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ABSTRACT

This paper departs from the question as to in which phase of

the solution of a decision problem the "tautological point” will be

arrived at, after which the solution of the decision problem on hand
becomes a matter of algorithm.
The first step is to formalize the general decision model in g
way which makes its constituent stand out ag clearly as possible.
The constituent of a decision problem is defined, discussed, and is
shown to provide a complete characterization of the decision problem.
Next the space of the constituent is introduced and the princi-
ple of accomodation is formulated, according to which the constituent
and its space are to be selected in such g way that the discrepancy
between the decision model and the decision problem to be solved is
as small as possible. Thig principle is accomplished through g Pre-

decigion rule.

Ways of fixing the constituent are discussed. Tt is demcnstra-

ted that numerous predecisions (of a more or le

in

s arbltrary type and
according to more or less objective and formalizable criteria) must

be made, and ways are indicated, how they can be made.




Foreword

During the months of September and October 1964 T was a Visiting
Research Associate at the Econometric Research Program of Princeton
University.

It was in this period of time that this contribution was written.
It arose from s stimulating talk I had with Oskar Morgenstern.

The original German manuscript was translated in the Seminar for

Theoretical Statistics and Econometrics of the University of the Saar.

Saarbrlicken, December 1964 Glnter Menges
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PREDECISIONS

I. Introduction

"These new machines make decisions, the old onesg merely performed work",
Oskar Morgenstern recently wrote referring to the "high-speed digital elec-
tronic computers". ([9] , P. 584), Certainly Oskar Morgenstern cannot be
suspected of mystifying the "electronic brains". His statement, however,
raises the question as to which phase of the brocess of solving a decision pro-
blem the "tautological point" will be arrived at, after which the solution of
the problem is merely a matter of the use of an algorithm. Is the "tautologi-
cal point" prior or posterior to, or does it coincide with, the handing over
of the problem on hand to the machine? Or to put it this way: When is the
decision model specified far enough as to allow its being handed over to the
formal solution calculus, and how can it be specified, i.e., what is the spe-
cification process like?

This paper does not intend to give a final answer to this complex of
questions. Nevertheless, I should like to contribute some considerations on
these problems which are obviously very important for the practical application
of decision theory. The fragments mainly concentrate upon the concept of

predecision.

IT. The Model

A decision problem generally consists in selecting, according to g rule
which is designated here ag VA(l) > an action a* , yhich is in a certain
sense optimal, from a given set A of possible actions g

Let us write

(1) a* = v, (1) gy




-2 .

expressing that the action g% has been selected from A according to the
rule VA(l) - Let a o-algebra Zl be given over the space A of actions & B
making A a measurable space (A,Zl) . Probability measures & can then be
defined on (A,Zl) - Let A stand for the set of all probability measures §
over (A,Zl) - These measures assign a probability to every element of Z
The decision Problem can now be formulated under stochastic aspects:
From a given set A of possible probability distributions & over A an

optimal probability distribution &% is to be found according to the rule V (1 )

By analogy with the above equation’; let us write

(2) 5% - VA(l) SN

According to the probability distribution 8% the individual actions
a € A are to be selected with the probabilities assigned to them by &% .

(1) is a special case of (2) ir &% assigns the probability 1 to some
a¥ e A

Let the combination of 4 with the set of all probablility distributions
on A be symbolized by [A,A]. In order to make the rules VA(l) and Vﬂ(l)
more concrete we agsume given in addition to A a certain set, 5 of states
of nature, 6

By specifying a o-algebra, 22 > over O it is possible to assign, by
analogy with A , to the set of states O +the class A of all probability
distributions X defined on . These probability distributions are named
a priori distributions on g

The combinations of § with a class A*C A of a priori distributions on

0 1s denoted by [Q,A%],




Let a sample T from a sample space T provide the possibility of obtaining
information about A% . =T 'is distributed éccording to a fixed, but unknown,
distribution Ile - Information provided by T can be utilized to estimate the
unknown & priori distribution T on Q and - via the decision function - to
reduce the degree of uncertainty. . The combination of the sampie space T with
one of its elements T is denoted by [1,7]

A mapping of the sample space T into the action space A ig designated as
eA » & mapping of the sample space T into the space A of probability messures

8 on A as eA :

The mappings ey and €, are called decision functions or strategies. The
former are called nonrandomized, the latter randomized decision functions. The
set of nonrandomized decision functions ig denoted by D ; the set of randomized
decision functions by DA - Each decision function eA € DA or ?A € DA assigns
uniquely a so-called final decision a ¢ A . or ® € A respectively, to each

element T e 7 -
T) = &5 eA .

Henceforth we consider as final decisions only the elements & e A > 1.e., only
randomized decision functions en and their space DA - For the sake of brief-
ness, let us use e and D for €n and DA ; respectively.

Let a boundea real-valued function be given over the Cartesian product space

DX 0 (i.e., the set of all pairs (e,8 )):

r: DX - R (the set of real numbers ) .




This function is the risk function; its values, the risks, are denoted by r(e,O).
Furthermore, let g so-called decision criterion, K , be given by which one can
determine the e for which the risk r(e,8) » In a certain sense which is incor-
porated in K , is optimal.

With regard to the existence of such e > account must be taken of some
mathematical requirements which, however, I am not going to treat here. See instead
[2]. Concerning the possible decision criteria T refer to [8] and [10].

The rule V(l) (or, to be exact, Vil)), outlined above, can now be defined

more precisely:

Let e* be that decision function out of D for which the risk r(e,e) becomes
optimal in the sense of the decision criterion XK . This decision function is
called an optimal decision function or optimal strategy. The rule V(l> now con-
sists in selecting as a final decision that &% ¢ A which is assigned to the
sample ocutcome T by the optimal strategy e* . With regard to K, &% is an
optimal final decision. In this sense, the rule V(l) is aﬁ optimizing rule.

The optimal final decision 5*{;?results from applying the optimal strategy e%

to the sample outcome = ; and e*, in turn, results from the application of the

decision criterion X to the risk function r . This is symbolized by:
(3) 8% = e* (1)
e* = K [r]

The optimal final decision &% ig given if the five-dimensional vector

C = (gly"';g )

5

with its components

El = [A)A]J EQ = [Q;A*]y §3 = [T;T]; é& = r, & = K




is uniquely specified. Let us call the vector ¢ +the constituent of the decision
problem; it characterizes the decision problem completely, and the final decision

depends only on this constituent:

() B = BX(L) = BX(g,...,t.) .

5

IIT. The Accomodation

We next introduce the space II of the constituent £ . Let
El be the set of all action spaces, combined with the respective

class of all possible probability distributions, i.e., El = {[4,A)};

[1]

5 the set of all [Q,A*], i.e., every possible state space 0

2

is combined with €very possible subset A¥ of the respective clasgs

-of distributions A » and considered an element of = i.e.,

=

11l

2

Il

3 the set of all sample spaces T » combined with each of itg

elements T , i.e., 25 = {[1,7 1};
EM the set of all risk functions r over D x @ s 1.e., Eh = {r};
55 the set of all aecision criteria K, i.e., 55; = (K]
Finally, let T = (El,...,E5) denote the space of the constituent ¢ = (gl,...,g
As is seen casily the problem is to fix the constituent § in I . The

constituent € of the practical decision problem on hand being fixed and provided
that the brogramming is appropriate and that the solution exists, the machine can
find &% according to the rule V(l) - Once the constituent has been fixed, the
further, final solution of the problem is merely a matter of using the algorithm:
Obviously the "tautological point" is marked by the fixation of € in T ' But how

can € Dbe found?

5

).



We first write

LB =y

> 5 5

177"

Il

>

(5) e = v® <ps =(v£2) <

in order to express that the constituent € is fixed in I by a rule V(g)

,(2)

is called the predecision rule.

Generally spoken, its function is to bring about an accomodation between

the general decision model as described in IT. and the given practical decision
situation. Hence the selection of ¢ from I obeys an accomodation principle:
The discrepancy between the model and the concrete situation should be gs small
as possible!

In order to solve thig approximation problem, one might, first of all, think

of using a constituent N which, by the relation

C = Q(Tl) 2

determines an "optimal"™ constituent { . Where this way is feasible, one will
follow it, maybe even in such a way that n , for its part, is determined by a
constituent n* | and this cne in turn, by vn** , ete. Unfortunately this way
is in general not feasible (1) because the predecision rule V(E) is in most
cases only partially objective and, consequently, to g large extent outside the
realm of exact mathematical formulation and moreover, (2) because the discrepancy
between model and reality, which is to be minimized, is in general not measurable.
How then can { be found? T am afraid that the answer to this question
necessarily runs as follows: In general only with the zid of more or less arbi-
trary, more or less subjective propositions or - decisions! In fact, all our
previous considerations lead to the conclusion that the "real” or final decision

problem is merely a problem of secondary importance, a problem of arithmetic.




One could even go so far as to say: it is a spurious problem. As rule, the
genuine problem will be to make decisions which lead to a constituent from I
to be fixed! Here a decision effort has to be made which the machine cannot
make.

I shall now try to give an idea of these predecision problems which, in
principle, everybody who wants to apply decision theory in practice is confronted
with. The following considerations willl also be of use for the (certainly not
Tinal) clarification of these questions:

(1) Of what sort is the discrepancy between model and reality?

(2) Of what sort are the (more or less) subjective propositions which fix the

constituent?

(3) 1In which respect and in which parts can the predecision rule be made objective

and formulated in exsct mathematical terms?

(%) In which cases can the "tautological point" be advanced into the domain of

predecisions? And in close connection with this question:

(5) In which cases can the "optimal" constituent { be determined by means of s

constituent n ?

IV. The Predecisions in Detail

a) Predecisions about [A,A] and [q,A%)

As for the predecision about these two components, the main difficulty is the
enumeration of all actions and states of nature which are essentisl for the decision
problem. This enumeration first of all requires very exact knowledge about the
environméntal Tactors, the "milieu" of the decision problem on hand. Exact know-
ledge of the true aims of the decision maker are also required, as well as of the
position of the decision situation before the calculus is applied. Consequently,
these predecisions consist in making a relevance statement on the possible actions

and states of nature.




The decision maker will take account of only those actions and states which
are pairwise disjoint, and he will also take into account all a priori restric-
tions resulting from his technical equipment, e.g., from the computer at his
disposal.

From a material point of view other restrictions will limit hig action space.
Perhaps some actions though possibly very favorablé ones in other respects, cannot
be realized for financial reasons. Further restrictions may arise from socigl or
personal obligations and force one to sacrifice potentially favorable actions. The
decision maker may also consider favorable actions as inopportune for they might
bring him into conflict with the law. Among the states he will enter those into
the calculus which are relevant in the sense that the decision might be different
if they were missing. T imagine that methods of linear or nonlinear Programming
may contribute to the solution of these predecisions, €.8., by helping to reduce
the sets A and 0 to a number of essential elements, capable of being more
easily handled. In some cases Monte-Carlo-methods may provide good results, and
frequently methods of statistical analysis, e.g., regression or correlation tech-
niques, will also be successfully applied.

Another Possibility has been pointed out to me by my collaborator Dr.
Schneeweiss: ILet two possible states 91 and 92 be given. The decision maker

knows positively that two actions a and g are at his disposal, but he con-

1 2
Jectures the existence of s third possible action a5 - Let the cost of obtaining
information about the existence of a5 amount to ¢ . The Possible actions to

be defined now are

al = select a; without taking a5 into account,
52 = sgelect a, without taking 3 into account,
a = take a into account and apply a; if it is actually found, apply

13 >

aj » 1f 1t is not found; 1 = 1,2,3 anda j =1,2




The possible states now to be defined are

.. = Gi is given and g

1 is found,
i

3

DI
1l

Gi is given and s is not found.

21 3
0f course, the outcome matrix now contains 32 elements instead of the original four,
eight of which, however, can immediately be eliminated, since they are related to
actions dominated by others, as can easily be seen.

I shall not enter into the particulars of the extremely problematic predicision

about the a priori distribution A or its space A* , since I have already dealt

with the problem. See [6], [11] and [1] and IV b below.

b) Predecisions about [7,7]

The decision maker has to make predecisions whether a sample should ve drawn
at all and if a sample is to be drawn, it must be decided beforehand which variable
or variables are most characteristic of the states of nature. Consideration must,
however, be given to the fact that in certain circumstances a very characteristic
variable may not be measurable at all (such as opinions, standards of behavior,
the political or social situation, etc.). Furthermore, a predecision must be made
as to which sample function is most favorable, whether one should proceed sequen-
tislly, etc. What sample size should be chosen {and connected with that: how
shall T be determined)? Perhaps it is expedient to construct a statistical
index of various variables‘(e.g., when méasuring the price level or even some such
phenomenon as "weather"). The question as to how far the sample elements are
autocorrelated or obey a trend must be considered. Also important is the width of
the inductive basis, i.e., to what degree are the conditions under which the sample

elements are collected controllable. Fortunately, sampling theory offers numerous
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instruments suited to deal with, and solve, these questions. See [3] and the
literature quoted there. Moreover, it can be shown that some of the sampling
decisions outlined above can be made according to objective criterisg. See [3]
and [5].

The following simple and expedient method of fixing the distribution A\
over  or a space A¥ by means of sampling has been pointed out to me by my
.collaborator, Mr. Diehl.

Let (61,..., Gk) be the space of states of nature, where the Oi are
possible distributions of gz random varisble x . The apriori distribution A
over (Gl,..-, Bk) is to be estimated given observations X, of the random
variable x

Let k ‘simple samples (i.e., samples, the elements of which are identically

and independently distributed) of size n be given:

T(n)‘ _ (

1 Xll""’xln)

én) = (peex )

For each sample Tin) (i = 1,...,k) the empirical distribution as well as its

Xe-deviation from all states Gj (j:l,...k) i1s determined. That state Gj whosge
Xg—deviation from the empirical distribution of Tin) is smallest is recorded.
If several states show the same minimal deviation, all of them are recorded.

In this way, we obtain a set of - let us say m(m < k) - states Gi

GKl, ceny GKm, K“ € {1,...,k} for p = 1,...,m

From this set of states ei the empirical distribution over the space of states of

. 1 . C
nature is computed, each state being given the welight z " This empirical
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distribution can subsequently be considered as a ("point") estimate of the
distribution A over the space of states.

In addition, a stochastic €-range, covering the distribution A over the
space of states with a giY%fbrobability € , can be constructed on the basis of ;fflzﬂ"
this estimate. (The limits of this range can be found using the well-known
theorem by Kolmogoroff). The range itself may be considered an estimate of A¥ ;
i1ts width can be made to depend on the degree of uncertainty.

T shall not inquire here into the requirements that must be satisfied if one

wishes to apply this method; namely, a sufficient sample size and g high degree of

stability of A or A* | respectively. (See, however, [6]).

c) Predecisions sbout r

In order to formulate a risk function, the first step is to indicate a real-

valued so-called outcome function

E: AXQ-R,

which is defined and bounded over the Cartesian product space A X @

This outcome function assigns an outcome E(a,8) +to each coincidence of an
action a and a state 6 . The outcomes E(a,0) can be interpreted as either
gains or losses. In general, the rigk function r is derived from the outcome
function E in the following way:

The states @ € O are characterized by the stochastic variable x which will
take values in a space of events X . Every @ induces a distribution MG for
X , Or a distribution ﬁe for the sample T > respectively. These distributions
define the outcome expectations for the outcomes E; they are called risks.

If E(a,8) are the outcomes over & X &, the risk function r 1is defined

over D X O by
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r(e,8) = J/\ JF E(a,8) d e (7) dﬁe
T A

In case the distribution A on Q0 1is known, Bayes' risk function r¥ is set
in addition. It is defined by
r*(e,N) = L/m r(e,8) dn

Q

If the outcomes E(a,e) are not numerically specified beforehand, a preference
ordering must exist in order to enable the decision maker to make gz choice between
the competing & » that is to say, Tirst, the decision maker must be able to say
which of two outcomes he prefers, or that he ig indifferent to them, and second,
if" he does not prefer one outcome to another and does not prefer the latter to

& third one, the first outcome is not preferred to the third one.

The predecisions about E and r are mainly to decide what amount of effort,
money, and time should be spent on collecting information about the outcome func-
tion E . Besides, instructions must be given (predecided!) for the case that
the decision maker cannot set up a preference ordering of E(a,8) . This case
is not at all unlikely to happen, since the decision maker must possess a strong,
strictly speaking, an unlimited sensitivity with respect to the distances between
the individual E(a,8) in order to be able to rank them. If he does not possess
this ability, his indifference is no longer transitive and the whole decigion
problem becomes absurd.

Further predecisions become necessary 1f, instead of the ordinary risk

function r or ¥ » the actual risk function % or ¥¥ | respectively, is

subjected to the decision criterion. This should be done whenever samples are
drawn, since sampling generally involves costs. The actual risk function is
defined as follows:

o= r + Ex () ,
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C being the cost function, EBx (C) its expectation. The cost function mainly
depends on the sample size, but on other factors too, e.g., on the number of
stages into which the sampling process is divided, or, in unfavorable cases, on
the outcome E(a, 6) itself. I do not intend to go into the details of all this.
I only want to remark that one must explicitly know, of course, the cost function
(if samples are drawn) in order to be able to solve the decision problem. And
before it is known a series of predecisions will have to be made. I, finally,
the cost function is known, another difficulty arises from the fact that some of
its arguments are random elements which makes it necessary to determine the ex-
pectation Ex (C) . Its determination requires a rather intimate knowledge of

the cost structure in question as well as of the stochastic behavior of the varia-
bles which determine C . Whether this knowledge should be gathered or not will
also be a difficult decision to make. Only the fact that predecisions about the
risk function can frequently be made according to measures which are (to a certain
extent) objective, is somewhat comforting.

The space D of decision functions requires no predecision comparable to

those about the other determinants. Tt is uniquely given by A and T and

confiined, by r , to the so-called complete class of admissible decision functions.

d) Predecision about K

The predecision as to which X should be selected from the class of
decision criteria in a given problem depends essentially on the appraisal of the/
opponent. To some extent this is even an absolute criterion of selecting K . On
the basis of this criterion, the establishment of a type of "quality ranking" of
the opponent might be an objective method of making a predecision sbout K

The pessimism inherent in Wald's minimax criterion is appropriate whenever

incorrect decisions involve heavy losses in the struggle with a dangerous
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opponent, and also whenever statistical decisions are made and an unfavorable
distribution A must be reckoned with. On the other hand, an optimistic
criterion can be tolerated if the opponent is harmless and/or if it is possi-
ble to acquire information about his behavior.

If one has exact knowledge of the distribution A s 1t will be most
reasonable to apply Bayes'! decigion criterion, i.e., to select as optimal

decision function e*¥ that one for which

r¥(e¥ ,A\) = npin r¥*(e,N)
eeD

In case Bayes!' decision criterion is not applicable, either because A is
unknown or because its application seems inopportune for other reasons, e.g.,
because heavy losses must be expected in the case of incorrect decisions or
because the conditions of the decision problem must be considered as unstable

(a problem which I shall be satisfied to merely call attention to at this point),
then the application of the adaptation criterion is recommendable (see [7], [8]
and [10]). This criterion allows one to give explicit consideration to the given
degree of uncertainty and instability, and to the decision maker!s various possi-
bilities of modifying nature. Tt 1s also suited to serve as g "quality ranking"
for the appraisal of the opponent. Its extremes are Bayes' solution on the one
hand and Wald's minimax solution on the other hand. In practice, it will always
result in certain mixtures of Bayes' and Wald's solutions.

Of course, the application of the criteria proposed by Chernoff, Savage,
Hurwicz and Hodges-Lehmann may also be considered. The Hodges-Lehmann criterion
1s a special case of the adaptation criterion. T consider, however, the appli=-
cation of the three "subjective" criteria proposed by Chernoff, Savage and

Hurwicz as less recommendable. But this is perhaps a matter of personal taste.
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Anyway, there can be no doubt that the selection of the decision criterion, too,

requires a predecision in the sense of the accomodation principle.

Summary'kﬂdmeenciuding%gemarksg

I.

IT.

ITT.

This paper departs from the question as to which phase of the solution of g

decision problem the "tautological point" will be arrived at, after which

the solution of the decision problem on hand becomes a matter using an
algorithm.

In order to answer this question, the first step is to formalize the general
decision model in a way which makes its constituent stand out as clearly as

possible. The constituent of g decision problem is designated as the vector

{ given by:

C = ([A)A]: [‘Q)A*]J [TJT ]; I';K):'
A = the set of actionss a ,
A = the set of all probability measures & over (A,Zl),
. = the set of states of nature 8 5

A* = a subset of the set A of all probability distributions defined over Q,

T = sample space,

T = sample,

r = risk function,

K = decision criterion.

The constituent is discussed, and is shown to provide a complete characteriza-

tion of the decision problem.
Next the space I of the constituent is introduced and the principle of
accomodation is formulated, according to which { and I are to be selected

in such a way that the discrepancy between the decision model and the decision
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problem to be solved is as small a8 possible. This principle is accomplished

through a predecision rule.

Obvious algorthmic ways of solving this problem turn out to be infeasible.
Other ways of fixing the constituent are discussed subsequently.
Numerous predecisions (of a more or less arbitrary type and according to more
or less objective and formal criteria) must be made, for example:

a) Concerning [A,A] and [Q,A%]:

Which are the possible and which are the "essential" actions? What are the
"true" aims of the decision maker? Which are the "relevant" states of nature?
- A relatively simple and expedient method of making predecisions is pointed

out. (Predecisions about A ang A* , respectively are not discussed).
b) Concerning [T,7]:

Is a sample to be drawn? Which variable(s) is (are) characteristic of the
states of nature? Which sample function is most favorable? Bte. - A con-
venient method of fixing A and A% » respectively with the aid of T , 1is

indicated.
c) Concerning r

What amount of time and money should be spent on gathering information about
the outcome function? How should one proceed if no preference ordering at
all is given among the outcomes? How exact and how detailed should the in-
formation about the cost function be? How, if necessary, should this infor-

mation be obtained? FEte.
d) Concerning K :

Which decision criterion is +o be applied: Bayes® criterion; Wald's minimax

criterion, or one of its variants; or the adaptation criterion? (The author
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considers the latter to be the most objective criterion).

This paper tries to show the "true", the genuine;y decision problem is
hardly to find a final decision. Machines can find this final decision once
the constituent of the problem on hand has beenlfixed. To fix the constituent
is the "true" decision problem! This requires a number of decisions (which
we have cglled predecisions), some of which are very complicated, and which
can at best be handled by machines only partially. The true effort of deci-
sion making is brior to the decision problem as commonly defined and conceived

of . It is the predecisions which assemble the determinants of the Pproblem

on hand.
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