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ABSTRACT

After the coefficients of an econometric model have been estimated, it is
often of interest to determine the dynamic properties of the resulting system of
equations. Two general methods of analysis are often employed in this connection.
If the system of equations is linear in the endogenous variables (or if a linear
approximation can be obtained), then the techniques applicable to systems of
linear difference equations with constant coefficients can be employed to determine
the properties of the time paths of the endogenous variables. With this approach
the fact that the equations are not exact is ignored and the system is analyzed as
if 1t were a deterministic system. The second general approach involves the study
of simulation experiments in which the stochastic nature of the equation system is
explicitly recognized.

The Klein-Goldberger model of the United States economy has been subjected to
both types of analysis. What has not been considered, however, i1s the use of
analytical procedures to determine the stochastic properties of the model. In this
paper, techniques that have been developed in connection with the study of random
Tunctions and "modern" time-series analysis are used to analyze the "stochastic
dynamics" of the Klein-Goldberger model.

Iwe linearized versions of the model, one in which tax yields are assumed to
be exogenous and one in which tax-yield equations are included, are analyzzd. The

spectrum matrix of the endogenous variables is derived and the implied power spectra

and coherence, gain, and phase relationships of selected variables are discussed.

Several interesting conclusions emerge from the analysis. (i) The power spectra



of the endogenous variables in both models have the "typical spectral zhape™ in
whizh power decreases as frequency increases. (ii) The power spectra of the
first differencesof the endogencus variables differ between the two medels. The
excgenous tax yield model might be called a leng-swing model in that the first-
differenced power specira exhibit relative peaks near one-twentieth of a cycle
per year. With endogenocus tax yields, the model ig more nearly a business cycle
model in which the relative maxima of the power spectra correspond to a four- or
five-year cycle. (iii) The phase differences implied by the model are in close
agreemert with previously published simulaetion results. (iv) If the tax equa-
tions are regerded as automatic stabilizers, the differences between the two
medels are in general agreement with the theoretical work on stabilization policy
in dynamic systems. In particular, the variance ig reduced as a result of the

irtroduction of the tax equations, bubt the frequency of cscillation is increased.



STOCHASTIC PROPERTIES OF THE KULEIN-GOLDBERGER MODEL

E. Philip EHowrey®

1. Introduction

Over the past several decades a considerable amount of effort has been

devoted to the solution of various problems associated with the estimation of
parameters of econometric models. Much less attention, however, has been given
to the analysis of the dynamic properties of the specific structures cbitained
from the estimation procedure. Moreover, the systems analysis which has been

performed has, for the most part, been concerned with the deterministic system

obtained by suppressing the disturbance vector - - the sine qua non of the
estimation problem - which appears in the basic formulation of an econometric
model.

The simulaticn experiments described by Haavelmo [9], Fisher [4], and
Adelman and Adelman [1], to mention only a few, indicate that the time paths
generated by a model with and withcut the disturbance vector can be counsiderably
different. These studies implicitly suggest that the disturbance process imparts
a certain amount of realism to the time paths of the variables *in the ‘model.
Despite the presumed Importance of the disturbances, little has been done to in-

nroduce analytical procedures to evaluate the stochastic properties cof economevwric

models.

The author has benefited greatly from the opportunity to discuss the results
gented in this paper at a seminar held by the Department of Statistics,
neeton University. The penetrating commente of Michael D. CGodfrey and John
Tukey are gra ,efully acknowledged. The research underlying this paper was
f::n@d in the Econometric Research Program with the support of the National
ence Foundation Grant (GS 551). The computations were performed on the
ceton University 7094 Computer which is supported under NSF Grant GF 579.
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The purpose of thig paper is to apply some of the techniques developed in
connection with time series analysis to the Klein-Goldberger econometric model
of the United States [7,12] to determine the dynamic properties of the stochastic
response of the system of equations. Specifically, the spectrum matrix of the
medel is derived and the implied power spectra, coherences, and phase relationships
of selected endogenous variables are explored. The spectrum-matrix approach has
been described in some detail elsewhere [10], so cnly a brief summary is given in
the next section. In Section 3 the two versions of the model which will be
analyzed here are described and the characteristic roots are determined. In
Section 4 the power spectra are derived and the phase relatiouships are examined
in Section 5.

The Kleln-Goldberger model has been selected for an experimental application
of the spectrum-matrix approach for two reasons. First, it is a moderately large
system ard should provide a reasonable test of the computational feasibility of
the spectrum-matrix approach. In addition, this model has been subjected to ex-
tensive simulation experiments [1] and the simulation results provide an interesting

comparison with the results obtained from the analytical procedure.

2. The Spectrum-Matrix Approach

Consider the standard linear econometric model

(2.1) By, +Iz_ = u

waere B and I' are coefficient matrices, y 1s & vector of endogenous variables,
z 1s a vector of predetermined variables, and u 1s a vector of disturbances.
The analysis that follows is applicable to either the structural form of the sys-

tem (2.1) or the reduced form glven by
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where II = -B ' and Ve = B U o For comvenience, the reduced form will
be corsidered throughout with no loss of generality.
If the model is dynamic, the vector of predetermined variables will include

lagged values of the endogenous variables. Introducing the lag operator L

defined by Ly{ = Vi o the reduced form can be written as
(25) [I-H L-IL Lg— =10 Lr] V. = Ix +v
Sl 2 r t ot t
where Hi,ﬂ;,...,ﬂi are square matrices of coefficients of yt—l’yt-E""’yt-r3
and Hb is the matrix of coefficients of the exogenous variables x, . Now it

is clear that (2.3) is a system of stochastic difference equations. A formal
solution of this system is obtained in the following way [2,5,10,13]. Let A(L)
denote the operator matrix shown in (2.3%) as ‘[I—HrL—...-HTLr] , let a(L) de-

note the adjoint of A(L) and let A(L) derote the determinantal polynomial of

AL) (= lA(L)l = |a(L)| ). Then the solution of (2.3) is given by
. _ t a(L) a(L)
(E,Ll-) y—t = K A + m I[O .X._t + m V_t

In this solution K is a matrix of polynomials in t (of degree zero if there
are no repeated roots), A is the column vector of roots of the determinartal
equation,l ard a(L)/A(L) is a matrix of rational functions of the lag operator.
In what follows attention will be focussed on the stochastic response of the
system given by the last term in the solution shown in (2.%). A natural way to

characterize the stochastic response is by means of the spectrum matrix of the

system [10,14]. In order to derive the spectrum matrix it is convenient to

lThe converntion AV - [A o,xZ] is used here.

l}ac
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introduce the spectrum representation of a stochastic process. Suppose that the
digturbance process v is wide-sense stationary, That is, the means, variances,
and lagged covariances are invariant to translation in time. Then the specirum

representation of Ve is
i

(2.5) v, = feiwtdv(as)

=1

wvhere dV(w) is a vector of stochastic set functions defined by

1 2 '
- 1S
sz ° € Vs

S=-00

(2.6) dAv(w) =

Now the spectrum matrix of the disturbance process is defined by

x .
(2.7) £() = Blav(e) @) = & = ¢ O I(s)
SEY
where I'(s) = E[vt vﬁ S] is the covariance matrix of lag s of the residuvals

and. ¥ denotes the conjugate transpose operation.

The spectrum matrix of the system of equations can now be obtained by first
substituting (2.5) into (2.4) to obtain the spectrum representation of the stochastic
response of the system:

19
(2.8) 7, = Z(ig fe"“’t V() = fei‘”tm(w) AV (o)
~ 71

‘o

The second equality results from interchanging the order of the operations and

defining the transfer matrix T(w) as the resulting matrix of rational functions

in ® obtained by operating on elum vy a(L)/A(L) . This interchange of opera-
" . . s . -1 dwt . . ] .
tions is permissible provided [A(L)] ~ e converges which will be the case

if the roots of the determinantal equation lie outside the unit circle. By com=-

paring (2.8) and (2.5), it is clear that the spectrum representation of the



stochagtic response of the system is
(2.9) d¥(w) = T(w) aV(w)
and from (2.7) it follows thdt the spectrum matrix of the system is
(2.10) F(w) = EB[T{(w) &V(n) av¥ (@) T™*(@)] = T(w) flo) T*) .

The steps involved in computing the spectrum matrix of a system may be
summarized as follows.
(a) Determine the spectrum matrix of the disturbance process f(w) . If,

for example, the disturbance process has the property that

r(s) = {j R

s % 0]
then the spectrum matrix of the residuals is
1l
as may be seen from (2.7).

(b) Determine the transfer matrix T(w) . A computatiorally simple scheme
for evaluating T(w) follows from the fact that

T{w) = %é%% = [T-1 T Hre;inm]'l

Thus the transfer matrix may be obtained by inverting for given values of
the complex-valued matrix on the right-hand side of this equation. It
should be noted that these expressions are valld provided the system is

stable so the roots of the determinantal equation should be evaluated

before proceeding with this step.

(¢c) The spectrum matrix F(w) i1s then obtained by performing the matrix
miltiplications shown in (2.10). A common procedure 1s to evaluate the

spectrum matrix at a set of equi-spaced frequency polnts oxn the interval [0,=n].



The interpretation of the results of the compuitation is best left for
consideretion within the context of the Klein-Goldberger model. At this Jjuncture,
it migh%t be pointed out that the power spectra of the endogenous variables are
cortained on the main diagonal of the spectrum matrix and the cross-spectra are given
by the off-diagonal elements. These spectra and cross-spectrs are the expected or
theoretical values of the estimates that would be obtained by simulating the model
and then analyzing the results using spectrum estimation technigues. The analyticadl
procedure sketched above has two main advantages over the simulation approach. Filrst,
the simulstion procedures are relatively expensive in terms of computer time. Second,
and what is more important, the simulation results are subject to sampling variabllity.
The analytical derivation of the spectrum matrix eliminates the uncertainty associated

with the sampling variability of the simulation estimates.

3. The Spectrum Matrix of the Klein-Goldberger Model

The experimental application of the spectrum-matrix approach to sgtochastic
Klein~Goldberger Model of the United States economy. The model itself and the esti-
mation procedures and results are described in Klein and Goldberger [12]. The two
linearized versiong of the model are taken directly from Coldberger [7]. The basic
differernce between the two models is that in one case tax receipts are assumed to
be exogenous while in the other case tax receipts are endogenous variables. In
the former case the model consists of twenty-one equations, fifteen of which are
behavicral (stochastic) relationships. In the endogenous tax yleld model *there
are twenty-five equations. The first twenby-one variables in Table 3.1 are endc-
genoug in the latiter model.

The first step in the computation of the spectrum matrix of the endogencus

variables ig the estimation of the spectrum matrix of the residuals. As described



in [7), the lirnearized reduced form of the Klein-Joldberger model is given by

19

(3.1)  J, = "rv v

W

a

where Ve denctes the derivative of y with respect toc time. The wmatrix of

TCo

zoefficients I 1s obtalned by differentigting the

evaluating the partial derivatives which are functi

bles at the sample means of -

of (%.1) which is used here is

(3.11) Ly, = Hlz, + Av,

where A , the difference operator, replaceg the differential operator.

The residuals in (3.1'), Av were estimated from

t 2
(3.2) Ay, = ay, - T Az

t t

g the observed values for AWE and Az, arnd the estimate cf I

chbained in the linearization. A second set of reziduals was alsco obbtaired from

=42
B

(5“2? ) v = ;Y.;r,' =

in a similar way. The first set of residuals ig appropriate for a descripti

the first differerces cf the variables whereas the second set carn be uvsed fo
describe tThe levels of the variables.

In order to decide whether to use the residuals of (3.2) or theose of (3.2°),

vt

the power spectrum of each set of residuals was estimated to determine w

was most zearly serially unmcorrelated. With only eighieen (3.2) or twesnty (3.2%)

cbhservaibions on each series of residuwals, nce more thawn the geseral outl

spectrum carn be discerned; nevertheless it wag felt that the eztimated spe:

would give some evidence as to the "whiteness™ of the residuals.




TABIE 3.1: Endogenous Variables in the Klein-Goldberger Model

Number Abbreviation Brief Description
1 C Consumer expenditures
2 T Gross private domestic investment
5 Sc Corporate Savings
Ly P, Corporate Profits
5 . D ~Depreciation
6 Wy Private wage bill
{ Nw Number of wage and salary earners
8 W . Index of hourly wages
9 Fr Imports
10 Rl Farm income
11 PR Farm price level
12 Ll Household 1liquid assets
13 L2 Business liquid assets
1k i Long-term interest rate
15 1S Short-term interest rate
16 K Capital stock
17 SB Corporate surplus
18 P Nonwage nonfarm income
19 M National income
20 je) Price level
21 Y Gross National Product
22 | TE Indirect taxes
23 Tw Wage taxes less transfers
2k TC Corporate taxes
25 TM Nonwage nonfarm noncorporate taxes

less transfers



estimated power spectra were not conclusive, they suggested that the residuals
from levels (3.2') were vhite in most cases. The notable exceptions to this state-
ment are the residuals from the equations describing corporate savings, depreclation,
form income, farm price level, household liquid assets, the long-term interest rate,
and the indirect taxes. In all of these cases, the spectrum densities of the resi-
duals had a predominantly downward sloping spectrum and were significantly different
from white noise at the 95 percent level of significance. In the long-term interest
rate, and two of the tax equations --- corporate taxes and nonwage nonfarm noncorpor=
ate taxes less transfers --- there is a concentration of power near % of a cycle
per year which indicates that the model is not entirely successful in capturing the
business-eycle dynamics of the sample period.

Despite these findings the spectrum matrix of residuals which is used in the

computations is

(33 f@) = % &

where g is the estimated covariance matrix of the residuals Gt . The spectrum
matrix of the endogenous variables which is discussed below should therefore be
interpreted as describing the stochastic response of the system when uncorrelated
disturbances are fed into it. It might be noted in passing that several alternative
procedures might have been employed in determining the spectrum matrix of residuals.
For example, The estimated spectra and cross-spectra of the residuals could have
been used in the subsequent computations. Another alternative would involve trans-

forming the residuals in (3.2') by an autoregressive process of the form

)—l-) ~ _ A NN
(3 Vi = Py Ve g TRy Ve o0 T &

N
where the new residuals € are serially uncorrelated. The procedure which 1s

actually used is based on considerations of simplicity and the fact that (3.3)
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corresponds most nearly to the assumption on the disturbance vector that was
employed in estimating the model.

Having determined the spectrum matrix of the residuals, the second preliminary
question which must be answered is concerned with the stability of the model. The
characteristic roots of the two versions of the Klein-Goldberger model were cal-
culated by first writing the equations as a first-order system by introducing new
variables and then evaluating the characteristic roots of the matrix of this first
order system [2,5]. The roots of modulus greater than .05 for the exogenous tax
yield case are shown in Table 3.2 and in Table 3.3 for the endogenous tax yield
model. It will be noted that both models are stable since all of the roots are of
modulus less than one. In the exogenous tax yield model, there are five real roots
and three pairs of complex roots which are greater than 0.05 in absolute value. The
periods of the complex roots are approximately 593, 2y, and 9 years for this version
of the model. For the endogenous tax yield model there are seven real roots and two
pairs of complex roots which are greater than 0.05 in absolute value. For this
version of the modéel the periods of the complex roots are approximately 96 and 6
years.

This completes the preliminary computations and the spectrum matrix of the
endogenous variables can now be computed using Equation (2.10). The results will
be described in the next two sections: first the power spectra of selected endo-
genous variables and then the coherence and phase relationships of selected endogenous

variables.



Dominant Roots of the Linearized Klein-Goldberger Model:

.11 -

TABLE 3.2

Exogenous Tax Yield Case

§§§£;£§£E Imaginary Part EQEEEEE Period
0.9815 0.0 0.9815

,0.9813% i000104 0.981k 592.9
0.850k4 +0.2239 0.879k4 b b
0.8162 0.0 0.8162

0.6145 0.0 0.6145

0.3211 0.0 0.3211

0.2339 +0.2063 0.%119 8.7
-0.0762 0.0 0.0762

TABLE 3.3
Dominant Roots of the Linearized Klein-Goldberger Model:
Endogenous. Tax Yield Case

Real Part Imaginary Part Modulus Period
0.9941 0.0 0.9941

0.9815 0.0 0.9815

0.9776 0.0 0.9776

0.848% 0.0 0.8483

0.8139 0.0 0.8139

0.6046 i000596 0.605% 96.1
0.3321 0.0 0.3321

0.1076 +0.2395 0.2626 5.5
-0.0811 0.0 0.0811
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4. Power Spectra of Selected Endogenous Variables

Before examining the power spectra of selected endogenous variables in the
model, several alternative hypotheses which williaid in the interpretation of the
results should be formulated. The simplest hypothesis about the power spectra im-
plied by the model is that they are constant over frequency. If this were true,
the autoregressive structure of the model would be virtually meaningless since the
response to white noise would be a sequence of uncorrelated random variables. A
casual inspection of the characteristic roots of the system indicates that this is
highly unlikely, however. The fact that there are several real roots which are
close to one suggests that an alternative hypothesis is more likely to be true;
namely, the endogenous variables all have the "typical spectral shape" [8]. In
this case the power spectra would indicate that power decreases smoothly with fre-
quency except possibly at very low frequencies. A third hypothesis of interest is
that the power spectra of first differences of the endogenous variables are white.
This is similar to the typical-spectral-shape hypothesis but is somewhat stronger
for it is possible for a root close to one to dominate the shape of the spectrum
and therefore obscure the contribution of higher frequenciles £o the power spectrum.

The power spectra of consumption, investment, and gross national product
are shown in Figure 4.1 for the exogenous tax yield model and in Figure k.2 for
the endogenous tax yleld model. The spectra of these variables are representative
of the spectra implied by these two models and indicate that the levels of the
varizbles do exhibit the "typical" shape. This is, of course, not surprising,
since in both models there are several positive real roots which are close to
unity. It is interesting that investment in the exogenous tax model exhibits a

relative peak at 1/25th of a cycle per year and a relative peak near l/6th of a
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Figure 4.1 Power Spectra of Consumption, Investment, and Gross
National Product Implied by the Exogenous Tax Yield Model.
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Figure 4.2 Powgr Spectra of Consumption, Investment, and Gross
National Product Implied by the Endogenous Tax Yield Model.
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cycle per year in the endogenous tax model, although in the latter case it is

barely discernable.

The first differenced power spectra of consumption, investment, and income
are shown in Figures 4.3 and 4.4 for these two models. These were obtained by
mltiplying the power spectra of the levels described above by the gain (squared)
of the first-difference filter which is Ge(w) = Il—e"i(D e . In the exogenous
tax yield model, the first-differenced power spectra of these variables exhibit
relstive peaks at l/EOth of a cycle per year. The relative peaks emerge at much
higher frequencies in the endogenous tax model: l/8th of a cycle per year for con-
sumption, l/hth of a cycle per year for investment, and l/5th of a cycle per year
for income. These spectra illustrate the point which is exhibited clearly in Table
4.1 that the two models have quite different stochastic properties. Table 4.1 shows
location of the relative peaks in the power spectra of all the endogendus variables
in each of the two models. A guick glance at the table indicates that in the exo-
genous tax yield model, the power is concentrated in the low-frequency end of the
spectrum whereas in the endogenous tax case, the power is concentrated in the inter-
mediate frequencies.

This raises the interesting question of why the two specifications should
differ so dramatically in their stochastic implications. Tax equations of the
type embodied in the Klein-Goldberger model are traditionally thought of as auto-
matic stabilizers and therefore would be expected to reduce the variance of the
endogenous variables. This reduction in variance is achieved in the Klein-Goldberger
model since the power spectra implied by the endogenous tax model lie uniformly

o
below the corresponding spectra for the exogenous tax model. However, the reduction

2This is true even though the tax equations are not exact and therefore contribute
to the variance of other endogenous variables through the disturbances which are
introduced into the system by their inclusion.
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Figure 4.3 First-Differenced Spectra of Consumption, Investment,
and Gross National Product Implied by the Exogenous
Tax Yield Model.
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TARLE L.1: The Location (in years per cycle) of Relative Peaks
in the Power Spectra Implied by the Klein-Goldberger Model¥*

Exogenous Tax Yield Model Endogenous Tax Yield Model
Variable Levels l First Differences Levels l First Differences

C - 20 - 8.3
I 25 20 5.9 3.6
S, 25 20 5.9 -
P, 25 20 5.6 3.6
D - 25 - -
K1q 25 20 - 5.6
N, 25 20 - 4.8

- 25 - 5.0
Fr - - - -
Ry - - - -
Pr - 25 - -
Ly - - - -
Ly - 53 - 5.9
i - 53 - 55
iz - - - -
K - 25 - 5.6
SR - 25 - 5.6
P 25 20 5.6 3.8

25 20 - 5.0
P - 25 - 4.8

- 20 - 4.8
TR 3.6 -
Ty 5.9 -
T 5.6 -
Ty 5.9 -

*The entries in the table are the inverses of the frequencies measured to
the nearest l/lOO of a cycle per year at which a relative peak emerges. A
dash indicates that the power spectrum does not exhibit a relative maximum
inside the interval (0,1/2) cycle per year. A blank indicates that the
variable is not included in the model.
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in variance is accompanied by a change in the shape of the power spectra as indicated
by the table, low frequency power being attenuated relatively more than high-frequency
power. This 1s consistent with Baumol's finding [3] that stabilization policies that
increase the stability of a system often result in an increase in the frequency of

oscillation. Similar results have been derived for simple stochastic systems [11].

5. Coherence and Phase Relationships of Selected . Endogenous Variables

The coherence and phase relationships implied by the two versions of the Klein-
Goldberger Model are summarized in Table 5.1. The coherences between selected variables
and grose national product are shown at two frequencies: l/QOth of a cycle per year
and 1/Mth of a cycle per year. The phase differences in months between gross national
product and selected variables are also shown at these same two frequencies. In the
last column of the table the phase relationship obtained from the Adelmans'® simulation
[1] is also shown.

A number of interesting conclusions emerge from a comparison of these figures.
First, the coherence between GNP and the other variables in the frequency band that
corresponds to a twenty-year cycle is generally reduced by the introduction of en-
dogenous tax yields. In only one instance, the coherence between GNP and business
liguid assets, is the correlation at l/QOth of a cycle per year increased, and in
this instance the coherence between these two variables is fairly low in The exo-
genous tax yield model. On the other hand, the coherences between four-year com-
ponents is increased in a number of instances by the introduction of the tax equations,
one of the more dramatic increases in coherence being that between GNP and business

liquid assets.
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The phase differences at 1/20 and 1/4 of a cycle per year also indicate
that the introduction of the tax equations make a considerable difference in the
stochastic prcperties of the model. Although it is not true in all cases, the
business-cycle (1/4 of a cycle per year) leads and lags tend to be increased by
the introduction of the tax equations. For example, in the exogenous tax yield
model corporate savings tend to lead gross national product by about two months
whereas 1n the endogenous tax case corporate savings lead by about seven months
ivn the business~cycle fregquency band. In the low frequency band centered on
1/20 of a cycle per year, the wage rate lags GNP by about 45 months in the exo-
genous tax model and by only 6 months in the endogenous tax yield case.

A final comparison may be made between the phase differences implied by the
model and the results which were obbained from the Adelman simulation of the endo-
genous tax yileld version of the model. Alithough the simulation was performed on
the nonlinear model with a few changes from the original formulationB, the com-
parison with the linearized form of the model used here indicates that phase
relationships are quite simular. If a phase difference at the business cycle of
less than + 8 months is comsidered to be coincident, then only two of the phase

relationships are markedly different. In the simulation experiment, depreciation

%The coherence and phase calculations shown in this table are based on the
relationship of gross national product and the corresponding variable shown in
column (1) of the tables. The coherence at 1/L0 of a cycle per year is shown in
column (2) and the coherence at 1/4 of a cycle per year is shown in column (3).
The phase differences at these frequencies are shown in columns (4) and (5). A
positive entry indicates that the variable in question leads gross national pro-
duct while & negative entry indicates that the variable lags gnp. The simulation
phase relationship is teken from Table 3 of the paper by L. and F. Adelman [1].

jAnother factor that could contribute to the difference between the resultis
derived here and the simulation results arises from the properties of the distur-
bance terms that were used in the simulation. Since the model was reduced by
successive substitution before simulation, it is not possible to verify that the
similation disturbances had the same covariance matrix as that used in the compu-
tatlons here.
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was found to lead GNP while the theoretical relationship indicates that depreciation
should be roughly coincident to lagging. In the simulation, it was also found

that business liquid assets, when inverted, were coincident with GNP. This implies
that business assets should lag (or lead) by one-half of a cycle or twenty-four
months. The theoretical lag is only fifteen months. A1l in all, the simulation
results compare quite well with what would have been expected on the basis of the

theoretical cross-spectrum analysis.

6. Summary

In this paper the stochastic properties of the Klein-Goldberger model have
been analyzed using the spectrum-matrix approach to stochastic systems. Two
linearized versions of the model --- one in which taxes are assumed to be exogenous
and one in which tax yields are considered to be endogenous variables --- were
considered. It was found that the power spectra implied by both of these models
have the typical spectral shape in which power decreases with frequency except
at the very low frequency end of the spectrum. This was not entirely unexpected
for two reasons. TFirst, it was found that both systems of equations have several
Positive real roots that are close to unity. In addition, since the models were
originally estimated from observations on the levels of the variables involved,
it is unlikely that they would be able to capture much of the dynamic structure
of the economy.

A somewhat surprising conclusion which emerges frdm this analysis is that
the first-differenced power spectra of the exogenous tax yvield model are markedly
different from those of endogenous tax model. The addition of the tax equations

changes the model from a "long swing" model in which the first-differenced spectra
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have pesks near 1/20 of a cycle Per year to a "business cycle" model in which the
differenced spectra have relstive peaks which correspond to a four-or five-year
cycle. The tax relations, traditionally referred to as automatic stabilizers, do
reduce the variance of the endogenous variables, but they have the effect of ine
creasing the frequency of oscillation of the bredominant cyclical components
implied by the model.

The coherence and phase relationships are also markedly different in the two
models. In the exogenous tax model, the coherences are highest in the low frequency
end of the spectrum. The addition of the tax equations redﬁces the low-fredquency
coherence and increases the coherence in the intermediate frequency band around
l/hth of a cycle per year. It was also found that the Phase relationships implied
by the linearized model are quite similar to the phase differences obtained by
applying National Bureau methods to series obtained from a simulation of the model.

The basic merit of the spectrum-matrix approach 1s that it is an analytical
technique which can be used to investigate the dynamic properties of a stochastic
system. The results are therefore not subject to sampling variability which often
makes 1t difficult to interpret the results of simulation experiments. Using this
method it is possible to derive the stochastic broperties directly from the model
rather than performing a simulation and then analyzing the results of the simulation.
This application of the spectrum-matrix approach to the Klein-Goldberger model in-

dicates the types of questions which can be investigated using this method.
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