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STABILIZATION POLICY IN LINEAR STOCHASTIC SYSTEMS

E. Philip Howrey

ABSTRACT

This paper is concerned with the description and evaluation of linear
stabilization policy in linear stochastic systems. It is suggested that the power
spectrum provides a useful approach to the characterization of alternative
stabilization policies, For a second order autoregressive scheme, iso~-frequency
and iso-variance loci for the stochastic response are constructed and compared
with similar loci which have been constructed for the transient response of.the

system. Several observations on minimum-variance policies are also included.



1, 0 Introduction

In order to evaluate alternative stabilization policies, it is necessary
to ascertain the properties of the system into which these policies are to
be introduced. Since this is very difficult in economics, the usual practice
is to postulate simple systems which are amenable to analysis by general
methods, and then to consider the impact of various stabilization policies
on these systems. Such an approach led Baumol, for example, to conclude
that "policies - automatic or not - which appear to be properly designed
may very well turn out to aggrevate fluctuations' [2, p,21]. This somewhat
pessimistic conclusion was suggested by an analysis of the transient re~
sponse of a deterministic linear system, The question naturally arises as
to whether results similar to those derived by Baumol also hold for
stochastic systems,

The purpose of this paper is to extend the tools and results derived by
Baumol to a linear stochastic system. Since attention will be focussed on
the stochastic response of the system, this paper can be viewed as an elab-
oration of some of the problems discussed by Friedman [5] in connection
with stabilization policy, In the next section some of the properties of
stochastic linear systems and linear stabilization policies are described,
Methods which may be used to evaluate alternative stabilization policies are
considered in Section 3.0, The paper concludes with several comments on

the implications of minimum-variance stabilization policies.

The author is indebted to the members of the Econometric Research
Program, Princeton University, for helpful comments and discussions,



2,0 Linear Systems and Stabilization Policies

For purposes of exposition, we follow Baumol in considering one of
the most familiar linear dynamic svstems - the multiplier-accelerator
interaction model, Without going into detail, we note that under certain con~

ditions the time path of income may be considered to be generated by

Yt+bYt_1+th_2 = Gt+At+ut (1)

where Y & Gt » and At denote total income, government expenditure, and
autonomous expenditure in period t, u, denotes a stochastic disturbance,
and b and c are the parameters of the system., This generating equation can
be thought of as arising from theoretical considerations or it can be thought
of as the final form of the income equation in a linear econometric model,
The stochastic term in (1) is, in general, a linear combination of the
stochastic terms in the individual behavioral relationships such as the con-
sumption and investment equations. The disturbance term is here regarded
as the variability arising from the randomness of the decisions described
by the behavioral relationships and not from specification or estimation
error., For this reason it is important for purposes of analysis to retain

this stochastic term in the solution for the time path of output.

1The:&‘e is, of course, no a priori reason to suppose that the generating
equation is of order two, For ease of exposition the second order case will
be discussed in what follows and the points at which the argument can be
generalized to higher-order systems will be pointed out.
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2.1 Linear Stabilization Policies

The government expenditure term in Equation (1) is assumed to include
only that portion of government expenditure which is oriented toward stabi-
lization policy; the remainder is subsumed by the autonomous expenditure
term or is implicitly accounted for by the structure of the system, As
Baumol [2] has suggested a number of plausible government expenditure

policies can be approximated by a linear stabilization scheme such as

Gt = g Yt_1 + g, Yt._2 + Bt + v, (2)

where g and g, are the parameters of the policy and v, is a stochastic
disturbance. The time dependent term Bt in (2) is introduced to character-

ize such full-employment policies as

_ - - . ,
Gt = g(YF Yt-l) g th1 +g YF (2m)

where YF denotes full-employment income. The necessity to date B results
from the fact that in this example the full-employment level of income may
be changing over time,

Inserting the stabilization policy described by (2) into (1) yields

Yt+b'Y +c''Y

= Al 4+ qg!
£-2 ¢t

t-1 (3)

L= - V= - P = L « F thi
where b!' = b g;s © C-8ys At At + Bt’ and u'=u + v, rom this
expression it follows that the linear stabilization scheme may effect a
change in (a) the autoregressive structure of the system, (b) the level of

autonomous expenditure, or (c) the magnitude of the stochastic disturbance
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term, In order to evaluate the total impact of the policy it is necessary to
consider all three of these potential changes. In this paper the major con~
cern is with the first of these, namely, the effect on the time path of output
of changes in the autoregressive coefficients of the stochastic difference
equation. Since the impact of changes in the level of autonomous expenditure
and in the magnitude of the disturbance term is obvious, these two sources
of change will not be considered further. This reduces the problem to one

of analyzing the alternative time paths of the solution of

Yt +b Y,c'_1 +c Yt“2 = At +u (4)

which correspond to various combinations of the autoregressive parameters

b and c.z

2,2 The Time Path of Output

In what follows it is assumed that the disturbance terms have mean zero
3 .
and are serially independent. ~ In addition it is assumed that (4) is a stable

system in the sense that the variance of deviations from the equilibrium

2In order to avoid confusion it should be pointed out that only permanent
changes in the autoregressive parameters are considered here, i.e. , the
paper is not concerned with the time path of output generated by an auto-
regressive scheme with time-dependent coefficients. Nor is the paper con-
cerned with the problem of estimation of the (possibly time-dependent)
coefficients from a realization of the process.

This assumption is necessary in order to maintain simplicity, If the
disturbance terms are serially correlated,under suitable conditions the
system may be transformed to a higher-order system with uncorrelated
disturbances. But then the simplicity of the second-order case is sur-
rendered,



time path is finite. ~ A necessary and sufficient condition for stability of a
linear system with constant coefficients is that the characteristic roots of
the system lie within the unit circle in the complex plane. This will be the

5
case if the autoregressive coefficients satisfy the following inequalities:

l1+b+c > 0
l1-=b+c >0 (5)

lac >0

The triangular boundary of the stable region in the ¢ ~ b parameter space
is shown in Figure 1. The region to the right of the parabola in this figure
corresponds to values of the autoregressive coefficients which yield com-
plex characteristic roots (i.e., b2 - 4c < 0),

Provided the system is stable, the complete solution for Yt is given by

Yt = Yt+klr +k2r Z J w (t=1,2,...) (6)

where ?t denotes the particular solution corresponding to the autonomous

4
The equilibrium level of output v.® is defined as the expected value of
income at tlme t. The variance of income at time t, 0‘Y (t), is then given by

E[(Y - Y ) ] where E denotes the expectation operator. The system is said

to be stable 1f fim cryz(t) < e,

5T'hese inequalities can be developed directly from the roots of the
characteristic equation of (4), See, for example, Goldberg [6].

6See_, for example, Bartlett [1]. By convention Z 0 fort<1,
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expenditure At’ T and r, are the characteristic roots of (4), k1 and k2 are

arbitrary constants determined by the initial conditions v, and Yy s and i;j

is given by

¢, = . (7)

If the characteristic roots of (4) are complex, then (6) may be written as

t-2
t , \’
Yt-D[klcoset+kzsmet]+24i;jut_'j (t=1,2,...).

j=0 (6)

In the non-stochastic formulation of this model, D, the damping factor,
is usually taken to be a measure of the stability of the system; the smaller
the value assumed by D, the more stable the system. The autoregressive
period, 6, is taken as a measure of the periodicity of the system,

But for the stochastic case, the solution for the time path of output
given in (6) indicates that the general solution is composed of three parts:
the particular solution, a transient response, and a random response.

In a stable system the transient response is zero in the limit so that asymp-
totically the deviations Y, from equilibrium take the form of an infinite

weighted sum of random variables:

oc
v, = Z éj LR | (8)
j=0

This suggests that in a stochastic system it may not be entirely appropriate

to evaluate alternative stabilization policies on the basis of their effect on

7This is described in some detail in Kendall [7].
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the transient response alone. Indeed, it is shown below that in certain

instances such a procedure will be quite misleading,

3.0 Evaluation of Alternative Stabilization Policies

As suggested above, simple stabilization policies can be viewed as
effecting changes in the coefficients b and ¢ of the autoregressive process
described by (4). We now wish to compare the alternative time paths cor~
responding to different combinations of these coefficients, It is important
to note that these alternative solutions may be dominated initially by the
transient response of the process, Thus if short-term considerations
dominate in the selection of alternative stabilization policies, the transient
response may be extremely important, However, if stabilization policies
once initiated are changed only relatively infrequently, the properties of

the asymptotic stochastic solution (8) will be of interest.

3.1 Stochastic Properties of Stabilization Policies

In order to describe the asymptotic characteristics of the deviations
from equilibrium it is necessary to determine the impact of changes in b
and c on the coefficients {,j in (8) and hence on the infinite sum of random
variables. This is facilitated by assuming that u, is generated by a station=-
ary stochastic process with power spectrum fu(w). Since we are dealing

with stable systems with constant coefficients, it follows that (8) defines
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a stationary stochastic process with the power spectrum
2
£ = |T@)["f ()  (-re<m) (9)

where T(w), the transfer function of the autoregressive process, is given by

Tw) = (1+a e-iw +b e-iZw)-l . (10)

In what follows it is assumed that u, is serially uncorrelated so that

2
c
fu(w) = =2~ ., We now propose to evaluate alternative stabilization policies

2w
on the basis of their effect on the power spectrum of the process,

More specifically, in the case of the second-order system it seems
reasonable to consider the effect of changes in the autoregressive coef-
ficients on the variance and "spectrum period" of the output. This can be
accomplished quite easily graphically by constructing iso-variance and iso~

frequency loci. The variance of the output is obtained by integrating the

spectrum which in this case yields

(1+ c) — o 2. (11)

} u

2 (’“
o = \ f (wdw =
y Yo ¥V 1-c)1+b)?-c

The iso~variance loci in Figure 2 were constructed by setting oyzlouz =k
(a constant) and graphing the resulting equation in b and c, In the first and
second quadrants of Figure 2, curves intersecting the ordinate at higher
values correspond to higher values of the ratio oyz/ouz. The iso~variance
loci in the third and fourth quadrants of the figure are reflections about the

abscissa of the first- and second~quadrant loci,
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It is apparent from this figure that as |b| increases, the variance ratio
increases. This is an interesting result which would not have been anticip-
ated on the basis of an analysis of the transient response of the system,

For in the case of the transient, changes in |b| have no affect on the
stability of the system as it is usually defined (i, e. , D, the damping factor,
is not a function of b). Another interesting feature of Figure 2 is that for
certain values of the parameters a reduction in the value of ¢ (with b un~
changed) increases the variance ratio, This means that it is possible that
attempts to make the system more stable in the sense of reducing the time
it takes for the transient response to damp out may actually increase the
variance of the system!

The iso-frequency loci of Figure 3 are constructed in the following way,

The frequency at which the spectrum exhibits a relative peak is obtained by

solving
df (w)
—de = 0 (12)
for &, say, This yields
S = Cos‘llb_(_l_";ﬂ)_ (13)

4c
for the second~order autoregressive process. The iso-frequency loci are
then obtained by setting @ = k (a constant) and graphing the resulting equa-
tion in b and c. The curves in the first quadrant (Q I) correspond to peak
frequencies between 1/4 and 1/2 cycle per period (cpp) and those in the

fourth quadrant (Q IV) correspond to frequencies between 0 and 1/4 cpp.
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It will be noted that these loci do not cover the entire region of stability in
these two quadrants, The region below the 0 cpp locus in Q IV contains
values of the autoregressive coefficients for which the power spectrum de-~
creases monotonically with frequency and in the region above the 1/2 cpp
locus in Q I the spectrum increases monotonically with frequency,

These loci in the first and fourth quadrants are quite similar to the iso-
frequency loci constructed by Baumol [2] for the transient response of the
second-order system. It is readily verifiable that as b increases (c held
constant) the peak in the spectrum is shifted to a higher frequency and as
¢ increases (b held constant) the peak is shifted to a higher or lower frequ-
ency depending on whether b is less than or greater than zero. These state~
ments are valid provided the spectrum exhibits a relative peak on the open
interval (0, 1/2) cpp.

The loci in the second and third quadrants of Figure 3 correspond to
relative minima of the power spectrum, 8 For values of the autoregressive
parameters in quadrant two the power spectrum exhibits a minimum on the
interval (0, 1/4) cpp and in quadrant three the power spectrum exhibits a
minimum on the interval (1/4, 1/2) cpp. In both of these quadrants the
characteristic roots of the difference equation are real and less than one
in absolute value,

This completes the characterization of the parameter space in terms

of the shape of the power spectrum and the variance ratio, By combining

BIt is fairly straightforward to verify that d2 :fy((.o)/dlaa2 SO0asczZo,



Figures 2 and 3 the stochastic properties of any particular stabilization
policy can be described. Since the power spectrum is defined for any station-
ary stochastic process, the ideas described here for the second-order
system apply equally well to higher~order linear systems, 9 It will be re-
called, however, that these iso-frequency and iso-variance loci are relevant
for a comparison of the asymptotic properties of alternative stabilization
policies. The question of the speed with which the power spectrum converges

to its asymptotic value will now be considered,

3.2 Speed of Convergence

Returning to Equation (6), it is seen that the variance of income after

a change in the autoregressive parameters at time t = 0 is given by
t-2
2 2 2 N, 2
t = - E = = o8
OY {t) E[(Yt [Yt]) ] U'u L ;J (t=1, 2, ) (14)
j=0

provided the disturbance terms are serially uncorrelated. The expression
for the variance of y given in (11) is the limit of a'yz(t) as t approaches infin-
ity. Again, from Equation (6) the power spectrum of the system immediately

following the policy change is given by

t-2 2 - 2
S AN 1
fy(wJ t) - Z Lj e 2“_ . (15)

j=0

9In higher-order systems, the power spectrum may, of course, have
more than one relative peak,
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The expression for fy(w) given in (9) is the limit of fy(co, t) as t approaches
infinity, We now consider the speed with which ayz(t) and fy(w, t) converge
to their asymptotic values.

Although it may be possible to construct a general argument, we pro-
ceed here by considering a specific example, Suppose thata = - 1,1 and
b = 0.5, The variance ratio (Gyzlcruz) converges to 2,885 and from Figure 4
it is seen that the convergence is quite rapid. By the third period after the
stabilization policy is instituted the variance is more than 95 percent of its
asymptotic value. The power spectrum converges somewhat less rapidly in
this case, The first five power spectra f(w, t), (t =1, 5), are shown in
Figure 5, the second five f(w, t),(t = 6, 10), are shown in Figure 6, and the
asymptotic spectrum fy_(w) is shown in Figure 7, Although the spectrum con-
verges somewhat more slowly than the variance in this example, the general
shape of the asymptotic spectrum emerges within four periods after the
postulated policy change.

This example illustrates the point that the power spectrum may be a
quite useful theoretical tool of analysis even in the first few periods imme-
diately following a policy change. Moreover, the variance ratio is seen to
converge quickly to its asymptotic value. This indicates that even for short-
run policy considerations the stochastic terms in the solution for the time
path of the output of the system are both important and amenable to (approx-
imate) analysis. We can thus have some confidence that policies designed on
the basis of the asymptotic properties of the system will have the desired

effect fairly quickly after they have been initiated,
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4,0 Minimum-Variance Stabilization Policies

Up to this point this paper has been concerned with the description of
the stochastic properties of different linear stabilization schemes within the
context of a simple medel of income determination, Having gotten this far,
it may be of some interest to consider briefly the question of the design of
stabilization policy within the context of this model. In particular, suppose
that the variance of the deviations from the equilibrium income path is to be
minimized, Setting the partial derivatives of the expression for the disturb-

ance variance

V(b, ¢) = 1+ c (16)
(- )+ o)? - bd)

equal to zero yields b= ¢ = 0 as the first-
order conditions for (16) to assume a minimum, This indicates that in order
to minimize the variance of the deviations from equilibrium, the coefficients
of the linear stabilization scheme should be chosen so as to destroy the
autoregressive structure of the system,

There are, however, two possibly undesirable features of this policy,
First, the deviations of income from its equilibrium will be uncorrelated
and, in fact, equal to the random shocks administered to the system, 10 The
fact that no smoothing of these shocks occurs may not be particularly desir-

able. It may well be, for example, that it is easier to adjust to slowly

Under appropriate conditions, this result is true of higher-order auto-
regressive systems as well. For a discussion of this point in a somewhat
different context the reader is referred to Bode and Shannon [3] and Box
and Jenkins [4],
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varying fluctuations than to completely random movements. This is s of
course, the idea underlying Baumol's implicit suggestion [2] that low-frequ-
ency variations are less undesirable than high-frequency oscillations. This
example indicates that there is a trade-off between the shape of the spectrum
and the variance of the output. A policy which is oriented toward smoothing
the disturbances is not a minimum-variance policy.

A second possibly undesirable feature of minimum-=-variance policies
may be illustrated by assuming that autonomous expenditure is constant
over time, - In this case the comparative static multiplier is m = (1+b+c)“1
and the minimum-variance policy reduces the multiplier to unity. This in-
dicates that there is a trade-off between the multiplier and the variance of
the deviations from the equilibriuvm time path of income, This trade-off may
be developed more explicitly by examining a '"constrained minimum-variance
policy" of the following variety; minimize V(b, c) subject tom = k (2 con-

stant)., For this stabilization policy the parametric first-order conditions

are
b = L - ""—'—.,1,‘..“
m [ e el
(17)
c = ':'lm—v ~1
¥ m

and the minimum-variance ratio subject to the multiplier constraint is

V(m) = m ¥z - 1), (18)

1It seems to be a plausible conjecture that the results similar to those
described here can also be derived under the assumption that autonomous
expenditure is growing at a constant relative rate per annum, p, in which
case the comparative static multiplier is

m = (1+b(1+ p)—l +c(l 4 p)-z)-l.



- 19 o

The multiplier-variance frontier shown in Figure 8 exhibits the expected
property that the variance ratio varies directly with the multiplier, It is
also interesting to note that the autoregressive coefficients corresponding
to the constrained minimum-variance policy lie in the third quadrant of the
parameter space as shown in Figure 9, This means that the power spectrum
of the constrained policy exhibits a relative minimum on the interval (1/4,
1/2) cycle per period. As the multiplier is increased, the relative minimum
of the spectrum is shifted to a lower frequency as shown by the iso-frequ-
ency loci of Figure 3, This finding in some sense reinforces the concern
of stabilization policy with the traditional three to four year business cycle
for it is in precisely this range that, for plausible values of the multiplier,

the spectrum should exhibit a mrinimum and not a maximum,

5.0 Summary

This paper has been concerned with the properties of stabilization
policies in linear stochastic systems. Techniques which may be used to
evaluate the stochastic response to changes in the parameters of the system
were described, One of the conclusions which emerged from the analysis is
that it is not in general valid to assume that the stochastic response and the
transient response of a linear system have identical properties with respect
to amplitude and periodicity. In fact, it was shown that policies which in~

crease the stability of the system in the sense that they increase the rate
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at which the transient response damps out may actually increase the variance
of the time path of income,

In connection with the design of stabilization policies, it was found that
there exist two trade-offs: one between the variance and the shape of the
spectrum of the disturbances from the equilibrium path of output, and the
other between the variance and comparative static multiplier of the system,
The objective function on the basis of which policy is designed must there-
fore explicitly or implicitly include all three of these characteristics to

provide meaningful results,
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