MAXIMIZATION BY QUADRATiC HILL-CLIMBING

1
i

by %
Stephen M. Goldfeld, Richard E. Quandt Hale F. Trotter
‘ $ 5 %?ffégh&
/ﬁ?x”ewﬁ1§§

Econometric Researéh Program
Research Memorandum No. 72
January 19, 1965

The research described in this paper was
supported by National Science Foundation
Grants NSF-GS 551 and NSF G 24462. The
computer facilities used are supported by
National Science Foundation Grant NSF-GP
>79.

Princeton University
Econometric Research Program
92-A Nassau Street
Princeton, N. J.



ABSTRACT

The purpose of this paper is to describe a new
gradient method for maximizing general functions. After
a brief discussion of various known gradient methods the
mathematical foundation is laid for the new algorithm
which rests on maximizing a quadratic approximation to
the function on a suitably chosen spherical region. The
method requires no assumptions about the concavity of the
function to be maximized and automatically modifies the
step size in the light of the success of the quadratic
approximation to the function. The paper further discusses
some practical problems of implementing the algorithm and

presents recent computational experience with it.



MAXTIMIZATION BY QUADRATIC HILL-CLIMBING

1. Introduction

A variety of problems, when formulated mathematically, reduce to
maximizing or minimizing functions of several variables. An important
problem of this variety in econometrics is the computation of full-
information maximum-likelihood estimates of the coefficients of a
simultaneous-equations system which requires one to maximize the appropriate
likelihood function (or more typically its logarithm).

All general computational techniques for maximizationl take the
form of an iterative procedure; given a point in n-dimensional space
corresponding to a set of values for the independent variables, a new
point at which the function is larger is computed. Repetition of this
process leads to a sequence of points which, if the method is successful,
converges more or less rapidly to the location of a maximum. Conver-
gence proofs for these procedures generally require the assumption that
the function to be maximized is strictly concave, at least in a region
containing the sequence of computed points. Except in certain degener-

ate cases a function will be concave throughout some neighborhood of a

1. Since, given a function H(x), max H(x) = min(-H(x)), all our

remarks apply, mutatis mutandis, to minimization as well.
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maximum and convergence can be guaranteed provided the initial value is
sufficiently close to the maximum.

In the absence of a priori knowledge of the behavior of the
function, however, there is no way to ensure that the starting point
will satisfy any such condition. The method proposed in this paper is
specifically designed to work for functions which are not everywhere
concave and for starting points which are not necessarily near a maxi-
mum.

Section 2 briefly discusses various gradient methods and Section
5 presents the mathematical background for our method. Section U4 dis-
cusses some more practical and computational aspects of the method while
in Section 5 we present several examples of its performance. The Appen-

dix summarizes some relevant standard results of matrix theory.

2. Alternstive Gradient Methods

We consider a function H(xl,...,xn), denoted briefly by H(x),
of n variables which we wish to maximize. TLet us denote by x the
column vector of variables (Xl’°'°’xn)’ by F_ the vector of first
partial derivatives evaluated at x and by S, the symmetric (n x n)
matrix of second partial derivatives evaluated at x . There are many
methods for maximizing H(x). Usually one chooses a starting point

x° = (xi,.a,,xg) and iterates according to

P Py yPpP (2-1)

where K is a positive constant and DP is an n - dimensional direc-

tion vector. In some methods the vectors DY are chosen in some cyclic

2. See [8].
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pattern.5 In the so-called gradient methods the choice of DY is given
by
p? - gly . (2-2)
X
where B 1is a positive definite weighting matrix and F is the

b'e
gradient F evaluated at xp.

The Method of Steepest Ascent. A simple choice of B, suggested

by Cauchy, is given by B = I where I is the identity matrix. With
this choice of B the procedure is known as the method of steepest
ascent. The rationale behind this choice of B and hence of DY rests
on the reéult that the gradient points in the direction of the maximum
increase of the best local linear approximation to H(x).

Assume that H(x) admits of a second-order Taylor series expan-

sion around a point a = (al,ae,...,an):

H(x) ~ i(a) + (x - a)'F_+ %(x - a)'s_(x - a) (2-3)

where the subscripts indicate the point of evaluation. Corresponding to
(2-3) we have a first-order expansion for the first partials obtained

by differentiating (2-3) with respect to x
= X - . -
B F + 8 ( a) (2-4)

The method of steepest ascent implies

3. In the simplest of these the vectors p® are taken successively
barallel to the coordinate axes, i.e., the variables are changed one
at a time. See [9]. More sophisticated and efficient methods of

this type are described in [6] and [T7].
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Xp+l _ XP + hpF D (2_5)
X

and if we substitute (2-5) into (2-3), replacing a by x° we obtain
2(x"™) - 5(<®) = bPF'F + %(hp)E(F'SF) (2-6)

where the subscripts have been omitted from F and S. One possible
approach is to choose h® 50 as to maximize (2-6). This, in fact, is
a special case of what is known as the "optimum" gradient method.4

Treating (2-6) as a function of hP, say G(n®) we have

€ - 5y 4+ nP(FisF) = 0
an®
or nP = (rrer)ter |

In order that this value of h® yield a maximum we further require

dEG

——— = F'SF < 0
a(n®)

which is necessarily so if S 1is negative definite. If P is not
sufficiently close to the maximum to assure that SXp .is negative defi-
nite this procedure may fail. In practice the "optimum" gradient choice
of 1P has not worked well and alternatives have been used. ITf these
alternatives do not involve S, the method of steepest ascent is compu-

tationally simple, but in general it involves other difficulties. In

particular, (i) the sequence of points may converge to a saddle-point

h. This maximizes, one step at a time, the increase in the Ffunction
given by the .quadratic approximation as we: move .along the gradient.
Other possibilities include maximization. of the increase over the

next. r  iterations. . See [8].
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rather than a true maximum and (ii) if the maximum lies on a narrow
ridge, there is a tendency for successive steps to oscillate back and

forth across the ridge, so that convergence to the maximum is very slow.

Newton's Method. The difficulties associated with steepest
ascent methods lead to thé second and most common version of the gradi-

ent method, known as Newton's method, which is obtained by maximizing

b

(2-3) with respect to x. Setting x* = a and (2-4) equal to zero we

obtain the iterative scheme

P+l is) -1
x =x" -8 _F, . (2-7)
xP %P 7
In other words this is a gradient method with hP =1 and B = -s“ll) .
X
This may be regarded as a steepest ascent method with a different
metric.5

If (2-3) is exact, i.e., if H is actually a quadratic poly-
nomial, Newton's method yields the maximum in one step. If H is not
quadratic but one has an approximation to the maximum which is suffi-

ciently close to it, then (2-3) may be expected to be a very good approx-

imation, and convergence is rapid.

5. Distance from x to y in the Euclidean matrix is [(x-—y)'(x—y)]l/2
and 1f B is a positive definite symmetric matrix we can define a new
distance measure by [(x -y)' B(x -y)]l/g. The locus of points a distance
k from x° in the new metric is given by the hypersphere (x-x")'B(x-x")=

k2 with center x°. This, of course, is an ellipsoid in the Euclidean

metric and the direction of steepest ascent can be defined as the di-

rection from x° to the point on the ellipsoid where H is the greatest.

-1
In [2] it is shown that as k —> O this direction approaches B F’O.
X

6. see [2].



6=

In general, however, it may happen that (2-7) calls for taking a
step so large that the quadratic approximation based on SXp and FXP,
i.e., on the behavior of the function at xp, has no validity at xp+l.
In addition, SXp may not be negative definite, in which case the quad-
ratic approximation does not have a maximum. In either case the use of
(2-7) is clearly inappropriate. While this has been observed before and
attempts have been made to solve the problem of the non-negative-
definiteness of S, no solution with a completely satisfactory rationale
seems to have been proposed.7'

We propose a new method which uses the same quadratic approxima-
tion, but includes a parameter which limits the size of the step taken.
This parameter is altered according to the apparent accuracy of the

Quadratic approximation so that the step size is increased in regions

where the approximation is good and cut down in regions where it is bad.

5. Restricted Maximization of a Quadratic Function

In this section we consider a quadratic function Q(x). The

matrix S 1s then constant and the expansions (2-3) and (2-4) are exact.

T. Chernoff and Divinsky [1] suggest a construction which yields a
positive definite matrix for B and then suggest switching back to
s~ at some point. The decision when to switch is, however, arbi-
trary. Eisenpress [4] has also suggested a procedure for obtaining
a positive definite B but offers little theoretical justification
for it. Finally, Davidon [3] has suggested a procedure for modify-

ing B at each iteration but assumes an arbitrary B +o be given

for the first iteration.
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If S 1is non-singular it follows from (2-4) that
¢c=a-8tF (3-1)
a
is the unique point where FX = 0. If 8§ 1is negative definite, Q has
a unique global maximum at c¢; otherwise if S is non-singular Q is
not bounded above. (If § is singular @ may have a whole linear sub-
space of maxima.)

Definition. ” x" denotes the length of the vector x which is defined

to be (x'x)l/z. Thus a?x - y| is the distance between x and 7.

&

Lemma, 1. Let «a be any number such that S - @I is negative definite,

and define

=2
il

o - (S - ax)‘lFa : (3-2)

ad
|

a—' II ba_a" . (5"3)
Then Q(ba) 2 Q(x) for all x such that [x - af = r, -

Proof'. Consider the quadratic function

R(x)

Qa) + (x-a)'F, + %(x - a) (s - ar)(x - a)

Il

Qa) + (x-—a)'Fa + %(x— a)'s(x-a) - %QKX -a)' (x-a)

2
Qx) - zafx-a]°.

Since S - I is negative definite, (3-1) with S replaced by S - oI

applies to show that R(x) has a global maximum at ba . Thus for all x

1l

R(b )

1 2
a(b,) - 5@ ”ba - af o

> R(x) = a(x) - zallx - al



and if “x - a" =T, = "b

as asserted.

Lemma 2. If F, # 0 then the r, defined by (3-2) and (3-3) is a

strictly decreasing function of « on the interval (kl,M) where

Kl 1s the maximum eigenvalue of 8 .8
Proof. From (3-2) and (3-3%) we have
v, = (s - or)™E | (3-5)
(0 a
and application of (A-4) in the Appendix with S replaced by (S - aI)—l
yields
2 T 2 -2
ry = ci(ki - ) (3-6)
i=1 ,
where ¢ys---,c  ~are certain constants and kl 2 A 2 e, 2 A~ are

the eigenvalues of S; this is a consequence of the easily verified

fact that (S - OéI)_l has the same eigenvectors as S and has eigen-

values (hi - a)_l. For a> X, so that A <a for all i, each

-2

of the coefficients (li - Q) in (3-6) is a decreasing function of «

and the stated conclusion follows.

8. Note that as stated in the last paragraph of the appendix, S - ol is
negative definite precisely when @ 1is in the interval (kl,m). It
is easy to see that ﬁx—> 0 as a—=>w . 1In general, r, —=> o as

a — Al’ but T tends to a finite limit if Fa has component O

in the space of eigenvectors corresponding to kl .



_9_

Theorem. Let «, ba and ry, be as in Lemma 1, let

Qa be the region consisting of all x such that

[x-a] < and suppose F_ # 0. Then the maximum

Ty s
value of Q(x) on B, 1is attained at b, if o Z 0,

and is attained at b if a < 0. (In this case b, 1is

interior to the region Ba.)

Proof. If S5 is not negative definite then (see Appendix) A and
hence « are non-negative. Q can have no local maximum, and hence

the maximum on a region such as 31 must occur on the boundary for

some x with ”x - a” = Ty - By Lemma 1 the maximum is attained at

b .
0

If S 1is negative definite then @ has an absolute maximum at
b . Since M <0 (see remark following (A-6) in the Appendix) both O
and @ are in the interval Qyw)zmdbylmmaE,”bo-aﬂjlba—a”
if and only if @ < 0. Thus if a < o, bo is in the interior of Eb
and the maximum of Q on Ba occurs at bo . On the other hand, if
o 2 o, bo is not in the interior of Ba and there 1s no local maxi-

mum of @ in the interior. Hence just as in the case when S 1is not

negative definite the maximum on Ba must occur at ba.

If Fa = 0 the theorem does not apply (note that ba = a and

RJ = 0 for all values of @ in this case). The relevant statement is

Lemma 3. If Fa = 0 then the maximum value of Q on the region
Br consisting of all x with |[x - a” S r occurs at
a i.rul if kl (the maximum eigenvalue of S) is positive,
and at a otherwise. (Here Uy is a unit eigenvector

associated with kl.)
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Proof. Since in this case Q reduces to
i )
a(x) = Qa)+5(x - a)'s(x - a)

the result follows almost immediately from (A-3).

It should be noted that if a metric || is defined by [lx, l|=

I,
(X'Ax)l/2 for a fixed positive definite matrix A, then all results of

this section hold 1if ” ]l is replaced by ” and S - ol 1is re-

I,
placed by S - @A throughout. The regions Ba determined by such a

metric would be ellipsoidal rather than spherical. We have made no

attempt to exploit this generalization.

L. TImplementation of the Algorithm

The iterative procedure we propose for finding the maximum of a

general function is, given point xP at which S and F are eval-

<P P

uated, to define the next point, xp+l, as the maximum of the quadratic
approximation (2-3) on a spherical region centered at bxp. Ideally, the
region should be taken as large as possible provided that it is small
enough that in the region the quadratic approximation is a satisfactory

guide to the actual behavior of the function. The following procedure

attempts to approximate this ideal.

Two distinct cases arise:

(a) F p Significantly different from O .
b’

In this event we choose a number
@ = A+ R FXP" (4-1)

where X is, as before, the largest eigenvalue of S and R 1is a

s
1 XP
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positive parameter determined by a rule to be described. We now take

L P (s - an) 7ty
P <P
' (h-2)
+1 P -1
or L= P S F
2P

according to whether « is positive or not. By the theorem of the pre-

vious section, xp+l is the maximum of the quadratic approximation to
the function on a region B, of radius (s b - aI)-lF'pH with center
X X

at xP,
Lemms 2 shows that the larger the value of « , and hence the
larger the value of R, the smaller the size of the region Ba. If

A ...,Kn are the eigenvalues of S

1’ then the eigenvalues of

Xp ’

-1 )
(sXp - aI) are ;= -1/, + HFXP Ir - »),i=1,2, ...,n. The
one with largest absolute value is M, with lull = (||F pl]R)—l.
x

Hence the radius of Ba

s, - o) F Il S (T pll0)™ 7 Ll - 57

by (A-B). Equality holds only in exceptional cases, and it is possible

ror (s, - az)'lFXp I

able to expect that the two quantities will in general be of the same

to be much smaller than R * , but it is reason-

order of magnitude.

In actual practice an initial value of R which appears reasonable
is giveh to the algorithm and then R 1is automatically modified at each
iteration; so that the step size tends to increase when the quadratic

approximation appears to be satisfactory and tends to decrease when it
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9

appears poor. Given the value of O one computes a new iteration and
accepts the step if the actual change in the function is positive. 1In
the event the function deteriorates one can increase R so as to take

& smaller step and repeat thus until an improvement is obtained.lo

(b) Fxp

preset tolerance of O. Then, if S D is negative definite, the process
X

is so near O that the length of the step taken is within a

is terminated and x¥ is accepted as the location of the maximum. If

S D is not negative definite, we are at a saddle point or at the bottom
X

9. More explicitly, we modify R as follows. Let AH be the actual
change in the function due to the proposed Ax and let AQ be the
corresponding change in the quadratic approximation. Let z = AH/AQ.
If z 20, the proposed Ax implies overshooting; it is therefore
not accepted, R is increésed by a factor of 4 and a new (S - aI)_l

1s calculated. If z > 0 and close to unity (in practice, if =z is

between .7 and 1.3) R is decreased by multiplying R by a factor

of L. If z>2,

=

is again increased by a factor of 4. TFor
other values of z (0 <z £ .7 and 1.3 <z <2) the magnitude of
the factor multiplying R 1is determined by linear interpolation
between .4 and 4.0. The form of the above rule was chosen as the
simplest such rule with the correct qualitative behavior; the numeri-
cal values incorporated in the rule are those which seemed to be

most successful in several experimental runs.

10. If @ =0 at this point, we generally directly computed the step
size necessary to produce a positive « . This typically saved a

number of iterations.
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of a cylindrical valley in which case Lemma 3 is applied. A step is
taken along the eigenvector corresponding to kl and the algorithm re-
cycles in the usual manner.

One final feature, incorporated for reasons of computational
efficiency rather than theoretical elegance, was the introduction of a
scalar hP info (b-1), writing it as

Xp+l = xP - hp(S p - QI)_lF'p.
X bie

At each step the computation is first performed with S If this
gives an improvement in H(x),, nP is multiplied by a constantll and
the function is examined at the new point so obtained. This process is
repeated until the function declines in which event the last step is
accepted. It should be noted that these attempts at stretching the step
are relatively cheap since they require only an evaluation of the func-
tion. This is in contrast to changes in « within each iteration which

require reinversion of (S -al) .

<P

5. Some Computational Experience

Computational experience with the present algorithm is limited.
The method appears to be reasonably successful in that on most examples
it converges in a fairly small number of steps. It is clearly a rela-

tively expensive method since each step involves calculating first and

11. The magnitude of the constant is a decreasing function of the abso-
lute value of the angle between the current step and the immediately

preceding step. Crockett and Chernoff, [2], suggest why even for

the standard Newton method one might want n? different from unity.
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second derivatives, inverting a matrix, and finding its eigenvalues. An
often suggested procedure for reducing computational effort is to modify
S only after a number of iterations have occurred, in the belief that
the consequent increase in the number of iterations will be offset by
the reduced time per iteration. This may well be the case but we have
not yet incorporated this feature in our computer programs. More gener-
ally, while we have tried to make the program efficient (in terms of
total elapsed computer time) we have obviously not exploited all pos-
sible time-saving devices. Direct comparisons of the efficiency of
various methods are very difficult, since the notion of an iteration may
not be well-defined and variations in computer capabilities may render
time comparisons meaningless.

In the remainder of this section we present computational experi-
ence based upon a limited number of functions, some of which have been
reported in the literature to be appropriate test functions since they
often cause difficulties.

The first of these is Rosenbrock’s function given by’l2
z = 100(y - x2)2 + (1 - x)2 .

This function has a minimum at (l,l) and 1s noted for resembling a
U-shaped valley with very steep walls. The course of iterations from
the starting point (-1.2, 1.0) suggested by Fletcher and Reeves is

shown in Table 1.

12. See [6].
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TABLE 1. Convergence for Rosenbrock’s Function
Iteration b4 N zZ

1 -1.2000 1.0000 24,2000

2 -1.1071 1.1850 4.6048

3 - .8762 L7143 3.80L43

L - .5820 L2964 2.6819

5 - .2867 .0275 1.9552

6 2797 - .0095 1.2891

7 .3185 .0999 .L6L6e

8 JLe72 .1682 3484

9 L6342 .38%2 L1702
10 . 7005 .ho87 .0961
11 .8373 .6806 .0684
12 8402 .7051 .0256
13 .9539 .8969 .0192
1h .9k90 .9008 .0026
15 .9920 .9818 .0006 1
16 .9934 .9868 .000k x 10~
17 1.0000 .9999 .0001 x 1072
18 1.0000 1.0000 .0001 x 10-9

A second function used for test purposes was

2

Z

2
e* (2x2 + 5y2)

which has maxima at (1,0) and (-1,0), saddlepoints at (0,1) and (0,-1)

and a minimum at (0,0).

This function was maximized and the course of

iterations from the two starting points (5,5) and (O,4) are shown in

Tables 2 and 3.

2
TABIE 2. The Function z = e & Y (EXE + Bye)
Iteration X v Z
1 5.0000 5.0000 2.0000 x 10720
2 2.183%3 2.1599 .0019
3 - .53%95 - 6726 .85k
L -1.0891 - .5290 .9506
5 - .9533 - 1924 1.0876
6 -1.0209 .0h21 1.1020
7 -1.0002 .0030 1.103%6
8 -1.0000 .0000 1.103%6
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TABLE 3. The Function z = e'XE‘YE(EX2 + 5y2)
Iteration X y Z
1 0. 4.0000 .0000
2 0. 2.0000 L1465
3 0. 1.0000 .7%58
Y - .5000 1.0000 L7879
5 -1.0145 .5837 .980k4
6 -1.0204 .0512 1.1017
7 -1.000k4 .0037 1.1036
8 -1.0000 . 0000 1.10%6

It may be noted that in the second of these examples the algorithm
takes us first straight to the saddlepoint (at iteration 3) from which
we move counterclockwise, substantially aloﬁg the rim of the crater.

As a final example we consider the function ¢ =
2 2
_Zx.
=1 © 2 2

e i=1 (B-Oxi + g,ox2 + 5.5x§ + M.Oxu + 2.7X§). The course of conver-

gence from the point (3.0,3.0,3.0,3.0,3.0) to (0,0,0,-1.0,0) is shown

in Table k.
5
- xi

TABLE 4. The Function z = e 1=+ (B.Ox§+-2.0X§k+5.5x§~+huOXi-+2.7x§)
Iteration Xl X5 x5 x), X5 4

1 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 ,5916.x10_17

2 1.2106 | 1.1971 | 1.2174% | 1.2241 | 1.2065 .0146

3 - 5297 |- .6198 |- .4836 |- .4367 I- 557k .9940

L - 4789 |- .h7ok |- 4801 |- 4786 |- 771 | 1.1116

5 23131 |- .0899 |- .5219 |- .8977 |- .2273 | 1.34k2

6 - .0lk2 L0197 |- .18k47 | -1.0368 L0143 | 1.4572

7 .0019 |- .006k |- .0208 |- .9847 {- .0031 | 1.4707

8 - .0002 .0002 .0059 {-1.0002 .0002 | 1.h4715

9 - .0000 |- .0000 .0000 {=1.0000 .0000 | 1.4715

Several other functions, including a function of ten variables,

have been used for test purposes. With the exception of a four variable
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function reported in [7] for which the matrix of second partial deriva-
tives has rank equal to 2 at the minimum point, computational experience

has been substantially similar to the above casges.

APPENDIX

This appendix contains a summary of various standard results of
matrix theory in a form adapted to the requirements of this paper.

The principal fact used is that for any real symmetric n x n
matrix S <there exist n constants Xl > kg P Kn called the

eigenvalues of S and n mutually orthogonal unit column vectors

ul,...,un called the (normalized) eigenvectors of S such that

Su; = Mu, i=1,2,...,n . (A-1)
n
Any n x 1 vector x may be written in the form x = X cguy for a
i=1
unique set of scalars cl,...,cn and then the quadratic function x'Sx
satisfies
2.2
x'Sx = I \,cS (A-2)
i7i
1
For the squared norm of x one has
' n
b=l = xx = 2]
1
o2
so that x 1s a unit vector if and only if X c, = 1. TUnder this
1
n
restriction the maximum value of X kici is kl" achieved when
1
c, = * 1 and all the other ¢; = 0. Hence
max  x'Sx = A (A-3)

= =1
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and is achieved for x = % Uy -

The squared norm of Sx is given by

5 n
x| = x'6x = £ 122 (A-4)
; 11
. 2 . . 2 2

since S  has the same eigenvectors as S and eigenvalues Xl,...,kn.

Thus the maximum value of HSX”2 for x a unit vector is max K? . We
then have, for all x,

Isxfl & x|l max | | (a-5)

Equality is attained if x 1is a multiple of the eigenvector correspond-
ing to the eigenvalue of S of greatest absolute value.

S 1is said to be negative definite if

x'Sx < 0 for all x £ 0O . (A-6)

In view of (A-2) this is equivalent to having X\, < O (and hence all

1

Xi < 0). Since the eigenvalues of S - oI are Ki -, S -a is

negative definite if and only if N, - <0, i.e., a> kl.

1



(2]

[3]

(5]

[6]

-19-

BIBLIOGRAPHY

Chernoff, H. and N. Divinsky, "The Computation of Maximum-ILikeli-
hood Estimates of Linear Structural Equations,"” in Studies in
Econometric Method, ed. W. C. Hood and T. C. Koopmaﬁgj_ﬁgﬁn——
York, 1953, pp. 236-302.

Crockett, Jean B. and Herman Chernoff, "Gradient Methods of Maximi-
zation," Pacific Jour. of Math., Vol. 5 (1955), pp. 33-59.

Davidon, W. C., "Variable Metric Method for Minimization," Argonne
National Lab., Report No. ANL-5990 Revised. (TID-4500, 14th
ed.)

Eisenpress, Harry, "Experiments in Convergence in Full-Information
Estimation,”" mimeographed.

Eisenpress, Harry, "Note on the Computation of Full-Information
Maximum-Likehood Estimates of Coefficients of a Simultaneous
System," Econometrica, Vol. 30, No. 2 (April 1962), pp. 343-
349,

Fletcher, R. and C. M. Reeves, "Function Minimization by Conjugate
Gradients," The Computer Journal, Vol. 7, No. 2 (July 1964),
pp. 149-153.

Powell, M. J. D., "An Efficient Method for Finding the Minimum of
a Function of Several Variables without Calculating Deriva-
tives," The Computer Journal, Vol. 7, No. 2 (July 1964), pp.
155-162.

Saaty, Thomas L. and Joseph Bram, Nonlinear Mathematics, McGraw-
Hill, New York, 196k.

Spang, H. A., III, "A Review of Minimization Techniques for Non-
Linear Functions,'" SIAM Review, Vol. 4, No. 4 (October 1962),
pp. 343-365.



