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ABSTRACT

It is well known that the solutions of systems of stochastic difference
equations that are obtained when the errors are neglected may show widely
different patterns from the solutions that take these errors into account.
Moreover, the results of a number of Monte Carlo simulation experiments in-
dicate that the stochastic solutions often exhibit realistic time paths of
the variables whereas the deterministic solutions generate time paths which
are markedly disimilar from the observed paths of the variables. Yet, des-
pite the presumed importance of the disturbance terms, very little effort
has been devoted to the analysis of systems of stochastic difference equations
that arise in economics. The purpose of this paper is to sketch an analytical
procedure that can be used to characterize the stochastic properties of systems
of equations and to apply the technique to a simple multiplier-accelerator
model of the United States economy.

The analytical methods which are used are based on the spectral repre-
sentation of a stochastic process. Attention is focussed on the spectra and
cross-spectra which are implied by the system of egquations. Since the pro-
cedure is analytical, it avoids the difficulties associated with the analysis
of simulation experiments. In particular the results are exact and are not
subject to the sampling variability inherent in simulation experiments.

A simple multiplier-accelerator model i1s introduced to illustrate this

method of analyzing stochastic systems. The parameters of the model are
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unnecessary for it is then possible to obtain the Theoretical power spectra
directly from the system of equations. The purpose of this paper is to outline
this analytical approach to the analysis of stochastic linear systems and to
illustrate its use in connection with a relatively simple dynamic model.

The paper is structured in the following way. In the next section the
final form of a linear econometric model is described using operator notation.
In Section 3 the usual methods of determining the dynamic properties of an econo-
metric model are described with reference to the general solution of the system
of equations. This provides the necessary background for the discussion in
Section 4 of the stochastic properties of linear models. The paper concludes
with an application of the technigque to a simple multiplier-accelerator model.
The computational details and interpretation of the results are described within

The context of this model.

2. The Final Form of Linear Econometric Models

Before discussing the dynamic properties of stochastic econometric models,
it will be useful to establish some notation and the framework within which the

analysis will be conducted. Consider the standard linear econometric model

(2.1) By, + Tz, = u

where B and I' are gx g and g x k matrices of coefficients, y is a
g~dimensional vector of endogenous variables, 2z 1is a k-dimensional vector of
predetermined variables, and u 1s a g-dimensional disturbance vector. Through=
out the paper it is assumed that the coefficient matrices B and T are known
so that the only source of uncertainty arises in connection with the residuals

generated by the disturbance process. For expository purposes it is also



convenient to assume that all identities have been eliminated from the model.
As shown in the Appendix this is by no means necessary.

If the model is truly dynamic the vector of predetermined variables will
include lagged values of the endogenous variables. Let the vector of predeter-

mined variables Z. be partitioned such that th includes only the lagged

endogenoug variables and ZEt includes only the exogenous variables. Provided
I' is partitioned correspondingly, (2.1) may be rewritten as

(2.2) By, + T + sz = u

1%1t 2t t

If r» denotes the maximum lag of any endogenous variable in z the lagged

it ’

endogenous terms may be written explicitly as

(2.3) Iz

121 = AV g T BV Tt AL L

where the Aj(jzl,r) are g x g matrices. Introducing the lag operator L

the system may be expressed as

(2.4) AQ) vy, = Tz, + ug

where - v
(2.5) A(L) = B+AL+AL +...+AL

The final form of the system may be obtained as follows. Let the g x g
A-matrix  a(\) denote the adjoint of A(N) and let A(N) = IA(K)I denote The
determinantal polynomial of A(N) . Premultiplying (2.4) by a(L) yields the

final form of the econometric model:

(2.6) ||a@)]]| vy = -a(L) + a(l)

o Zot, Yy

vhere ||A@)|| is a metrix with A(L) on the main diagonal and zeros everywhere

else. The final form is thus a system of stochastic difference equations, each



terms. The usual method of determining the dynamic properties of the solution
1s to suppress the stochastic part of the solution and to analyze only the deter-
ministic solution. This is equivalent to looking at the expected value of the
time path of the endogenous variables of the system given the exogenous variables.
Two kinds of information are obtained from the deterministic system. The
values of the EEEEE of the determinantal equation yield information about the
modulus and periodicity of the transient response. If the roots are all less
than unity in absolute value, the system is stable and approaches the particular
solution from any set of initial conditions. If complex roots occur this is
usually taken as an indication that the system will tend to oscillate. The
‘periodicity and rate of damping of the sinusoidal components contributed by com-

Plex roots can be ascertained from these roots. Dynamic multipliers may be

calculated fo determine the response of the endogenous variables to changes in
the exogenous variables.

There is little doubt that these methods provide interesting and useful
information about the system of equations. For short-term forecasting and the
formulation of discretionary stabilization policy, these techniques may provide
a sufficient characterization of the dynamic properties of the model. If, how-
ever, the longer-term properties of the model are to be investigated, it may notj
be reascnable to disregard the impact of the disturbance terms on the time paths
of the endogenous variables.5 Neither of the above techniques provides infor-

mation about the magnitude or correlation properties of deviations from the

iAs shown in [5], disregarding the disturbance terms may be quite misleading.
For example, stabilization policies designed to increase the stability of the
system by reducing the modulus of the roots may in fact increase the variance
of the system.
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since, by definition, v and Uj(w) are a Fourier-transform pair.  This last

expression, referred to as the spectral representation of the process, can be

written: in matrix form as
it
¢35 = [ &) w

where U(w) , which is referred to as the kernel of the process, is the g-dimen-
sional vector of stochastic functions defined by (4.1).

Similar relationships hold for the covariance functions of the disturbance

. 1 i and. 181
process. Le yjk(s) denote the covariance of ujt and W consider
the functions
[00]
1 -1lws .
(b)) fjk(m) = 5 I e 7Jk(s) (3,k=1,2,...,8)
§=m 00
defined on -7 < w < w . It again follows that
1
lws .
(k.5) 7jk(s) = \/ﬁ e fjk(w) da (j,k=1,2,...,8)
: 25

which is referred to as the spectral representation of the covariance functions.

The kermel of this last transformation, fjk(w) , 18 the cross-spectrum relating

the two disturbance processes ujt and ukt .
IS . . . .
That (4.1) implies (4.2) may be seen by substituting for U.(w) from (4.1)
into (4.2) and noting that J
7t
. 2n t =8
Jf elw(tas) s = -{
L7 0 t 4 s
Therefore elwt U.(w) can be thought of as a generating function of ujt where

integration repla%es the more usual differentiation procedure.



implied by the model will now be derived. Returning to the complete solution of
the linear econometric model given by (3.2), the particular solution corresponding

to the disturbance terms can now be written as

1
it

(4.10) Ve = ZRTj \jpe U(w) dw
7t

where u,'t has now been replaced by its spectral representation. Interchanging

the order of the operations in this expression leads directly to

C(4.11) y, = f X 1 () Ulw) an

=1t

iwt it
where e % T(w) = et a(w)/Alw) is the g x g transfer matrix obtained by

operating on eiwt by a(L)/A(L) 59 This interchange of operations involved in
going from (4.10) to (4.11) is permissible provided that each of the elements

in the matrix a(L)/A(L)‘eiam converges absolutely. This will be true if the =
roots of the determinantal equation XHAQE) = 0 are of modulus less than one
so that the system is stable. Provided this is the case, this last expression
indicates that the kernel of the y_ process is Y(w) = T(w) Ulw)

The spectral matrix F(w) = [Fij(w)] of the endogenous variables is

now obtained using (4.9) with the appropriate substitutions:

(L.12) F) = E[Y(w) Y*(@)] = E[T(w) U) ™) T™@)] = T) £) ™) .

9Specifically, each element of the g x g matrix a(L)/A(L)isa rational fumction
in L , a typical element being

Y
ao + alL +s..+ a L

oo ol 4
bo + blL + + an

for example. Operating on elam with this rational function yields

-iw - 1pw
. a. + o6 s
elwt : o al e + + ap e ]

=1 ’ - inm

b, + b, e +...+ b e

0] 1 n

‘ . . -iw .
provided the power series expansion in z = e + of the denomihator converges

absolutely. As indicated in the text, this is true if the system is stable.
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A more general assumption about the disturbances is that they are

generated by the process

(k.15) w,o = HO v P E v ke B v, o

where Ve is a g-dimensional vector of gerially independent random variables
with contemporanecous variance~covariance matrix Z' . In this case the spectral

matrix of the residuals is

(4.16) E[ U(w) u*(w)l] E[H(w) V(w) V*(w) H*(w)]

é-i- H(w) &' T (o)

where H(w) = Hy + H) R H e 108 e spectral matrix of the endo-
genous variables under this assumption is obtained by replacing Z/Eﬁ by

H(w) &' H*(w)/2r in (4.14) . These two specifications of the properties of the
disturbance processes are sufficient to describe most of the linear models which

have appeared in the econometrics literature.12

5. A Multiplier-~Accelerator Model

To illustrate the spectral-matrix approach to the analysis of dynamic
models, a simple multiplier-accelerator model will now be considered. The

model consists of three equations:

lgThe case in which the disturbances 1, have an autoregressive structure has
already been incorporated in the original specification of the model. Suppose
that The model is

Byt + l"zJB = U
ut = H ut_l + vt

where the disturbance vector v is serially uncorrelated. By premultiplying

by I - HL +the model satisfies the conditions underlying the derivation of
(4.16) and (4.17).
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The final form is thus a nonhomogenous third-order difference equation. The

solution of this equation is

(5.5) Y, o= ‘,‘Y_t_+ S, + (0966)J°[1<;l cos 21 £/9.05 + k_ sin 2mt/9.05] + k (0‘,25)JG

t 2

5

where Yt is a particular solution corresponding to the exogenous variables

and G , SJG is a particular solution corresponding to ﬂlt and ugt 5

o k5 are arbltrary constants determined by the initial values assumed by

and

k k

12
Y . From this last eipression it follows that the system is stable since the
characteristic roots are of modulus less than one. One pair of roots is complex
valued 80 the transient regponse oscillates over time with a periodicity of 9.05
years.

Given three initial values of income and the time path of government
expenditure, the time path of income implied by the model in the absence of dis-
turbances can be calculatéd erm (5.4). This is shown as the dashed line in
Figure 5.1 for the sample period 1946.1965. Similarly the time paths of consump-
tion and investment could also be calculated. It should be noted that these time
paths indicate what would happen if the disturbance process were "turned off"
in 1949 since the 1946, 1947, and i9M8 values of incéme which are‘usea as initial
conditioné in (5.4) are actual values and not values which would have been observed
in the absence of the disturbances which were injected into the system in these
three years.

In the presence of random disturbances,bthe actual time paths of the
variables will differ from their expected values given by (5.4). For example,
the actual path of income is shown as the solid line in Figure 5.1. Since it is

these deviations from the expected values that are of primary interest here, the
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government expenditure term and the trend in investment will be suppressed
throughout the following discussion. This has the effect of eliminating‘the par-
“ticular solution Yt from (5.5). After subtracting Yt from the solution, the
transient response and the stochastic response S, are left. The transient
responge, however, tends to zero as 1t increases. DProvided the system has been
started in the distant past, the transient response will be negligible so that
what is effectively present after subtracting the particular solution is the
stochastic response.llF The dynamic properties of this stochastic response will
now be considered.

As shown in the Appendix, it is not necessary to eliminate the identities

from the model before proceeding with the anlaysis of the stochastic response.

Therefore the system may be written in matrix form as it now stands.

o 2 - —p -t = -
1-.25L 0 -.68L + .17L C, WL
(5.6) 0 1-.33L - .49+ 491, I, oy
-1 -1 1 Y, 0
L ) L | B

On the assumption. that u, is serially uncorrelated with a contemporaneous

covariance matrix a = 91, o 16, the spectral matrix of the

11 = 0, O

12 on T

system 1s given by

(5.7) Flo) = T() fw) T*(w)
where 91 0 0
(5:8) T = 4 |0 16 o
0 0 0
14

It should be noted in particular that YH6’ Y47,‘and Y48,CanlnotJbe ysed to

determine the values of the constants in kl’ .k2, and k5 in (15.5). This would be
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range between O and 1/2 in steps of l/lOO cpy. The period of a particular
component, which indicates, the number of years it takes to complete a cycle, is
simply the inverse of the frequency in cpy.

The power spectra of C, I, and ¥ which are implied by the model are shown
in Figure 5.2. The significance and interpretation of the power spectrum is based

on the relationship (4.5) which for s = 0 simplifies to

7

(5:10)  7,.0) = LFjj(w)dmu

For real-valued time seriesg, Fjj(w) is an even functiop of w so that the inte-
grand can be doubled and the integral taken over (0,n) . In this case 2 Fjj(w) A
indicates the contribution to the variance’of the band of frequencies in the inter-
val (w, o.+ dw) . If the spectrum exhibits a relative peak at . , this means
that the band centered on this frequency contributes more to the variance than
neighboring frequency‘bands. For purposes of comparison, recall that the spectrum
of a sequence of independent random variables is a constanf as shown by (4.13).
With respect to the power spectra implied by the multiplier-accelerator
model, it is interesting to note that even though the endogenous variables zall
have the same autoregressive structure as shown by (2.6), the power spectra do
have different properties. These power spectra exhibit relative peaks at 5/40,
5/40, and 4/40 of a cycle per year. Since these peak frequencies correspond to
oscillations of 13 1/3, 8, and 10 years, this model might be called a "major-cycle”
model. - This is not to say that the 8- to 13- year cycle is the only fluctuation
that would be visible if the model were simulated, but it is the predominant

oscillation in terms of its contribution to the variancé of the series.
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Figure 5.4t Gain of Consumption on Income and Investment on Income
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Figure 5.5 FPhase difference (in radians) between Consumption

and Income and Investment and Income
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considered in isolation yield the same relationships in the frequency domain as

does the system (5.1) - (5.3)? To answer this, it is necessary to analyze the

consumption function in some detail. Suppose that the system is

(5.15) C, = .68Yt_l+u.t
(5.16) v, = 25 v toe

where it is assumed thatb € is serially independent with mean zero and variance

2

o =91, Yt and. u.t_S are independent for all t and s , and the power spectrum

~of Yt is the same as that shown in Figure 5.2.
Using the techniques described in the preceding section, it is a simple
matter to show that these assumptions, together with (5.15) and (5.16) imply the

following relationships.

s =2
(5.17) F_ (o) = |1-.25 &™) GE/QJT
(5:18) Foplw) = (.68)°F (o) +F (o)
(5:19) 0 @) = [1+ 7 (@)/(-68)° By ()]
(5.20) GCY(m) = .68
(5.21) 9y @) = - o

The power spectrum of consumption in this alternative model, shown in Figure 5.6,
has the same general shape as that implied by the system of equations. It is,
however, somewhat less peaked and the power decreases less rapidly as frequency
increases. The coherence relationship as shown in Figure 5.7 is similar in
appearance to the system coherence shown in Figure 5.3. Here again the coherence

between consumpbion and income decreases less rapidly than in the system of equations.
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The similarity between the single-equation model and the system model ends at this
point. The gain of consumption on income is a constant in the single-equation model,
whereas the system gain has a shape which is consistent with the permanent income
hypothesis. The phase relationships implied by the two models are also different.

A simple time lag is implied by the consumption equation alone whereas the system
phase relationship is somewhat more complicated. These considerations indicate

that while the simple consumption function alone is not consistent with a permanent-.
income explanation of consumption, the relationship between consumption and income
in. the system is consistent with the permanent income hypothesis.

While this multiplier-accelerator model is an extremely simple system, it
does illustrate the spectral-matrix approach and the results which can be obitained
from the analysis. In particular, it provides a framework within which it is possi-
ble to pursue an analysis of the stochastic properties of an econometric model.

As well, it may be helpful in understanding the spectral representation of

stochastic processes.

6. Conclusion

This paper has concerned itself with an analytical method which can be used
to characterize the dynamic properties of linear stochastic systems. The motivation
for the paper was twofold. First, the solution of an equation or system of equations
with the disturbance. terms suppressed may be quite different from the solution which
is obtained when the errors are taken into account. Second, an analysis of the re-
sults obtained from a simulation of the system with. and without disturbances is
subject to sampling variability so that the results are not exact. Although in
some instances it is possible to determine the limits of sampling error, it was

felt that an analytical approach would be desirable.
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It was suggested that the spectrum matrix of the system provides a useful
characterization of the stochastic properties of the model. The information which
is needed to derive the spectrum matrix of the system is exactly the same as that
needed to perform a simulation of the model. However, the spectrum matrix and the
Quantities derived from it such as the power spectra, coherences, and phase rela-
tionships, are exact so that the sampling variability associated with the analysis
of simulation experiments is avoided.

The approach outlined in the paper was applied to a relatively simple
dynamic model. The results obtained from this model were useful in clarifying the
interpretation of the method and indicated that the technique is computationally
feasible. A final evaluation of the usefulness of the spectrum-matrix approach
will have to wait until some experience in. its application to large-scale models
has been accumulated. At this point, however, it does seem reasonable to conjec-
ture that the approach will be useful in studying the dynamic properties of linear

econometric models.
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APPENDIX

The Treatment of Identities in Linear Systems

In the text it was assumed that the identities had been eliminated from
the system by appropriate substitution. In this appendix it will be shown that
this is not an essential restriction and, in fact, the methods described in the
text can be applied to systems without eliminating the identities.

Consider a g-equation system in which there are m stochastic equations
and h = g-m identities. Without loss of generality the exogenous variables are
suppressed throughout the following discussion. The reader may wish to convince
himself that this procedure is valid by including a vector of exogenous variables
.through the first few steps of the exercise. The m stochastic equations can be
written as

(A.1) A(L) Ve = By

where A(L) is an m x g matrix of polynomials in the lag operator L, y is a
g-dimensional vector of endogenous varisbles and u is a g-dimensional vector

of stochastic disturbances. The set of h identities can similarly be expressed
as

(a.2) B(L) y, = 0,

where B(L) is h x g and Oh is the null vector. It will now be shown that

the g x g spectral matrix of endogenous variables can be obtained by applying

the methods described in the text to the system



Now, (A.3) can be solved for the endogenous variables in terms of the disturbances:

Vi TCl(L) Ce(L) u, Cl(L) v,
(A‘l5) = =
Vo D, (L) D, (L) O, D (L) u,
The kernel of the y£ process is thus
T, () C (@) Ulw)
(A.16) =
b)) -Dl(w) U(w)
so that the spectral matrix of the system is given by
- -
| Fp (@) Fipl)
A.17) Flw) =
Foy (@) Fop @) ]
@) £e) C*e) 0 @) ) Drw) ]
Dl@) f(w) %f@) Dl@)f@)]Hﬂw)
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It remains to be shown that the elements in this matrix are identical to
the expressions given in (A.10) - (A.13) . By definition of C, and. Di (i=1,2),

it follows that

1l
-

(A.18) (a) AC. + AD

N Py (c)vAlCE+AD = 0

22

(b) B,C, + ]32])2 I (a) B,C, + BEDl = 0

I

Solving for ¢, from (A.18a) and (A.18d) yields
- 1 -1
(A.19) C, = [Al ~A2]32 Bl]
which is identical to T(w) introduced (A.8). This shows that the first element
on the main diagonal of (A.17) is identical to (A.10). A similar argument shows
that all the elements in the matrix are, in Tact, identical to the corresponding

expressions in (A.10) - (A.13). Thus it is not necessary to eliminate the identities

before proceeding with the computation.



