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A SPECTRAL ANALYSIS OF THE
LONG~-SWING HYPOTHESIS

E. Philip Howrey
ABSTRACT

This paper is concerned with the existence of long swings in the rate
of growth of output and related macro-economic variables. The usual method which
is used to isolate long swings in economic time series is first to low-pass
filter the series in order to attenuate the short-run fluctuations and then to
analyze the filtered series. It is shown that inferences about the period of
fluctuation of the original series based on estimates obtained from a filtered
series may be misleading unless the effect of the filter is considered. Speci-
fically, a major cycle with a periodicity of between eight and eleven years in
the original series may appear as a long swing with a periodicity of between
fifteen and twenty-five years in the filtered series. This suggests that the
results of several earlier studies of the long-swing hypothesis must be inter-
preted with extreme cautian.

The empirical results of this paper are presented in the form of
estimates of the spectral density functions of the relative rate of growth of
a number of macro-economic variables. These estimates indicate that the rela-
tive peaks which do emerge in the long-swing frequency band are in most cases
extremely weak; in no case are they statistically significant. On the other
hand, the major and minor business cycles stand out clearly in these estimates.
These estimates, together with the observation that the usual filtering methods
can "shift" a major-cycle peak in the spectrum into a long-swing peak, tend to
cast considerable doubt on the existence of long swings in the rate of growth

as fluctuations which are distinct from the major cycle.
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A SPECTRAL ANATYSIS OF THE
LONG-~SWING HYPOTHESIS

E. Philip Howrey*
I. TINTRODUCTION

The long-term economic growth of the American economy over the past
century has frequently been characterized as expansion at a relatively constant
rate. It is widely accepted that for some purposes this is a useful abstraction
from the rather wide fluctuations observed in the annual growth rate. In more
detailed studies of the growth of the American economy, a certain amount of
interest has centered on the problem of isolating regular fluctuations in the
rate of expansion about the long-term average value. Although some of the
variation in the rate of growth is thought to be accounted for by the ordinary
business cycle, several studies have suggested that the rate of growth acceler-
ates and decelerates in a fairly regular pattern of some twenty years duration.
These long swings are thought to be distinct from and independent of the shorter
business cycle.

This paper applies the technigue of spectral aﬁalysis to the problem
of determining the statistical significance of long swings in the rate of growth
of output and other related macro-economic variables. Since the spectral ana-
lytic technique differs from some of the more traditional methods of characteriz-

ing a time series, a brief discussion of altermative methods of time-series

* The author wishes to thank the members of the Econometric Research Program

at Princeton University, especially M. D. Godfrey, S. M. Goldfeld and O. Morgen-
stern for their helpful comments on an earlier version of this paper. The
author accepts sole responsibility for any remaining errors.



analysis is presented in Section IT. The possibility that filters designed
to eliminate short-run fluctuations may impart a systematic fluctuation to
the filtered series is also investigated in this section. The empirical
results of the study are presented in Section III and the main conclusions

are summarized in the final section.



IT. TIME-SERIES ANALYSIS AND FILTERING OPERATIONS

The long-swing hypothesis is concerned with the existence of
fluctuations of duration ranging between fifteen and twenty-five years.l The
hypothesis has been formulated alternatively in terms of the level, rate of
growth, and deviation from trend of various economic variables. The usual
method which is used to isolate long swings in a series is first to low-pass
filter the series in order to attenuate the short-run fluctuations and then
to mark off the peaks and troughs in the filtered series. This chronology
of peaks and troughs, together with an estimate of the amplitude of the
swings, is used to determine whether the original series contains a long-
swing component. Apart from the subjectivity which is often involved in
determining the peaks and troughs of the series, there are two points which
should be considered in connection with this approach to the analysis of a
time series. First, the determination of the "period" of a time series by
counting peaks and troughs is but one of several alternative technigques which
may be used for this purpose. Second, and more important, the inference of
a period in the original series from estimates obtained from the filtered
series may be misleading. These two points are developed in some detail in

this section.

L Although Kuznets [16, p. 423] suggests an average periodicity of twenty
years for the long swing, there is less than universal agreement on the
duration of these fluctuations. Abramovitz [3, p. 419], on the basis of his
study of U.S. data, suggests an average duration of fourteen years for the
long swing. For a discussion of some of the difficulties involved in an
attempt to specify the duration of the long swing, see Hatanaka and Howrey [12].



The approach of this section. is as follows. First, the assumptions
and notation used throughout the paper are set out. Then four different
measures of periodicity are introduced and illustrated with reference to a
second-order autoregressive scheme. Finally, the effect of a frequently used
low-pass filter on the periodicity of a series is considered. The maJjor con-
clusion which emerges is that, in general, it is not valid to infer that the
period of a fluctuation which is isolated in a filtered series is identical

to the period of a fluctuation in the original (unfiltered) series.

Assumptions and Notation

Throughout this section it is assumed that the series being analyzed
is a realization {xt; t =1, 2, ..., n} of a stationary stochastic process.
The stationarity condition requires that the mean, variance, and covariance of
the series be independent of time, i.e.,

Elx,] = p (independent of t)
(2.1) E

E[(XJG - u)(xt+s - )] = ¥(s) (s = 0, 1, ...; independent of t).
In addition, it is assumed that the realization of the process is normally
distributed. This facilitates the computation of the expected value of the
"period" of the series.

The empirical results of this paper are presented in the form of
estimates of the power spectrum. The power spectrum of a real-valued station-

ary stochastic process {xt} ig°

A good introduction to spectral analysis is given in Granger and Hatanaka
[11] and Jenkins [13].



(2.2) flw) = %ﬁf ;ﬁ 7(s) cos ws (-7 <o< )

S==00

where & denotes angular frequency measured in radians per unit of time. The
more familiar concept of periodicity (P) is easily translated into frequency
by noting that w = QK/P, so that low (high) frequencies correspond to long
(short) cycles. The power spectrum provides a decomposition of the variance
of the process since
i

(2.3) 7(0) = var x = ‘jf Tw) do -
, -x
This follows because the power spectrum and the autocovariance function form
a Fourier-transform pair. The definition of the power spectrum given in (2.2)
is used to derive what is referred to below as the "spectrum period" of the
process.

An example of a simple generating process which is used for illus-

trative purposes in this section is the second-order autoregressive process

2
(2.1) X o+ ex o+ b X o = & (2 - b <0, b <1)

where {et} is a sequence of normal random variables with mean zero and
2
variance O, - The inequalities guarantee that the characteristic roots of

the difference equation are complex and less than unity in absolute value.

The complete solution of (2.4) is given by5

(2.5) X, = Dt(A cos @t + B sin 6t) +

J:

€5 St-gr1

o]

0

5 This is discussed fully in Kendall [14].



where D = ~b
6 = cos_l(- a/2D)
£, = S DY sin jo

J Nhb - a?

and A and B are constants determined by the initial conditions. The period
of the solution of the homogeneous part of (2.4), 2n/8, is referred to below
as the autoregressive period of the scheme. Since b < 1, the first term in

the solution approaches zero as 1t increases so that asymptotically
[ve]
—
2.5 = v
(2.51) = Z €5 Coogn
J=0

It is the pericdicity of the sequence {xt} as determined by this last ex-

pression which is considered for illustrative purposes.

Measures of Periodicity

Consider now the problem of determining the period of an observed
time series {xt]. At least four ways of measuring the period of a series are
avalilable. These include

(1) the mean-distance between peaks (troughs),

(2) +the mean-distance between upcrosses (downcrosses),

(5) the correlogram period, and

(k) the spectrum period.
In general, the expected values of (1) - (4) differ from each other. Hence,
one's findings may depend critically on the way in which periodicity is measured.
Since the empirical results of this study are presented in the form of estimates

of the spectrum, it is of interest to compare the spectrum with the other three,



more traditional, methods of characterizing a time series.

(1)  Mean-distance between peaks. The expected mean-distance between

. . . . < _
peaks, where a peak is said to occur at time t if xt—l < Xt > Xt+l, can be de

termined in the following way. Let p denote the probability that Xy is a rela~

tive maximum (peak), i.e.,

p = Pr{kk <0, kt+l > 0}
where

Moo= K g X

A - ;

t+1 7 T

Then in a series of N observations, one would expect to find Np = n peaks.

The mean-distance between peaks is thus N/n = l/p, i.e., the inverse of the

-1
probability that X, is a peak. For a normal series p :'EQSE"—I where T is

the correlation between N, and A In terms of the autocorrelation coef-

t t+1°

ficients of the original series, the mean-distance between peaks is given by

_ -1 (-1 +20(1) - p(2)
(2.6) Pl = 21':/cos [: 21 - o (1))
where p(s) = y(s)/7(0) is the correlation between x, and x, . For the auto-

t t+s

regressive process (2.4), the mean-distance between peaks is given by

-

2 2
3 -1]1b” - (1 +a)
(2.61) P, = 2n/cos TR

(2) Mean-distance between upcrosses. An upcross is said to have

< < x, , where P is the mean of

taken place between t-1 and t provided x _ "

-1

The following discussion of the mean-distance between peaks, mean-distance
between upcrosses, and the correlogram period is based on Kendall [15] to which
the reader is referred for a more detailed discussion and derivation.



the series. By an argument analogous to that given for the mean-distance

between peaks, the expected mean-distance between upcrosses is
-1
(2.7) P2 = 2nfcos ™ p(1) .

For the autoregressive process this may be written as

' _ -1 -8
(2.7") P, = 2n/cos [l - b] .

It is of interest to note that the mean-distance between upcrosses
depends only on the first-order autocorrelation of the series, whereas the
mean-distance between peaks depends on the first- and second-order autocor-
relation coefficients of the series. Both of these measﬁres are based on the
probability of occurrence of a given event (peak or upcross) so that the
stochastic nature of the series is explictly taken into.congideration. How-
ever, in these definitions no subsidiary constraints such as conditions which
have the effect of reducing "ripple" have been imposed.5 Although this limits
to some extent the applicability of these two measures to economic time series,
they are suggestive and lead to interesting comparisons with the correlogram

and spectrum periods.

(3) Correlogram period. A third measure of the periodicity of a

" series can be derived from the correlogram. In general, the correlogram
period is defined as the mean-distance between troughs (peaks) or downcrosses

(upcrosses) in the sequence of serial correlation coefficients. For the

0 An additional constraint on the mean-distance between peaks which has

the effect of reducing ripple, namely, x, > X > has been discussed by
Dodd [8]. &= Tt



autoregressive process (2.4), the theoretical values of the serial correlation

coefficients are given by

(2.8) p(s) +a p(s-1) + b p(s-2) = 0 (s > 1)

that is, the serial correlation coefficients are generated by the homogeneous
part of the difference equation. It follows that the correlogram oscillates

with a periodicity which is identical to the autoregressive period, namely,

(2.9) P, = enfeos™t |2
5 n/Ccos {2\/_1)}

The fact that the correlogram period is equal to the period of the solution
of the homogeneous part of the difference equation probably accounts for the

intuitive appeal of this measure.

(&) Spectrum period. The fourth measure of the period of a series

which is considered here is the spectrum period. The spectrum period is de-
fined as the inverse of the frequency at which the power spectrum exhibits
a relative peak»(provided one exists). The power spectrum of the autoregres-

sive process (2.4) is given by

(2.10) £ (@) = |1+ 8 e Ly 1202 £ ) (0 <w< )
or, equivalently, by

6(-:2
(2.11) fX(a)) =

2
2n(l + a2 +b + 2a(l +Db) cos w + Zbcos 2w)

The method by which this expression is obtained is described in Granger
and Hatanaka [11, pp. 35-37].
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The theoretical spectrum of the autoregressive with a = -1.1, b = 0.5, and
G€2 = 7 1s shown in Figure 1. This power spectrum exhibits a relative peak

at.w = cos-l Eﬁi%%;tll% 50 that the spectrum period of the autoregressive

7

is
(2.32) B, = enfeos™ [‘—a%ﬁ’—@]

The interpretation of the spectrum period is relatively straightforward. It
1s simply the inverse of the center frequency of that band of freguencies
which maekes the largest contribution to the variance of the series.

In general, each of these measures of periodicity is different. The
extent to which these measures diverge from one another depends, of course, 6n
the exact nature of the generating process. With reference to the avtoregres-
sive process, all four of these measures yield the same result if b = 1, in
~which case the process contains a deterministic component since the first term
in the general solution (2.5) does not damp out. With both a and b equal to
Zero, [xt}vis simply & random series. The mean-distance between pesks is three
units of time and the mean-distance between upcrosses is four units of time,
both of which are well-known results. The correlogram does not oscillate in
this case since p(s) = 0, (s > 0) and the power spectrum is flat so that neither
the correlogram period nor the spectrum period is defined in this case. The
values. of the period as measured by each of these methods are set out in Table T
for different values of a and b of the autoregressive process. From this table
it is obvious that the period which is contained in a time series depends critic-

ally on the way in which pericdicity is defined and measured.

[ The expression for w is obtained by setting the derivative of f (w) given
in (2.11) equal to zero and solving for .
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TABLE T

Theoretical Periodicity of Series Generated by

Xt + a Xt—l + Db Xt—E = eJG
-1.5 -1.7 . -1.615 -1.62.. | -1.1
b 0.9 0.8 0.7 0.6 0.5
,Pl 7.90 8.69 7.36 6.43 k.96
P2 9.51 18.76 19.79 19.79 8.40
P5 9.53% 19.85 23.73 32,31 9.25
B, 9.56 21.16 21.79 o0 10.46

A tacit assumption underlying this discussion of measures of periodicity

'is that the series under consideration consists of a sequence of fluctuations
which can be characterized by an average periodicity. This does not mean that
-each successive fluctuation must be exactly the same length, but that the dis-
bersion about the average is not so great that the average 1s meaningless. Pro-
vided this assumption. is satisfied, the empirical implementation of each of the
measures of periodicity is straightforward. With respect to the mean-distance
between peaks (upcrosses), an obvious procedure is to mark off the peaks (up-
crosses ) and then determine the average distance between them. For the corre-
logram and spectrum, the theoretical serial correlation coefficients could be

replaced by their'estimates.8

This is not the usual procedure which is used to estimate the spectrum.
Spectrum estimation. is discussed in Section III and the Appendix of this paper.



- 12 -

An economic time series, however, is not 1likely to satisfy such an
assumption for it implies that the series contains a single period. It is
much more reasonable to assume that economic time series are composed of
several fluctuations, each of which can be characterized by an average period-
icity. Indeed, the long-swing hypothesis is specifically concerned with the
existence of a fluctuation which is longer in duration than, and superimposed
upon, the ordinary business cycle. With a series of superimposed variations,
the problem of decomposing the series into meaningful components immediately
arises. If, for example, periodicity is measured by the mean-distance between
peaks, 1t is necessary to establish a criterion that will enable the investi-
gator to distinguish between business-cycle peaks and long-swing peaks in the
time series under consideration. One method that has been used in this con-

nection, low-pass filtering, will now be considered.

Filtering Operations.

In most earlier studies of the long-swing hypothesis, an indirect
method has been used to distinguish between long swings and business cycles
in the series of obsgervations. The ususl brocedure involves applying a low-
Pass filter to the original series in order to reduce or eliminate short-run
fluctuations.9 The filtered series is then analyzed as if it were identical
to the original series but with the high-frequency components removed. A low-

pass filter which has often been used in this connection is the simple moving

For example, Kuznets [16] has used a low-order moving average filter
to eliminate short-run fluctuastions from the series. Various studies of the
long-swing hypothesis in which some filtering technidue has been used are
described by Adelman [5].
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average of length 2mt+l:

(2.13) vy = xt+k/(2m,+ 1)

7=

m
where {yt} denotes the filtered series and {Xt} denotes the original series.
The effect of the filtering operation described by (2.1%) on each of the four
measures of periodicity enumerated above will nov be examined and illustrated
with reference to the autoregressive process (2.4).

Bach of the measures of periodicity depends on the serial correlation
coefficients of the series which is being analyzed. The general form of the
autocovariance function of the filtered series obtained from an original series

by (2.13) is
m

(2.14) () = ; (m+ 1 - [x]) 7k + s)

where 7y(s) and VX(S) denote, respectively, the autocovariance function of the
filtered and original series. Given the autocovariance of the original series,
the filtered autocovariance and autocorrelation functions can. easily be ob-
tained. The effect of the filtering operation on the periodicity of the series
is not, however, immediately apparent. ‘A general argument in terms of the
spectrum is given below, but for the other three measures of periodicity the
effect of the filtering is merely suggested by referring to numerical examples.
For expository purposes it is assumed that the original series is generated by
the autoregressive scheme (2.4) and the filtered series is obtained from (2.13).
The period of the original and filtered series for various values of the auto-

regressive coefficients a and b and different values of m, where m determines
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. . 10
the length of the filter, are set out. in Table IT.

TABLE IT

Period of Original and Filtered Autoregressive Series
for Different Values of a, b, and m

p a = -1. -1.7 -1.615 -1.52 -1.1
3 a\ P= 0.9 0.8 0.7 0.6 0.5
0 7.9 8.7 T4 6.4 5.0

Pl 2 9.6 15.3 14.6 13.6 8.6
3 10.0 17.0 - 16.6 15.8 8.8

b 9.9 18.3 18.2 7.4 8.4

0 9.5 18.8 19.6 19.8 8.4

P2 2 10.7 22.3 25.6 27.8 1.1
3 12.4 oh .2 28.5 31.6 17.7

b 16.7 26.5 31.7 25.5 20.5

P5 9.5 19.9 23.7 32.3 9.3
0 9.6 21.2 31.8 o 10.5

B, 2 9.6 22.2 36,1 o0 26.7
3 9.8 22.2 bk o0 o

L o0 23.6 80.0 0 00

This table suggests that the mean-distance between peaks, P., and the

1
mean~-distance between upcrosses, PE’ are both increased by the simple moving

average filter. For example, with a = -1.7 and b = 0.8, the theoretical mean-

distance between peaks in the original series is 8.7 and the mean-distance

10 The values for a and b in this table are the same as those used in Tgble I.

When m = O, the length of the filter is 2mtl = 1 so that the filtered and
original series are identical.
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between upcrosses is 18.8 units of time. The expected mean-distance between
Peaks in the five-item moving average of this series (m = 2) is 15.3 while
the mean-distance between upcrosses is 22.3% units of time. For higher-order
moving averages (m = 3, 4) the period of the filtered series is somewhat
longer in this example. It is apparent from this table that the period of
the filtered series is greater than the period of the original series, at
least for a certain range of values of a, b, and m. This indicates that in

general it is not valid to conclude that the pericd which is determined by

marking off peaks or upcrosses in the filtered series came about as a result

of a fluctuation with the same period in the original series.

The correlogram period is not subject to this difficulty in the
case of the autoregressive process. The reason for this is that the auto-
correlation coefficients of the original series are generated by (2.7) which

has as its solu.tionll

k sin(k@ + V)

(2-15)  elk) = D=
where D = J%
6 = cos-l(-a/ED)
1 +D
tan\l/ = I—_—btan 0.

According to (2.14%) the autocorrelstion coefficients of the filtered series are
linear combinations of the autocorrelation coefficients of the original series.

Since the autocorrelation coefficients of the original series all have the same

s, Kendall [15, p. 26].
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period and damping factor, it follows that the period of oscillation of the
correlogram of the filtered series is the same as that of the original series
which in turn is equal to the autoregressive period of the scheme.12 For
this reason only one number is given in Table II for the correlogram period.
The spectrum period‘exhibits the same tendency as the mean-distance
between peaks when a moving average Tilter is applied to a series. In this
case a general argument. is much simpler to construct than in the preceding
cases. The power spectrum of the filtered series, fy@b), is related to the

bower spectrum of the original series by

(2.16) fy(w) = Gw) fXQn) (-n <w< =)

where G(w), the gain of the (2m + 1)-item moving average, is
m 2

(2.17) Gl) = }j e /(om + 1)

s=-1
The gain of a Tive-item moving. average is shown in Figure 2.a. It is apparent
that the low frequencies are passed by the filter and the high frequencies are
rejected.
Suppose that the spectrum of the original series, fx(w), exhibits
a peak at @, i.e.,

dfx(w)

(2.18) |, = °.
[¢0)

The corresponding peak in the filtered series occurs at &, where o is determined

by solving

Y2 ce. Allen [6, pp. 129-131].
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arf {(w)
(2.19) ~a§&—— = £ (o

or, equivalently, by solving

af_ (w)
x _ d 1n G(w)
(2-20) _— | = - fx(w) —_— A

Since G(w) is a positive but decreasing function of w for w < 2ﬂ/5, it follows

d In G(w)

that an

<O for 0 <w< 2n/5, Therefore the right-hand side of (2.20)

is positive for w < 2n/5, In order for & to afford fx(w) a true local maximum,
dfx(w)
dw

(2.18) and (2.20) indicates that & < & provided & < en/5. If the original

must be positive for o < & and negative for w > &. A comparison of

series contains an important component of periodicity greater than five units
of time per cycle, the filtered series will contain an important component of
duration longer than that of the original series.15 The theoretical spectrum
of a five-item moving average of the series generated by the autoregressive
process (2.4) with a = -1.1 and b .= 0.5 is shown in Figure 3.a.

In addition to the simple moving average, a second filtering oper-
ation is sometimes applied to the filtered series. For example, Kuznets [16],
after smoothing the original series with a quinguennial average, analyzes

decadal rates of change. This second filtering operation,

(2.21) Zg T Vs T Vg

yields a series the spectrum of which is related to that of the smoothed series by

15 In general, a (2mt+l)-item moving average "shifts" peaks in the spectrum
which are located below l/(2m+l) years per cycle to still lower frequencies.
It should be noted that this has nothing to do with aliasing which is described
by Blackman and Tukey [7, pp. 31-33] and which is explored by Taubman [13] in
connection with the long-swing hypothesis.
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(2.22) fZ(a)) = 2(1 - cos 1Qw) fy(a))

The combined operations of smoothing and taking decadal differences produces

a series the spectrum of which is related to that of the original series by
2

(2.23) f ) = 21 - cos 10w)(1 + EZcosm)2 fx(a))/25 .
k=1

The gain of these combined operations is shown in Figure 2.b. In Figure 3.b
the effect of applying these two operations to the series generated by the
autoregressive scheme (2.4) with a = -1.1 and b = 0.5 is shown. It is clear
once again that inferences about the original series based on estimates ob-
tained from a filtered series can be quite misleading.

The Tact that the correlogram period of the autoregressive process
(2.4) is invariant with respect to the filtering operation described by (2.13),
while the spectrum period is changed, may appear to be rather surprising.
There is, however, a rather simple explanation for this. The spectrum of the
original series, fx(m), is the Fourier-transform of the autocovariance function

of {X%}, i.e.,

[o+]

(2.2) fx(w) = }: v (s) cos ws .

S==00
From (2.15) it follows that the autocovariance function of the autoregressive

process 1is

(2.2%) %) = A D° sin(s6 + V)

where AX = var x/sin V¥, and D and wx are determined as above (Equation (2.15)).

Substituting this expression for the autocovariance function into (2.2) and
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simplifying yields

(2.25) fx(w) = AX cos wx K(w) + Ax sin WXiL&D)
where :: s
Kw) = 24 D™ sin Bs cos ws
S= =00
[o.0]
N .8
L{w) = ZLD cos Os cos ws .

S==00

It was shown above that the autocovariance function of the filtered series
differs from that of the original series only in its amplitude and phase so

that it may be written as
(2.26)  »'(s) = A_D° sin(8s + V)
y b
where Ay = var y/sin wy. Transforming 7 (s) yields
2.2 f w) = A .cos Kiw) + A sin Liw
(2.27) y() y ﬂfy(). v Wy()

for the spectrum of the filtered series.
A comparison of (2.25) and (2.27) indicates immediately why the
spectrum period is not invariant with respect to the filtering operation.

The spectrum period of the original series 1s obtained by solving

dfx&b)
(2.28) 5 = Ax cos wx K'(w) + Ax 51n.wx L'w) = O
or
(2.28'") K'(w) = - tan v L (w)

for w. The spectrum period of the filtered series is found by solving
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(2.29) - = Ay cos Wy K'(w) + Ay sin wy'L w) = O
or
(2.29') K'(w) = - tan wy L' (o)

for . Since the phase of the filtered autocovariance function will, in general,

differ from that of the original series, e, ¥ 4 V., it follows that o # B.

Summary

This discussion of the three measures of periodicity which are not
invariant with respect to filtering operations, namely, the mean-distance
between peaks, the mean-distance between upcrosses, and the spectrum period,
suggests an important. point in connection with the long-swing hypothesis.
Specifically, a major cycle with a periodicity of between eight and eleven
years in the original series may appear as a long swing with a periodicity
of between fifteen and twenty-five years in the filtered series. This point
is strikingly illustrated by the numerical results set out in Table II. Since
several earlier studies of the long-swing hypothesis have used filters that
are identical or similar to those described above, the results of these
studies must be interpreted with extreme caution. In order to avoid the
possibility of drawing misleading inferences from estimetes obtained from
a filtered series, it is necessary-to consider the effect of the filter.

One of the distinct advantages of the spectral-analytic approach
to time-series analysis is that this sort of adjustment problem can easlily

be handled. In those cases in which a filter is used, the estimates of the
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spectrum can be adjusted for the effect of the filter in a relatively
straightforward way.llL In many-caseé, however, it is not necessary to process
the series in order to eliminate the short cycles before proceeding with the
estimation. This is because the power spectrum provides a decomposition of
the variance of the series over the entire frequency axis. This means that
with the spectral analytic approach a direct. comparison of the power contained
in different frequency bands is possible. Thus, the relative importance of

the long swing can be éompared with that of the major and minor business cycle.

For a discussion of situations in which it might be advisable to filter
the series before proceeding with the estimation, see Blackman and Tukey [7,

pp. %9-43].
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I1I. SPECTRAL ESTIMATION AND THE LONG-SWING HYPOTHESIS

In this section the empirical results of this study, presented in
the form of estimates of the spectral density functions of a number of macro-
economic time series, are described. The particular form of the long-~swing
hypothesis with which this study is concerned is the growth-rate variant. This
choice was made, in part, in view of the stationarity assumption of spectral
analysis. While the absolute level of most economic variables cannot rossibly
be considered to be generated by a stationary stochastic process because of the
dominant trend in mean, the sequence of growth rates is somewhat less question-
able.15

Bach of the series analyzed was first transformed by computing relative

rates of growth according to

(3.1) y(t) = [x(t+1) - x(t)]/x(t)

where {x(t)} denotes the original series and (y(t)} denotes the series of growth
rates. The power spectra of the growth-rate series were then estimated by
Fourier~transforming . weighted estimates of the autocovariance function. These

normalized spectral estimates, referred to as spectral densities, are of the form
(0O<w< )

_where ?(w) is an estimate of f(w) as given by (2.2) and 9(0) is an estimate of

the variance of the series. This method of normalization is such that the

5 Adelman [5] has experimented with residuals from a log-linear trend.
Although this transformation might be expected to eliminate the trend in the
mean, the trace of the residual series indicates that the variance of the
residuals is by no means stationary. The non-stationarity of the growth rate
series 1s less conspicuous, although perhaps no less real.
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theoretical spectral density of a random series is 0.5 at all frequencies.

This provides a .convenient standard with whiech to compare the estimated spectra.
The actual formulas used in the estimation as well as some of the sampling
properties of the estimates are discussed in the Appendix.

The spectral estimates obtained from a finite realization of a process
can be interpreted heuristically as estimates of the average power contributed
by a band of frequencies in the interval w + &w (0 < w < 7). In this study the
spectrum 1s estimated at the frequencies centered on wj = jﬂ/lOO (3=0, 1, +..,
100). Obviously only =/28w of these estimates are (almost) independent, namely,
those separated by a distance 28w, which is twice the bandwidth of the estimate.
Thus the frequency axis can be divided into ﬂ/ESw (almost ) disjoint frequency
bands. For the estimation procedure used here the width of each band is approx~
imately 20w = An/T radians per unit of time and the number of independent estim-
ates is approximately'T/M, where T is the truncation point (or number of lags)
used in the estimation. During the course of the investigation, spectral densi-
ties were estimated with T = 10, 20, 30, 40, 60, and 80. As the number of in-
dependent estimates of the spectrum is increased, a sharper resolution of the
frequency axis is possible, but this is achieved only at the expense of an
increase in the variance of thelestimate. It was found thatT = 20 provides
an estimate which describes reésonably well the main features of the spectra
of the series dealt with here, so only the twenty-lag estimates are discussed
in some detail.

The resoclution of thé frequency axis which corresponds to the twenty-
lag estimate is shown in Table ITI. Although only ten points at which the

spectral density is estimated are (almost) independent, the function has been
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TABIE ITIT

Resolution (in years per cycle) of the Frequency

Axis for a Twenty-Lag Estimate of the Spectral

Density
Frequency Point Lower Bound - Period Upper Bound
0 20. 00 o ®
10 10.00 20.00 %
20 6.67 -10.00 20.00
30 5.00 6.67 . 10.00
40 4,00 5.00 6.67
50 3. 33 4,00 5.00
60 2.86 3.33 4,00
70 2.50 2.86 3.33
80 2.22 2.50 2.86
90 2.00 0.0p 2.50
100 2.00 2.00 2.22

plotted in the following diagrams at the frequency points wj = jﬂ/lOO
(J =0, 1,..., 100) by interpolation from the estimating equation. The period-
icity of the fluctuation of the estimate centered on the jth frequency point
together with its upper and lower limits as determined by the bandwidth of the
estimate are shown in this table in terms of years per cycle. It should be
emphasized that the values given in Table IIT are only approximate. This is
discussed in more detail in the Appendix.

The frequency band which corresponds to the Kuznets cycle or long

swing is centered on the tenth frequency point, i.e., lOn/lOO radians per year
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or 20 years per cycle. The long-swing hypothesis can be interpreted as stating
that the variance-contribution of this band of frequencies is significantly
greater than that of neighboring frequency bands. This intuitive statement of
the hypothesis suggests that its rejection be based on the absence of a local
peak in the spectrum near this long-swing frequency. For the use of the estim-
ated spectrum as a descriptive statistic, this statement of the hypothesis seems
to be adequate. However, a more precise formulation of the hypothesis in terms
of conventional tests of significance is possible. The (100 - 2 ) percent
confidence band for normally distributed independent random variables, referred

to as white noise, can be determined from

Pr{x 2(4”,) < i) < x2(£)}= l1-2a

e - fl) - "o

where {@ the equivalent degrees of freedom of each estimate, is determined by
dividing the number of observations used in the estimation of the spectrum by
m/h (i.e., 4 = bn/m). These confidence limits provide a method for testing
the hypothesis that the underlying process is random. Specifically, an
estimate which lies outside the (100 - 2 o) percent confidence limits is said
to be significantly different from white noise at that level. The 90 percent
and 95 percent confidence limits for the spectral estimates from a sequence of
independent random variables of the same length as the series discussed below
(n. = 86) is shown in Table IV for different values of T.l6

The general features of the spectral density functions estimated

with T = 20, 30, and 40 are set out in Table V. For each truncation point

Since the series of industrial production and pig iron production cover
the period 1860-1961, the confidence limits for these series are slightly
different from those given in the table.
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TABLE TV

Approximate Confidence Limits for Spectral

Estimates from (Gaussian) White Noise

Degrees of Freedom 90 percent limits 95 percent limits
8 (T =40, n = 86) 171 L969 | .13%6 1.001
11 (T = 30, n = 86) .208 8o [ 172 .996
17 (T = 20, n = 86) .255 812 | 222 .888

used in the estimation, the location of the relative peaks in terms of years yer
cycle (ypc) and the estimated peak value are given. ' For expository purposes, the
relative peaks are grouped in the table according to their location: 15 - « years
per cycle, 9 - 15 ypc, 5 - 9 ypc, 3 - 5 ypc, and 2 - 3 ypc. The first number in
each column indicates the center of the band in which the spectrum exhibits a
relative peak. Where no number is shown, the spectrum does not exhibit a rela-
tive peak in the band. The peak value of the spectrum is shown directly below
the location figure. A single (double) underscore denotes peaks which are sig-
nificantly different from the spectrum of white noise at the 90 percent (95 er-
cent) confidence level.

For example, the spectrum of the Gross National Product series estim-
ated with twenty lags exhibits local peaks in the bands centered on 11.8, 5.6,
and 3.4 years per cycle. These fluctuations have relative amplitudes of .48,

.78, and .77 respectively, none of which lies outside the upper 90 percent
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white-noise confidence limit given in Table IV. This summary presentation
facilitates a comparison of spectral estimates which differ from one another
in the focussing power of the spectral window used in their estimation.. The
amount by which the focussing power of the window differs for different trunc-
ation points can be inferred from Figure A.1l in the Appendix.

The results of the estimation are shown in graphical form in
Figures 4 -17 for the truncation point T = 20. As suggested above, the twenty-
lag estimates adequately reflect the general features of the thirty- and forty-
lag estimates, so only the twenty-lag estimates are shown in graphical form.

In addition to the estimated spectrum the trace of the relative rate of growth
of each series is also shown. These are included as a basis for making some
Judgment about the stationarity of the series from which the spectrum is
estimated.

A comparison of the spectra which relate to national income and
production with the spectra of the consumption and investment components of
national product reveals several interesting points. The spectra of the in-
come and production series (1-4 in Table IIIL) shown in Figures 4-7 exhibit
major peaks in the ranges [5.6 - 7.1] and [3.3 - 3.4] years per cycle (ypc).l9
The latter peak, which corresponds to the well-known forty-month cycle, is the
more prominent of the two, at least in the Net National Product and Pig Tron

- Production series. Relatively weak peaks emerge in the intervals [10.0 - 14.3]

1
? The notation [pl -~ Po] is used to denote the location of the relative

peaks in the set of series under comsideration. The value of Py 1s the shortest
duration at which the spectrum exhibits a relative peak over all the estimates
of all the series, and p, 1s the longest duration over all the estimates of all
the series in the group. The grouping of the relative peaks in this way is to

a certain extent arbitrary, but the overall picture is relatively clear.
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and [2.4 - 2.8]‘ypc. Only when the truncation point is increased to 40 does
anything remotely resembling a long swing emerge in these series; and then
only in the GNP and NNP series. The long swing seems to be entirely absent
from the two production series.

The estimates derived from the series relating to aggregate con-
sumption (5 - 7 in Table II1), shown. in Figures 8 - 10, are interesting in
several respects. The spectra of the total consumption and consumers' semi-
durables series are very weak (i.e., not statistically different from the
spectrum of white noise) but do exhibit a relative peak in the [16.7 - 25.0] ype
range. The spectrum of the consumers' durables series is much like that of
the income series in that relatively strong peaks emerge in the ranges [5.6 -
5.7] and [3.3 - 3.4] ypc. The major difference is that the major cycle of
periodicity [10.5 - 11.1] ypc is much more pronounced in the consumers' dur-
ables series than in the income series. All this agrees reasonably well with
the accepted notions about the volatility of the various components of con-
sumption expenditure. The curious thing about these series is the emergence
of a weak long-swing peak in the total consumption and consumers' semi-dursbles
series when there is no corresponding concentration of power in this neighbor-
hood in the income series.

The spectral estimates of the investment series (8 - 11 in Table III)
shown in Figures 11 - 1k are interesting in several respects. The gross
investment series, although similar to the production series (Figures 6 - 7)
in terms of the location of the spectral peaks, is more strongly influenced by
a [5.4 - 5.7] year fluctuation than are the production series. The ‘gross

producers’ durables series exhibits important [7.1 - 8.0] and 3.4 ype peaks
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and a very weak long-swing peak centered on 22.2 ypc. The gross nonfarm
residential construction series exhibits the highly publicized long building
cycle, although the periodicity of [11.8 - 12.5] ypc is somewhat shorter
than that of previous estimates. It is very interesting to note that this
frequency band contributes more than twice as much as any other to the
variance of the series. The inventory investment series is interesting for
two reasons. The periodicity of the business-cycle component emerges as 4.1 -
L.2 ypc, almost .5 ypc longer than in the other series. This is very curious
in that a considerable amount of the explanation of business cycles, at least
recently, has been centered around the inventory adjustment process.go The
other interesting property of the inventory series is that, like the consump-
tion series, it exhibits a long-swing peak.

The estimated spectra for GNP per Worker and GNP ver Capita
(Figures 15 - 16) closely resemble the spectrum of the GNP series. This is
not. particularly surprising in view of the fact that the spectrum of total
population. (Figure 17) closely resembles that of the GNP series except for
the considerable amount of power concentrated near the zero frequency. As
can be seen from the trace of the relative rate of growth of population, this

concentration of power is probably due to the downward trend in mean.

20 This unexpected result may very well be explained by the inadequacy of

the inventory investment series, especially during the earlier years of the
series.
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IV. ~ CONCLUSION

In this paper the growth-rate variant of the long-swing hypothesis
has been explored. - In order to determine the relative importance of long
swings in the relative rate of growth, spectral densities of a number of macro-
economic variables were estimated. These estimates, while not providing a de-
finitive answer to the question of the existence of the Kuznetbs cycle, do
nothing to dispel the skepticism which has been voiced in connection with the
long-swing hypothesis. The spectral peaks which do emerge in the long-swing

frequency band are in most cases extremely weak; in no case are they statistic-

ally significant. The fact that neither the construction series nor the oPp-

ulation series exhibits a peak in the long-swing frequency band is particularly
discouraging with respect.to the long-swing hypothesis. This is espeéially
true in view of the fact that the theory of the long cycle relies heavily on
the long adjustment process inherent in the construction sector or on the push
(pull) of long swings in the rate of growth of population.

The impact of major and minor fluctuations in economic activity is
evident from the estimated spectra. It does not seem possible to dismiss these
fluctuations as purely random events in the sense that the spectral peaks arise
from sampling variability. With respect to the long swing, however, the ob-
servation that the usual filtering methods can "shift" s major-cycle peak into
a long-swing peak tends to cast conmsiderable doubt on the exisbence of long
swings in the rate of growth which are distinctly different from and independent

of the major cycle.
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APPENDIX
DESCRIPTION:OF THE ESTIMATION PROCEDURE

The methods used in this study to estimate the spectral density
function and some of the properties of the estimation technique are described
in this appendix. - The problem which is considered is that of estimating from
a finite sample {x(t); t =1, 2, ..., n} the true spectral density of the

brocess which is defined by

A.1) flw) = —é—ﬂ l+22p(s)cosws (0O<w< )
s=1

where p(s) is the autocorrelation function of the process. The estimates

discussed in the text were derived from the estimating equation

T
A.2) ,f\n(wj) = % 1+ EZ k(s) r(s) cos wJ_s
=1 |
° (cbj = §n/100; § =0, 1, ..., 100)
where n-s
Z(::(t) - %)(x(t + ) - %)
(a.3)  x(s) = EE—— (5=1,2, ..., m)
}W»:(t) - %)
£=1
n
(a.1) o= =\ x(t)
o i t;l.
1 - 6(S/T)2‘(l - s/T) 0<s<T/2
(A.5) k(s) =
2 - s;/T)5 T/2 <s <T.

L This appendix is based primarily on Jenkins [13].
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An approximate description of the meaning of the estimates obtained from a.2)
is facilitated by referring to the large-sample properties of these estimates.
Consider first the expected value of the estimate %n(w) as the
number of observations in the sample increases without limit. This may be
shown to be
i
@6)  un B2 ) - [ t) e v ay

n— © o)
where

% (bw - y) + plw + y)}

(A.8) wy) = |1+ eyk(w cos ys | «
s=1

(&.7) K(w, v)

li

The expected value of the point estimate %n(w) is seen from (A.6) to be a
welghted average of the (continuous ) spectral density function over the
frequency domain. The way in which the true spectrum is averaged depends on
the spectral window K(w, y). The spectral window centered on o = O which
corresponds to the weights given by (A.5) is shown in Figure A.1 for T = 20,
30, 40. It can be seen that the spectral window emphasizes the frequencies
near w and suppresses frequencies distant from the frequency on which it is
centered. This means that if the spectrum is not changing rapidly near w,
?an) provides an asymptotically unbiased estimate of f(w).

Although equations (A. 7 - 8) describe the spectral window perfectly,
it has been found convenient to characterize the window by its bandwidth. The
definition of bandwidth used here is that of Jenkins [13], viz., half the base
width of the rectangle with the same area as the spectral window and which

gives rise to the same variance as the given window. For the window used here
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the bandwidth is%%zradians rer unit of time so that the estimate'%n(w) can be

thought of as an estimate of the mass in the interval Qu:t%;). This is the
sense in which the resolution of the frequency axis presented in Table III of
the text is to be interpreted. It might be noted that the number of indepen~-
dent (almost non-overlapping) estimates is equal to %. Only estimates which
are separated by a distance of %E radians are almost independent.

This discussion of the spectral window indicates that the resolution
of the frequency axis is directly related to the truncation point T of the

estimate. By increasing T a sharper resolution of the frequency axis is pos-

sible. However, the variance of the estimates increases with T since

k1Y
o) varf )= E ) [T e < L.

This indicates the conflict between resolution or bias and variance of the
estimate which arises in the estimation of the spectral density. Since no
definite compromise has as yet been reached on this point, the usuval pro-

cedure is to estimate the spectrum with several values for the truncation

point T.




