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OID AND NEW METHODS OF ESTIMATION AND
THE PARETO DISTRIBUTION"

1. Introduction

Recently much attention has been paid to the statistical distri-
bution of certain socio-economic gquantities such ag personal incomes,
the assets of Ffirms, the sizes of cities and the number of firms in vari-
ous industries.l Some authors posit that the guantities in guestion are
generated by stochastic processes which have as limiting distribution
either the Pareto distribution, or the lognormal distribution, or some
other distribution strongly skewed to the right. In view of the fact
that some of the competing distributions are fairly similar, it becomes
relevant to test the hypothesis that data have been generated by a par-
ticular distribution against the alternative hypothesis that some partic-
ular other distribution(s) is (are) responsible for generating the data.
Since many of the candidate hypotheses closely resemble each other, the
problem of estimating the parameters of the varilous distributions 1is by

. . 2
no means trivial.

*I am deeply indebted to John Tukey whose -advice and ideas have
deeply affected this paper. T am also grateful to Michael Godfrey,
Stephen Goldfeld and Hale Trotter for much valuable advice and criti-
cilsm.

1. see [21, [91, [11], [13], [1k]. The intellectual antecedents of
thege studies can be found. in the works of Pareto, Gibrat and others.
see [71, [10].

o, For a more debailed discussion of discriminating between rival hypoth-
eses, see [11].
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The objective of this paper is to discuss various methods of estil-
mating the Pareto distribution which hags been one of the most distin-
guished candidates for the honor of explaining the distribution of incomes,
assets, etc. Some of the methods discussed are traditional; one 1s prob-
ably novel and appears to be sufficiently promising as to be generally
usable in problems of estimating the parameters of distributions. Sec-
tion 2 is devoted to a discussion of various traditional methods of esti-
maeting the Pareto distribution. Section 3 presents the results of some
sampling experiments with these methods. Section 4 discusses a new
approach to estimation and analyzes the results of pertinent sampling

experiments., Section 5 contains some concluding remarks.

o,  Estimabion of the Pareto Distribution

We distinguish between the distribution function F(x) and. the

b'd
density function F(x) of a random variable x where P(x) = [ £(&)aEk
-00
is the probability that the random variable assumes a valuve S x. The
Pareto d.:’.s.t::']’.’bution5 is given by
k. &
P(x) =1-(3) (2-1)

k>0, a>0 and xZ k. Its parameters k and a (where k 1is the
lower bound of the random variable x) can be estimated by a varlety of

methods. These methods are discussed and some theorems about the

3. More properly called the Pareto disbribution of the first kind since
Pareto himself proposes three distributions. The Pareto distribution

of the second kind is F(x) = 1 - S S— and that of the third

(x + e)?

kind is F(x) = 1 - Ke_bx/(x + c)®. see [10].
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properties of the estimates are proved below. Specifically, we shall be
concerned with The consistency of the estimates on the grounds that the
convergence in probability of the estimates to the true values represents
a minimum standard of acceptability.

The Method of Moments. Provided that a > 1, the mean of the

Pareto distribution exists and is given by

© gk ek 4
B(x) = [ xdF(x) = | x—=dx = —— (2-2)
k x
We estimate a by equating (2-2) to the sample mean X, yielding
8 = —F— (2-3)
x =k

where E is some estimate of k.

The estimation of k from samples of n observations is accom-
.plished as follows: the probability of an observation greater than x
is (k/x)® from (2-1). Hence, the probability that all n sample
values x;;...,X ~are greater than x is (k/x)®. This is, therefore,
also the probability that the lowest sample value is greater than x .

Thus the probability distribution of the lowest sample value is
k ,an
G(x) = 1 - (=) . (2-4)

The corresponding density function is

g(x) = ask

T an+l
x

and the expected value of the lowest sample observation is

L, It is well known that for a < 2 +the variance does not exist.
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an X T am -1 (2-5)

Equating the lowest sample value, X to the expected value,5 we obtain

(an - 1)x
~
k = °

(2-6)
an
and therefore
~ X
a = -
x -2 lx
Sn o)
yielding
. nx - X,
a=— . (2-7)
n(x - xo)

The estimators are thus given by (2-6) and (2-T).

Theorem 1. The method of moments yields consistent

estimates.

Proof: Since plimxo= k , and since the sample mean is a consist-

ent estimator of the population mean,6 (2-6) yields immediately
pli.’mﬁ = k. (2-8)

Taking probability limits in (2-7) we obtain

R nx - X
plima = plim =

n(x - Xo)

na-l—k 1-a
= plim — = plim( a + >= a (2-9)

ak n
2(F1 - %)

5. By the subscript o, we denote the least of the n values XyseeesXy o

6. Without having to require that the veriance of the random variable
exists. See [4], pp. 228-233.
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as asserted.

The Method of Maximum Likelihood. The likelihood function for a

,X ) is

sample (xl,... 0

and taking logarithms,

L= nloga+ anlogk - (a + 1) = log x;
i

Hence

§+ nlogk - % logxi = 0
Ja, i

yielding for a . the estimate

n

3
I

— (2-10)

i
2 log —
1 ®

A maximum likelihood estimate cannot be obtained for k by differentiat-
ing L with respect to k since I 1s unbounded with respect to k.
But since k 1s the lower bound of the random varieble x , we may maxi-

mize L subject to the constraint

& < min x; . (2-11)
i

Clearly o 1is meximized with respect to k subject to (2-11) when

% = min X, (2-12)
i

which is, therefore, the maximum likelihood estimate for k.

Since the partial derivatives of the likelihood function do not

-all vanish at the maximum, we convince ourselves of the consistency. of
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the maximum likelihood estimates by the following argument.
Theorem 2. The maximum likelihood estimates are consistent.

Proof: We first observe that plim[k - min x| = O, and hence k
i
is a consistent estimator. Rewriting (2-10) we have

= (2-13)

~
8 =

2 log %,
i 5 A
o - log k

2 log Xy

The consistency of 2 can be established if we can show that pliml—-=n—— =

logk + i . But ( Z log X5 )/n is the arithmetic mean of a random variable
i

vy = logx . (2-1k4)

Transforming the Pareto density according to the transformation (2-14) we

~Obtain

£(y)dy = ak“eay . | (2-15)

Since the sample arithmetic mean is a consistent estimator of the mean of

the distribution, we require E(y). But

[o2]
E(y) = [  akye™®ay = logk + =
logk
Then
1 1
plimg = plim = = g
2 logxi 1
1 - _ logl? logk + i logk

as asserted.

Quantile Methods. Choose two probability levels Pl and P2 and

determine the corresponding quantiles Xy and X5 from

P =1- (;{k—)a (2-16)
1



and

P,=1-(=) . (2-17)

Then we obtain an estimate for a Dy solving the above equations to

yield

8= ———— (2-18)

which, when substituted into (2-16) or (2-17) yields the corresponding

estimate for k.

Theorem 3, The quantile estimates are consistent.

Proof: We merely have to observe that sample gquantiles are con-
sistent estimators of the populstion gquantiles.

Least Squares Estimates. The (cumulative) distribution function

can be rewritten as

!
1 - F(x) = (;{)
and taking logarithms on both sides
log(l - F(x)) = alogk - alogx . (2-19)

The parameterg of equation (2—19) are estimated by least squares where
the dependent. variable 1s the logarithm of 1 minus the sample cumulative
distribution. For the same reason as in Theorem 3, the estimates are con-
slstent.

In addition to mixed methods by which several of the above methods
are combined, we may single out for special mention a class of methods

which could best be designated as
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Qualitative Methods. These methods have as thelr purpose not so

much the precise estimation of the parameters k and a but rather the
verification that the sample is generated by the Pareto distribution at
all.

Suéh a qualitative method consists of examining the Lorenz curve
of the sample. The Lorenz curve is frequently employed in studies of
inceme distribution and is a locus of points such that the ordinate of
each point represents the fraction of income accruing to that fraction of
recipients which is the abscissa of that point. We can define the Lorenz
curve parametrically as follows: letting F(x) %be the distribution of

the random variable x we have

for abscissa: F(x)
x
[ ear(e)
for ordinate: Fl(x) = %;
] xdF(x)
k

where Fi(x) is referred to as the ith moment distribution function
corresponding to F(x) and where k is the lower bound of the random
variable x :7 As a measure of the inequality of distribution we use the
coefficlent defined by

[o2]

L=1-[F (x)ar(x)
_ 1

k

i.e., 1 minus the area under the Lorenz curve. Clearly the Lorenz meas-

ure and curve are not defined when 'E(x) does not exilst; hence we re-

strict ourselves now to cases in which a > 1.

7. See [1].
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Theorem 4. The lLorenz measure for the Pareto distribution

is a/(2a - 1).

Proof: The first moment distribution of the Pareto distribution

is

This provides values of the ordinate of the Lorenz curve; the sbscissae

are given by the cumulative distribution 1 - (k/x)a. The Lorenz meas-

0 a~-1 a
L l-f(l-k l>‘d<1-—l‘3—\ = —2
. Xa— N Xa/ 2a - 1

k

ure therefore is

as asserted.

For purposes of comparison with other distributions, it is of
interest to-examine the symmetry of tﬁe Lorenz curve arising from the
Pareto distribution. : We shall establish that the Lorenz curve is not
symmetric about the 45 degree line perpendicular to the line of equal
distribution end that the point at which the slope of the curve equals
unity océurs above the line which is perpendicular to the line of equal
distribution. Hence, possibly, we may determine whether a sample has
been generated by the Pareto distribution by examining the sample Lorenz
curve. We shall refer to the line perpendicular to the line of equal

distribution as the alternate diagonal.

Theorem 5. The slope of the Lorenz curve equals unity at

the value x = E(x).

Proof: Denoting the Lorenz curve in the parametrized form

¥k a~1

« (2-20)

y=1-(
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z=1- (§>a (2-21)

vhere y and =z are the ordinate and abscissa respectively, we obtain

the slope
dy dy/dx _ (a - 1)x

z ~ dz/dx ak

which equals unity when x = ak/(a - 1) which is E(x) by (2-2).

Theorem 6. The point on the Lorenz curve corresponding

to x = ak/(a - 1) is above the alternate diagonal.

Proof: By the definition of the Lorenz curve, the intersection
of the alternate diagonal with the Lorenz curve occurs at the point
given by

F(x) = 1 -~ Fl(x) (2-22)

and substituting from (2-20) and (2-21) we obtain

or
1= ————— =L ' (2-23)

We can rewrite (2-23) by considering the right hand side as a function

of x  as

Nk + %)

a
X

(2-2k)

and evaluate ¢ at the point x = ak/(a - 1). Substituting directly

into (2-24)

R e
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= (a - 1)a"l<}§j>a(2a - 1) . (2-26)
) 8

Clearly as a >1, ¢ > 1 since 1im u? = 1. Moreover, for values
u->0

of 'a close to unity,

8 yop(1-%) + —2— < 0. (2-27)

14
¢ da 8 2a - 1

We also observe from (2-25) that as a >w, ¢ > 2e_l which is less than
unity. Since ¢ is continuous and differentiable for a> 1, 1t can be-
come greater than 1 only if it has at least two extreme points in the
range a > 1, one of which must be a maximum. However

2 ‘ 2 1

ide _ ;L<<99>
8 2 2\da

ala - 1)(2a = 1)2

and since ¢ >0 for 'a> 1, d2¢/da? >0 for all a> 1 and hence ¢
can have no meximum. Consequently ¢ <1 for all a> 1 and the value
E(x) does not satisfy the intersection of the Lorenz curve and the alter=-
nate diagonal. We finally note that ¢ diminishes as x increases.

Thus the value of x  at which the slope of the Lorenz curve is unity is
greater than the value at which it intersects the alternate diagonal and
this point is therefore above the alternate diagonal, as asserted.

Such gqualitative considerations for establishing that a sample
has been generated from the Pareto distribution are fairly crude. The
property derived in Theorem 6 distinguishes the Lorenz curve of the
Pareto distribution from the Lorenz curve of, say, the exponential dis-
tribution but not from the Lorenz curve of the three-parameter Tamily

of lognormel distributions. Another qualitative device, the measurement

8. This is immediate from 1'HOpital's rule.
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of the moments of sequentially increasing samples, may distinguish the
Pareto distribution (for which the sample moments may have a clear ten-
dency to become unbounded)9 from the lognormal distribution but not from
other distributions with infinite means and/or variances. Although these
methods are not without interest one obviously cannot place excessive

reliance on them.
3, Sampling Experiments

For purposes of comparing the various methods by sampling experi-
ments the Pareto distribution with k = 1.0 and a= l.5 was Qhosen,lo
Pareto distributed samples were generated by generating uniformly distrib-
uted pseudo-random deviates between O and 1. For each such deviate us
we determined the corresponding Pareto deviate Xy by solving u; =
1~ l/X:iL'5 for Xy qll The sample size N took on the values 25, 50,
100, 300, 500, 1000, 2000. For each sample -size 100 samples were gener-
ated and k, a, and the value of the Lorenz coefficient were estimated
for each sample by the method of moments, the method of least squares,
the method of maximum. likelihood and four gquantile methods. These latter
differ from each other only in that they are based on different quantiles.

Quantile methods 1, 2, 3, and I respectively use deciles 1 and 9, 2 and 8,

% and 7, and 4 and 6. Table 1 displays the mean estimates over one

9, See the sampling experiments discussed in [9].

10. If & is less than 1, the method of moments will not yield consist-
ent estimates.

11. By the well known proposition that, for any distribution F(x), the
values of F(x) itself are uniformly distributed on the [0,1] inter-
val. The u; play a role only in generating the samples and are not

known - for estimating purposes.
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hundred samples; Table 2 contains the root mean square error, and Table 3

the predicted Lorenz coefficients. Since the true value of a 1is 1.D,

the theoretical value of the Lorenz coefficient is L= .75 Dby Theorem L,

TABIE 1. Mean Estimates of Parameters

N=25 N=50 N= 100 N= 300 N = 500 N = 1000 N = 2000
k a % a & a % a & a % a % a
1.009{1.72111.001|1.663|1.000|1.617|1.000|1.570|1.0001.550 1.000]1.53%(|1.000|1.522

1.013[1.68011.012{1.612(1.013|1.592|1.007 1.54%(1.005({1.527{1.002|1.511}1.
1.0%3|1.626|1.014[1.558{1.007|1.540}1.002|1.517|1.001}1.509 1.001(1.503(1.
.99711.511| .995{1.4%2|1.000|1.498|1.001 1.49411.000{1.592] .999|1.492{1.
.999{1.464{1.00k{1.49311.001|1. 504} 1.001|1.501| .999 1.499 .998|1.49611.

.984|1.545{1.003|1.520{1.006|1.531|1.003 1.516{1.002{1.512f .999|1.497|1.

001

000

000

000

001

. 500
k97
.Lo2
L4o6

.500

.9911.628] .985[1.519| .986[1.49111.001|1.522| .999|1.509| .999 1.504 .99911.497
TABLE 2. Root Mean Square Errors

N=25 N = 50 N= 100 N = 300 N = 500 N = 1000 N = 2000
k ) k a K g & a & a & a k a
.057| .386| .013| .288| .o07| .217| .002| .133| .002| .098| .001| .081| .000| .065
.093| .4%0| .071| .311| .0k9| .222| .032 Ji2k| .026] 096 .019| .065| .01k| .OL5
.049| .%56| .019| .2k0| .009| .166| .003| .08T| .002 L068] .001| .0L8{ .000| .032
.060| .b12| .032| .egs| .023| .211| .01k} .127} .011} .090 .008| .065| .005| .Ouk
J12k| .2%63| .063| .281| .ou3| .209| .026| .133| .020| .105| .0l2 L063| .009{ .0kl
.172( .621| .078| .305| .058| .21k} .032| .12l .028! .106] .018| .076| .013} .053
.069| .895| .117| .k50| .o77| .290| .ONWT] .79 ,obk1l .1k9| .o27| .10k| .018| .0T1
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- TABLE 3., Mean Lorenz Coefficients

N=25}| N=50 | N=100 | N=300 } N=500 |N=1000{ N=2000

Method of Moments 719 | 725 f 730 | W736 | LThO | 7R3 | LTh6
Method of Least Squares| -736 | .72 | 737 | 742 | 745 | 748 | .750
Maximum ILikelihqod ST L7ho | J7he | .78 | J7hO | .750 | 751
Quantile Method 1 783 793 762 756 LT54 753 .753
Quantile Method 2 JT96 | JTT7h ) o761 1 L5k | L7533 | L7582 | .752
Quantile Method 3 - 796 | L768 | J7sk .50 f L750 L L7522 | L751
Quantile Method 4 . 796 | 0783 1 L7733 | J752 | .753 1 .752 | .T752

&

We shall consider five individual performance criteria: (i) the
s . n ca Y . . o PR
mean bias in k, (ii) the mean bias in & ; (iii) the root mean square
T .

"~ ) M
error of k ; (iy) the root mean square error of & ; (v) the mean bias

in L o:'Thé tables reveal the following:

(l) By all criteris Quantile Methods 1 and 2 perform better than

Methods B;and My. The valﬁes .15 and .85 seem therefore reascnable values

to use for P, ‘and’ P, “in the Quantile Method.

2

(2) Since Quantile Methods 1 and 2 are comparable with each
other in perforﬁéﬁce, we shall choose (arbitrarily) Quantile Method 1 to
represent the best of the quantile methods. For each of the five cri-
teria, we obtained a table of rankings in which the four method512 are
ranked‘b& each of the seven sets of samples corresponding to the seven
vglues,afv N . For each of these tables of rankings Kendall's coeffi-

cient of concordance W was calculated. The W values are displayed in

Table L.

12. Method of Moments, Least Squares, Maximym Iikelihood, Quantiles-l.
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TABLE L. W Statistic for Ranking of Estimating Methods

"~

. Bias k | Bias & RMSE & RMSE & L

W .718 2755 .97k .68% .608

These values are 'all significant on the .01l level and allow one to re-
ject the null hypothesis that the rankings of methods according to

different sample sizes are random.

(3) If rank totais are obtained for each method and criterion,
one can rerank‘éhe methods (on the basis of the rank totals) by each of
the five criteria. Kendall's W calculated froﬁ the resulting table
of rankings is ;562 which is not significant on the .05 level and does
not allow one to reject the null hypothegis that the rankings of the

|

different methods by the five criteria are random. The rankings of the

four methods by‘{fthe five criteria are displayed in Table 5.

TABLE 5. Rankings of Methods

Criterion
~ ~ ~ ~
Method Bias k| Bias a | RMSE k | RMSE a L Bias
Moments 1 L 1 i 4
Least Squares L 3 L 3 2
Maximum Likelihood 3 2 2 1 1
Quantiles . 2 1 3 2 3

(L) The related Friedman two-way analysis of variance test yields
a X? value (with 3 degrees of freedom) of %.48 which does not permit

one to reject the null hypothesis that the rank totals are not significantly
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different., By inspection of Table 5 one would single out the maximum
likelihood and quantile estimates as yielding best results but such a

15

distinction is: ecasual and does not rest on a probabilistic basis.

(5) The performances of the methods as measured by the bilas and
by the root mean square error of a given parameter are highly correlated.
Also, the performances of the methods as measured by (the biases or root

mean square errord of) k and a are substantially divergent.

(6) Since L depends only on a, it is not surprising that the
ranking of methods according to L 1is substantially more similar to the

rankings according to 4 than to those according to £ .

L. A New Method of Fitting

Thg prévious sections discussed various traditional methods of

" fitting distributions tS:samples with reference to the Pareto distribu-
tion. No sharp»differences in performance were found among the various
methods but informally the quantile and maximum likelihood methods seemed
to have the edge.

All of the traditional methods, however, suffer from a distinct
disadvantage. Broadly speaking, this disadvantage is that traditional
methods of fitting do not allow one to discriminate statistically among
competing but mathematically closely related alternative hypotheses.

Suppose, for example, that one hypothesizes that a given sample
was geneféped by the'Paféto distribution and that the alternative hypoth-

esis is that tﬁe sample comes from, say, the lognormal distribution. It

13. One must note the difficulty of evaluating methods such as the Method
of Moments which is best by some and worst by other criteria.
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is easily possible and in fact frequently the case that two or more con-
flicting hypothéses appear to yield good fits.lu In such instances one
is typically dissatisfied with the nature of the criteria of goodness of
it as well asfwiﬁh the inconclusive results to which these criteria
lead.

Standard Goodness of Fit Tests. Some of the goodness of fit

tests that might be suggested as appropriate are the following.
(1) The fX? goodness of fit test. Accordingly the observations

are grouped and the statistic

is obtained, where e and fi are the expected and actual frequencies
in the ith group respectively. Under the null hypothesis that the
parent of the sample is the distribution in question, G has approxi-
mately the x? distribution with r - k degrees of freedom, where T

is the number of groups and k the number of parameters fitted. Accord-
ing to this approach one would declare that one of all competing hypothe-
ses to be the winner which yields the G statistic representing the
highest significance level. But this approach has several undesirable
features: (a) the grouping of observations is arbitrary and if all can-
didate distributions Tit fairly well, even small alterations in the
method of grouping will tend to alter the resulting ranking of rival
hypotheses; (b) the validity of the X2 test does not rest on any spe-
cific alternative hyﬁothesis; therefore it is not strictly proper for
evaluating the fit from distribution Xl when the only alternatives are,

say, distributions X, and X;; (c) in any particular study interest

2 3

1Lk, gee [11].
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may be focused on behavior in the right tail of the distribution where
expected frequencies are. small; small expected frequencies are, however,
a violation of the conditions that mist be Fulfilled for a valid appli-
cation of the fest;l5 (a) the ’X? test essentially ignores small but
systematic deviations of the sample from the theoretical distribution.
(2) The Kolmogorov-Smirno& Test. Given a sample of n observa-
tions XqyeeesXy and empirical and theoretical cumulative distribution

functions 98(x) and F(x), the statistic is

D = max S(Xi) - F(Xi)

and measures the distance between the empirical and theoretical distribu-
tions. Accordingly the distribution yielding the smallest D statistic
for a given sample would be declared to Tit that sample best. This meth-
od also has serious disadvantages: (a) it shares difficulties (p) and

(a) above with the x? test; (b) critical values of the D statistic
cannot be obtained when the parameters of the distribution have been esti-
mated from the sample. Thus, even though the Kolmogorov-Smirnov test i1s
probably more powerful than the 7? test in cases in which they can both
be validly applied,l6 there is probably little reason for believing that
either test is appropriate for present purposes.

A Widely Applicable Fitting Procedure. Denote by F(x) the dis-

tribution to be estimated and F(xi) its value at the ifth sample point.
Iet the ordered sample be (Xl,..u,xn) and let there be two fictitious

points x_ = and X .4 such that F(XO) =0 and F(x_ . ,)=1. The quan-

n+l
tity F(xi) - F(xi_l) has expected value of 1/(n+1) for all values of

15. See [3].
16. See [12], p. 51.
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i =1,...,n+l since each of the intervals F(xi) - F(Xi—l) is identi-
cally distributed. The proposed procedure is to estimate the parameters

of F(x) by minimizing

n+l 1 2
8=z <?<Xi) - Flxg ) - Efl”i{) (-1)
i=1
with respect to the parameters of the distribution. The minimization of
(4-1) is generally feasible by gradient or other numerical methods if

F(x) is twice differentiable. The resulting estimates have the property

of consistency as shown in the following

Theorem 7. If (1) F(x) is a member of a k - parameter
family of distributions, (2) if the parameters are continu-
ous and single valued functions of the cumulative proba-
bility in the sense that k sample points X5 i=1,...,k,
X, 4 Xj for all i and Jj, are sufficient to determine
unique values of the parameters, (3) if the null hypothesis

that the x, were generated by F(x) is true,then the esti-

n+l 1 2
£ . s - _ 1
mates resulting from minimizing S iij_(F(xi) F(Xi—l) nr 1

are consistent.

Proof: Consider the quentities ¢, = F(xi) - F(xi_l), i=1,...,mH,
called the coverages corresponding to the order statistics F(xi). We
shall need the probability distributions of the ¢, . Since the F(Xi)
are uniformly distributed, so are the ¢, and this distribution is iden-
tical for all ci .17 The first coverage cq is given by cq = E(xl)— 0

and hence the required probability distribution is that of F(xl) . Now

17. See [6], p. 151.
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the probability that the first order statistic F(Xl) is greater than
or equal to some quantity 2z is
> _ n
prifF(x) 22] = (1 - z) -
Then
Pr[F(Xl) <gz] = 1-(1- 2 )"

and Pr[ci <z] =1-(1- z)rl .

The corresponding density function is

(z) = n(1 - z)n_l .
Now let vy = nz and thus

£(y) = (1 - g—)

and clearly lim £(y) = Y . Tt follows that, for any € >0 anda
n = o
particular c,,

} = lim Pr[l(n+l)ci—ll > €, n+l} =

lim Pr lc. - n]—;—ll > —
n-=o0 + Yo+ 1L n—=>w

= lim Pr[ly+ c, - ll > e’\/n+l] = lim Pr\:y> -C; + L + € n+—i] =

n = o n-=>ow
c. -1 - ¢e//n+l
= lim <e * >:o°
n —=©
c. - 1-¢eyYn+l
Then 1lim Pr[Any‘ci - nl+l‘ > e‘/n+lJ = 1lim ne * =0
n - , n-=>o
and  lim Pr{max‘ci - nl+l‘ < e"‘/n+l] =1 .
n-=>©

Tt further follows that

n+l 2
limPrZ(ci— l>§€2 =1

n —=> o i=1
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and the quantity S converges in probability to zero for the true values
of the parameters. It is also clear that for values of the parameters
other than the true values S does not have zero as its limit and S
asymptotically possesses a minimum at the true values. Thus the method
of choosing estimates for the parameters by minimizing S yields, for

n —> o, a sequence of parameter estimates converging in probability to
the true values.

Testing Goodness of Fit. The current procedure employs two

notions of the goodness of fit. The first of these is called the close-~

ness of the fit and is measured by the value of S at the minimum. The

second is the randomness of the fit and may be measured in several ways.

The approach rests on the notion that a good fit is characterized by two

1

circumstances: (a) the residuals F(Xi) - F<Xi_l) “n+ 1’

} -

In general a distribution will be considered to give a bad fit if it

F(x - F(x etc., are small; (b) the residuals are random.

141) i’ "o+ L’
fails by either criterion. Closeness is a falrly natural criterion of
goodness of fit and is related to the general notion of the distance be-
tween the sample and the fitted distribution. Randomness of the residu-
als is desirable since, if the null hypothesis is true, we would expect
the increments in cumulative probability F(Xi) - F(xi_l)-~ associated
with going from the (i-1)th +to the ith sample point, as estimated
from the fitted distribution — sometimes to exceed and sometimes to fall
short of thelir mathematical expectation, in no predictable manner.

Since estimates are obtained by minimizing S, the value of S

at the minimum isg a natural measure of closeness. The randommess of the

residuals can be measured in several ways. Three particular methods are
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discussed here.

1. A run test on the number of runs of positive and negative
residuals. On the hypothesis that the permutations of positive and nega-
tive residuals are randomly generated, the number of runs in large samples

is approximately.normally distributed with mean

and standard deviation

2n1n2(2n1n2 -n - ng)

2
(nl + ng) (nl + 0, - 1)

where 0, and n, are the number of positive and negative residuals.
For small samples exact tables are available for testing the hypothesis
of randomness.

2. The reduction in the sum of the squares of residuals due to
fitting to the residuals orthogonal polynomials up through the kth de-
gree.l9 The value of Xk should be a number small relative to the total
number of observations but high enough to fit well fairly high frequency
oscillations. In the experiments described below k was chosen to be
15. According to this method a random series of residuals will yield a
low reduction in the sum of squares. If there are low frequency oscil-
lations in the residuals indicating systematic deviations of the sample
from the fitted distribution, the reduction in the sum of squares will

be congiderable. Systematic very high frequency deviations which are

also a sign of nonrandomness will also yileld very small reduction in the

18. gee [12].
19. See [5] and [8].
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sum of squares but this 1s not likely to occur with unimodal densities.

3. The spectral density of the residuals according to which we
consider the series of residuals ordered by the subscript 1 as a time
series and disp}éy thevdensity of frequencies generating the series.
The more the spectrum resembles that of white noise the better the fit
is considered from this point of view.

Sampling Experiments. A separate set of sampling experiments sim-

ilar to those described in Section 3 was performed. Sample sizes of 25,
50, 100, 300, 500 and 1000 were employed and 100 samples of each size
were generated from the Pareto distribution with k = 1.0 and a = 1.5.
The parameters were fitted by the method described in this section and
thé various goodness of fit statistics were calculated.

Estimated critical values for the S statistic from 100 samples

are shown in Table 6. As an illustration, we would reject the hypothesis

TARLE 6. Estimated Critical Values for the S-Statistic

Significance Level

N .20 .10 .05

25 .0362 .0ko1 .0438

50 .0198 .0218 .0239
100 L0106 .0112 .0123
300 .0036 .0038 .0038
500 .0021 .0022 .0022
1000 .001.0 .0011 .0011

of a good fit on the .05 level if, for example, a sample of 100 observa-
tions yielded an S value 1In excess of .0123. The mean parameter esti-
mates and the root mean square errors are displayed in Table 7, and com-

pare favorably with other methods of estimation. For large values of N
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TABLE 7. Parameter FEstimates and Root Mean Square Errors

N W A % RMSE & RMSE &
25 1.4%5 .981 .100 .021
50 1.383 .99% .125 .008
100 1.440 1.003% .071 Neloll!
300 1.480 1.008 .033 .008
500 1.490 1.009 .028 .009
1000 1.493 1.009 .019 .009

the mean bilas of % is slightly larger than for other estimators. For
£ +the mean bias tends to be somewhat larger than for the quantile method
and for maximum likelihood estimates, but is generally of the same magni~
tude. The root mean square errors for k are larger and those for a
smaller than with the best of the alternative methods. On the basis of
the apparent properties of the present estimating method, it seems to be
a reasonable alternative to the others.

The several methods discussed above of testing for randomness of
fit were applied to the residuals arising out of fitting the Pareto dis~-
tribubion to the data. Since the data were generated from the Pareto
distribution, the null hypothesis is known to be true.

Since the distribution of runs (under the null hypothesis) is
known, the run test was performed for only 36 samples (6 for each value
of N). 1In 3 out of the 36 cases we rejected the null hypothesis on the
.05 level of significance. Considering the situation to be a binomial
one with probability p = .95 of success, the probability of three or
more failures in 36 tries is .268 and we cannot reject the hypothesis
that .95 is a correct estimate of the probability of success.

The fitting of orthogonal polynomials up to and including the
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i fteenth degree permifts us to estimate empirically the percentage reduc-
tion in the total sum of squares of residuals due to fitting the first
15 degrees. The critical values of the percentage reduction are dis-
played in Table 8. Tn a concrete case we would select a significance

TABIE 8. Estimated Critical Values for the Percentage Reduction in the
Sum of Squares Resulting from 15th Degree Orthogonal Polynomials

Significance Level

N 975 .950 .900 .800 .200 .100 .050 .025
25 821 777 .693% 661 487 415 .365 .316
50 62 Jhp .392 351 212 77 .155 145
100 .219 .205 .188 A7k .102 .090 .079 .066
300 .085 077 .066 .060 .03k .028 .026 .02k
500 .062 .051 Lok .038 .019 .016 .015 .015
1000 .028 .026 024 .020 .010 .008 .008 .006

level, say .05, and compare the empirically calculated percentage reduc-
tion with the critical values for the appropriate value of N. If the
empirically calculated figure is outside the interval specified by

Table 8, we reject the hypothesis of randomness. These tables are there-
fore sultable for testing against both alternatives of very low or very
high frequency oscillations.

Finally we display in Figures 1-6 the spectral densities of the
residuals for 36 cases (6 for each value of N). These may serve as a
standard of comparison in cases in which the null hypothesis is not
known to be true. Although the spectral densities displayed are not
very meaningful for small values of N, they generally behave like the

spectrum of white noise.

The applicability of the various measures suggested for testing
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goodness of fit to a variety of other distributions is affected by the
fact that tables of critical values for S (measuring closeness) and
tables of critical values for the percentage reduction in the sum of
squares of residuals due to fitting orthogonal polynomials were derived
from sampling experiments based on a two-parameter family of distribu-
tions. Clearly with distributions with a different number of parameters
to be estimated, our estimates in Tables 6 and 8 are not fully valid,
those being based on cases with the wrong degrees of freedom. It
appears unlikely, however, that this will ﬁake a great deal of differ-

ence when the number of observations 1s large,go

5. Conclusion

Four standard methods of estimating the parameters of the Pareto
distribution have been discussed in some detail. These are the method
of moments, the method of maximum likelihood, the method of least squares
and the method of quantiles. In addition, some more qualitative methods
of judging whether a sample was generated by the Pareto distribution
have been analyzed, with particular reference to the properties of the
Lorenz curve and the properties of sequential samples. Sampling experi-
ments were used to obtain experimental evidence concerning the goodness
of the various (nonqualitative) methods. Strictly no great differences
were Tound among the four methods; more informally the methods of maximum

likelihood and of quantiles performed best.

20. Initial application of these techniques seems to yileld finer discrim-
ination among alternative hypotheses than could be achieved with
standard methods. See [11].
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General dissatisfaction with some existing methods of Jjudging the
goodness of a fit has led to the formulation of a new method of estima-

tion. This method involves the minimization of the criterion function

s= v <?(xi) - F(x, ) - H;E—Ij>2'

=

When a distribution has been fitted by minimizing S we Jjudge the good.-
ness of Fit on the basis of two criteria: (a) the closeness of the it
as measured by the value of S at the minimum, and (b) the randomness of

the it as measured by (i) the number of runs of positive and negative

residuals F(Xi) - F(xi_l) - E;:ji, (ii) the percentage reduction in the
total sum of squares due to Titting orthogonal polynomials to the resid-
uvals, (iii) the spectral density of the residuals. This method of esti-
mating the parameters of a distribution seems to yield results comparable
with those obtained by standard methods as judged by root mean square
errors of estimates and similar criteria, and seems superior to standard

methods with regard to goodness of fit problems in providing finer dis-

crimination among alternative hypotheses.
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