September'l958, after joining the Econometrics Research,Program,of Professor
Morgenstem, that it has shown anything of its present shape, in which there can
at least be a view towards a systematic and, within certain limits, complete
statement. Some talks given here to. a mmber of economists and mathematicians
concerning the material, and the discussions which .went with these, did a great
deal to assist this;development, to find important issues which had to be
clarified. and advantageous formulations. I have an old debt of thanks to
sincerely acknowledge to Mr. Bellerbys and also to Professor J. R. N. Stone
in -Cambridge. Now I have a very great one to Professor Morgenstern, to whom
I am grateful for having made this writing fully posgible, and very agreeable,
and for having assisted it in very many ways. Without his interest and sym-

pathy, it seems this task would have been a longer one, and much more difficult.
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I wish also to thank very much Mrs. L. Diaforli who, with skill and patience, has
done the typing. This work has had the partial support of the Office of Naval

Research of the United States Govermment.

Princeton Univergity S. N. Afriat
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PART I. THE CONSISTENT CONSUMER




I. Value and Choice.

1. Iogical notation.

If p is a proposition, then ~p denotes the proposition which is its
negation, sothat the assertion or denial of p is equivalent to the
denial or assertion of ~p.

The condition of imp lication froma proposition p to a
proposition g is indicated by p =§ d, and is that the assertion of p carries
with it the assertion of d. (Mutuél implication defines the e g u i v a-
lence p<>q of the propositions; and eg.u'i.va lence Dby
definition is indicated by p = g, with the term being defined
appearing on the left.

Given two propositions p, q they may be composed to form the further
propositions denoted by pAdg, p\Vva which are called their c¢ o n-
junction and dis junctiomn, the assertion of the one or
the other of which is equivalent to the assertion of both of p and q or of
either of p and q.

Now for a set of propositions p(x) (xeC) indexed in a set C, the
conjunction of all the members is denoted by@/n\\p(x), the assertion of
which is equivalent to the assertion of everyxggoposition p(x) (xeC), in
other words the assertion of p(x) for all xeC; and the assertion of the
disjunction, denoted by\\// p(x), is equivalent to the assertion of one
or other of the proposit?ggs p(x) (xeC), or that there exists an xeC such
that p(x).

Such an indexed: set of propositions gives the concept of a

propositional function plx) defined for xeC, which

gives a proposition with the values of truth or falsehood for any element



x€C. The conjunction and disjunction operators//\\ ,\\// applied to a
xeC xeC
propositional function p(x) define the universal and
existential gquantifiers, which obtain the assertion
of p(x) for all and for some xe€C.
A useful convention which is adopted is that by the assertion of
merely p(x) is to be understood the assertion of//«\ plx).
x€eC
The scope of the logical connectives, of conjunction, disjunction and

implication, and the quantification operators,is indicated in the usual

way by brackets and pu]rlctuant:'Lon.,:L

2. Algebra of relationsn2

Iet Rbea Dinary relation between the elements of
a set C, that is a propositional function xRy (x,yeC) of the ordered
couples (x,y) of elements of C. The conditions for R to be r e-
flexive, and tocbe no nq- ref lexi1ve aredefined by
x=y => xRy, xRy = x=y,
symmetric, and antisymmetric, by
xRy = yRx, xRy = .yRx,

tobe complete, Dby
1

Reference is made to almost any of the standard works on symbolic logic,
for example Quine [8] or Tarski [#9], for general account of symbolic methods.
What is needed here is extremely,simple, but nevertheless indispensible.
A11 the symbolic statements have the most direct translation into words;
but these translations obscure essential form, which is immediately evident
in the symbolic statement. ‘

Accounts are to be found in various works on logic, most especially in
Russell and Whitehead[#]. However, an amount of this material (viz.
Theorem IIT and definitions involved) does not appear to have had any
consideration elsevhere, . ’ o L



X=Y o =, nyVny,
and tobe transitive, by
xRyAyRz.=». xRz.
The transitivity condition has the equivalent extended form
X Rx AeoeooNx (Rx o=>. x Rx .
Any relation R has a cvonj:ugate R') a complement

—

R anda symmetric complement »'ﬁ, defined by
xR'y = yRx, xRy = ~XRy, x§y9 = ~XBRy/A~yRx.

The complement of the conjugate of an’y'relation is the same as the

conjugate of the complement,

(R)* = (r"):

and so, without ambiguity, they both may be indicated by R'.

A relation R is said to have the property of complementary
transitivity if its complemept R is transitive, equivalently, if
~XRYA ~yBz . =>. ~xRZ.
There are two rspecial complémentary pairs of relations, the
universal andthe null relationsVandA,
which always and which nev,ér hold, ‘respectivelyy
xVy, ~xQy;
.and also the relations of identification and dis -
tinection Iand Ddefinedby
xTy = x:—{yp xDy = x=y.
Operations of dis junction, conjunction and

adjunction of relations, to obtain the sum QVR; product



/AR and resultant QR of any two relations Q, R are defined by
xQ7VxRy, =x(QAR)y = xQy/\xRy,
x(QR)y =\/ x®AzRy.

Z

x(QVR)y

i

Adjuction is distributive over disjunction,
P(QVR) = PQVFR;
also it is associative,
P(QR) = (PQ)R,

so that any sequence of relaticns R

l’°°°’Rm has a well defined resultant

Rl‘°°Rm’ and the mth power Rm of any relation R can be defined as the

resultant of a sequence of m relaticns identical with R,

m
R =K. R
Adjunction of relations is not,generally commutative,
QR = Hay

however, adjunction of different powers of the same relation is commutative,

fia

R = & =5 - /R
The relation of imp lication Q=R Dbetween relations
Q, R is defined by
Q = R = xQy => xRy-
Equivalent stateme;ts fof the conditions of reflexivity and non-
reflexivity for a relation R are giveh by
I =R, R =D,
of symmetry and antisymmetry, by
R = R', R =>R',
of transitivity, by

R = R,



and of completeness, by
D = RVR"'.

Also, the symmetric complement has the definition

R = RAR'.

THEOREM I. A transitive relation is antisymmetric if and only if it is

non-reflexive:

R® => R: => :R = D. <> .R => R'.
Tt is plain that, in any case, antisymmetry implies non-reflexivity;

for

xRy = .yRx. = .xRx = xRx
L E=> XRy =X =Y.
Now assume transitivity,

xRy A\yRz. .=> .xRz.

Then

XRyA yRx. . = .xRx,
so that

xRx: = :..xRy/\yRx,
that is

xRy : =2 x=y..=>» xRy =2 .yRx.

THEOREM II. The non-reflexivity of a relation is equivalent to the

reflexivity of its symmetric complement: R=D.¢& .T =>R.

For

~XBx <> xﬁxo

THEOREM ITT. Given R =>R?, the conditions

RR* =R, & =& &R =R



are equivalent, and imply

~ ~

VRQ=>I,{, RR => R, BRR =>R, = R,

Thus, assume

xRy =* ~yRx.
Then
*Ry/A\.zRy. = .xRz
gives ‘
~XRz. =2 ..xRy\/zRy,
and then

~%xRz /A .zRy - = o ~XRY,
and reversely; so RR? = R and ﬁg = R are equivalent together, and
similarly with R'R = R.
Assume again antisymmetry, and then complementary transitivity, with
its now demonstrated equivalents. Then
‘xR'y/\sz. = xRy A\.zRy
| «=> ,XRz,
so that- R2 = R.. Also
xRy AyRz .=> .xRy/\.zRy
| .= xRz,
so that RR = R; and similarly, RR => R. Finally,
xByAyRe .= . (xBy/AyRz)/\(zRy/\yRx)
=> ox-ﬁz/\zﬁx
o= uxﬁz,

so that R~ = R.



3. Transitive closure.

A 1ink, in a relation R, or an R-link, is defined as an ordered
pair of elements (x,y) with the first member x in the relation R to the
second member y, that igﬂéﬁy. A relation is given when the set of ordered
pairs formed by all its links is given. This set defines the graph
of the relation R, and is also denocted by R, it being a subset of the set ¢
(C,C) of all ordered pairs of elements of C; thus,

RC(C,C), (x,y)eR = xRy.
The relation of implication between relations is, accordingly, the same as
the relation of inclusion between their graphs.

Links in an ordered pair of the form (x,y), (y,z).are said to be
coupled, in their given order, and to have the linﬁ‘(x,z) as
resultant.

A sequence of links in which each 1link is coupled in order with its
successor defines a ¢ h a i n, an R-chain being defined as a chain of
R-links. Accordingly, a sequence (xo,...,xr) of r+l elements defines a
chain ((xo,xl),...,(;rsl,xr)) with r links. .Such . a chain is said to
ascend from the first element X, to the last X, Or to descend
from the last to the first. A chain ascending from x to y in R also
gives a chain descending from x td v in the conjugate relation RT.

The resultant 1ink of achain, ascending from x to y,
is defined as the link (x,y) which it determines between its extremities.

An ordered pair of chains is said to be coup led if the last
link of the first chain is coupled with the first link of the last. A
coupled pair of chains may be jéined together to form a third chain. The
resultant links of the chains in a coupled pair are coupled, and have

resultant which is the resultant link of the chain obtained by joining them.



The property of transitivity of a relation R is that the resultant
of a coupled pair of R-links is an R-link, ér, in an equivalent, more
extended form, the resultant link of any R-chain is an R-link.

Now, if R is any relation, it is possible to form the relation ﬁ)
whose links are the resultant links df all the chains of R, that is, R
is defined by defining an R=link as the resultant link of an R-chain.

The relation K.thus constructed from a relation R is necessarily
transitive, by the form of the construction. .For, any coupledlﬁzlinks
are the resultant links of a coupled paif of R-chains, and their resultant
is the resultant link of the R-chain obtained by joining these R-chains,
and is thus an ﬁzlink; that is, the resultant of a coupled pair of R21links
is an ﬁzlinks so R'is transitive.

Moreover; for any transitive relation T, and any relation R, if the
graph of T contains the graph of R then it must contain the graph of R:
For then any R=-chajin is a-chhain; and the resultant of any T-chain is a
T-link, by the transitivity of T. Thus the resultants of the R-chains,
which define the ‘ﬁilinks, are T-links; so the graph of T contains the
graph of @i Thus it appears that ﬁéis transitive, implied by R, and
implies every transitive relation implied by R, for which property of ﬁé

there is the following statement.

THEOREM TI. .ﬁéig_the minimal transitive relation implied by R.

By this property, ﬁ?is called the transitive closure of
R.

Since

mey

<

(x=zo/\y=zm)/\(zoRzl/\°.,/\zmanZm),
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an RP-1ink is the same as the resultant of an R-chain of m links. There-
fore, since the R-links are the resultants of R-chains, an R-link is an
R'-1ink for some m; so the graph of‘ﬁ}is +he union of the graphs of the

powers R (m=1,2,...) of Ry whence, equivalently,

2 = V.

So, more explicitly,

xRy .=.\/ \/ (x = ZO/\.V=Zm)/\(ZORZa1/\o ‘°/\Zm..1Rzm)
m Z 3 o9 ,Z"J v
o} m

The relation f?as given by this formula can be verified in a formal

algebraic way to have the essentiél defining properties for the transitive
. cr s s a =3 =2 =

closure. Firstly, it is verified that R =R, and secondly, that R =R,

since

w2 -V B VR =F
m=1 m,n=1 m=2

by the commutativity of the adjunction of different powers of the same
relation, and by the distributivity of adjunction over disjunction. Finally,
if
2
™ =T and R =T,
then
2 = 7 =7, so that R => T.

Hence there is concluded the following, which: is Theorem I with

a somewhat different derivation.

(THEOREM I): iy
Réz\/Rm:
m=1
then ‘ o -
R=T% R =R
and
R = TAT- =T .=>. K = T.
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This states merely that the relation ﬁ;given by the given formula has the
property of being the minimal transitive relation implied by R, that is,
it 1is transitive and implied by R and implies every ‘transitive relation
which is implied by R.

A cycle is defined as a chain with coincident extremities;
and an R-cycle in then a cycle formed of R-links. A relastion R is

defined to be a cyc lic if no R-cycles exist.3

THEOREM II. A relation R is acyclic if end only if its transitive closure

R is antisymmetric, or equivalently non-reflexive.

Tt is clear that an element x is on an R-cycle composed of some m
links if snd only if it gives a reflexivity mex of a power R of R; and
then, equivalently, of the transitive closure ﬁ?which is the union of these
powers. Thus the acyclcicity of R is equivalent to the non-reflexivity of
ﬁE and, since R is transitive, this is equivalent to the antisymmetry of ﬁi
by Theorem 2.I.

k.  Equivalence, order and scale.

A reflexive, symmetric and transitive relation defines an
equivalence. Thus, the relation of identification I and the
universal relation are the simplest possible examples of equivalences: in
the one each element is equivalent just to itself, and in the other all

elements are equivalent.

3

‘ton Neumann and Morgenstern [5%].

The concept of equivalence and order are, of course, completely standard.
However, the axiomatic concept of a scale appears to be newly introduced
here, and is a much needed logical term in value theory,for the want of
which some essential theory has lacked the means of statement. Reference 1s
made to Von Neumsnn and Morgenstern{sd for the original modern approach to
the logic of preferences, and also to Arrow [ 6], Samuelson[44], Hicks[RZ],
Houthakker[24] and Little[d8], for further discussions with speclal reference
to the consumer.For more abstract treatment of relations generally, reference
i1s made to Birkhoff[9], Birkhoff and Maclane[10]; and also to works on symbolic
logic, such as Quine[58] and Russell and Whitehead[42] .
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A complementary set of subsets of C is a set of
subsets which are mutually disjoint and which have C for their union.
Such a complementary set of subsets defines a par tition I ofC,
with these subsets for component s. Every element x of C belongs
to one and only one component HX of I, which is said to have x as
representative. The two extreme examples of partitions
are those in which all the elements together form a single component,
and those in which each single element itself is a component.

Any partition Il determines an equivalence Q by the condition that
elements are to be Q-equivalent if and only if they represent the same
II-components .

Thus,

Xy =L =T

defines a relation Q determined by a partition II, which is readily verified

304 .

to be an equivalentce.

TS U e

A partition Efandﬁan?éqgivalenée7Qgﬁ£ﬁsﬁrélated are said to
wrﬁe §?r‘é:g:é7ﬁk£ ‘gééh?other. Thus, the condition for an equivalence Q
and a partition‘ﬂ to represent each other is that, for all elements x,y€eC
and for all components o, PRell,

xeQAyep .=>. xQy <> a = B.

Tt has been pointed out that every partition represents an equivalence.

For example,the extreme partitions, which have'béen described, represent
the universal relation and the relation of identification, respectively.

Now it is to be seen that every equivalence represents a partition. For,

let Q& denote the set of elements y which have Q-equivalence with x, that

is such that yQx, this set defining the Q- equilva lence
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class of x; so
yeQ, = yax.
Then, by reflexivity,
XEQX;
and, by symmetry and transitivity,

xQy = zeQX @zeé)y,

that is, v ‘
xQy = QX = gy’
and alsc
zeQxﬂQy =2 xQ@/N\zQy
.=>. xQy,
so that

QN #0 =>xqy.
With XGQX, it now appears that
ny@Qx=Qy, x@y@Qxf\Qy=o.
Accordingly, the equivalence classes form a complementary set of subsets,
which determine a partition II of C represented by the equivalence Q:
Qx =T

A non-reflexive, transitive relation defines an o r d e r. Since,
for a transitive relation, the conditions of non-reflexivity and antisymme-
try for equivalent, an,antisymmétric £ransitive relation also defines an
order. An order relation is calleda complete order if it
also satisfies the condition for being complete, by which every pair of
elements are related in the order one way or the other. .Otherwise it is

called a partial order.
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If one order implies another, then it is said to r e £ in e the
other, or the other is said to bea ref inement of the one.
.The operation of refining an order is to construct an order which refines
it. Every order can be refined to a complete order, given the axiom of
choice;5 however, the way is not unique. In other words, assuming the

axiom of choice, every partial order implies a complete order.

Given any relation, in general not an order, it may or may not imply,

or be contained in, an order relation. A necessary and sufficient condition

that a relation imply an order is that its transitive closure be non-

reflexive. For if R => Q where Q is an order, and therefore transitive, it
follows that §?=> Q; and now the non-reflexivity of the order Q requires
that of R. Conversely, if Ris non~refléxive, it is, since already
transitive by construction, an S}der, implied by R, so the required

construction is obtained. Moreover, any order implied by R is determined

to the extent of being a refinement of E?

A relation with the properties of antisymmetry and complementary

transitivity definegs a s ¢ a 1 e. Then the symmetric complement § - SAS:

> T am indebted to Dr. R.O0. Davies for pointing out to me this proposition.
The orders which properly refine any given partial order form the elements -
of a non-empty set, which is itself partially ordered by the refinement
relation which is defined between its element. The orders which are the’
maximal elements in this partial order are the same as the complete orders
which refine the originally gilven partial order (in general, there are
several of them).
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of a scale S defines the relation of indi fference in that
scale.6 For any two elements x,y there are now the three possibilities,
which are mutually exclusive and complementary, by the antisymmetry of

S and the definition of S:

.

¢ xSy,t xgy, xSty

Thus, if they do not have one of the two relations of preferemnce
in S, that is xSy or x5 %y, where x5% stands for the conjugate relation

yox, then‘they have the symmetric relation of indifference xéy, by the
definition of indifference as the negation of preference. In gnother
terminology, any element is either b et t er or wor s e than another,

T

or theyare of the same value, in the scale.

6 Indifference, as determine by P = P/\P?, appears as derivative from pre- .
ference, as determined by P, and not as more primitive than preference. Thus
an indifference, as belonging to a set of revealed preferences, may be re-.
placed by a prefermnce, when that set of revealed preferences is enlarged.

If some preferences are considered as revealed, other possible preferences
may just as well be concealed; and no record of indifference can be allowed
as a final record. However, an established manner of thought in value theory
seems to take indifference as a primitive term, rather than as an auxiliiary.
Tt seems to take the construction ef indifference classes as a fundamental
task, rather than the establishment of preferdgmees. This can be considered
a fault, since, in action, it is only preference which is revealed, in the
relation of the selected to the rejected; and no action or set of actions
can point to an jAdifference. Indifference .can only merely be a concept
which applies to our knowledge of the state of an agent. It is a gap in our
knowledge of preference, as is expressed in the definition P = PAP . Even
if the agent may have g genuine indifference, whatever that may be, it can
be of no use or congeghence. In ‘the nature of the logical situation,.we can
never know it, by any amount of observation. After all, without affecting
anything, the agent may secretly become more discriminating - and capable

of making distinctions which would be uncalled for on any possible occasion!?

1 In usages in economics, "same value” msy only be in a monetary sense,
and must be distihguished as only possibly a part in the more inclusive
concept, which is the present concern, which may have nothing at all to
do with money.
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THEOREM I. If S is a scale, then it is moreover an order, and its

indifference relation S is an equivalence.

For, in the first place, it appears from Thﬁorem 2.IIT that if S
is a scale, then both § and S are transitive. Now S is an orﬁer; by its
antisymmetry together with tranéitivityn Also, by Theorem 2.II, the non-
reflexivity of any relation is equivalent to the reflexivity of its
symmetric complement. But S is non%reflexive, since it is an order; and
therefore:é is reflexive. ,Moreo#er, the symmgtry of g is in the form of
its definition. Thus g, being now réflexive, symmetric and transitive,
is an equivalence. ‘

. Since the relation E éf indifference in a scale S is an equivalence,
it determines a partition & of the set C, whose components, which are the
equivalence classes of g, may be taken to define the indifference
classes of 8. Thus, for elements x,yeC and ingifference classes
a, Bex,

xeaAyep .=>. xSy <= a = B.
Tt appears from this the@f@m that a scale is a special kind of order.
Though every scale is an order, not any order is a scale. However, the

concepts coincide under the condition of completeness.

THEOREM II. The complete onder and complete scale conditions are

equivalent.
Tt is only necessary now tdjdbserve that, with completeness and
antisymmetry, transitivity impliésAéomplementary transitivity, thus,
~XSyALYSz ;=>a ySx A\zSy
=2 79X

=2, L XS7 .
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Consider an equivalence Q, and the resulting partition II of the
elements of C, together with a complete orderR,of the components of II,
these being the Q-equivalence classes. A relation 8 between the elements
of C is defined by the relationR between the Q-equivalence classes to
which they belong, thus,

X5y = Q'xRQy-
Tt is said that the relation}{bet&éen the Q-equivalence classes of the
elements e xt en d s to the relation S between the elements, and alse
that the relation 5 between the élements reduce s, by identification
under the equivalence Qzto the relationﬁ%fbetween the Q-equivalence classes.
.Buch a relation 8 which reduces by idehtification under an equivalenee is
said tobe reducible.

The condition that a rela%ion}%between the classes of an equivalence
" Q between the elements of a set C extend to a relation S between the
elements of C, or, what is the same thing, that the relation S between the
elements of C reduce, by identification under the equivalence Q, to a
relation R between the.Qaclasses, is that for elements x,y€C and components
o, Bell, of the partition II which represents Q,

xeaAyep .=>. xSy <> akp.
By this condition, the relation S between the elements of the set C is
said to represent, and to be represented by, the relation Rbetween the
components of the partition I of C:
S «— (R,H) .

THEOREM I{I. ,éucqmplete,orderyzgg the classes in an equivalencer

between the elements gg,g,set C extends Eg_g_scale gg.the elements ggac.

It

xBy <> QR
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vhereRis ré complete order, then, by the antisymmetry of 'R,
xSy = QX“R,Qy = ,,Qy'R,QX = _ySx,
s0 S has the property of antisymmetry. Also, by the completeness, then
by the transitivity, and then again by the antisymmetry of R B
~XSyA.ySz 1=>: NQXRQy ./\.‘,,Q‘yRQZ
=1 QRVY, =4 A RV, -4,
=>: RV, = q

s=>e ~QXRQZ

i=>r .x8z ,
so 5 has the property of complementary transitivity, and is therefore a

scale.

THEO{‘(EM IV. Any scale S reduces by identification under the equivalence

5, to a complete orderé@i the partition X formed by the classes of S;

that is , for all elements x,yeC and components &,BeZ,

x€aAAyEB :=>: xgy <= a = ./ x5y < a/g)ﬁ,
When/gis a complete order. o
In Theorem2Jit appears thé,t , 1f S is a scale with indifference
relation S , then
XSy/\yéz .=, x5z, xéy/\ySZ .=>. x8z,
whence o

Y
&

®By/N\eSw .=>. xSz <> ySv.

defined by

,a/&a = \/ x5y

X€Q,y€B
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has the property

//\\ xQy <= QAQB-

XEX,y€B
8o two elements have the relation S if and .only if their indifferenée
classes have the relationdﬁg. Now it is immediate that
a#p <. ozAB\/ﬁ)Sa,
which ShOWS/&tO be non-reflexive and .complete. Also the transitivity
of/& is implied by that of S, and the manner in whichujgrebresents S,
The relatian/é to which:S has béén shown to reduce by S, is now shown
to exist, and to be non-reflexive, transitive and complete. It is
therefore a complete order of the indifference classes, which extends
to .a scale applied to the elements:
S «— Q&,é).

Thus, by Theorems III and IV, a scale appears as representing and as
represented byr-a complete order of its indifference classes. In oﬂhe?
words, the concept of 3 scale is essentially that of a completely
ordered partition.

For avscale 5 on a set of C, a numerical function ¢ defined on C
is said toc measure S if

$(x) < ¢(y) => x8y,
and to measure S comp letely 1if
p(x) < ¢(y) <> x8y.

A function which.m%asures é scale is called a ga u g e, of that scale.

Thus, a preference gauge is to be a gauge which measures a preference
'B_ﬁTHéTédhéiusion is that a scale as defined here is what everyone has

in mind for a scale = the objects put into classes, and then these classes
put into a complete order.

DEERE TV
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scale, being greater or less according as the objeet is better or

9

worse .

5+ Choice and motive.lo

An a ction, except when it is merely a constralnt, consists
ina choilce, given by an object selected and oOthers rejected.
A significance is attributed to d choice, which lies in the relation
of the selected fé the rejected, by which it is taken that the selected
is revealed as preferred. ,Choices are made under certain
restrictions, and they reveal ceftain preferences : the preferences are
considered as‘underlying»ﬁhe choice, and to be essential elements of
behaviour, which can be a ground for deciding expectations of action,
whereas the restrictiohs are accidental.

A scale of value is to be a scale deciding the better-
and the worse between potential alternatives of choice, to the end that,
on an occasion of choice, with an&ﬂﬁossible restriction, the chosen

object will be the best.

9. Such a function might, in accordance with traditional usage, have Dbeen
called a "utility function®. However it would then, with the name, inherit
the also tragitional confusion of controversy,and mystery,which has
surrounded the notion of utility (for the anatomy of the subject, see
Majumdar :[R9]). Here the term utility is reserved for a greater structure
of meaning than operates in the immediate matter. A utility function is
indeed to be a preference gauge, but also it is to be more than that.

10 Tt seems needed to investigate further the usages, which are funda-
mental in the language and methed of the present subject, and which the
purpose is now to stabilize. But here the main adopted task is considered

to be mathematical, and to consist merely in the formal statement of a body of
definitiong, porpositions and demonstrations. Evidently, many of the
difficulties in the discussions of the gonsumer, which appear in the
literature, stem directly from the incompleteness in the common understand-
ing about form and method,in the first ideas..
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A scale of value which contains the revealed preferences is
admitted as é motive for the choice, the selected.appearing as
better than the rejected in any such scale, and therefore determined
by the scale asgs the best availabié on the occasion.

The revealed preference relation of
a set of choices is defined as the transitive closure of the set of
their revealed preferences. The .choices can have a scale as a common
motive, by which condition they are defined to be coherent,

i n the scale, if and oﬁly if their revealed preference relation is

an order. Then any common motive scale, obtaining their coherence,

can be considered r e v ea led to the extent of being a refinement
of their revealed preference order. For the supposition that any single
choice hag a motive, there can be no contradiction; but if itvis that
for a multiplicity of choices there 1s a single motive, in other words
that the choices are coherent, then contradictions are possible, and
are shown, in immediate analysis,.by reflexivities in the revealed
preference relation.

Even if constancy of motive may e a state never found in'the
living, it is required as a concept in order that any behaviour may be
explaihed by its deviation from such a state, and also that value
forces,which cause deformation of scales of value, may have the
essential reference for their definition.

With an agent making repeated actions, .rat ionality
is manifested in constancy of motive, obtaining the coherence together
of all choices which are made, having expression in the consistency

of revealed preferences, given by the non-reflexivity of their revealed
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preference relafcj’.on.l:L The contrary of the condition of rationality,
caprice, is shown in the conflicting preferences revealed by in-
coherent cholces, cbtaining refleiivities in their Jjoint revealed
preference relation. Value theoryvis[concernedfwith the formation

of method which will represent activity‘%é rational, and with an
exhibited motive in some system of value.  The essential questions
for the representation seek a definition of (i) the valued potential
alternatives, (ii) the scale applied to these alternatives and (1i1)
the restrictions which obtain the actual from,the.potential. The
intention is to obtain a picture of the activity with the form: every
acted alternative is such .as to aﬁtain the.ext}eme of the scale under
a restriction. The condition for the individuality of an activity,
by which it may be taken to proceed from ajsinglevﬁhdivided rational
agent, is then that all actions in it can be moti§atéd, or made to

cohere in a single system of value.

L Rationality is thus to mean governed by preferences. However,
the preferences themselves are irrational. They are merely given,
as belonging to the character of the agent. This use of the word
rational is quite usual in economics, and other sciences concerned
with similar aspects of human behaviour. But, as pointed out to me
by Professpr‘Feis, it is not perfectly satisfactory, seeing how it
would seém to reduce to: a very trite matter the greater questicn
which has to do with the conscious faculty of reason. Nevertheless
a word is needed, and it is hard to find an available substitute. The
notion of rationality is here a constancy,manifesting itself in a
congistancy; and this is quite consistent with, though not identical
with, the general understanding of the word.
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6. . Expenditure systems.

There is to be considered an agent whose action is to make
expenditures on commodities, in order to .obtain consumption. Various
simple commodities are taken to form the elements of a single composite
commodity, which is to be the matter for cholce. An assemblage of
amounts of the simple commodities determines an amount of the composite
commodity, which is to be calleda commod ity comp4Qs i=-
t i on. A composition is represented by a vector x, ranging in a
region C of the composition space, the elements

X

LR of which give constituent amounts of the commodities, these

being supposed all positive numbers.

On any occagion.the simple commodities have p r i ¢ e s, that
is amounts pl,...,pn of money required in exchange for unit amounts of
the cormmodities, forming a vector p which determines the expenditure
e for any .composition x ; thus

€ =pyX; 4.k Pp X = px,
represents the expenditure e as a bill, a total of elementary expendi-
tures, each of which is the product of a price with an amount, énd
obtains it as the scalar product of the price and composition vectors.
Given prices p, the condition e = p'x admits those compositions x
which obtain ba lance withman expenditure e.

The relative pri c.é s, 1in theevent of a composition
x at prices p, are to be the prices given relative to the expenditure
e =p'x, or those fractions ul,---,un of the expenditure required in
exchange for unit amounts of the commodities, forming the elements of

the vector

u =pfe.
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Tn other words, they are the prices with the total expenditure taken
as unit of money. By their definition, they satisfy the balance

condition

= v u X
1 ulxl -+ + nFn

which merely sums the proportions ulxl,...,ﬁnxn in which expenditure
distributed over the commddity élementsn Thus, to a certain distri-
bution of expendifure among the commodities, there corresponds consumption
with a certain composition, the-cofréspondence being established by the
relative prices. The relative grices.are now to define an e xp e n d-
iture balance, represented by a vector u in a region B of
the balance space, the elements of thch are all positive
numbers. A composiﬁion % is defined to be W i‘t hin, on or
oV er a balance u according as u'x % 1.

The condition ply < p'x states that composition y requires at

most the same expendibure e = p*k_ as X at prices p; and it is equivalent

to uly < 1, or that y should be within the balance u =‘p/e-

. An hypothesis which can be applied‘to the consuming agent is that
the composition x of consumption is given a determination by the prices
p on the occasion taken together with the expenditure e, ~thus under the
condition e = plx-, in such a way that composition remains unchanged
when prices and composition are changed in the same ratio, such a change

representing a change just in the unit of money; in other words, in a

way which is "without monetary illusion”. That is,

x(p,e) = x(ph,eN)  (A>0);
in particular, with A = %/e,

x = x(pfe,1) = x(u).
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The condition of absence of monetary illusion is required in order
that the artificial unit of money should have no significénce for

choice. Tt thus leads to the determination of composition x by the
balance u, or just by the range admitted by the choice; and this is

expressed in the concept of an expenditure system E, which is to be

a mapping of balances into compositions, subject to the balance
condition, thus,
E:s B =>»C (u —~> x; u'x = l)m12

Tt is considered that a consumer must, in potentiality, obtain-a
composition x on every balance u: and the determination of x as a
function x = E(u) of u subject to the balance condition u'x =1
now gives the concept of an expenditure system to express the.idea
of a cconsumer bPehaviour. )

A pair of vectors (u,x) with u'x =1 is to define av choice,
with the understanding that x, on the balance u, is chosen from all
those compositions y which are within this balance, having ux € 1.

If E is an expenditure system, the choices (u,x) with x = E(u)

define the choices of the system. They form a set

2 e step from writing x = x(p,e), homogendous of degree zero, to

writing x = x(u), u =p e, is not great, but it is nevertheless
important. To omit it is to retain inessential complication which

is a bar to the most direct logical insight, and makes,as in apparent
historically, some needed results hard to attain. The term "expenditure
system" appears in Btone [48]. It seems useful to kezp it gs distinct
from - "demand systemw,.which,in accordance with existing usage, may be
appropriate for considering composition x just as a function x = x(p)

of prices pj in which case expenditure e = pix alsoc appears as a
function e ='e(p). In this way, a demand system determines an expenditure
system, but not reversely. However, an expenditure system, together with
a functional dependence of expenditure on prices, determines a demand
system; for then u =p/e(p) = u(p), so that x = x(u) = x(p).
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{(u,x@} uel which constitutes thé g?aph of the system, there being
one choice for every balance uﬁC and the corresponding x = E(u).

An expenditure system is aefined tobe regular when
the mapping of balances into compositions determines a one to one
correspondence between balance and compositions. Thus,

E: B e—C (u e>x; U'x = 1)
indicates a regular expenditure system E.

An expenditure system is called con P i n'o us 1if it gives

X as a continuous function of u;uy =% (v —au); Also it is called

differentiable if the partial derivatives

- 9x. /ou,

xij i J
of the elements X, of x with respect to the elements uj of u all exist,
for the transformation Of u into x, forming a matrix X and the
infinitesimals have the transformation
dx = ,de_u 3
for the differential dx of x correébonding.to,a differential du of u.

A necessary and sufficient condition for a differentiable
expenditure system to be regular is that the mapping between differentials
be inverfible, and, equivalently, this is that the partial derivative
matrix X be regular and inverti’ble-13 In this case the system can be
inverted‘to give u as a function of x with partial derivative matrix U,
which is the inverse of X0 thﬁs, '

“ du = U_xde

from whence it appears that

5 It is true that the regularity of x, makes the mapping only locally
one-to-one; but it will appear that, with the rationality condition, it
obtains this property also globally.
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T. Revealed preference.

The consumer is considered as an individual capable of existing
in certain s t at e s, and for whom an action is a process of
transition from one state to another. If an action has motive, it
is a transition from one state to a higher one in the motivating
scale of value; and, in ultimate equilibrium, it is to one which is
the best within the existing limitations of possibility.

Fach state of the individual is now to be viewed as determined
by a consumption, with a certain composition x, together with a
reserve, given by an amount ofrmoney o The reserve can be
considered as the money equivalent of all,exbendible assets, exterior
to the considered consumption. Thus, there is made the identification
5 = (x,e) of any state s with a composition x of consumption and a
reserve @ of money. ?he restrictioﬁ which defines the alternative
states attainable by the individual in an event is given by the ratios
of amounts in which different goods may be exchanged in the market
in the event, these ratios being given when the prices, the exchange
ratios with money, are given; and they are the ratios of respective
prices. The amp litude of‘a state, at given prices, is de-
fined as the amount of money which has exchange equivalence with all
the goods of the state together; thus,

o = p’x%Q

1s the amplitude of the state g = (x,é), with consumption x and reserve
°F at prices p. The states which éré exchangable, being the alter-
natives of cholce admitted by a given gghhaﬁge restriction, are all
those with a given fixed amplitude. This common‘amplitude of the

alternative states defines the amplitude of the choice.
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The composition obtained in aﬁy event is to be contained in the
result of a restricted choice between valued alternative states. Thus
an amplitude & and prices p are given in an event, and the composition
x found in that event is to be that which obtains a state (x,9) which
is higher, in the motivating scale M which is operative, than any
other state (y,Q) attainable under restriction to the given amplitude;
thus,

yA = (7,00M(x.p) (@ =ptxHp = plydo).

A good is defined as a coordinate of state for which it can
always be assumed that there holds the law of increas e,
that "more" ig "petter®™. In this‘wai; the possession of a commodity
is to be considered a good.

For any states s, t let

sCt
mean that all the elementary goods in s are in amount at least the
corresponding amounts in t, and not all equal.

Tt is to be agsumed, for a scale of value M applied to states,
that it fulfills the law of increase-

sCt = sMt,
that is, states are always pfeferred in which some goods are greater
and no goods are less, in which case M will be called an i'nc r e a s-
ing scale SP applied to.compoéitions
x5y = (X,Q)M(Y,U)
P
Tt i1s possible that for some differént Q,G.and for some X,y there may

hold the relations

xSPy, ySUx H



that is, at the reserve level o, x is preferred to y, while at the
reserve level ¢, y is preferred to x. In this case, movement in the
level of reserve gppears as a f or ¢ e, affecting the value of
compositions. In the contrary case, that is

xS9y = x5y,

when the value of compositions remains r i g i d when subjedt to
changes in reserve, or is independent of the reserve, in which case
there is said tobe ri1gid reductien of the scale from »
states to compositions, there is defined a scale of compositions S
such that
xSy <=>‘(X,9)M(Y,9)
for every 0. h
With the condition of rigid reduction, of M to S, together with
the law of inecrease, and the transitivity,wﬁich is axiomatic for a
scale, there follows
(x,0)M(y, o)A > 0. = (x,0)M(y, ) Aly,0)(y,p)
= (6,0 )IM(y, ) A\ (y, O)M(y,p)
= (x,0)M(y,0)
. =>.X§y.
Now suppose, in an event with priceé,p, the composition chosen is
x. Whatever it is, let ¢ denote the reserve, so the amplitude of
choice is Q.= p'x#p. The chosen sﬁate is (x,p), and any alternative
state is (y,0) where @ = p'x¥o, so that o )v? if pty < p*x. The

principle of revealed preference gives

o = p'y%/\y;éx = (y,G)M(X,?);"
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and it now appears accordingly that

y £ xAp'y <p'x = (7,0)M{x,p)ATZ D

== yBx.

This gives the special form which the primitive principle of revealed
preference takes in application to the consumer, in which it is joined
with the law of increase, that "more™ is "better", and the condition
of rigid reduction, that the supposed generally motivating scale of
value, applying more comprehensively to .states, which have consumption
Jjust as a component, induces a well-defined scale of value on composi-
tions, undistﬁrbed by changes in the residual factors of state, here
exemplified in the concept of reserve. The brinciple of consumer‘'s
revealed preferences is thus broken down to the primitive principle,

together with notions peculiar to the consumer.

8. Rationality and coherence.

Iet there be given an expenditure system E. Then to any balance
u€B there corresponds a composition xeC on u, and therefore a choice
(u,x); thus

B: u - (u,x) (u'x =1).

13 Preferences are revealed in any action, asguming motive to operate,

or merely by definition of the analysis of behaviour in terms or pre-
ferences, "Revealed preference”, which originates with Samuelson [45]

as a principle in consumer theory, and is taken further, most egpecially,
by Houthakker [24], belongs to a primitive and universal principle, which
has immediate use by everyone. It is an important element at the basis

of the knowledge which embodies out expectations of the behaviour of more
or less stable individuals. Tt carries the notion that preference, as
revealed by, and as, in the principle of the concept, controlling choice-
in the sense of choice which is most general, and often somewhat complex
and difficult in application, to the confusion of philosophers, but which
bears on every kind of activity-are an amportant part of the definition of
character. Their stability is correlated with stability of character, which
is inseparable from the perpetuated identity of the individual.

The rationale of the principle of revealed preference for the consumer
seems often to have been somehwat inadequately given, and this has inter=; <
fered with the correctness,and completeness.of its application. For
example, cf. Morgenstern [3R].
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For any ueB, let a relation Pu’ to be called the revealed
preference relation of the choice (u,x) determined
by u, be defined by |

yEX =¥ £ xAuty < 1.
It is a relation which holds just.between the composition x on the
balance u, and every other composition y which is within that balance;
and it may be stated by saying that x is revealed pre-
ferred toall those other compositions'y, b y the choice (u,x).

The principle of revealéd‘preference applied to the consumer
gives that if composition x is obtained at prices p, with a composition
value scale S as motive, then

v # XAp'y < p'x => yox,
that is, x must be preferred, in any scale S admitted as motive, to
every other composition y which requires at most the same expenditure
as x at the prices p; equivalently,
Pu =5,
which may be called the condition for a scale S to be admitted as
bm otive fora choice (u,x).

Any choices are together said tobe coherent if they
admit a scale S as a common motive; and then they are said to
cohere 1in that scale.

The expenditure system E will be said to admit a scale S as

motive if S is admitted as a motive of all its choices, thus,

/\Pu$S;
ue%

and if E admits a motive, then it will be called rat iona 1.
Thus an expenditure system E admits a scale S as motive if all its

choices together chhere in 8. The rationality of an expenditure
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system is thus equivalent to the coherence of all its choices.

In view of the axiomatic transitivity of S,

/\P =35 .<>. P =8,
ueB ¢ :

where

P =§*/ P, -\ (\/Pu)m

ueB m=1.ueB

is the transitive closure of the sum \V/Pﬁ of the revealed preference
ueB

{

relstions Pﬁ of all the choicesjfu,x) of the system E, and defines the
revealed preference relation P of an

5

expenditure sys t.e”m “E.l Accordingly, a necessary and
sufficient condition for an expenditure system E to admit a scale S as
motive is given by

. =§NS§ -
whence, any scale which motivates an expenditure system must be a
refinement of its revealed preference relation, and can be considered
revealed to this extent. But a necessary and sufficient
condition that a relation imply an order is that its transitive closure
be non-refiexive; wherefore, an expenditure éystem is rational if and
only if its revealed preference relation, being now non-reflexive by
hypothesis, and transitive by construction, is an order; and any scale

which can be a motive of the rational expenditure system is a refine-

ment of this order.

15 If the distinction would. be an advantage, just the preferences
determined by the relations Pu could be called revealed; and the further
preferences determined by P could then be called inferred (under the
hypothesis of rationality). Then any of the preferences, revealed or
inferred, define the preferences of E.
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C9. UCQnsistegcy.

A camposition x is said to occur on a balance u, in an
expenditure system E, if x = E(u); also x is said merely to occur
in B if it occurs on some balance.

-A series of compositionsvzo,.. is gaid to forma p r e-

3%y

fference chain of E, descending from zO to Zk,

and as cendimg fromz 1o ZO’ if zo,... occur in F

k 1Pl

on balances W ,...,w and
‘ o’ IWpenl

wgzl < l/\.../\wﬁ_lzk < 1.
The condition yPx, that y be revealed inferior in preference to
x in E, ié how that there exists a preference chain of E descending
from x to y; thus,

W

. E ‘ 5 — = 1 - 2
vPx @\k/w“\‘/ (g&—zo/\yfzk)/\(wozl < 1A /\Wk—lzk <1),
B AR " |

1

‘Wwhere it iSLUhderstood that wi‘determineSZi(i =0, 2,...)

A preference chain of E which does not have any distinct
extremities, or which, equivalently, has each of its terms at the
same‘time as beginning and end, defines a preference c yecle

determines a

of E. Thus, a cycle of compositions.zo,zl,...,zk,zo...

. preference eycle of E if they ocvcur on balances wo’wl""’wk’wo””°”

‘ 16 It could seem .an unnecessary complication to have three names for
what here amounts to the same condition, given by the rationality of a
behaviour, the coherence of the choices which belong to the behaviour, .
and the consistancl of the prefersnces which belong to the choices.
However, the need for the distinction becomes apparent when a behaviour,
a set of choices, and a set of preferences have to be considered
separately.



-3k

and

t T g
wozl~< IN.... /\wk_lzk

< l/\wﬁzov< 1.

Given an expenditure systéﬁ E, with revealed preference relation
P, a pair of preferences xPy, yfx,wwhich are to be called
oppo sites, definesa contradiliction in the

Ia

revealed preferences of E. -A preference contradiction is thus a
symmetry

xPy/\yPx
in the relation P. The revealed preferences of E are called
consistent when there are no contradictions, that is to
say when there is the condition

~XPyAYPX,
which ls equivalent to the condition

xPy = .yPx
for the antisymmetry of - P. The coﬁsistency of the revealed preferences
of E is thus represented by the antisymmetry of the relation P.

An a b s urd preference is one of the form xPx, the absurdity,
being in the real impossibility bf an object being at the same time
selected and rejected in the same act.  Evidently, a pair of opposite
preferences by transitivity imply an absurd preference; moreover, an
absurd preference, duplicated, represents a trivial pair of opposite
preferences. Therefore the absence of absurd preferences, that is
the condition

~XPx o,

which is equivalent to the condition

xPy = x ¢y
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for the non-reflexivity of P, is equivalent to the consistency of the
revealed preferences of E, expressed in the antisymmetry of P, and,
moreover, to rationality, which has been seen to require just this
condition.

Any reflexivities xPx of P are for compositions x which appear
on preference cycles; and convefsely, each composition x which appeérs
on some preference cycle gives a reflexivity of P. Therefore, a
necessary and sufficient condition for consistency is the absence
of preference cycles, which defines the condition of acyclicity
applied to P.17

Consistency, as acyclicity, thus has statement in the negation of

/
all preference cycles:

° 2 t
,/N\ ,/\\ ewlz) S IAC AWz < 1AW <,

and, equivalently, in the form of a gendition for the breaking of

every preference cycle, as

2 >, oyt .
/A\ ,/\\ ..gozl 1A.. /\wk 1% S <1 .= Wiz > 1

kw 2oy

18

Tet Z oy be a series of compositions forming an ascending
preference chain of a consistent expenditure system E, in which they
oceur with balances Wo""’wk' Then every partial series zr,...,zs(r<s)

of consecutive compositions must glso form a chain, and not a cycle,

L7 cf. von Neumann and Morgenstern[52], where there is a treatment along
similar lines.

18 This is the form of the condition which Houtakker [24] has called
"semi-transitivity™. In fact, here it appears as the condition for the
non-reflexivity, or equlvalently the antisymmetry, of the in any: cas
transitive relation P. TIf there is an error in termlnology,lt reflects
an error of method.
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so that, with

T < 1IA... ' 7z L1 .= wiz >1
Wyl S A /\Ws-l s s'r ?

it appears that

wiz >1 (r <s).
s T

Thus there is obtained the following consistency scheme, for a

preference chain in a consistent system:

1
szl < 1 () o)

T r1?
wiz  >1 Wiz, S L

2 2
W2Z0>l woZ > 1 .

T

' > “ > y x > e ° kJd - t Z 1
N L L R S , 1%t

iz > ? 7 T eenen g >
szo 1 wkzo >1 wkz‘2 > 1 wkzk-l an

If wiz < 1 for some r<s-1, then the reduced series

Z yane,Z
o’ 7o

7z seasd
’,S’ )k

of compositions obtained by omitting all.those in the chain between zZ.,

and zZg is also a preference chain descending from z to z defining a

k)
reduction of the original chain; and a chain is to be called
irreducible if it has no reductions. Thus, for an irreducible
preference chain in a consistent system, the consistency scheme may be
argumented by the further conditions wr'zS > 1 (r<s-1) indicated in the

remaining positions above the diagonal.

y: ‘ana

/ Zr-1
Wi
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10. Crose-deviations.

On two .occasions, to be indicated by o and l, let P, Py bethe

vectors of prices gnd Xo’ x, the commodity compositions. The

1
direct expenditure on occasion o is simply the
expenditure
=pF
®o T Po%o
on that occasion; and the ¢ r‘O-s s-~expenditure from
occasion o to occasion 1 is defined to be the expenditure

_ AT
o1 T Po*1

required for the composition x, of commodities on occasion 1 at the

1
. / . I3 .

prices P, on occasion ©. Bp, by definition, eoo = eo, or the cross-

gxpenditure from one coccasion to the same occasion is the same as the

direct expenditure in that occasion. The relat ive cros s~

expenditure from d‘to 1 is now defined as the ratio of the

cross-expenditure from o to 1 with the direct expenditure in o, thus

e 'x
F _ ol _ Po¥y - u'x
T T ot = 3
ol .eoo pOXO o 1

where u .= po/eO gives the relative prices in o. Accordingly,
o

foo = ngo =1, by definition. The ratio .of the pair of relative

cfoss~expenditures between two occasions defines the princécipal
ratio ., for the one occasion on the other, thug
iy nt 1
R = fol _ o111 _;poxlplxl _ Yo

= =3 T- =g
ol flo e8oelo p“oxop]_xo ulXo

19 These are the "observables" which enter into the index-number
calculations, for which the account is given in Part II, which give
measurement of standard and cost of living. There are two cross-
expenditure and then tlo cross-deviations measures between, say,
every palr of years, ordered one way and the other.
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SO

Roo =1 R’olR:Lo =L

by definition. Now the relative cross-expenditure deviation, or
merely the cross~-deviation, fromo tol, is defined

as the deviation of the relative cross-expenditure from unity, thus

D =¢
o]

- = ? - .
ol L Yoty L

1
and this definition gives
D = ‘O.:.
00

.Revealed preference now has the formulation that it SO is the

camposition value scale operative on ocecasion o, then

Dol <0= Xls,oxo ;

that is, composition x, is revealed inferior to XO, in the scale of

1

value operative on occasion o, if the cross-deviatinn from o to 1

is non-positive.
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T¥. Rational Expendiute Dualities.

1. Duality

An expenditure duality is defined as a regular
expenditure system, that is a gystem which obtains a one to one corres-
pondence between expenditure.balahces and commodity compositions?‘ Thus

E: B el (U e—sx; ulx = 1)

indicates an expenditure duality E. A balance and éomposition u and x
which are thus uniquely paired with each other in the duality E are
sald to be the d ua ls of each other, in E, and, by this condition,
to forma ehoice (u,x) of'Eu

There is a perfect symmetry between balance and ecomposition in the
concept of a duélity; therefore, in any definition or proposition
relating to an expenditure duality, the ro;es of composition and balance
may be interchanged, to obtain a d u a 1 definition or proposffion.
This reciprocation of concepts, besides being an instrument for demon-
strations, gives an expression of4the duality which exists in the
analysis of supply and demand, there being, in essential form, one

analysis, which can be interpreted for one side or for the other.

+ In case this concept of expenditure duality should seem unfounded,

even from the point of view of the orthodoxy of the subject, so far as

that exists, it should be noted that, along with the dependence x=x(u),
which is .at the foundation of consumer theory, the dependence u=u(x) has
an already existing acceptance, though it is more concealed. For example,
the altogether standard idea that x is determined from u as obtaining the
maximum of a function @(x under .the constraint u’x=l gives the conditiocn
uh=0 h—x’@ > which obtains u=¢x/h=u x) as a function of x. Also, a
ques%lon of ¥ "integrability"” is“a very standard tople in dikeussions.

Tt has been much considered, but not everywheré is it plainly stated .
what exactly it is that has to be integrable, and in what sense (apparently
the matter was first raised in Volterrd®s review of Pareto’s Manuel
d*Economie Politique). If it is the differential form u'dx, then, presumably,
again u is a function of x. Thus the concept of a duality, giving a pairing
of balances and compositions u and x, seems implicity granted in the most
usual forms of discussion of the consumer, even if not altogether directly.
Even if the phenomenon of "Saturation”, which is against the concept, is to
be admitted; it is always possible to replace strict saturation by near
 saturation—as near as no matter.
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2. .Dual and induced preferences.

Let there be given an expenditﬁre duali;li}’r E, the choices (u,x)
of which, obtaining the pairing ~bet§reé.n balances and compositions, may
be indicated, from elther side, either by the balance u or by the
composition x, thus,

x « (u,x) «—>u.
The cross~-deviation fr;m a choice (u,x) to a choice
(v,y) of E, with indication of choicékfrom the side of composition, is
defined by

D =uly - 1.

Xy
In a dual fashion,

But

and therefore

The composition yis within, on or over the expenditure

balance u according as ny§ 0; and dually, and equivalently, the

balance ¥ is within, on or over £he cc;mposition X, now according as DW;>_,<§ 0.
The revealed preference reiaﬁion P, of a choice (u,x) may now be

indicated equivalently by Px’ since, in a duality, to every x there

corresponds a u; thus,

- where, with indication from the side of composition, there is the

definition

]
N
O

vEx =D
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In a dual fashion, a choice (v,y) hasa dual revealed

preference relation, which is the relation QV = gy

between balances, /jefined by
‘ =D <0.
u%fv S 0
Thus
X S U N
yPX va
Associated with amyvﬁxpenditﬁre duali£y E, there is thus defined
a pair of relations P, Q the one between compositions and the other
between balances. They a¥g given by the formulae
xeC * 'VﬁeBQV
that is, by the transitive closures of the sums of the preferences and
the dual preferences revealed by the choices; and they are to be called
the preference relation Pand duall pre-
ference relation Quof E; respectively. They are defined

equivalently as the minimal transitiver relations under the conditioms

Dy SO =yPx, D <P =>u,

where, since ny = Dvu’ it appears that

yPx &= uQy.

.Equivalently, for any pair of series Zs e nrZ

- and-wo,...,w which are

k
duals in E, the one is a chain of combositions descending in P if and
.only if the other is a chain of balanées ascending in Q.

A preferﬁpée between compositions x,y induces the
corresponding preference between ﬁhe dual balances u, v; and similarly

from the dual side. Thus the relations P, Q between compositions .and

balances induce relations P¥, Q* between balances and compositions
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according to the definitions
vP*u = yPx, xQ%y = uQv.
Now it appears that '
vP*u <= uQv, =xQ¥y §=> yPx ;
that is
pP* = Q, Q¥ = P1,

where P?, Q' are the conjugates of the relations P,Q. Thus;

THEOREM. The induced preference relation of an expenditure duality

is the conjugate of the dual preference relation.

Together with this theorem there is its dual equivalent.

3. Value domains.

Let E be a rational expenditure duality, with preference order P.
The i@n ferior and superior domains of any
composition x are defined as tge sets Px and xP of compositions y such
that yPx and xPy;and the complémeﬁtérﬁk, xP of these define the n o n-
inferior and non-superior domains, f{ormed
of those compositions y such that yPx and xﬁy,‘wherevﬁ is the relation
which is the complement of P.

The complement of the union of the inferior and superior domains of
X, or equivalently the intersectibn of the non-inferior and non-superior
domains, defines the indifference domadin ﬁx of x, of
compositions y such that yPx, where P = ﬁ}\?ﬂ is the symmetric complement
of P; ﬁgus,

P_ = xP/Px.
X
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Since P is symmetric, it follows that
yeﬁx <= xeﬁy

The transitivity of P gives

xPy .=>. yPCxP/\PxCPy;
and since, h

yexP/\Px =, xfy/\ny,
the antisymmetry of P gives

xP(\Px = 0.
All these statements havé their duals, in which balances and

compositions are interchanged, énd the preference relation is replaced

by the dual preference relation.

L. Convexity. 2

The s egment Joining a finite set of elements X,y,...£ C
is defined as the set t#,y,...] bf elements“of the form xN4MF...(N,u,...> O3
ANF. .. = 1).

Aset K Ciscallel conve x if it contains, with any pair, or
equivalently with any finite set of its elements, the segment which Joins
them, thus,

X,¥5---€K = [x,y,...]CK.

The intersection of any éonvex sets in a convex set. The intersection

of all the cmvex sets containing é given set S is a convex set [S],

containing S, and contained in every convex set K containing ‘S, thus,

sCIs]l, sCx == [s]CK.

2 For this subject, general reference is made to Fenchel [168], Eggleston [15].

P e
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It thus appears with the property of being the minimal convex set containing
S, by which property it is calledrthe convex cover of S. The
convex cover of any finite set 1s merely the segment joining its elements,
this identity;%éing already expressed in the notation.

A convex set if necessarily connected. A closed convex set with
non-empty interior is tohe calleda convex body. A concave

s et 1is defined as the complement of a convex set.

5. Px, xP are concave, convex gndcopen.

Any preference chain descending from x to a composition y in Px can
be continued to any composition z within the balance v dual to y, so that
z is alsoc in Px, by the definition of P; that is

yePxA\viz € 1 = zePx.
It follows that Px is identical with the union of the balance regions
{z;v'z < 1} which belong to the compositions yePx. But
yer’<;>'veuQ.
Accordingly,

PX = \Vj {z;v'z < 13,
veuq

and equivalently,

(1) = [q\ {z;viz > 1},

veuq

el

whence:

PROPOSITION (i). Px is concave and xP convex.

For it follows from the previous formula, (L), that Px is convex, being the
intersection of convex half-spaces given by a set of balances; and,

equivalently, its complement Px is concave. Then also
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(2) veuq <= (z;v'z > 11D Px,
whence, since Px is convex, uQ appears as convex; and, dually, xP is
convex.
PROPOSTITION (ii). y(Cx = yPx.

That is, P is an increasing scale. Fdr, if y(:i, then u'y < u'x,
since the elements of u are positive, whence, since u'x =1, and by the
definition of P,

y(x = y=xAuly < 1
= yPx.

PROPOSITION (iii). For every yePx there exists a ze€Px such that y(Cz.

For if yePx there exists a preference chain descending from x within

Px, with y as ultimate composition, and a penultimate composition x* with
y within its dual balance u¥, that is u¥'y < 1. If u*ly <1, then, since
the elements &Ff u* are positive, there exists a z2Dy such that u*'z =1,
so the chain can be continued from x* to z, giving ze€Px. Otherwise, if
u*fy =1, take a composition y* in the interior of the segment [x*,v],
with dual balance v¥*. Now, since u*'x* = 1 and u¥¥y =1 it follows that
u*ly* = 1. But the supposed antisymmetry of preferences requires

uly* = 1 = uhig* > 1,
However, Y X

vRIx* > 1 = véfy < 1, ¥
since the segment cuts the balance, with its extremities on either side.
Therefore v¥%y < 1, and, since the elements of v* are positive, there
exists a zDy such that v*z = 1. The chain descending from x to x*

may pow be continued to y* and then to z, so that zePx.
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PROPOSITION (iv). Px and xP are open.

If y is on the frontier (Px)* of Px, and zDy, then zePx, so, by
Proposition (iii), y cannot belong to Px; whence Px is open, and therefore
Px is closed. Now (1) and (2) imply that uQ is open, and so, dually, xP

is open.

6. Contensional dualities.5

The domains B, C are now to be considered as contained in a conjugate
pair of real linear spaces of finite dimension, which are to be distin-
guished as the intensional and extensional
=} p{a.c e 8; 80 u'x(ueB, x€C) is a real bilinear function on B, C.

Tntensional and extensional elements u and x are said to include
,df exclude each other according as u'x >1 or u'x < 1; and they are
said to be on each other, or tobe con jugate, if ulx = 1.

By the symmetry of these relation 6f inclusion, exclusion and
conjugation between intensional and extensional elements their roles are
exchangeable in any definition-orrpfoposition constructed on these relations.

An intensional element u is said to d 1 v 1 d e the extensional
domein C if there are elements of C in each of the relations of inclusion
and exclusion with u, or what is thé‘same thing, if u is conjugate with some
element of C: and similarly fo£ aﬁ éxtenéional element x dividing the
intensicnal domain B. The inteﬁéional and extensional domains B, C are
said tobe con jugate if—eaéh includes exactly all the elements
which divide the other, or, equivalently, each includes all the elements

which are conjugate to some element of the other.

5 The concept here really amounts to that of a convex body, with a formula-
tion which does justice to the duality, existing perfectly between points and
half-spaces, and which specially suits the present subject.
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Now let B, C denote such a pair of conjugate domains in the intensional
and extensional spaces. In correspondence with any extensional subset X(C,
there is defined an intensional subset {X}(B, formed of just those elements
u€B which include all the elements x of X, and which may be called the

inclusion domain or merely the " inclus ion of X; thus

ue{X} 5//\\u1x >1.

xX€eX
The inélusion of the inclusion of X is a set containing ¥, which is to define
its completion [&], thus
X1 = {{x1} ;
and, as implied in the notation, this turns out identical with the convex
cover of X in C. Now X is said tobe complet e 1f it is identical
with its completion, thus, ;
X = [X];
and so completeness is equivalent to convexity. The completion of any set
is complete, so that any iteration of the operation 0% taking the completion
is equivalent to the simple oPerationj%if
[Ix)] = [x].
Again, all these definitions and propositions may be replaced by their dual
forms, with intensional and exfensional elements exchanged.

A pair of intensional and extensional subsets UCB, X(C is said to
definea contensional duality in the conjugate domains
B, C if each is the domain of inclusion of the other, in these domains.

Thus a contensional duality (U}X) satisfies the conditions
U={x}, X-={(U}

where U and ¥ define the intensional and‘extensional si1des of the
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duality. Tt appears that
[l = {{u}} =vu, [X] = {{X}] =%,
so that each side of a contensional duality is complete. Any complete
intensional or extensional set is a side of a contensional duality. Any
set in either Bor C, is said to gen e r a t e the duality for which
its completion gives one of the sides. A contensional duality is defined
tobe regulazr if each of’its éides has non-empty interior, and
otherwise tobe singular.
.With any intensional eléﬁent u there are associated the propositional
functions of the extensional elements defined by
u(x) =ulx >1, u¥(x) =w'x<1
asserting that x is included, and excluded by u. Their negations, which
assert that x is not included, thai is excluded or conjugate, and not
excluded, that is included or canjugate; are given by
u(x) sutx <1, u¥(x) =u'x > 1i
Thus, assoeciated with any intensional element u, there are four proposi-
tional functions, indicated by u, u¥*, u and u¥, and which are to define
linear barriers, the first palr of which having open domains, and
the second pair eclosed. A complemented lattice is generated by such
propositional functions, or the barriers represented by them, with con-
Jugation and disjunction giving upper and lower bounds in the relation of
implication, and with complementation given by negation.. The ¢ o n-
sistency and inde ? e’n'd ence of aset of barriérs, or
more particularly of a set of intenéional elements, is defined in terms of
the consistency and independence of the associated propositional functions.
For a set of intensional elements U(B, an implication

U=v
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means that, for all x, v(x) is implied by the conjunction of the u(x) for

all ueU, that is

/\:/\ ulx) = v(x),
X

uey
and gives the condept of the dependence of vonall the ueU.
It appears that an equivalent formulation of this condition is that v
belongs to the completion of E@cwhich is also the convex cover of U; thus,
veful.
A set of barriers is consistent if and only if their completion does not
contain the null barrier, and independent if none liegin the completion

of the remainder.

T. Suppert and contact conjugacy.

+

Let (U,X) be a regular contension in the conjugate domains (B,C).
et U'o and U¥* denote the interior and frontier of the intensional side U;
and similarly for the extensional side. The frontiers of the sides are a
pair (U¥3X¥) of surfaces, the elements of which define the support s
and contacts of thevcontensién.' Any supporting element u¥*eU¥*
is conjugate to some contact elemenf.X*GX* but to no interior element

xoﬁx@, all of which it ineludes:

/”\\V/ u¥ix* = 1, ‘/A\ ° u*tx® > 1,

u¥* x* u¥, x
The set of contacts conjugate to a given support, which is thus non-empty,
Ivh o
gefines its zone of contact. .5imilarly, every contact has a

zone of support, given by its conjugate supports, while it

includes every interior intensional element:

//\Oy/'u*’x* =1, /A\ o uOry* > 1 .

x¥ u* x*, u
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The zones of support or contaét of argiven contact or support are singular
complete closed sets, equivalently they are convex bbdies within thelspace'
of lower dimension, of elements conjugate to that contact or support.

A strict contension: ., is defined to be one in which the support and
contact conjugacy is a reciprocity, pairing supports and contacts in a one-
to-one correspondence by the condition that they be conjugates. The zone
of contact or support of a given sﬁpport or contact in this case consists
of a single element.

A support is said tohave zero contact if its zone of
contact has sSurface measure zero, and s i m p{l e contact if this
zone consists of a single element. Similary, a given contact can have
Zzero and simple support.

In a regular contension, almost every c ontact has simple support,
and almost every support simple contact, while in any contension, almost
every .contact has zero suppert and almost every support zero contact. A
strict contension is one in which every contact or suppcrt has simple
support or contact. . “

The following proposition is important later: the interior supports of

the zone of support of a given contact have the same zone of contact, which

is the common contact of all the sﬁpports of the zone.

A proof-of this proposifion has been kiﬁdl& obtained for me by
R. Phelps. "It is to be found in a noté at theiend of this. report.



-51-

8. The contacts and supports of Px.

It appears from 5(2) that uQ is the domain of 5&,
ug‘=.§§k} .
Thus they form a contension (uQ,fk), the supports and contacts of which
are given by the frontiers .of ifs sides. The ftggtier of Px is the same
as the frontier (Px)* of its complement Px. The support and contact
surfaces of the contension are thus the frontiers (uQ)*, (Px)* of uQ and

Px. Thus, in view of 5(2) and Propositions 5, (i) and (iv), there appears:

PROPOSTTION (i), The frontiers (uQ)¥, (Px)* of uQ, Px give the supports

and contacts in the contension (uQ, Px) determined by Px.

The supports and contacts in the contension determined by Px may also
be called the supports and contacts of the convex body Px.

PROPOSITION (ii). The dual of any support of Px lies in its zone of

contact .

For let v be any supporting balance, with dual composition y. Then
if y is not a contact, lying in (ij*} it must lie in Px. DNow if z is a
contact of v, therefore on (Px)* and distinct from y, then z is revealed
inferior to y in Px, and therefore must lie in Px as well as (Px)¥,

which is impossible, since, by Proposition 5(iv), Px and (Px)* are disjoint.

PROPOSITION (iii). There is a unigque support of Px with a given zone of

contact.

For were there a distinct two, by Proposition (ii) their dual
compositions would lie in the common zone of contact, and therefore each
composition would lie in the dual balance of the other, which is impossible,

by the antisymmetry of preference.
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PROPOSTITION (iv). -On every contact gg_fk there ig_g'unique support.

By the general proposition stated at the end of paragraph 7, that
the interior supports of the zone of support of a given‘contact have the
same zone of contact, the common contact of all the sﬁpports of the zone,
it appears that if the zone of support of a contacf of ﬁx were to consist
of more than one support, it would be a convex set,wi£h at least two
distinct interior supports; and these would have the same %one of cantact,
which is impossible, by Proposition (iii).

PROPQSITION (v). = . v —u (yPx3 y —x).

.With any composition y in Px, the perspect % v e V& of Px
from y is defined as the complement in Px of the convex élosure of Px with
y. Its common frontier with Px defines the f a c é ‘Fy of Px from y, the
- frontier of which defines the hor iz on of ?# frém y. The set K&
of directions of the supports of Px with contact oh the face Fy defines
the curvature of Px facing y. Its frontier is the set of directions
of the,éupports of Px which are on y, these being ﬁhe éupports with contact
on th? horizon of Px from y- 'b .

If zeCy, its dual balance w is pafallel to a support on the face F&

of Px from y. So if |w| denotes the direction of w fhen

zeVy = ,wlc—:Ky .
In particular, er&, and therefore lVféK& , where v is the balanqe dual
to y. Also, if zgv&, the convex closure of Px with y contains its convex
closure with z, and the same for the complements in Px, which are the
perspectives of Px from y and zZ. Therefore

zeV_ = VV .
y z ¥y
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But
= .
VZC v, = FZCFy KZCKy
Therefore
zeV = K CK .
¥ z ¥
Now let (Nx’Nlul) denote the set of balances on compositions in a
neighbourhood Nk of x with directions in a neighbourhood Nlul of the

direction lul of u. Then, if Nﬁ denotes any neighbourhood of the balance

u, there exist nelghbourhoods N#, N}ui such that

(NX’NIU-I ) CNU.
.For any neighbourhood N% of x there exists a composition y, whose

perspective V& lies within Nif “Also for any neighbourhood Nlul of ,ul
A .

there exists a composition Yy such that the curvature K&
py

is contained in N‘ ]. Now take any composition y in V. /NV
u yo y]:

of Px facing yl
s so that
vCv V . Then
J YOn I1
zeV = zeN.A|w|eN |
y % |u
QWE(NX"NIyI)
== weN_.
u
Therefore, for any neighbourhood Nu'éf u there has been found a neighbourhood

,V& of x in Px such that Wemﬁ,for all ZEV&,‘WhiCh proves the p@gbosition.

"PROPOSITION (vi). On every suppofﬁ gi'ﬁi there is a unique contact.

Teke any support v of Px; tﬁen;rby Proposition (ii), its dwl
composition y is in the zone of contact. ' If this zcne of contact is not
Just y, let z be another contact in the zone, distinct from y. Then, by
the conditions for a duality, its dual balance w must be different from v;

‘and so, by Proposition (iv), it cannot -be a support of Px. Now, since v#w,
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there exist disjoint neighbourhoods N&, Nﬁ of v, w. By the argument in
the proof of Proposition (v), there exists a neighbourhood NZ of 7z such
that the balances dual to any composition in this neighbourhood, below

v and w, lie in N, and then, by‘Propdsition (v), there exists another
neighbourhood Mé of z such that the balance dual to any composition in
this neighbourhood, below u and,v; lies in.Nﬁ. let LZ = Mé/\Né. Then

LZ is a neighbounhoéd of z containing compositions below v and w whose
dual compositions must lie in both.the neighbourhoods N§ and Nﬁ, which is
impossible, since these neighbourhoods are disjoint.

_ a )
PROPOSITION (vii). The dual of a support or contact of Px is a conjugate

contact or support.

By Propositions (ii) and (vi), the dual y of any support v is its
unigue contagt. Moreover, by Proposition (iv), on any contact y there
is a unique support v which has y as its unique contact and dual.

Tt appears from Proposition;-(iv) and (vi) that (uQ, Px) is a strict
contension, uniquely pairing-supporting balances and contact compositions
by their conjugaecy. The Supportyw a;dmc;ntact conjugacy thus determines a
reciprocity between balances and compositions, which, according to

Proposition (vii), coincides with the original duality between them.

THEOREM. (uQ, Px) is a strict contension, for which the reciprocity

between the supports and contacts forming PuQ)* and (Px)*, determined

by conjugacy, coincides with the balance and composition duality.5

5

This theorem embodies most of the propositions of paragraphs 5 and 8.
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9. Critical surfaces and value frontiers.

The support and contact suffaces in the intensional and extensional
spaces of a contension can be interpreted as reciprocal log¢us and envelope.
Thus, according to the Theorem of.paragraph 8, (uQ)* and (Px)* are surfaces
in the balance and composition spaces whieh are related by their representing
an evelope and locus which are reciprocals, such that the pairing which goes
with the reciprocity between points and tangents coincides with thét between
balances and compositions in the duality. The dual arguments now give Qﬁ
a convex body with contacts and supports (Qu)* and (xP)* ; for which the
same proposition applies. Thus it éppears that (xP)*, (Px)¥* are surfaces
in the composition space with the property that the reciprocity between
points and tangents is a pairing between compositions and balances coinciding
with that of the duality. A surgééé with this property will be called a
critical surface ofjfhe duality. For another, equivalent
definition, the ecritiecal surfaces are the integral surfaces
of the differential equation u'd& = 6; that is surfaces on which every
differential element dx satisfies this equation. .S8ince a differential
element of the surface is also a differential element of the tangent, the
tangent consists in the locus of points y satisfying uly =1, coordinated
with the balance u. Thus, to every point x, the dual u gives the tangent;
whence the definitions are equi&alent.

Tt has appeared thus that through every composition x there exists a
pair of critical surfaces of the duality, given by the frontiers (Px)*,
(xP)* of the value domains Px, xP of x; and these are to be called the
value frontiers, and distinguished as the inferior

and superior frontiers, of x.
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Since, by Proposition 5(iv), Px, xP are open, they are disjoint with
their frontiers. Also, in view of ﬁhe antisymmetry of P, they are disjoint
with each other,

xPNPx = 0,
&8 appears in paragraph 3. Theif frontiers therefore bound a closed region
which is disjoint from both, and thus identical with the complement of their
union, that is the indifference domain ?& 08 x. .Accordingly, the value
frontiers (Px)* , (xP)* of a composition x appear withthe following

property:

THEOREM. The value frontiers, belonging to any composition, are a pair of

critical surfaces through that composition,such that every composition to

one side of one surface is inferior to that composition, and every composi-

tion to the other side of the other is superior, while every composition on

gz_between them‘ig_indifferent.
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10. Integrability, uniformity and regularity.

The value frontiers of any composition in a rational expenditure duality
have been seen to be critical surfaces of the duality through that composis .
tion; and these are integral surfaceé of the differential equation u’dx = 0.
It follows that there is at least one integral surface of the equation
through every point, or that the equétion is integrable. Therefore,
following from paragraph 9:

THECREM I. The rationality of an expenditure duality implies the integra-

bility of its associated differential equation.

A point on which there is a unique integral surface is to be called
regular. Regularity at a point new requires the coincidence of its
value frontiers, since these are integral surfaces, by paragraph 9.

A duality will be called uni f or m, 1in any region of balances,
if there exist positive constants’ A,/\such that

Myv-ul < ly-x| <A]v-u]

for balances u, v ranging throughout that region. It is easy to show the
following:

THECOREM TI. Uniformity in a closed region implies continuity and is implied

by differentisbility.

Uniformity is thus a condition intermediate between continuity and
differentiability. Moreover, the theory of differential equations leads

to the following:

THEOREM ITI. Uniformity,implies the equivalence of integrability and

regular integrability.

For, given uniformity and integrability, in any two-dimensional coocrdinate

section an integral surface satisfies an ordinary differential equation of
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the first order with the Lipschitz condition, which obtains its uniqueness
in thpt section.6 Thus, integral surfaces through a point cannot depart
from each other in any tWOwdimensionél coordinate section, and therefore
they cannot depart from each other at all. Therefore:

THEOREM IV. In g rational, uniform expenditure duality, the pair of value

frontiers of any composition coincide with each other.

ll. The scale theorem.

Consider a rational expenditure duality, which is regular at every
composition, which condition is obtained, for example, under the hypothesis
of differentiability or, more generally, of uniformity. The value frontiers
(Px)* , (xP)* of any compgsition x in this case coincide in the indifference
domain ?k of X

()% =B = (xP)*.
S0, through every composition x, there is a unique critical surface, which
is at the same time the inferior frontier, the superior frontier, and also

the entire indifference domain of x.

6 cf. Birkill [9 ], Forsyth [i7] and Piaggio [37].
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The eritical surfaces of the dﬁality now appear with the property
that each disconnects the compositiohvdamain C in to two domains, which
may be distinguished as its in f é rior and superior
58 1des, such that any compositibn on the inferior or superior side
of the surfate is inferior or superior in P to any composition on the ’
surface, while all compositions Qﬁ £ﬁe surface are neither inferior nor
inferior to each other in P, but hé&efté‘each other the indifference
relation E. Now P appears as the equivglence on C represented by the
partition Hfof C formed by the set of cfitical_surfaces. Hence

xPy <= ?X = P&,
each point being regular, it being contained in just one eritical surface;
whence follows the transitivity

*PYA yPg = xPz.

80, with the reflixivity of P equivalent ot the non-reflexivity of P, by
Theorem I.2.II, and the symmetry Qf %Hfdllowing immediately from the form
of its definition as a symmetric complement,,ﬁ‘appears as reflexive,
symmetric and transitive, and therefére as an equivalence; and the com-
ponents in the partition II which represents it have been identified with
the critical surfaces. o

Any pair of critical surfaces 0, Bell, being, under the regularity
hypothesis, either identical or disjoinf, by their topological connectivity,
must lie each entirely to one of the two sides of the other; and they will,
evidently, lie on opposite sides of each other. Accordingly, if aﬁaﬂ means
that @ lies to the inferior side of B, thus defining a relation g‘)between
critical surfaces, then this also means that B lies to the superior side
of &. Moreover, it is again evident that every pair of surfaces, just

provided they are distinct, have the relation Pone way or the other, that




=60~

is
a -+ B .@..aﬁf&\/ﬁ.@a s

which states @to be a complete, non-reflexive relation. Now, by the
property of the sides of the eritical surfaces, together with the
definition of %,

xea/\yep .=>. xPy <> afp ,
so that the relation P between the elements of C is represented by the
relation@between the components in the partition I of C. .Since the
symmetric complement P of P has been identified with the equivalence
represented by the partition II, i% ﬁcw appears that P is a scale if and
only if&ais a complete order. Since has already been observed complete
and non-reflexive, to obtain it as a scale it remains to note its
transitivity, which follows directly from the transitivity of P and the

way in which P is represented by @
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Tt has been shown that under the condition of regularity applied to
an expenditure duality E, implied fé; gxample by differentiability or
more generally by mhiformity, thé féiionality of E, which requires the
preference relation P of E is be an‘order, obtains P as a scale. The
rationality condition is merely thaf P be non-reflexive, and, since
transitive by construétion, therefore an order. It is proved that under
this condition P is not Just an ofder,_bﬁt that more special kind of order
which is termed a seale, for which thefevis representation by a completely
ordered partition. ,Ehuivalently,‘P then hag the pfoperties of anti-
symmetry and complementary transifivity, implying but not implied by
the properties of non-reflexivity and transitivity which characterize
an order. Thus, if the conditions that P be an order and a scaie be
called the o r d e f and scale condition S, respectively,
as applied to E, the following theoreﬁ has been demonstrated.

THEOREM. For any expenditure dvality, uniformity implies the equivalence

of the order and scale conditiong.

Thus the revealed preference relation of a rational, uniform
expenditure dvuality is not Just an order but, more particularly, a scale:
This scale has, mogpgover, the particular‘structure which has been indicated,
in which the indifference classeé are‘the smooth, strictly convex critical

surfaces.

12.7 Preference gauges and integrals.

With any expenditure duality E, there is associated the
differential form u'dx, and the corresponding;
differential e guation ufdx =0. The critical

surfaces of the duality are the integral surfaces of the differential
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equation. The equation, or the duality; is sgid tobe int e grable
if there always exists at least one integral surface of the equation, or
eritical surface of the duality, on €very composition; and the condition
of regular inte g ra B il i1ty is that moreover there

exists at most one.

Under the condition of uniformity, it sppears from the theory of
differential equations that integrability,\of the duality, or the equation,
whenever it holds, is always regular, and ;s equivalent to the integrability
of the form, in the sense of its being proportional, by some factor A = Mx),
to the total differential d$ = ¢£dx of some function ¢ = ?(X)- That is,

\

Autdx = d?
or equivalently, with ¢x the vector of partial derivatives of ¢ with
respect to the elements of X,

uh,=f¢x, )
where the factor of proportionality A defines an 1 n tegra £ ing
factor, and ¢ the corresponding i n t e g ral of the form, there
being just one functionally independent integral of a given integrable form.
The level surftas ¢ e s of any function are defined as the sur-
faces on which the function takes a constant value. Subject to uniformity,
the conditions of integrability fof‘the form and the equation are equivalent,
and the level surfaces of an integral of the form are the integral surfaces
of the equation. Thus, for a rational uniform expenditure duality, there
exists a differential function ¢ the level surfaces of which give the

critical surfaces.
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THEOREM I. The rationality of any expenditure duality implies its

integrability, and, provided uniformity, which then obtains regular

integrability,‘also that there exists‘é‘differentiable function ¢,

given as any integral of the associated differentisl form, whose l vel

surfaces are the critical surfaces of the duality.

The critical surfaces of a rational uniform expenditure duality now
have a total orderdMLdefined by the order of magnitude of the values which
any integral of the associated form tékes on each. Thus, the scale M
defined by H

Aty = $(x) < o(y)

is represented by this total orderuMLof the critical surfaces, which
appear as its indifference classes. But topological considerations show
that the critical surfaces can have only one continuous order, in which
surfaces neighbouring in position are neighbouring in order. The order
of the critiecal surfaces, determined by the preference relation P, and
by the scale M obbtained from any integral ¢, are both continuous; and
therefore they must be identical, that iS¢ﬁ£==gD. Thus M = P; and hence
the function ¢ is a gauge which‘complefely nmeasures of the preference
scale P,

o(x) < $(y) <> xPpy.

THEOREM II. The preference relation P of a rational uniform expenditure

duality E is a scale, for which the gauges,. completely measuring 1334333

given by the integrals ¢ of the associated differential form u*dx.

13. Objective maxima.

It follows from the definition of P that the composition x dual to

any balance u is superior in P to all other compositions y under the
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condition u'y < 1, of being within the balance u, and, since u'y =1,
therefore to all other compositions y subject to the balance condition
uly = 1. Since, by Theorem 12.77, .P is completely measured by a
differentiable gauge function, there fqllows‘immediately:

THEOREM ITT. If E is a rational uniform expenditure duality then there

existsvg_differentiable_function ¢ = ¢ (x) such that the composition x

dual to a given balance u 1s determined by the condition that it attains

the absolute meximum of ¢ under the balance condition u'x = 1.

A function for which any choice is such as to attain its absolute
maximum is called an o b Jective funection. Nowall the
choices of a rational uniform expenditure duality have any gauge function
of the revealed preference scaie as objective function.

According %o PTOPOSifion 5(ii), P is an increasing scale, satisfying
the condition

xCy = xPy;
and if ¢ is a gauge completely measuring P, it follows that
x(y = q;(x) < é(y).
It ‘eppears now, with ¢ increasing, and all the elements of u positive,
that an absolute maximum of ¢ subject to utx =1 is, equivalently, an

absolute maximum of b subject to u'x < 1.

1 The converse is trivial. Evidently Houthakker [24] nhas such a type
of theorem in mind. TIts conclusion is the usual hypothesis which forms
the starting point of consumer theory and is the hypothesis from which,
by direct differentiation, Slutzky deduced his famous symmetry .conditions.
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THEOREM IV. An objective function of an expenditure duality under the

condition u'tx = 1 igj_equivalently, an objective function under the

condition u'x g 1.
If $(x) is meximum subject to u'x = 1, it is stationary; and, with
¢ differentiable, the condition for this is

uh = ¢x’
where A\ now appears as the ILagrangian multiplier corresponding to the
constraint u'x = 1, which gives it the value A = x“¢x- From here it is
again evident that ¢ is an increasing»function;'since, with u having all
its elements positive, ¢x has all its elements of the same sign, and is
therefore inereasing or decreasing; and it can be taken to be increasing,
if necessary by replacing it by its negative. Also ¢ is a convex Tunction;,

since, moreover,it has convex level surfaces.
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ITI. Standard and Cost.

1. Differentiable dualities.

An expenditure duality
E: B e=C(u «—x, ufx = 1)
is differentiabl e if there exist the partial derivatives
agy =y /Oy, xy =0k /B
of the elements us and Xj of u and x with respect to each other forming
matrices u, and X, which obtain the differential transformations

dx = xudu, du = ude.

Then the partial derivetive matrices, both the one way and the other,

are regular, and are the inverses of each other:

2. The differential balance conditions.

By differentiating the balance condition

holding in the differentiable duality E, with x independent and u
dependent, there is obtained the condition

ulx +u =0,

pis
involving the partial derivatives, which is necessary and sufficient for
the constancy of u®x. Now the condition that, moreover, the constant
value of u'x should be unity is

xtulx +1 =0.

X
Hence, a necessary and sufficient condition for the balance condition
in terms of the partial derivatives is given by the conjuction of these

conditions, which are to be called the d i fferent i a l
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bPalance condit ions.

THEOREM. The balance condition u'x = 1 is equivalent to the conditions
uix +u =0, x' x =-1
X X

and to the conditions

Xéu +x =0, u'lxu=-=1.

The second pair of conditions is merely the equivalent dual form of the

first.

3. Dual gauges and multipliers.

If the considered diffefentiéble expenditure duality E is rational,
its preference relation P is a scale, its associated differential form
uldx is integrable, and any integral ¢ of u'dx is a differentiable gauge,
completely measuring Pj thus,

o(x) < o(y) < xpy,
where ‘
uﬂ.= ¢x’
where A = xﬂ¢x since u'x =1, and ¢x is the vector of the partial
derivatives
b, = 0p/ox,

of ¢ with respect to the elements X of x; equivalently,

- § = 0.
(1 - ux )¢x 0
For the equivalent dual propOsition, under the same conditions the dual
preference relation: Q, for which the induced conjugate is identical with
P, is a scale, with any integral ¢ of x'du as a differentiable gauge; thus

Plu) >P(v) <> uqy,
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and

where u = u”fiu, so that

(1 ==.xu“)4)u = 0,
where 4% is the vector of the partial derivatives

LPj =®Hl’/@uj

of qﬁwith respect to the elements uj of u. Here, whereas ? is a gauge
of increasing value of x in Pﬁﬁ# is a gauge of decreasing value of u
in Q, with equivalence, in the induced relation, to increasing value
of x in P. Such a pair of functions ¢9 ¢ are to define d ua 1
gauges of the expenditure duality E; and A, u define the apsociated
m‘u ltipliers.

Ifr ¢,RP are any functions of x, u such that

is an identity, for the correspondence between u and x in E, they will
becalled dual function s of E. In this case ¢ is defferent-

iable if and only if ¢ is differentiable, and then the vectors ¢x’ ¢h

of partial derivatives have the relations
= ] j - b
¢x ux¢h’ %L Xu¢xj
as follows immediately from the rules for the partial differentiation

of functions of Ffunctions.

»

THEOREM. ££’¢9 ¢ are dual functions in a differentiable expenditure

duality E, then the conditions

(1 - ux“)?x =0, (1 - xu”)¢u =0

are equivalent, and imply

x“¢x + u?¢u = 0.
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Multiply the first condition uA = ¢x’ where A\ = x‘¢x, by x&
thus,
t = 4t
quk. Xu¢x’

and apply the differential balance condition and the partial derivative
relation, to the respective sides, to obtain
=X\ = 'J;u)

where

whence the theorem follows.
Accordingly, if a function ig a gauge, then the dual function is
a dual gauge, and the corresponding multipliers are the negatives of

each other.

L. Value and relative marginal price.

Let ¢(X) be a gauge of the preference scale P of a rational
differentiable duality E, with dual Y(u). Let prices p and expenditure
e obtain the relative prices u = p/ej which, in E, determine composition
X with u'x =1, or equivalently with p'x = e. The partial derivative of
u with respect to e with P constant defines the expenditure
derivative

u, = mp/eg = -ufe,

of u; and the relative ex Penditure derivative

is defined by
u = eu, = -u,
giving the change

du = ﬁde/e
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in u corresponding to a relative change de e in e, with P constant.
Correspondingly, the relative expenditure derivative of Y ==¢(p/e)
is

.

Y = ellle = e‘«mue = '-Pl;u = -lbéu = - = A,
where A, U are the multipliers belonging to the dual gauges ¢,‘¢; and
now
d¢ =1@igﬁe,
with p constant.

The number

X = $(x)
defines the value index of the composition x, relative to
the gauge ¢. The value indices of compositions, measured in any gauge,
are the greater or the less according to the preferences between them;
thus, if compositions X, y have value indices X; Y in the same gauge, then
X <Y <= xPy.
Now, through the dual gauge, the value index appears as a Ffunction
X =Y(u)
of u, and hence with relstive expenditure derivative
X = A,
A being the multiplier corresponding to the gauge ¢.
There is now made the definition
X = 1/Uu
for the re lative mar ginal price index U
conjugate to X, or merely the price index U con Jugate
to the value index ¥X. Thus any gauge ? assigns to any

choice (u,x) of E a pair of conjugate index numb ers (UX),
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given by
X =9, 1/U=n,
where A is the multiplier corresponding.to the gauge ¢.
If now, for expenditure e and prices P, giving relative prices

u = ‘P/e:
the marginal price index Pis derived with the
definition

U = P/e,
then P determines the expenditure derivative Xe = 8X/8e of X, in which
prices p are constantly by the felation

X, = /P,
in conformity with the notion of price n for a simple commodity,
relative to the value index given by the simple physical amount g,
the reciprocal of which gives the rate of change with expenditure ¢
of amount purchased; thus, ﬂg'z € in the bill for a quantity & purchased
at price @, so that, with = constant, E, = ag/be = l/n, there being in
this case the identity of the total and marginal prices.

The price index U, conjugate to the valué index X, gives the
marginal change dX, on X, for a rélative change dq/e in expenditure, by
the relation

ax = de/eU;
or, in terms of the marginal price index P, and an absolute change de
in expenditure e,
dX = de/P.

The following has been shown.

THEOREM. In a rational differentiable expenditure duality E, for any

choice (u,x), conjugate value and price indices (U,X), with

eaXfae = l/U,
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are given by
X=9, 1)U=n,

Where ¢ is a gauge and N the corresponding multiplier.

5. . Contact and support functions.

Let (B,C) representia pair of conjugate intensional and extensional
regions. An intensional element v is sald tobe dependent on
an intensional element u if v = un (A > 0); and similarly for extensionsl -
elements.

Let (U,X) be a contension having U B, X G. To every intensional
element ueB there exists a d e Pendent support uo(u) = u¥eyx
of the contension. ILet x* denote any contact conjugate to the dependent
support u* of any intensional element u. The function o(u), thus defined
over the intensional elements u€B, defines the s u Prort function
of the contension; and the contact fun c t1ion y(x) has
precisely the dual form of definition. The support function o(u) deter-
mines the mapping

B »U* (u »u* = uo(u))

of the intensional region B onto the supporting surface * of the conten-
sion; and it has an equivalent definition by the property

o(u) = infufx = uix* (ueB),

xey

it being the case that, for any ueB, the function u'x is continuous in the
region X, and therefore its inferior limit is its minimum in the closure
X of X, attained at a contact element x¥, on the frontier X*, conjugate to
the dependent support u* of u; and similérly for the dually defined contact

function ¥ (x).




The gradient Gu of the support function o = 0(u) exists at every
point u for which the dependent support u* has simple contact, in a
unique conjugate contact x*, and is given by the unique conjugate contact
of the dependent supﬁort; thus, O, = x*. In the case of a regular con-
tension, one in which both the sides haVe'nonnempty interiors, almost

every support has simple contact. Therefore, the gradient 9 of the

support function o =-U(u)‘9£u§'regular contension exists almost every-

where, and, where it exists, it equals the there unigue contact x* con-

Jugate to the dependent support u* of us o, = x*. Again there is a

similar proposition for the contact function.

In the case of a strict contension, every support has simple contact,

and every contact simple support. Hence, the support function of a strict

contension is differentiable everywhere: and the gradient % is now the

always unique contact x* conjugate to the dépendent support u¥* of u:
U —u* e—x¥*. Thus the gradient o, = x¥* always lies on the contact surface

X* of the contension, for all ueB.
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6. Parallel price loci.

An element u determines a direction <u>, with the definition
VE u>=v =ulN (A >0).
Accordingly,
ue-<u>;>
Oor u belongs to the direction which it determines.
A direction © is determined by any one of its elements, thus,
ueo <= 0 = <u>y
and any two directions are either disjoint, or identical if they have s
common element. Two elements U, vare sald tobe parallel if
they have the same direction, that is
QU> = <>,
for which an equivalent condition is that they be dependent, v =uh (A >0).
Any given elements ul,...,ur determine the s ect or <ul,...,ur>3
with the definition

Ve Uy, .e,u > =V o= ulkl+u..+ur5r (hl,...,hr > 0; Kl+...+kr > 0)

It is identical with the convex cover of the directions of UpseeesU,

Uy .- .,ur> = [<ul>uo . °U<ur>] 5
defines the sector determined by these given directions. Generally, the
sector determined by a set of elements is defined as the convex cover
of the set formed by their directions.
The interscept Q of a sector S on the unit sphere defines the
Spherical map of the sector; and the area ® of the map
defines the s pherical an g 1 e of the sector. A r e gular

sector is defined to be one with positive angle.
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To every point © on the unit sphere iﬁ the balance space, there
corresponds a balance direction; and which may also be denoted by 6.

Given an expenditure system E, let E(8) denote the set of composi-
tions obtained from balances belonging to a direction 6, that is

x€E(0) = ueo.

Then E(©) defines a pParallel price loeus of the system
E, giving all compositions obtained at prices parallel to a fixed direction
©. Thus, for given prices p, and any expenditure e, obtaining relative

prices u = p/e, determining a composition x, the locus of compositions

x =x(u) x(p/e), with p fixed and e varying, is the parallel price locus
E(Q) with 0 = <p>.

‘For any choice (u,x) of a uniform duality E, there corresponds g
unique parallel price locus E<u>, passing through X, or, equivalently,
belonging to the direction <u> of baiances parallel to u.

Let E be a rational differentiable expenditure duality, with pre=-
ference scale P, determining o partition I of C into indifference classes,

given by the critical surfaces, with complete order Y. rreference

gauge ¢ will be twice differentiable; and the parallel brice locus E<p>

=1

then satisfies x ='¢xx

D.
Every composition x lies on a unique critical surface n = nx, and
& unique parallel price lccus F<u>. Again, any critical surface n is
cut by any parallel price locus E&@), for any balance direction O, in a
unique composition x(0,7). Thus there is a coordination
X ¢ (0, n) (0 =<u>, x = KX)
between compositions, and conjunctions of balance direction and indifference

class. The mapping

S e (9 —> X (91“)) K]




between the unit Sphere in the balance space, and a critical surface m,
is one-to-one and continuous both wvays, and is thus g homegmorphism. Any
sector of balance directions, with spherical map Q is assoclated with g
region x(Q,x) on any critical surface %, which is a topological image of
. These regions together form g tub e »E(Q), with the parallel price
loci E(0) (6ef) as + i laments. The filaments are continue on
which the elements have a natural complete order which coincides with the
complete order QD, of the critical surfaces on which they appear, and
which is coordinated with g magnitude of expenditure; and the filaments
are distinguished from each other by price direction. Any set of price
vectors determine g sector of directions, and then a tube containing all
the compositions which can arise at those prices, over the complete

range of expenditure.

7. Trend and amplification.

Let E be g differentiable expenditurevduality. Then, with u = p/e,
there exist the partial derivatives of the elements of x = x(u) with
respect to e with P constant, forming the vector

X =xu
e u e

_xuu/e,

defining the +t r e nd of x, for changes from an absolute money
expenditure e. Tt gives the direction of change of x for changes in
expenditure gt g absolute level €, with prices fixed at P = eu; and

dx = xede
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is the change in x for an absolute change de in e. Now the r e 1 g ¢ ive
trend is defined by
X = ex
e

= -xuu .
It also gives the direction of change of X, that is to say it is the

tangent at x to the parallel brice locus of R through x. 1% gives a

in composition x for a relative change dg/e of expenditure at constant
Prices.

Since, by the balance condition, u'xuu = =1, the relative trend

vector satisfies the condition
u'x =1,

A change in expenditure gt constanﬁ prices is to be called an
eamplificatio n, and is given by the ratio of the expenditure
change to the original expenditure.l An infinitesimal amplification,
de e; and the corresponding differentiagl of composition ig given by

dx = xde e.

8. Standard and relative cost.

breference scale P, of any rational differentiable exXpenditure duality E;
and this indifference class defines the g tandardg or X, in regard
to E. Standards are defined h 5 gher or 10w € r according to the

Ccomplete order .

The expression ig related to the concept of amplitude of choice used in
I.7.
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Let prices P be fixed. Then, for every expenditure e, there is
obtained on. the parallel price locus E<p>, g composition x , determined
in E by the balance uy = p/e; and reversely, to eévery composition x on
the paralle]l Price locus Ep>, there corresponds an expenditure €, which
obtains composition x at prices p.

The standard =« attained by an expenditure e gt prices p is defined
as the standard n = Ex of the composition x which it obtains at those
prices. Thus, in regard to given Prices, there is a one-to-one correg-
pondence between expenditure, and attained_standard; thus

P: e ¢,
giving
e =e(p,n), and reversely = = n(p,e).
Two compositions X,y of different standards Fx’ ﬁy require different
expenditures e(p,ng), e(p,ny) at the same prices P. Define
Piy @) = e(p,ﬂx)/e(p,ﬁy)
to be the r e lative ¢ 08t of composition y on composition x
at pricesg DP. It is the Proportion in which expenditure must be
adjusted at prices p, for composition obtained to move from the standard
represented by x to the standard reﬁresented by y.
Now define

Pry = Poy (W)

and call this merely the r e LTative c¢o 8t of v on x.2 It gives

This concept will later, in Part II, be involved in giving a sense, as a
concept of measurement applied to market data, for the at present idefinite,
but also idispensible.ides of "cost of living™.
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the standard of ¥y on the form ?Xy_l'
Thus, u* = u/f)xy is the one balance parallel to u which touches the

critical surface er through y. Contact is at g camposition x* which is

ny = yty¥

o(u) = ny

is the support function of the contension determined by ¥, with contact
and support surfaces given by the critiecsl surface through y and itg

dual, through v. Accordingly,

H
= 3 ? = 3 ¥ = %
PXy-lnfuz—,m'lvnuzp—-ux,
g yPz yPz

and so:

-ny <
where the equality holds if and only if the balances y » Vv dual to x and y

are parallel (uf|v), that is

ullv @}QXY = uty;

~and in this cagse u¥ = v, that is the dependent Support of u coincides with v.
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9. The relative cost gauge.

The relative cost function ny, defined for a rational, uniform

expenditure duality ‘E, has the properties

PXyZl@X%’:

ny < ny <= yPz,

including the properties

< => >1. .
ny 1 yPx, 9xy 1 = xPy

For any composition x, the function

¢(y) = Pxy
thus appears as a complete preference gauge of E,
¢() < ¢(z) <> yPz.
It will be called the relat ive cosgt gauge, associated
with the composition x, which will then be called the b ase point.”
Thus, among all the preference gauges of g rational, uniform
expenditure duality, these having been identified with all the integrals
of the differential form u'dx, of which only one is functionally independent,
there is a special class defined, these being the relative cost gauges, of

which there is Jjust one associsteqd with every composition.
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10. Substitution, change and compensating amplification.

Iet E be a rational, differentiable expenditure duality. Any
displacement from one choice to another defines a c h a n g e, but
a displacement from one choice to an indifferent one, according to the
revealed preferences, is to be called a s ubstitutionof E.
Thus, & change

X =Yy, or equivalently u -v,
in a substitution of E Just 1if

x?y, or equivalentl§ vﬁu .
Accordingly, among Pbssible changes, there are certain ones which are
distinguished as substitutions.

Any given change may be c om Pensated, bya suitable
adjustment of expenditure at fixed prices, td obtain a substitution.
Thus a change x —Y¥ may be compensated by adjusting the expenditure ¥,
in the ratio ny, so as to obtain instead of Yy & new composition y* which
is a substitute for x by indifference in the revesled preferences, but
which is in general different from x:

change compensation
X —y sy ¥

TP
substitution (XPy )
X sy ¥ .

By the balance condition ufx = 1 it follows that the matrix

I =ux?
0

is a projector, since it satisfies the idempotence condition
Iﬁ = (ux®) (ux?) = u(x"u)x?! = ux? = I,
The complementary projector is

= lalux? = T o
Ju = l=ux I Iu
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this also being idempotent:
S
u u
Any idempotent is identical with the projector on its range and parallel

to its null-spaee.5 Considering Ju as obtaining a projection
du* = J du
u

of infinitesimal changes du of u in the balance space, the condition for
an element du to belong to the range of:Jﬁ,is Jﬁdu = du, and this is
equivalent to the condition x'dqu = 0, wﬁich, since ux*du = @ #ﬁ is the
condition d“# = 0 for du to be on the dual critical surface through u,

in other words, to Dbe a substitution. Thus the infinitesimal changes in

the range of Jﬁ are gubstitutions. Further, the condition Jﬁdu = 0 for

du to belong to the null-space of Jﬁ is equivalent to du being parallel
to u, which is to say a parallel price displacement, equivalent to an
expenditure adjustment at constant prices, defining an expenditure ampli-

Tication. 8o the infinitesimal changes in the null-space QE.Jﬁ are

expenditure amplifications. More specifically, the condition Jﬁdu =0
is the same as
du = u(x*du).

But

xtdu = d&/p = d%/e,
Where'¢ is a dual gauge and p =°¢‘the corresponding multiplier, and de/e
defines an infinitesimsal expenditure amplification. Thus an element du in
the null-space of Jd, 1s an amplification

du = udefe = -ﬁdq/e.

5 Halmos [B0] and Afriat [1] contain the relevant material on projectors.
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THEOREM I. The complementary projectors Iu = ux? and Ju =1 - ux? give

the resolution

du

1l

Jdu + T du
u u

du¥* - ﬁde/e

of any change du into the sum of a substitution and‘gg_amplification, when

du* = d du, U = -u and x'dy = d%/e.

An equivalent broposition is that any change du is compensated by the
amplification ﬁde/e = ~Iudu to give the substitution du¥* = Jﬁdu. Accordingly,
Iu will be called the c om Pensating amplicati on
Projector, and'Jﬁ the compensatedqd substitution
Projector.

Thus, projection of a chanée du by the projector Jﬁ determines the
substitution

du* = du + ude/e
which derives from it when it is compensated by an adjustment of expendi~-
ture, with the prices remaining fixed. In the dual fashion, there is
defined the compensating proJjector J%-= JG applied to ch?nges in composition.

To any change du in balance, there corresponds the dual change
dx = xudu in composition; and to a substitution du* there corresponds the
dual substitution dx* = xudu*. Now, for a genersl change du of balance,
resolved into substitution and amplification, there corresponds, for the
dual change, the resolution o

dx = xudu
= quﬁdu + quudu
= (quﬁ)(Jﬁdu) + (Xqu)(Iudu)
= sdu¥* + ix*ﬁdg/e

= dx¥ - kdg/e
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Where
X = «x U, g = xu(leux') =X, + xx7,
and
dx* = sdu¥*, ﬁdg/e.= uxdu.
Thus the dual change dx is correspondingly resolved into .a substitution

dx* and an amplification -}'{de/e.h The matrix s which transforms substitution
du* into dual substitution dx#* defines the substituti on
matrix of the system. Tt not only gives this transformation between
substitutions, but, in case du is not restricted to be s substitution, but
is admitted as any change, the transformation of dy by the substitution
matrix s has the effect of obtaining the dual substitution which results
from compensation of the change by amplification; thus,

sdu = sdu*, where du* = Jﬁdu,

because

u uuu u u
THEOREM TT. If
X = - Xuand s =x.J
—_— u u
then
dx* = dx + kdg/e
where

dx* = sduy ﬁd%fe = ux'du,

gives the substitution dx* which ii therresidual variation for WhenAg

*

general change dx receives its compensating expenditure amplification de/eu5

The substitutional change dx* left after the compensating amplification
of a general change dx has been called by Slutzky [41] the residual
variation.

2 Substitution is in the sense of variation from one point to another in
the same indifference class.
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Since the Projector Iu is of rank one, the comp lementary Projector
Jﬁ is of rank n-1. ,Accordingly 5 = quﬁ is singular, since Jﬁ is singular;
and moreover since X, is regular, and Jﬁ is of rank n-1, it follows that s
is of rank n-1, or of nullity 1.

THEOREM ITII. The mullity of the substitution_matrix of a differentiable

expenditure»duality is unity.

With du = uxdx, and dx* = gdy = suxdx, it follows that the substitution
dx* derived from a change dx as g result of compensation. by amplification

is obtained by the transformation

dx¥* = K dx,
u
where
K =xJx 7t
X uuu

X (lnux’)xnl
u u
= l-xu? ,

using the definition of % directly, and the differential form of the balance
condition. Tt appears from here that Kﬁ is g brojector, satisfying

2

K =K ,

u u
Since this is the casge for Jﬁ. Alternatively it follows from the identity
u'x =1 which is derived from the differential balance conditiong.
The substitution matrix, in first place defined by s = quﬁ,could
have been defineqd equivalently by the formula
| s =‘.KXXu .

For the operations of transformation of the change, from balance du to

composition dx, and expenditure.compensation, are interchangeable in order,

thus,
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Jﬁ being the transform of K& by'xu. . For another statement, the

transitions

5ok
du—ss qu* YUy gy*
and
b's K
du—b dx 5 g

are equivalent, and effected by s

du—> s g,

11. Substitution Symmetry and negativity.

Iet E be g rational, continuously differentisble expenditure duality,

thus with trend vector and substitution matrix
X = -x,u and s =‘xu(l—ux?) =x_ + xx!
existing and continuous.

For,any compositions x, y let x* be the substitute for ¥y which is the
result of compensating the change from y to x by amplification, that is
adjustment of expenditure at constant prices. 8o x* is the intersection
of the critical surface through y and the parallel price locus through x,
and is attained from X by expenditure amplification in the ratio given by
the relative cost function ny.

The relative cost function is given by ?xy = u'x* and has been
identified with the support function o%(u) of the strict contension
determined ty Y, with suppoft and contact surfaces given by the dual
critical surfaces through v, y: and it has appeared that o% = 0*(u),
which is such that the support and contact surfaces are the envelope and

locus determined by o*(u) = 1, is differentiableé, with vector qg,of partial
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derivatives satisfying

o* =x*
u

where x¥ = x¥*(y) = x*(u*), the dual contact of the dependent support u*
of u, is a function of u, and more immediately of u*. But
* = T
du Jh*du
and, by the differentiability of ®,

dx*

i

*
x _xdu
u

X ¥pxdu = g¥qy,
where s* ig the substitution matrix g of E evaluated at x*, -Accordingly,

qg = x% ig differentiable, with partial derivative matrix

x* = g%,
U
Equivalently, o¥ is twice—differentiable, with second partial derivative

matrix agﬁ satisfying

and therefore of s*, since
2
%0 /ou,Bu, = o/3u Bu,
i J i
if both sides exist and are continuous.

A differentiable expenditure system ig defined to have the condition

of s ub st it utional g ymme <t ry if its substitution matrix

is everywhere symmetric. It hag appeared that g rational, continuously

differentiable expenditure system is substitutionally symmetric,

6

s =g¥,

The idea for this derivation of the Slutzky symmetry condition ig due
to McKenzie [31].
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Now, in a rational, continuously differentiable expenditure duality,
with symmetric substitution matrix 5, consider any change from a choice
(4,x) to a choice (u 4 du, x +dx), compensated, by expenditure adjustment,
to a choice (u ¢ du¥, x + dx*) which is a substitute for (u,x); in which

case

du* Jﬁdu*,
and

dx* = x du¥*
u

Xw%@1=S&L
Since the choices (u,x), (u  du¥, 5 + dx*) are indifferent to each other
by revealed preference, or, alternatively, by the convexity of the
indifference surfaces, they must satisfy
u®(x 4 dx¥) >1, (U +aqu*)1x > 1 3
equivalently,
| ufdx* > 0, du* *x >0 ,
since u®x = 1; from which, since
(u 4 du*)*(x + dx*) =1 ,
it follows that
du*fdx* < o

for all du* # o; 1 that is

du?Jgsdu < 0;
for all duffu. But

Px? = g% =g - =
JﬁXﬁ 5 S quﬁ, and Jiv Jﬁ,

s0 that

cf.. Samuelson [44].
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Hence the condition becomes

dufsdu < 0
for all duffu; otherwise du?sdﬁv=70; and this defines the condition of
substitutional negativity.

. The following theorem has now been proved.

THEOREM. For & continuously differentiable expenditure duality, rationality

implies substitutional symmetry and negativity.

The substitutional negativity condition is that the substitution matrix

5 be negative in every direction except that of u; and a necessary and

sufficient condition for this is that the principal minors, or just the
r

leading principal minors,of s of order r have the sign (-1)" for

r=1,...,n=1.

The sufficiency of the substitutional symmetry and negativity conditions

for rationality‘will_appear later.

12. Compensated change reciprocity.

Let (u,x) be any choice; then (du,dx) defines a compensated change if

(u +du, x +dx) is a substitute. In this case
dx = sdu,

where, with rationality, s is symmetric, and negative definite in every

cirection away from u. Tt follows that for two compensated changes (duo,dxo)

(dul,dxl), necessarily having duo, dulr=ro,away from the direction of u,

t9x = du? <
duodxo duosdu0 0,

g = du? = 4 = Jdu t o
&%ﬁﬁ d%ﬁ&l d%Fm% mﬁw%,

1

3
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whence ¢

THEOREM: In the case of rationality compensated changes

(dui,dxi)(i = 0,1) together satisfy the conditioms

dufdx <0, du'gx. = duldx? . 8
o o o1 17

P —

cf. Hicks [21], where importance is given to questions and
bropositions which have at least something of the form here.
However, in spite of its elegance, this theorem secems rather
useless, seeing that it bresupposes. the main issues, these
being the criteris for rationalitygand for a change to be g
substitution. Tn Samuelson[%ﬁj » PP 10T £f there are again
some related,discussionS; and also the suggestion that g certain
formula "eontains almost all the meaningful empiriecal implications
of the whole theory of consumer s choice®. cf Little f277 , p. 96,
where similar idess are entertained. However, this formula is
really Samuelson's own so-called Weak Axiom, in g sophisticated
disguise, and so it is too weak for such a content.
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Iv. Infinitesimal Structure.

1. Dual differential forms.

With an expeﬁditure dvality E there are associated, in a symmetrical
fashion, the linear differential forms u'dx and x'du, which are said thus
to constitutea dual pair of forms. Differentiation of the balance
condifion u'x = 1 gives

ufdx + x*du = 0,
so they are the negatives of each other.

In the case of a differentiable duality, for which dx = xudu, substitution
for dx in the form u'dx, and use of the differential form x&u +x =0 of the
balance condition, obtains transformation of the form thus:

utdx = u'(xudu} = (u'xu)du = -x%du.
Thus the transformation induced on the forms associated with the duality, by
the infinitesimal transformation, converts each form into the negative of
the other. “

The conditions

Autdx = dd, uxtdu = ais
for the differential forms to be integrable, that is proportional, by some
Tactors A and pu, to perfect differential d¢ and d¢, are equivalent to the
conditions
(l-=UX')4>X=o, (1-xu?) “Vu: 03
and as has been shown, these conditions are equivalent for functions ¢, ¢‘Which
are duals, that is satisfying
$) =Y (u).
Therefore the dual integrability conditions, applying to the dual pair of

forms, are equivalent.
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2. Cycle coefficients and dual transformation.

The differential form u¥dx = uidxi has coefficients uy with partial
derivatives uij = Bui/auj; and these determine the cycle coe f-

ficients Uijk of the form according to the formula

- By
Uy 5k Z Yo'ey ik
a,B,7

where 6??% =1, -1 or O according as Q,B;yis a positive, negative or non-
permutation of i,j,k. Similarly, the cycle coefficients of the dual form
determine the dual ecycle coefficients Xijk'Of the expenditure duvality,
according to the dual formula.

The dual sets of cycle coefficients afe converted into each other by
the transformation given by

B T
a,B,7

and the dually stated inverse equations, where

st 1075 5%
U;jk = z %8y 01 gk 7
Q,B,7

is defined similarly. The functions Uij;, ert constitute the

rst
and Xi‘ 13k

Jk
dual sets of cycle transformation coefficien t s

of the expenditure duality. Together they satisfy the identities

' rst . 0aBy _ ¢rst
Z onB')’ U(i]jk - E’i,jk ’

Q, B,
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THEOREM. The dual transformation of the form and cycle coefficients uy and

Uijk of the duality into their duals X, and'Xijk is given by the egquations

iy ay _
Zuocxozi =y Z Yoy Xigx = Figx
a Q, By

and the similar dual equations, where Xij‘and Xi?; are the differential and

the cycle transformation coefficients.

3. Cycle identities.

Since Uijk is antisymmetric for permutation of the indices, there are
n(n-1) (n-2)/6 cycle coefficients, in either of the dual sets, which are
distinct without regard for distinection of sign, one for each selection of
three distincet indices 1,3,k from the n possible values. Further, the four
cycle coefficients for the four sets of three indices taken from any four

a,ﬁ,y,S have a dependence given by the cycle ident it y

U +Ue .+ U = 0.
Usy6 * Uasy + Usap * Uypa
So let N{m) denote the number of cycle coefficients withi.indices ranging in

1,...,m(m < n) which are not thus dependent. Then it is possible to see that
Nm + 1) = Xm) +m -~ TI;

whence it follows by induction that

N(@n) = (n - 1)(n - 2)/2. T

L ef. Forsyth gy



~Ol-

L. Acyclicity.
The differential form u'tdx is said to be acyeclic if its cyele

coefficients all vanish, that is

\ 1
Uijk =0(i,j,k = 1,...,3;;1).
It appears from the linear form of the dual transformation, between the dual
sets of cycle coefficients, that the dual acyclicity conditions, for the
dual pair of differential forms, are equivalent.

It follows from the cycle identities that there are at most (n—l)(n~2)/2
independent acyclicity conditions.

The condition of differential Symmet ry for the
expenditure duality is defined by

Uy = uji (i, =1,...,n).

or equivalently by the dual form of this condition; and it evidently implies
acyclicity. There are exactly (n-1)(n-2)/2 independent differentisl symmetry
conditions. .So there must be at least that number of independent acyeclicity
conditions. But, as has already been seen, there is alsc at mogt that number.

Accordingly, there are exactl (n-1) (n-2)/2 independent acyclicity conditions.
’ Y

THEOREM. The number of independent conditions among the n(n-l)(n-e)/ 6

distinct acyclicity conditions

t

Uijk =0(i,j,k =1,...,n)

is (nul)',,(,nu-.Q) /2. 2

The formula is stated in Forsyth[1T7].




,..95.,

5. Acyclicity and integrability.

THEOREM. Acyclicity is equivalent 1o integrability.

n
Suppose E:uidxi is integrable, say with integrating factor A and integral ¢,
i=1

so that Xui = ?i where ¢. =‘a$/axi. Then, by differentiation with respect to X, 5
i

Kjui + huij = ¢ij (i, =1,...,n),

2
A, = BN/ ps = dx, 0x.; it 1 =0,
where 5 /axj and ¢lJ 3 $/3XIBXJ, and it is assumed that &ij $jl’
this necessarily being so in the case of continuous differentiability. Hence

Au, ,-u..) =.>\.iu<j - kjui,

ij g1
so that
Uijk = Ui(qu— ukj) +u (ukl~ u k) + uk(uij— i
- L lu, u. u
A i3 k
MO
Kijk
uy uj U
= 0.

Thus integrability implieg acyclicity. To prove the converse, consider a

n
' sequence of n steps in the integration of §:uidxi under the hypothesis of
i=1
m
acyclicity, where, at the mth step (m < n), the form }: uidxi is integrated
i=l

to obtain an integral $ carrying x

SCEARRTE ST parameters. It is to be

shown that the mth step is attainable from the (m-1)th. Since the first
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step is an elementary integration, and thus attainable, it will then follow,

by induction, that the nth, and final step is attainable, showing
n
E:uidxi to be integrable. Thus,
i
My o= (4 =1,...,m - 1),

-where the integrating factor A and integral $ have reference just to the

(m=1)th step. Then

m m=-1
xz u,dx, = Z J)idxi + (dam +X)dx
i=1 =1

where X = Kgmm #m' The acyclicity hypothesis implies the acyclicity of the

m
form: %.E:uidxi, with coefficients ¢i (i =1,...,m - 1) and #n.+4x ; and
i=1

included among these acylicity conditions are the conditions

(Bt 2 (b 3 by b by (s - b= X4, (b 4K b, ) = 0(4,30, .. ,mo1)

m ‘m g mi
which reduce to the conditions

#j}ci" 4’1.7% =0 (4,5 =1,...,m - 1),

which imply that ¢,)K have a functional dependence, in which X is carried
as a parameter:
X =)C(<b,xm)-
Therefore m
)MEZ uidxi = d¢d +jK($,gm)dxm.
i=1

But

2 +X(b,x ) =0

dx
m
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is an ordinary differential equation, the general theory of which gives

the existence of an integrating factor p and an integral #’such that
midg +x(p,x Jdx ) =ay .

Now

so the mth step of integration is attainable from the (m-1)th; which

completes the proof.3

6. Substitution coefficients.

With a differentiable expenditure duality E there is associated the dual
pair of substitution matrixes
S=%ﬂﬂﬂ% r=%ﬂmwb
the elemeﬁts of which define the dual sets of substitution
coefficients of E. They are transformed into each other
according to the formulae

P oat ? — ¥
X X = 8 u 8u =T
u u ? XX ’

3 This theorem is very well knownj; but the present proof is given for

the sake of completeness, especially in view of the importance of the result
in this subject, and also because a general treatment appears to be omitted
in standard works.

b The coefficients are Slutzky's in disguise, but a disguise which happens
more to reveal their nature. The term.substitution may be more misleading
than appropriate. Tt is retained for want of a definitely better one, and
out of regard for existing usage.cf. Hicks [22]. Slutzky®s original term
residual variability seems in some ways more Titting to the nature of the
tdea .
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from which it follows that the conditions for the symmetry or the negativity
of each of r and s are equivalent.

The antisymmetric matrices

k = =(s=-s%), h = %(rmr’) ,

PO b

which are the antisymmetric parts of s and r, define the dual pair of
antisymmetry matrices ofE. They are converted into
each other by the transformations

x hx? = -k, u ku! = -h ,
uu X X

from which it appears that k = 0 if and only if h = 0, and thus that the
dual forms of the substitutional symmetry condition are equivalent. These
symnetry conditions are expressed by the vanishing of the antisymmetry

coefficients ki;j, for which kiJ. = «-kji(i,j =1,...,n); thus,

kij =0 (i, =1,...,n).

THEOREM. Differential symmetry implies substitutional symmetry.

That is,

X = xux? = x¥ - xux?
u u u u

is implied by X, = xé. For there is reduction to the condition

x ux? = xutx? |
u u

and then to the condition

XU =-x,
which, with X, = x&, is the same as the differential balance condition

x¥u = -x.
u
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T. Substitutional identities.

It has been shown that s is of rank n-1, or nullity 1; and therefore
s and s' have null-spaces of diﬁgn$ion 1. Apparently su = 0, since
su = xu(lmux’)u = xu(unu) =0,
because u'x = 1. Therefore u spans the null-space of s. Moreover,
s'u = 0. TFor
u'ls = u’xu(lnux") = -x%(l-ux?) = -x? 4+ x' = 0,
using both the immediate and the differential form of the balance condition.
Accordingly, u also spans the null-space of s#t.

THEOREMI. su = 0, s*u = 0 and the nullity of s is unity) so any vector

annihilated by s or s? is dependent on u.
As a corollary of this theorem, which gives identities satisfied between
the substitution coefficients, there follows
ku = 0,
that is, the antisymmetry coefficients satisfy the identities
E:kijuj = 0,
J
Accordingly, among the %ﬂ(nml) distinct symmetry conditions
kij =0 (i,j =1,...,n),
and most %(n=l)(n~2) are independent, and imply the rest.

Since differential symmetry implies substitutional symmetry, and there
are %(n=i)(me2) independent differential symmetry conditions, it follows
that there is at least the same number of substitutional symmetry conditions,
and now exactly that number. Therefore these given identities between the
symmetry conditions give all the dependencies between them, leaving exactly

the stated number independent.
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THEOREMI,The substitutional symmetry conditions

kij =0 (i,§ =1,...,n),

1
where kij = E(s. “Sji)’ of which %n(n—l) are distinct not regarding

distinction of sign, have the dependencies determined by the identities

which leave exactly %(n—l)(n~2) of them independent and implying the rest.”

8. Substitutional symmetry and acyclicity.

THEOREM I. Substitutional symmetry is equivalent to acyclicity.

The cycle coefficients are defined by

X =% (Xjknxkj) * X (?{kinxik) + Xk(xij-xji),

ijk
.'}‘C. = = X, .U,,
1 E 1375

J

the trend coefficients by

and the substitution coefficients by

s.. =x_, +Xx,,
ij iJ i3

by u and

where Xij = axi/ﬁujo Multiply the cycle coefficient Xi n

Jk
sum over k, using the further formulae

}:u,x, =1, x,-+§:u,x,. = 0,
i1 J i1J

i i

2 There 1s a contrary belief, expressed, for example, in Samuelson [44],
p. 107, that the symmetry conditions are all independent. 'The correct

statement, though not the correct proof, is found in Samuelson [46].
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thus,

'ZXijkuk - Xi(; K" kzxkguk) + X, (Zxkl"k lekuk) k) Xkuk(xij—xji)

X.X, + XX, -~ XX, +X.%, +X., - X..
iJ 13 Jgi g i iy Jji

=5 ., - 8,,.
iJ ji
Then Sij = sji if Xijk =0 (1,J,k =1,...,0n); so that acyclicity implies
substitutional symmetry. For the converse, suppose 855 = 551 (1, =1,...,n),
that is
Xy "X.. =X X, - X.X,.
L Y Jd 1 14
Then
Xijk = Xi'Xj;Xk =0
X, xj X,
X %, %

Therefore substituional symmetry implies acyclicity; so the theorem is now
proved. This theorem and the Theorem of paragraph 5 now give:

THEOREM II. Substitutional symmetry ig;equivélentAzg;integrability.6

See Notes 2 and 3.

By differentiation of the equilibrium conditions, which give the inte-
grability, Slutzky [47] showed that integrability implied substitutional
symmetry; but the converse, though suspected, and even taken for granted,
has never, to my knowledge, been proved. In Samuelson [44, p. 116, footnote,
a sketch of a proof is offered. However, in carrying out the steps there
implicity suggested we are required to invert a transformation which can be
seen to be singular. In the same footnote there is suggestion of the idea,
which seems to have some acceptance, that the symmetry conditions are
sufficient for the existence of a "preference field"”. This, however, is
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9. BStructural identities.

Let E be a differentiable expenditure duality, thus with trend vector %
‘and substitution matrix s. Then there is defined the matrix

X(g) = (? k’)

with the element ¢ .arbitrary. Since s is singular, the value of the
determinant of X(o) is independent of o; and this value is given as
follows.

THEOREM I. |X(o)| = !xul .

Thus, by using elementary operations on the determinant,

o ‘ X
IX(a)| = ’ -x;u xu(i—ux')

= 'x l s) xt
iy 1eux?
=|x || ¢ xt-ox?
U -1 1
=x (0 + (&%-oxtu) = |x |,

since u'x =1 and ufx.= 1.
Provigded o + O, there is the expansion
1X(0) | = ofs-g0™ %1 ];
and since, by Theorem I, this determinant is not zero, there may be

introduced the matrix

not at all the case. Given the substitutional symmetry conditions, the
substitutional negativity conditions are then necessary and sufficient
for preferences to be consistently defined. Questions relating to the
existence of a "total utility finction" have also had some consideration
by Ville [B51].
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K(s) = (s-x0 %)L (g #0),

for which the following properties can be verified.

-1
THEOREM II. X (o). =/0 '\, K(o) - Klp) = (o-0)uu'.
o (u Kig)) g Q o-¢)u

These identities may be proved directly, by multiplying through by
denominators, and using the relations
ufx =1, ufx =1, su=0, stu =o0.

See Note 2.

10. Imversion theorem.

Let E be integrable, say with integrating factor A and integral &, S0

that uk = $X- If E is continuously differentiable, then the matrix éxx of

second partial derivatives of $ exists, is continuous, and must, moreover,

‘be symmetric; and thus there is defined the symmetric matrix

1 =(o b\ ), No=x
¢x/x“§xxfx
in conjunction with the integral,$.

THEOREM. § ' = X(q), where o = -Mc'fay;jgbx)"l-

It is required to prove the relations

f{’(i)x/%. |

1, opl /N o+ xtp /n = 0.

. z ﬂ 3 = .
sJ;X/ M=0,  ZpI/A 4 scbxx/?\. =1
The two relations in the first column are readily verified, since &x/X,= u,

so they become x%u =1, su = 0. Now differentiation os

¢x =u\N, A.= x'$x

gives

d)xx B uxk +’UA§ ’ %k - $X *+ ¢XXX;
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whence
-y ! = ).
(1-ux )¢xx (uX + uuf)A
Now there is obtained

S¢XX = xu(l-ux*)¢xx-= xu(uX +uut )N = (1-%u')A,

which;is the last of the relations required. For the remaining relation,

(L-ux )cj)xxxuu (uX+uu )7\-.qu (u-u)\ =0,

so that

li

¢XXX ufx’¢xxi) = -uoh,

as required. Finally, since now

=1.. =1 .
o xx' = S=X¢XX ; ux =1, uh = ¢

by combination of these relations the expression for ¢ is readily obtained.

COROLLARY. K(0) = ¢ /.
. -1 -1 -1 -1 7
(COROLLARY. x =-¢ b o, s = M+ ¢XX¢Xq¢§¢XX .

COROLLARY. TIf E is integrable then s is symmetric.

1l. Equilibrium and stability conditions.

It appeared in II.13 that for a uniform expenditure duality E,
rationality, which is the non-reflexivity of the preference relation P,
is equivalent to the condition that every composition x obtains the
maximum of an objective function ¢(x) under the constraint u'x = 1,
that is with x on its dual balance u.

This condition for an absolute maximum resolves into an
equilibPrium conditio n, that the function be

stationary, and thena s tabili t/y condition for this

T er. Hicks [22], appendix,and Samuelson [44].
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equilibrium, which is that the stationary value be a maximum - in the
case of local stability then a proper local maximum, and in the case
of global stability then an absolﬁte global maximum:, With continuous
differentiability for E, and local stability everywhere, the then
obtained local convexity obtains the global convexity of the critical
surfaces, which gives global stability; so local stability everywhere
is equivalent to global stability.

The equilibrium condition is

UA = ¢X, A= x’¢X,

where A\ appears as the lagrangian multiplier corresponding to the
constraint ufx = 1. The equilibrium condition is thus identical with

the integrability condition, which is proved equivalent to substitutional
symmetry. Assuming the expenditure duality E continuously differentiable,
so the integral ¢ is continuousiy twice-differentiable, and ¢XX exists,

is continuous and symmetric, the stability condition assumes the form

dx#0Aldx = 0 .= dx'p__dx < 0,

in other words, that the quadratic form dx’¢xxdx be negative definite
under the constraint ¢£dx = 05 and a necessary and sufficient condition

for this is that, for r = 35+..,04l, the leading principal minor of

iz =(¢X7x 4;32;’{//%)

of order r have the sign (=l)rnl.8 By application of Jacobi's theorem
on the minors of the adjugate,9 an equivalent of this condition is that,

for r =n-1,...,1 the final principal minors of_@j.i have the sign (-1)F.

Mann [®o ].
Aitken [ 3 1].
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But, by the inversion theorem of Paragraph 10, this inverse matrix is
identical with X(0), and so these minors are identical with minors of s,

and the condition obtained,which is that, for r = 1,...,n=1,the principal
minors of order r of s have the sign (-l)r, is the condition for s the be
negative definite in every direction away from that of u, on which direction
s is singular, since su = 0. The conclusions which have been obtained are
contained in the following theorem.

'THEOREM. A necessary and sufficient condition for equilibrium is the

symnetry of s, and a necessary and sufficient condition for the stability

of equilibrium is the negativity of 's in every direction different from

that gﬁ_u.

12. The infinitesimal conditions of congistercy .

An expenditure duality E has been defined to be rational if its
choices are coherent, admitting a common motive, or equivalently, if
its preferences are consistent, no one being the contrary of another.
This rationality condition is expressed by the non-reflexivity of the
preference relation P of E; or, since P is defined transitive, also by
the antisymmetry of P. Thus, for a rational expenditure dvuality E, the
preference relation P is an order relation, being non-reflexive and
transitive. This is a global condition, having reference to every
choice of the duality, or to every point in the considered conjugate
regions in the balance and composition spaces.

If E is differentiable, the local behaviour, the infinitesimal
structure of E, is represented by the linear transformation between
balance and composition differentials, the coefficients of which are

the partial derivatives of the balance and composition elements with
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respect to each other. This transformetion gives the response dx = xudu
in x to an infinitesimal change du in the balance u. Tt may be enquired
whether a local condition, that is a condition on local behaviour as
determined by the partial derivative matrix X » can be decisive for

the global rationality condition, as represented by the comprehensively
determined relation P; that is, whether there is an equivalence between
local conditions, applied to the partial derivative matrix X, at the
different points of ueB, and the global condition represented by the

ro—
non-reflexivity of P = V

wes Tu’

The answer is in the folloﬁing theorem, which follows by collecting
together various conclusions obtained under differentiability or a
weaker condition, which give the equivalence of the rationality condition
with the condition of an absolute maximum, with equilibrium with stability,

and also with substitutional symmetry and negativity.

THEOREM. Substitutional symmetry and negativity everywhere is necessary

and sufficient for the rationality of a differentiable expenditure duality.
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NOTE 1

The following is Dr. Phelps! proof of the proposition stated

on p. 50. Iet U, X be dual convex bodies, so that

ueUAXEX = u'x > 1.

,%mmtaﬂmmm%eh%ﬁs%h@toﬂeﬂmﬁwsw,ﬁofmX
and are conjugate if u'x = 1. Iet Cu,,SX denote the zones of contact
and support of any support and contact u, x. They are formed of the

contacts and supports conjugate to u, x respectively. -Bvidently
x€C <= ueS .
o X
It is required to prove that, for any cdntact Z,
. = . .
u, velnt SZ Cu CV
It is enough +to show that
ueTnt .sZAvesZ =c.Cc .
The hypothesis here gives the existence of a A>1 such that

w o=\t + (l=k)veSZ.

Take yeCu,,so that u%y = 1. Tt is required to prove now that v'y = 1.

Thus, since v, w are supports, and y a centact,
LSV,  1<wly =Mty + (I-N)vly = A+ (1-A)vYy,

whence also 1 > v'y, and hence viy = 1.



=109-
NOTE 2

Some significance for the results in ITI.9, pp. 102 ff. is
shown in the following remarks, which are also to indicate an
inconclusive attempt at a construction of integrals, which would
at the same time give an independent proof of the sufficiency‘of
the substitutional symmetry condition for integrability, without
first showing it equivalent to the acyclicity condition.

It &Iis any‘integral, then any other integral is 4’= m(¢),
where @ is an arbitrary function with derivatives @', o; and if A,

M are the integrating factors, then
" — ¥ Ul N A
%;X/h uu A fot 4 $xx/

It has appeared that to every integral,$ there corresponds a function
@ such that K6n= ¢Xx/h 5 and for a further integral there is g

funection P such that = W;th~ Herce,

K..
P
K -k, = au A" /ot s

P

and now = further result of III.9 gives
p - o= "/

If T is an arbitrary function, andv$ an existing integral which

is to be constructed, then by the considered theorens,
— - T
XK, = ¢xx/k'+ {t-0)uu

here = - o°is an unknown. function, since o is unknown. Division
| P4

of the i, jth element of K by uy now gives

mgy,ij = éij/$i + %;uj.




=110

There is now obtained a set of vectors Ili with elementsjﬁlij,
Jﬁli = {log‘$i] ot g;u,

such that, for some function q? the vectorsfli m&;u are gradiants

of the form [log éi] <

NOTE 3

A balanced system, equivalently a linear differential form
where coefficients satisfy the balance condition may be said to
be homogeneous if all the elements of x are homogeneous functions
of u of the same degree. If the degree is to be integral the
balance condition gives the degree to be =1; and the Euler identities

for homogeneous functions now give the equivalent pair of relstions

X U = =X, U X = =U.

u ; u

-A system which satisfies the more general relagtions

x U = xp, u X = ugq,
which are equivalent, with pg = 1, may be called virtuglly homo-
geneous. If p, q are constant, the ordinary homogeneity condition
is obbained. Tmmediste integrability is defined as the condition

that unity being an integrating factor.

THEOREM. The conditions for the substitutional symmetry and the

differential symmetry of a homogeneous balanced system are equivalent;

B0 an homogeneous balanced §ystem,1§.integrable_iiiand only“ig'ii_ig

immediately integrable.
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Thus, the condition for hdﬁogenity is % = =Xp, 5O
s = Xﬁhxxvp;‘and hence 5 =87 if and only if x, = xg. The
final conclusion now follows from the equivalence .of sub-
stitutional symmetry and .acyclicity together with the clagsi-
cal propositions that acyclicity is equivalent to,integrability
and differential symmetry to immediate integrability.

Let fidxi be a linear differential form whose coefficients
are homogeneous functions, all of the same degree, such that
M= fixi# 0. Then its balaneced equivalent uidxi‘has coefficients
ug = fi/h which are homogeneous functions of degree ~1; and so,
in accordance with Euler's theorem for homogeneous functions,
there is obtained the homogeneity condition uXX = =u. Now, if
the given form is acyclic, so also is its balanced equivalent,
which must therefore be substitutionally symmetric, and there-
fore differentially symmetric and immediately integrable. There
is now obtained the following theowem. (PiaggioE?yﬂ),‘which is
readily proved for n = 3 using vector methods, but not so readily
in the general case.

THEOREM. If the coefficients filgg_gg,acyclic differential form

are homogeneous functions of the same degree and if p = fixi¥0

then l/ﬁ is an integrating factor.
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INDEX OF TERMS

Absurd preference, 3k

Acyclic differential form, Qb preferences, 35; relation, 11
Action, 20

Adjunction of relations, 4

Amplification, 77

Amplitude of s state, 27

CAntisymmetric relation, 3

Antlsymmetry coefficients, 98

Ascending chain, 8

Balance condition, 2k; balance space, 24; differential balance
condition, 66: balance of expenditure, 23

Better, 15

Binary relation, 3

‘Chain in a relation, 8

Change, 81; compensated, 81

Choice, 20, 25; of expenditure system, 25

Cokherent choices, 21, 31

Commodity composition, 23

Compensated substitution projector, 81; compensated change, 81
Compensating amplification projector, 81

Complement of a relation, 4

Complementary transitivity, 4; set of subsets, 12

Complete relation, 3; order, 13; region, 47; measurement of
a scale, 19

Components of a partition, 12

Composition of coamodities, 23; space;,23
‘ConcaVe-sety bl

Conjugate of a relation, 4; elements, 46; regions, 46
Conjunction of propositions, 2; of relations, 4
Consistent preferences, 3k; barriers, 48

Consumer behaviour, 25

Composite commodity, 23




i1

Contact, 49; zone of, 49; contact function, T2
Contensional duality, 47

Continuous expenditure system, 26
Contradiction of preferences, 3k

Convex set, 43; body, 45

Coupled links, 8; chains, 8

Critical surface, 55

Cross-deviation, 38

Cross=-expenditure, 37, 40

Curvature, 52

Cycle coefTicients, 92; transformation coefficients, 92;
identities, 92; cycle of a relation, 11

Dependence of barriers, 49
Dependent support, contact, 72

Descending chain, 8; Differentiable expenditure system, 26;
duality, 66

Differentigl form and equation associated with an expenditure
system, 61; differential balance conditions, 66;
differential symmetry, ok

Direct expenditure, 37
Disjunction of propositions, 2; of relations, 4
Distinction, relation of, 4

Duality, 39; of balances and compositions, 39; of preferences, 41;
of differential forms, 91; of gauges, 68

Equilibrium conditions, 104

Fquivalence, logical, 2: by definition, 2; relation, 11;
class, 12

Exclusion, 46

Expenditure, direct, 37; cross, 37; system, 23; duality, 393
derivative, 69

Extension of relation, 17

Extensional space, 46




iii

Filaments, 75
Force, affecting values, 28
Forms, differential, 61

Frontiers, inferior and superior value, 28

Gauge, of preferences, 19
Gauge point, 80
Good, 28

Identification, relation of, 4

Implication, between propositions, 2; relations, 5; barriers, 48
Inclusion relation between intensional and extensional elements, 46
Increase, law of, 28

Increasing scale, 28

Independence of barriers, 48

Index numbers, TO

Indifference in a scale, 15; classes, 16

Tnduced preferences, 41

Inferior frontier, 55

Integrability, 57, 62; regular, 61

Integral surface, 55

Integrating factor, 61

Intensional space, 46

Trreducible preference chain, 36

Level surface, 61

Link in a relation, 8

Marginal price, T1

Measure of a scale, 19

Motive, 21

Multiplier belonging to a gauge, 68




iv

Non-reflexive relation, 3

Null relation, 19

Objective function, 61
Occurrence of a composition, 33
On a balance, 24, Lo

Opposite preferences, 3k

Order relation, 13; condition, 61

Over a balance, 2k

Preference, 20; in a scale, 15; gauge of, 19; relation revealed,
21, 31, 32; chains, 33; cycles, 33; contradiction of, 3.4
opposite, 34; consistent, 3k; absurd, 3k4; acyclicity of, 35;
dual, 41; induced, 41: inferior and superior domains of, 42

Principal ratio, 37
Product of relations, k4
Projector, compensating amplification and compensated substitution, 83

Propositions, propositional functions, 2

Quantifiers, universal and existential, 3

Rationality of behaviour, 21

Reduction of a relation by an equivalence, 17; of a preference
chain, 36; rigid reduction of a scale, 28

Refinement of an order
Reflexive relation, 3

Regularity of expenditure system, 14; of a contension, 48;
of a sector, T4

Relations, 3; reflexive, 33 non-reflexive, 3; symmetric, 3;
complete, 3; conjugate, L; complementary, 4; symmetric
complement of, 4; universal and null,

Relative prices, 23; cross-expénditure, 37; expenditure derivative,
69; trend, 77; cost, 78; cost-gauge, 80

Representative of a class, 12

Reserve of expenditure, 27




0

Resultant relation of a sequence of relations, 5; link of a
coupled pair of links, 8; link of chain, 8

Revealed scale, 21; preference relation, 31; of an
expenditure system, 32

Rigid reduction of a scale, 28

Same value, 15

Scale of value, 20; scale condition, 61; relation, 1k;
measure of, 19; reduction of, 28

Sector, Tk

Segment, 43

Side of a contension, 47

Simple support, contact, 49

Singular contension, 48

Spherical map of a sector, T4; spherical angle, Th
Stability condition, 104

Standard, T7

State of an individual, 27

Substitution, 81; projector, 83; matrix, 8l4; coefficients, 97;
symmetry, 87

Sum of relations, .3
Superior domain, 42; frontier, 55
Symmetric relation, 3; symmetric complement of a relation, k4

Symmetry, differential, 94; substitutional, 87

Transformation, of differential form, 92; of cycle coefficients, 92
Transitive relation, 4; transitive closure of relation,

Trend, T6; relative trend, T7
Universal relation, 4

Value domains, 42; frontiers, 55; index, TO; same, 15




Resultant relation of a sequence .of relations, 5; link of a
coupled pair of links, 8; link of chain, 8

Revealed scale, 21; preference relation, 31; of an
expenditure system, 32

Rigid reduction of a scale, 28

Same value, 15

Scale of value, 20; scale condition, 6l; relation, 1k;
measure of, 19; reduction of, 28

Sector, T4

Segment, 43

Side of a contension, 47

Simple support, contact, 49

Singular contension, 48

Spherical map of a sector, T4; spherical angle, Tk
Stability condition, 1Ok N

Standard, T7

State of an individual, 27

Substitution, 8l; projector, 83; matrix, 84; coefficients, 97;
symmetry, 87

Sum of relations, 3
.Buperior domain, 42; frontier, 55
Symmetric relation, 3; symmetric complement of a relation, 4

Symmetry, differential, 94; substitutional, 87

Transformation, of differential form, 92; of cycle coefficients, 92
Transitive relation, 4; transitive closure of relation,

Trend, T76; relative trend, T7
Universal relation, 4

Value domains, 42; frontiers, 55; index, TO; same, 15



Within a balance, 40
Worse, 15

Zero support, contact, 49

Zone of support, contact, 49




