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ABSTRACT

Various techniques of mathematical programming are applied
to & simple fiscal poliey problem. First the problem is stated
as a linear program. Then the decomposition principle is applied
to a decentralized version of the fiscal policy problem. The
equivalence of a linear programming formulation of the problem
and the formulation as a two-person zero-sum game is shown.
Finally, the rate of change of the value of the game is investi-
gated. The linear program is cast into dynamic programming
formulation in an appendix. Eventually the coefficients of the

constraints are assumed to be stochastic.



FISCAL POLICY, MATHEMATICAT PROGRAMMING

AND TWO-PERSON ZERO-SUM. GAME THEORY*

Heinz A. Schleicher

1. Introductory Remarks

It seems that mathematical programming technigues have not yet been given
the attention they deserve in public finance.l In this paper linear programming
and two-person zero-sum game theory are used to help determine an optimal fiscal
policy. The problem is then cast into dynamic and stochastic. programming frame-
work. This 1s done in an appendix because for economists, trained in public
finance and not familiar with mathematical programming, it will be more difficult
to understand than the first five sections of this paper. The techniques used
are general Instruments applied to optimization problems of a special kind. The
example of fiscal policy chosen 1s merely one among many possible applications
of these four approaches. There are other fiscal policy questions whose

solutions could be aided by use of these methods.

*

The author is very much indebted to Professor Oskar Morgenstern for his
supervision and valuable comments. Earlier drafts of this paper were read by
Alvin Klevorick, Camilo Dagum, Yasuhike Oishi, and Richard Cornwall.

lThere are: k. Fossati, For the Application of Linear Programming to Public
Finance, Public Finance, 2 (1957), p. 118 ff; J. Cutclo, An Application of Linear
Programming to Public Finance, Public Finance, 3 (1958), p. 216 ff; D. Dosser,
Linear Programming and. Public Finance, Public:Finance, 5 (1960), p. 51 f£f; C.
Shoup, Linear Programming and Public Finance, Finanzarchiv, 22 (1962/63), p. 46k ff;
D. Dosser, Notes on Linear Programming and Public Finance, Finanzarchiv, 23 (1963);
p. 279 £f; K.K. Kurihara, A Linear Programming Fiscal-Policy Model of Capacity
Growth, Public Finance, 20 (1965), p. 272 ff.And in a somewhat different context:
Ch. J. Hitch and R. N. McKean, The Economics of Defense in the Nuclear Age,
New York 1965.




As a result it will be shown that a fiscal-policy mix, or in special cases
Just one policy measure has to be used, to stimulate private investment. Searching
for optimal investment stimulation policies, the goverament has +o evaluate costs
and benefits of various policy measures. This point does znot secem to be stressed
enovgh in traditional literature on fiscal poliey. The arbitrary zuwmbers taker
in the following example of unemployed skilled and unskilled labor and the DL~
timal budget loss suggest that varicus employment policies may for a partizulsyr
country be practically infeasible because of their relatively high budget loss.

At Tirst sight, the problem analyzed seems to be artificial beecausze of the
arbitrary coefficients in the linear program. The Present paper 1s not, however,
intended as an evaluation of the coefficients of some ezonometric model of the
state. Instead the aim is to show the broad usefulness of livear programmizg
and two-person zero-sum game theory in public firance. Estimating “he structural
parameters of this model is not the purpose of this raper. Nevertheless it has
to be mentioned that this whole approach is only feasible if the coefficierts
can be estimated.

These few remarks on the coefficients of the linear program have already

touched on one of the major problems involved. Four main 4 fficuities ar

fde

se
when the methods discussed are used ia a more realistiz combext (1) what to
maximize and (2) what coefficients to attach to the comstraints; (3) how many
constraints are there, and (4) are the variables truly indevendert of each other.

ltiez arise.

2

In the present example, only the seccud, third and fourth difficuy
The second one has already been mentioned ard disposed of and will again te
referred tc in the appendix (8), the third one will be referred to in section
(2), the fourth is simply assumed away iz this particular eﬁamb_, hut can be

solved in particular cases at least, as is mentioned in seztion (3).



2. Optimel Investment Stimulation: - A Linear Programming Model

Our model 1s an extension of the Dosser-Shoup-type models in public finance
in the sense that more activities and constraints are given. If one assumes
that the government and/or the central bank can influence private investment
activity,2 and therefore employment, by different kinds of tax, intefest, sub-
sidies, and depreciation policies, then linear programming provides a policy mix
which in the degenerate case contains fewer policy measures for achieving the
goal. As we shall see presently, there are two ways in which this goal may, be
formulated; either a budget is given and has to be allocated optimally between
aims, or, the aims are given and the minimum budget loss necessary to reach
these aims has to be determined.

One of the crucial assumptions of the model is that different policy
measures have different consequences for various kinds of umemployed labor
(skilled and unskilled labor) in a particular economy. For example, a general
interest reduction of a given percentage by the cenbral bark on new investment
increases the present value of investments to be undertaken. It is therefore
likely to result in the substitution of new equipment fcr old; generally in-
vestments with a high share of interest costs will be expanded. But this implies
especlally that skilled labor will be newly employed. It is also likely that
this effeet will not be weakered by adverse effects resulling from lower
income out of interest payments. A tax rate cut in contrast normally cannot

be applied to new investment alone because gains also accrue to past investments.

20. F. C. Brown, Tax Incentives Tor Investment, American Economic Review,
Papers and Proceedings, 52 (1962), p. 335 ff; R. A. Musgrave, The Theory of
Public Finance, A Study in Public Ecornomy, New York, 1959, p. 330 ff.




The effect of such a measure would therefore be of the pure income type. Higher
profit. income would not necessarily mean increased investment. Ir so far as
consumer expenditures then would rise, this easily could lead primarily to new
employment of unskilled labor. An investment tax credit cn the other hand,
which gives a subsidy to firms that invest ir new equiyment, terds to shorhern
the life of assets because it 1s available for every new investment. A greater
influence on the employment of skilled or the employment of unskilled lsber does
not seem to be present. Finally a policy that provides an initial allowance
with repayment over the lifetime of the equipment leads tc a substitutior of
long-term for short-term investment and thus produces the desired increase in
investment activity. The reason is again the effect on the present value of
newly undertaken investments. The longer the lifetime, the higher the gain in
interest which is either not to be paid or, is obtained for this amount of money
which is now no longer needed for the particular investment, and therefore the
higher the present value of the particular investment. Underlying these consi-
deratioﬁs is the further assumption that there exists no considerablie amount of
selffinancing. Then miltiplier effects will lead to a general rickup cf economic
activity which in turn may result in new emplcyment of unemployed werkers azd
offset in the long run the initial tax loss to a certain extert.

But an increase in the present value of a plarmed investment does not
necessarily imply higher actual investment. A further asgumption therefore has
to be introduced. The investment activity in this particular economy before
 adoption of. the fiiscal policy measures is so high that the present value of a
newly planned investment would be zero, unless the government introduces a
investment stimulating measure. This means that there exists an income

equilibrium at underemployment.



Turning to the programming model, let v = the level of tax loss
resulting from a 10 percent interest cut, Vo = the level of tax loss re-
sulting from a 10 percent tax cut, ;y'5 = <the level of tax loss-.resulting from
a 10 percent tax credit, vy, = the level of tax loss resulting from a 10 percent

initial allowance with repayment over the lifetime of the investment. Furthermore
for simplicity suppose there are only two kinds of umemployed labor: skilled
labor (b

) and unskilled labor (b . In a more realistic context this

1 2)
assumption can easily be dropped. Then one can formulate the policy goal in
either of two ways: (1) full-employment of both kinds of unemployed labor with
an undetermined tax loss, or (2) maximization of employment with a budget loss,
fixed ex ante. In the following the first approach is used most.

A plausible assumption must be made about the numerical size of the
coefficients; i.e. how much employment of skilled and unskilled labor, respec- ..
tively, is produced by a one dollar tax loss. The dimension of the coefficients .
is man years of skilled and unskilled labor per dollar tax loss, respectively.

It will be assumed that one dollar tax loss resulting from applying a 10 percent
interest cut employs 3/10,000 man years of skilled labor and 2/10,000 man years
of unskilled labor. As pointed out earlier these different coefficients reflect
the stimulation of capital intensive investments. One may in a loose way infer,
the higher the coefficient for skilled labor, the more capital intensive the
investment. The respective coefficients for a 10 percent tax cut are 1/10,000
and. 2/5,0005 The underlying assumption is that the resulting income effect will
lead to employment of more unskilled than skilled workers. The coefficients for

& tax credit are 2/10,000 and 2/10,000. The assumption that underlies this is

that the general shortening of the life of assets has no decisive influence



on either one of the two kinds of employment. Finally it is assumed that the
initial allowance, with repayment over the life time, has a larger employment
effect on unskilled than on skilled labor. This agsumption may be unrealistic.
But nothing prevents our changing it in a different model. The respective
numbers of skilled and unskilled labor are 106 and 2n106 - These very strong
assumptions on the size of the coefficients will be dropped in the Apperdix (8).

A scale factor has now to be introduced. First, the coefficients aad the

numbers of unemployed are multiplied by 10,000; second, the numbers of unemwployed

are divided by 109 . The following dual linear prcgramming problem results:
Min Z = ¥y + I + 35 + I
5.t Byl + Vo + EyB + y4 = 10

2y, + by, + 2y3 + 3y, =20

120, y,20, 20, ¥ 20

1

The dval maximization problem is:

' =
Max 7 le1 + 20x2
s.t. 5xl + 2x2 E 1
X+ 4x2 <1
2xl + 2x2 § 1

Xl + 3x2 § 1

15 %, are unrestricted.



The budget loss is to be minimized in the primal, subject to employing the given
amount of unemployed skilled and unskilled workers. The coefficients in the
contraints show the various employmént effects per dollar tax loss.

The total value of employment of skilled and unskilled workers (to the
government ) is to be maximized in the dual. X and x, are the ”p{ioes" or
marginal values of skilled and unskilled labor. kBy Xh, X5, X6 are the
opportunity "values" of using the different policies. For the marginal values
to be optimal they must equal the marginal cost of policy J per dollar tax
loss and the opportunity "values" must become zero. As will be seen presently
the marginal value of policy one (interest cut) and two (btax rate cut) is equal
to their respective one dollar tax loss. In the remaining two cases (tax credit
and initial allowante) the value is less than the budget loss. These latter
policies will therefore have to be abandoned in Tthe given simple example.

There exists no direct relationship between these dual prices and the
market prices of skilled and unskilled labor. The dual prices are determined
by the coefficients of the linear program, i.e. by the coefficilents of the con-
straints while <©The market prices are determined by Tthe market forces. This
shows the importance of the duval prices for public budgeting. It is only their
relative size to other public expenditure and tax programs which is of interest.

To solve this linear program one uses the simplex method. In order to
put the problem in canonical form, the slack variables y5 and Yg are intro-
duced into the primal problem',5 and XB, Xh? x5j X6 into the dual. Combining

éFor example, W.J. Baumol, Economic Theory and Operations Analysis, Englewood
Cliffs, N.J., second edition, 1965, p. 116 ff; D. Gale, The Theory of Linear
Economic Models, New York, 1960, p. 97 ff. For an inductive proof of the sim-
plex algorithm see G. B. Dantzig, Linear Programming and Extensions, Princeton,
1963, p. 120 ff. '




both the primal and the dual in one simplex table both programs are solved

simultaneously.
Table I:
% *2
Z' = 0 10 20 ) ;
= -1 %
Xl# 1 3 L y2
= 1 -2 -2
*s 73
=7 = _y5 = -y6

The maximization problem will be solved. Clearly U¥ is then the pivot.

Table IT:
Xl Xll-
AN 5 5 -2 i
x5 = /2|  -5/e%  1/2 ¥y
xg = /2|  -3/2  -1/2 Vs
=% = —;y'5 = -y2

One more pivot step produces the result.



Table TII: x, X,
VAR 6 -2 b
x, =1 1/5 -2/5 1/5 Vs
X, = 1/5 -1/10  -3/10 Ve
x = | 1/5 - 3/5 1/5 Vs
Xg = 1/5 1/10 7/10 Vi
Z = = U2

The solutions to the primal and to the dual can now be read off the table.
They are:
= 2 =
vy %, 1/5

72 = 6 ; ZY = 6
Y, =k %, 1/5

The scale factor introduced above was 109 .Yy y2 , and -Z -have to be

multiplied by this number. The final result is

9
y. = 2.10 x, = 1/5 ,
. z = 6.100; % 7t = 6.10° .
9
= . O =
Yo h.1 %, 1/5
The government has an optimal tax loss of $6.109 . It uses only policy one

(interest cut) and policy two (tax cut). The dual maximal value of the
9

employed labor is of course $6.1O

The wvalue of l/l0,000 man years of skilled labor to be employed is 1/5;
l/l0,000 man years of unskilled labor has the same value to the government.
One man year of skilled and unskilled labor is therefore worth $2,000,

respectively, to the government.
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A slight change in the coefficients produces a degenerate solution which
means that s single policy has to be used by the government. In a more realistic
example this would mean that there are fewer optimal policies than in the ncne

degenerate case. Consider then the following dual linear programming problem:
Min Z .= y, o+ Vo + _Y5 Yy

S.t,. y + Ll'y + 2y + 2 = Oo O

Il

n

[

-

(@]
O

2y, * Myé + by o+ ¥y

y150,y250}y

One can see at once that policy Yo will be used. Its employment effeczt fcr
skilled and unskilled labor dominates all other policies. The optimal feagible

solution to this problem is:
y2 = 5.109 3 yl = y = y)—!- = 0 H L o= 50109 .

The dual has the solution:

= 1M, x = x, = x = 0; 21 = 5.(
*2 1 - 73 4

The difference between non-degenerate and degenerate soluticns may be a rather
artificial one, because even small changes in ons or more coefficients may bring
about degeneracy. But small changes of coefficiernts become almosh meaningless
if projected to economic reality.

The solutions to these dual linear programs show. another remarkable result.
The absolute size of the budget loss may seem to be vractically infeasible for

a particular country. If the assumed coefficiernts should be reglistic, the whcle
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investment stilulation program could be infeasible. E%ther the true coefficients
are greater than those used above, or, different fiscal policy measures to reach
full employment must be adopted.

For simplicity in this example only two constraints and L variables were used.
If this is the case in reality, no application of linear programming techniques
to fiscal policy would be necessary because the optimal mix could be seen by in-
spection. But as already mentioned above there exists no obstacle to introducing
many constraints with many variables. This just requires somewhat more computa~
tional work. Therefore to introduce the distinction between male and female un-
employed or, different age classes of unemployed workers can easily be done. In
the same way different monetary and fiscal policy instruments may be added. The
program also may be divided into different sectors in an economy or different
economic areas. In fact this will be done in a rudimentary way in the next section.

Arguing in this way toward more realism inevitably leads oné to a dynamic
approach to the problem. This does not necessarily meén a dynamic programming
approach, as will be seen in the Appendix (7), but rather some sort of decentra-

lization over time. To show this is not attempted in this paper.

3. Optimal Investment Stimulation: A Decentralized Model

Fiscal policy, in order to be successful, must be used on federal, state
and local levels. Federal measures must not be completely neutralized or even
hampered by state and local counter policies. In practice very often this
harmony of action in economic policy is not reached. The main reason is a certain
degree of state and local autonomy of taxation and expenditure. This does not

brevent onself from imagining a complete agreement on economic policy aims of
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the federal and state governments. But even. if the federal government and the
state governments used their fiscal authcrity for fighting -depressions or infla-
tions this need not necessarily yleld an optimal countercyclical policy. If the
federal government and the states used their policy measures independently of
each other tﬁis could mean a subcptimal use of fiscal authority. Again a simple
example may help to clarify.

A given country may consist of two states and a federasl government. The
federal government may have some overall budgetary powers, the state goverrments
may carry out within their boundaries additional taxation and expenditures. There
may or may not exist aid from government to states cr between states. Thizs would
not interfere with the state autonomy defined in the federal constitution.

Both states are assumed to have a current and a éapital tudget. State T
may be less industrialized than state II. The total courstry may suffer from s
depression which caused more unemployment in IT than in I . There are agein
two kinds of unemployed workers, skilled and unskilled. Fach state wants acw to
fight depression by its own budgetary measures, aided, of course, by federal
fiscal policy. If the federal govermment is willing to pump 40 into the eronomy,
the government of state I is willing to spend 10 cut of the currert and 5
out of the capital budget, the government of II 15 out of the current and 15.
out of the capital budget, this will cause different apounts of employment. - We
may assume that the employment effect of state expenditures and a tax cut‘is
generally lower in. I +than in. II', because ‘I is less industrislized. In
addition one may assume that the employment effect for sgkilled workers is

generally higher if there are tax reductions than if expenditures are increased.

L .. .
- For simplicity convenient numbers are used.
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A geperal tax reduction may increase the present value of newly -undertaken
investments and provide new investible funds. On the other hand new expenditure
Programs may favor more unskilled workers if they are mainly used for road repair
and a generally better road system. The necessary countercyclical federal action
may have a relatively higher employment effect in state II becauge of possible

agglomeration effects.

= X, = level of new employment of skilled labor in state I
Xy = level of new employment of unskilled labor in state I
x5 = Jlevel of new employment of skilled labor in state II
x, = level of new employment of unskilled labor in state .IT
. let the following linear program be given?
Max B = X+ X, 4 x5 + EX)+
s.t. X, + 2x. M= x +x <L
1 2 273 Tk =
Xl + ‘5x2 < 10
2Xl + X, | < 5
‘ % x5 + EXM <15
x, + 2 < 15
3 2k =
, Xl >0 x2 >0 ; Xayz 0 ; X4 >0 .

5The reader may realize that we adopted now for reason of convenience the
second possible approach of formulation of the fiscal policy problem.



This linear programming problem can be solved by using the simplex methods But
because of its special structure the decomposition.algorithm6 can be applied, too.
The decomposition principle implies thé idea of solving the subprograms separately
and providing the optimal solutions to the subprograms to the central authority
for use in the master program. The central executive then checks whether these
subsolutions are optimal alsobgiven.the master constraints. The master program
‘uses convex combinations of the basic solutions to the subprograms. Using the
-dual prices of the master program new coefficients for the objective functions of
the sub-programs are computed. The subprograms provide then new optimal solutions
which go fractionally into a changedlmﬁménrﬁrogram. This process is terminated
when a shift of the scarce common factbr from one state to another can no lorger
bring about an increase in value of the master objective function.

‘Degoting the basic solutions of the subprograms7 as X?, r=1,:00,l,

and XZ, q = 4,...,8, the following master program can be derived:

t = . OQ On O.
Mex E 1(0 .“1) + 1(! Hl) + 1 vl) + 2 V)
, 1
s-t. 1(0.py) + 2(O=.ul)‘+§ (v ) +l(O°Vl) < ko
Ml =
Y1 =
0 0
5.t O+ Ow <k
Mo =1
Vl:l
6

C.f. G. B. Dantzig, op. cit., p. 448 £f; W. J. Baumol, T. Fabian, Decomposition. .
Pricing. foriDecentralization and External Economies, Management Science, II (1964 ) lff.

7The reader may verify that each subprogram has four different basgic feasgible
solutions. The first are of course zero activities.
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Under the assumption that the feasible sets of the subprograms are bounded
and convex, any Xi solving AlX = bl or, A2X = b2 can be represented by a
convex combination of the extreme points of the set of feasible solutions to the

A_ matrices. Hence given any basic

8
subprograms. Xi, X, bi are vectors, Al, o

feasible solution to the subprograms the master program can be derived which con-
tains now the weighted averages X? and XE as variables. . The unknown weights
Hi and vy have to be determined.

The solution of this first master program is obviously E' =0 ,

=1, = 1, W =40 (slack variable). This simply means there is no net

H. Vi

1
increase in employment and therefore the total federal budget (and the state
budgets ) remain untouched. Clearly the dual prices or, simplex multipliers, are
I=0, I =0, ﬂé = 0, I denoting the value of the federal budget dollar,

ﬁl denoting the marginal value of transferring some of the federal budget dollars

to state I and I denoting the marginal value of a transfer of federal budget
dollars to state II. This is a feasible solution, but certainly not an optimal
one. This will be shown by the next few steps.

Using the provisional dual prices, revised state unit value figures must
be calculated. The idea behind this procedure is to account for the using up of
the federal budget dollar by the state programs. We know that every employed
worker requires state and federal measures. Because the use of these federal
budget dollars by the states is different, they impose different costs on the
federal budget. In order to reach an optimal allocation of the federal budget
dollar, these different cost figures must go into the evaluation procedure.

With the given subprograms and the given master solution it turns out that the

6C= f. G. B. Dantzig, op. cit., p. Lh9.
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dual price of the federal budget dollar is zero, of course, because the state
activities are zero.
The revised unit values for the objective functions of the states, are then

given by

Rp=1-1 =1 B,y =

I,._.J
]

rof—
v
I

1- 204 s

R12 12

The unit values of employed labor remain unchanged.
2
To obtain E > 0 at least one of the two optimal solutions to the
subprograms has to be employed in a new master program. One may select X% of

state I, for it contributes to net employment as may be seen by evaluating:

= = o 1-; = a
Rl Rll Xl + 312 X2 14+ 35> Al 0

- The new master program will be

2
= + 4 + 0
Max E Oul u5 v
-+ 0 4+ = 140
s.t Oul 7u5 + Ow W=14
T =
vl = 1
The solution to this master program is:
EX = 4, po=1, v =1, W=33
}»»5 2 l -2 E 2
I =0, n, = L, Hé,z 0

Since II is still zero, the subprograms need rot be recomputed with new unjt

value fitures. Instead, the proposal X% of the seccnd subprogram has to be
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introduced into the master program, because Sl = .68 + 68 = 18 > ﬁé =0 .
Hence the third master program is:

3
Max E~ = Opl + huo o+ Ovl + 18v5

3
.T. 0 + + Ov. + v. 4+ W=154o
s Ky 7“5 1 9 5
Ml + 95 =1
Kl + v5 =1
The solution to this program is B2 = 22, by = 1, Vg = 1, W=24 ,
f'[l =k, I,=18, I = O

The unit values in the subprograms must not be revised because still 1II = 0;
i.e. the public budget dollar is still a free good. Furthermore a comparison

between R, and I, and S. and ﬁé, shows the following:

1 1
Rl=l+5=4.=..:Hl
8, = 6+12 =18 = I,

Because a further shift of the federal budget dollars from state I to state II
and vice versa could not bring about any new increase in the total value of
employment, the Program is terminated9 and must be optimal.

In this simple example the master constraint was not binding, the federal
budget dollar was not a scarce resource and had therefore a zero price. This
in turn led to the result, that independent maximization of employment in both
states did not provide any distortions in the allccation of the federal budget

dollars.

gFor a rigorous proof see: G. B. Dantzig, op.cit., p. 452, W. J. Baumol,
T. Fabian, op. cit., p. 21 ff.
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In other cases where the federal budget deficit is limited and the budget
dollars become a scarce factor, and where there are additisnal constraints the
result may be differentalo Ther both states have to compete for the scarcze
federal budget dollars and the new allocation of funds leads to an optimal set
of variables which is different from the initial optimal solutions to the subt programs
under independent maximization.‘ This shows a very strong case then for coordinated
action between the federal governmenﬁ, the state governments and the local
authorities.

This analysis leads to the problem of externalities which are present in any
macroeconomic fiscal policy setting. As Baumol and othersll have shown these

problems may be solved in a decomposable linear or nonlinear program.

L. Optimal Investment Stimulation: A Two-~Person Zero -Sum Game Model

In this section it will be shown that the lirear programming problem of
section 2 1s equivalent tc a two-person zero-sum game. Game thecory is here used
as a mathematical device rot as a model of economic behavior. Economic policy in
general and the relations between government and the private sector of an eccnomy
especially are a rich source of application of game theory as a model of behavior.

to,demonstrate ‘
But [this i1s not intended in this paper. The adjusted mivimization problem was:

Min Z = vy + ;y'2
s.t. Byl + oy, + 2y5 + ¥y, 210

2y, + hy, + 2y5 + 3y, 220

lOCompare the example of W. J. Baumol, T. Fabian, op.cit., p. 24 ff.

llC.f. W.J. Baumol, T. Fabian, op.cit., p. 18 ff.,and .Ch. J. Hitch, R. N. McKean,
op.cit., p. 396 ff.



Because all coefficients are of the same sign and the values of the different
policies in the objective function are equal to one, one can use a simplified
method to transform this linear program into a two-person zero-sum game.12 The
system has to be rewritten by dividing each row 1 by the coefficients bi* .

The new program is:

Min A = v, ot Vo * y5 + V)
s.t. 5/1Oyl + 1/10y2 + 2/10y5 + 1/10ylL =1
2/20yl + 4/20y2 + 2/20y3 + 5/20yLL = 1

v >O,y2>0,y

12 >O,y)+20.

3 =

But this minimization problem equals exactly the maximization problem of the row

player - (maximin-player). This can be shown easily.

Assume a 2X2 zero-sum game matrix:

811 %o

8 op

21

Player one, the row player, wants to maximize the value of the game, V ;

Max V
S.t. allxl + ‘a21X2 z v
alexl + a22x2 z v
Xl + x2 = 1

lQJ. v. Neumann and Ol Morgenstern, Theory of Games and Economic Behaviour,

Third ed., Princeton, 1955, P 85 ff.; R.D. Luce and H. Raiffa, Games and Decisions,
New York 1957),1 P )-3-25; R i
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It can be shown that this maximization preblem is equal to a minimization problem.
By dividing the constraints by V and writing y3 = Xj/v it 1s seen that player

one can obtain at least V if there 1s a vector y' , where y!

3 >0, for i=1,2,

and % y' =1/, such that:
d 3
Min Yi + Yé
s.T- allyi + aglyé 3 1
Bip¥7 T onlp 21
y{‘ + yé = 1V

? ?

This minimization préblem has the same structure as the minimization problem of
section 1. It is therefore allowed to write the criginal lirear programming prc-
blem in matrix form. The solution of this game requires of course that the equal

' 1
signs are valid, 1l.e. that the difference between =

and the value cf tle game

d
Player one faces the following game with the strategy set

%
J

13

equals zero.

@xl, s a5, au), player two with strategies (Blg BE) .

Py Py
o, | 3/10 2/20
o, 1 1/10 L/20
d; 2/10 | 2/20
o, | 1/10 3/20.

It is easy to see that row three in the matrix game is majorized by row one, and

row four 1s majorized by row two; 1l.e. the majorizing row has at least as big

l5J. v. Neumsnn and O. Morgenstern, op.cit., p. 143 ff.
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values as the majorized row. The problem is therefore reduced to a two by two

matrix which can easily be solved.

If ao = QZS P qg) is player one's unique maximin strategy, and the value
of the game is V , the numerical values for the example are ao = (1/5, 2/5);
V—l =1/6 or V=6 . Similarly for player two BO = (1/3, 2/3); V-l =1/6 or
V =6 . This result is equal to the solution of the original linear programming

problem. The equilvalence between the linear programming problem and the corres-
ponding two-person zero-sum game and vice versa .is shown.lu Both methods can
therefore be transformed into each other.

The equivalence- is certainly a mathematical one. An economic interpretation
does make little sense and may be a little strained in this particular example.
The government minimaximizes the value of the game which is, as shown in the above
example, equal to minimizing costs in the linear programming problem. The zero-
sum assumption underlying the technique seems to be existent only in border cases,
where a revolutionary population acts contrary to the government. Otherwise it
should be also in the interest of the individual citizen to reach full employment
and this at minimum costs. The assumption, as it is sometimes made, that the
government minimaximizes against nature is also not very convincing, at least in
this particular example; for entrepreneurs act decidedly, strategically. But
this nevertheless can be looked upon by the governmment as uncertain and therefore

as a game against nature.

1L

Of course in an intuitive way only. For rigorous proof see: G. B. Dantzig,
op.cit., p. 286 ff. ' l
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5. Marginal Values of the Original Linear Programming Problem and the Derived Game

In this section we are concerned with the rate of change of value, i.e. the

15

-of the matrix game as the entries of the game are varied.
|

The marginal value of the preceding game matrix G in respect to the augmented

marginal value,

matrix H 1s defined as:

0 AG) | 5. AG +oH) - AG)
SH ] o a
a->07

Furthermore the optimal strategies of player one are:

0 , .

1 (G) = (yeX|yex > A@G) if xeX },
and for player two: 0

X°(@) = ( xeX |yex < A@) if yeY ) .

Y and X are the sets of probability vectors in Em and Er , such that
4

Y = {y:(yi)‘yizo, ?yi=l},
X = {x=(_xj)[xj§o, §X3=1]a

Player one selects a yeY , player two selects a xeX », each in ignorance of the

other's choice, and then, 2 pays 1 the amount yGx = X .y
6 1,3
The Main E\?heorem:L of matrix games tells how to behave in this situation:

B, K, e
lglJ J

THEOREM: Given a matrix G , there exists a number,

AG) = max min  yOx = min max yGx
ye¥  xeX xeX  ye¥

and non empty sets of YO(G) and XO(G) .

15C.f. H.D. Mills, Marginal Values of Matrix Games and Linear Programs,
Linear Inequalities and Related Systems, ed. by H. W. Kuhn and A. W. Tucker,
Annals of Mathematics Studies, 33, Princeton, 1956, p. 183ff.

16

J. v. Neumann and O. Morgenstern, op.cit. p. 153 ff.
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Mill's Theoreml7 (1) states that:

THEOREM: The marginal value of the game G with respect to H is the

value of the unconstrained matrix game H where the players are restricted

to their sets of optimal strategies in the game ¢ . That is
é_%ﬂ%l = max min yHx
H yeYO (G) xeX0 (G)

In the example G is the following matrix:

3/10  1/10
g and ¥ = (1/3, 2/3), = = (1/3,.2/3) .
1/10 1/5
If
3/100  1/100 33/100  11/100
H = and (G + QH) = where o = 1,
1/100  1/50 11/100 - 11/50 ‘
then
QAG)
S5 = 1/60 .

Reconverted into the linear programming problem this equals 6/110109. This number
has to be subtracted from 6.109 to obtain the new optimal value of the linear
program. The marginal value of the game increases, as the optimal value of the
linear programming problem decreases. This seems to be intuitively clear, because
higher coefficients in the linear programming problem mean that one dollar tax

loss of activity 1 produces now employment of a higher amount than before;

consequently the total tax loss decreases.

1, D. Mills, op. cit., p. 184 ff.
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The value of the game decreases, and therefore the optimal value of the dual

linear program increases, if

27/100  9/1.00 3/100  1/100
(G-oH) = | ; ‘therefore H = and a =1 .
9/100  9/50 '1/100 - 1/50
Then 3
AG)
—g 1/60 .
9 9

The optimal value of the linear program increases by 2/3,10 , i1.e. from 6.10
to 20/5.109 - This can be explained by the smaller employmernt effect of a dollar
tax loss.

The corollary to Mills' theorem (1) states:

COROLIARY: The marginal value of the game G with respect to a single

entry is, for i =1,...,m and J = 1l,...,n:

g—éigl = ( mx y.) ( wmin x.)

81 yexO(g) * xex0(q) I
and |

o AE) _ (  min

= . ¥ max x.)

&i3” yexO(g) * KGXS(G—) J
where

d AG) o d AG)

are positive or negative directional derivatives.

If one changes G to (G +oH) , where
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, 3/10  3/20 3/10  1/20
(G+ QH) = l/lO 1/5 and (G- oH) l/lo 1/5
and
0 1/20
H = s a=1,
0 0
Then
o A(G) 1 o AG)
= 2/9.1/20 = == and = 2/9.1/20 = 1/90 .
€10+ 20 9815,

The value of the game is increased or decreased by this amount. This means that
the optimal value of the linear program is decreased by (90/15-90/16).109 = 5/8.109,

and increased by (90/1&-90/15).109 = 5/7.109, respectively.
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6. Conclusion

As a result of this simple fiscal policy example, the importance of the
coefficients in this linear programming problem, or its counterpart, the two-
person zero-sum matrix game, has been shown. With empirical coefficients it
can happen that there exists only one degenerate solution or fewer soluticns
than there are constraints. 1In this case the government uses a different
policy mix. It is possible that the neéessary budget loss, required to employ
all labor, exceeds the current size of the public budget. In this case dif-
ferent policies may have to be used. The introduction of decentralized decision
making suggests cases for which it is necessary to reach fully coordinated
action. The decomposition principle shows a possibility of how to deal with
external effects in government, state and local economic policy. The analysis
shows further that there are at least two methods available to treat such
problems, the linear programming approach and the two-person zero-sum game
theory. Which method to apply depends on the given problem. Finally Mills'
theory of marginal values gives some insight into the rate df change of the
optimal values of a game. Some wnsiderations in the appendix will show that
a dynamic programming formulation of the problem may not always be feasible and,
the determinateness of the coefficients may be abandoned and replaced by

stochastic coefficients.
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gives the optimal amount of tax loss at each stage. Given these notions the
simple linear programming problem of an cptimal fiscdl policy mix can be cast
into a dynamic linear programming problem which, as will be seen, requires
much more computation than the simplex method. But 1t must be pointed out ncw,
that the usefulness of dynamic programming does normally not lie in replacing
linear programminrg but in providing a new method of determiring global maxima

for linear as well as non-linear programming problems.

7-2 Formulation of the Dynamic Programming Problem

The linear programming problem of secticn 2 had the form:

)
Min 2 = Z y.
o
J=.L
I
5.t Zoa .y, =0 (2)
J=1 ~dd L
4
L a,y.=0D0
=1 292
20, J= Lk

This linear programming problem can be considered as a 4 stage decision
problem where at stage J the optimal value of yjy the optimal tax loss
resulting from policy J , is selected. The parameters are the vectors [Bl}
and {BE] , The stage variables Yy through ¥y, - When yj is specified,
then aljyj man years of unerployed skilled labcr and ag,y_ man years of
unskilled labor will be employed by using pclizy J . It will be assumed

throughout this secticn that the state parameters and the state variables can

assume only integral values.
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Appendix:

7.0 A Dynamic Programming Formulation of the Simple Fiscal Poliey M.odel18

T-1  Introductory Remarks

Dynamic Programming:is based on some simple congepts:

(1) One dimensional (1 cdpstraint) or multidimensional (more than 1 constraint)
dynamic programming probleﬁs are completely described at every stage (policy)

) by their state parameters. -Each stage corresponds to a different policy. The
designation of these parameters is arbitrary. The less there are the easier
the problems are to solve. Thus it is advantageous to decrease the number of
state parameters to that point where any further simplification would destroy
the utility of a given model. The state Parameter in our given problem is the
number of unemployed workers still existing after k policies have already been

applied.

(2) At every stage there is a given state function which depends on the state
parameters. This function is defined as the optimal value of the objective
function given these state parameters. In the given problem the state function
would be the optimal (minimal) tax loss for each given state (amount of

unemployment ).

(3) The optimal values of the stage variables for stage k , given the state
bParameters at stage k , are represented by the policy function. The stage

variable in our example is+the amount of tax loss, i.e. yj - The policy function

18

R. Bellman, Dynamic Programming, Princeton, 1957, passim. R. A. Howard,
Dynamic Programming, Management Science, 12 (1966), p. 317 ff.; G. Hadley,
Nonlinear and Dynamic Programming, Reading, 1964, p. 350 ff.
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The computational procedure for solving this dynamic programming problem is

the following. Denote by Z¥ the absolute minimum of (2),

N
VA i ¥ 2
min { o ° } o, (2)

le""Jy)_l_
where the minimzation is carried out over non-negative yj which satisfy the

constraints

N
% oa..y.=Db,, for 1i=1,2. (3)

- Buppose now one selects one value of yn and, holding yn fixed, maximizes Z

over yj,-

'°’yn-l . If this procedure is done for every allowable value of yn B

then, finally Z* will be the largest of these z values and the corresponding
set of yj will maximize Z . This computatiocnal procedure in fact is the essencg
of dynamic programming.
In equation form, first, select a value of Y, .and. compute
n n-1

min { = c_yj } = cy o+ min S ey, - (B.1)
. 1= J PP F=
Yyseeeo¥ 4 =1 Yooeea¥ 4 J=1

Once Yy has been chosen ‘yl,...,y must be restrictéd to non-negative

n-1

integers which satisfy the constraints

n-1
L a )y, = b.-a ¥y
5=1 137 J 1 1In°n
and .
n-1 4.2)
>, = -
= %27 Po=ag V)
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The relatiornship between Y, and min %Zl cjy<j is straightforward.
Yirre ¥, j=1
Because of (4.2) it will be defined as:
n~1
(bl 1 P8 Y, ) = min c.V. (5)

. .- J J
ylﬂ“ ° °5yn_“l J“’l

where the minimization again is carried out for non-negative integers yl,aoa,yf 1

satisfying the constraints. If this is computed for every allowable value of Y, 2

then the minimum will be

k3 = i ) -+ A =
2 mn [ e ¥y o1 (P18 o 08, 3 )] (6)
In
with values of Y, from O,l,unoyﬁr, where
g g
. i -2
6n = win { 1 sy —— 1} and E, = bi_a’ryh
all’l agn 1 in n
fer i=1,2

This procedure determines the state funetion, i.e. an optimal value of the
objective function at a given stage (countercyclical policy); ard it determines
simultaneously the optimal'value of V2 yﬁ (policy function). The problem
would then be solved if one knew Anul(b 2., ,b -8 ~yn) .

Because the ai, b Y. are non-negative integers, A

. b - -
i’ 73 ﬁ—l( 1 alnyn’bE a2nyn)

can be written as An_l(glggg) where &1952 are non-negative integers.

In order to compute Ap_l(gl, §2) one proceeds as above and obtains:

165 8) = minfe Ly oo+ Ap (878 Y 108 2,0-177n-1)1  (7)
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ranges from 0,1,..., to b, ,

§2 2

can be

then finally yl(gl, £ ), the value of vy which mirimizes c.y

2 llﬁ

determined.

The idea may become clearer by using a table, such as table I.

TABLE T
- A - -

0, O Al(oﬂo) y]_(OJO)
2, 0 '
b, 0 A (o), 0)
0,1 A (0, 1) .
1,1 ) ) )
b, 1

It may turn out that yl(gl,gz) is not unique. Then there are several optimal

solutions, a fact which may be of great importance.
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gg ranges from 0,1,..., 1o b2 »

g

), ‘the value of y. which minimizes c.y , can be

then finally v, (& 1 171

1’ =2

determined.

The idea may become clearer by using a ‘table, such as table I.

TABLE T

- A - -
0, 0 A (0, 0)) v, (0, 0)
1,00 Al( 1,0) yz( 1,0)
2’ O ..
bl’ 0 Al(bl, 0 )
0, 1 Al( 0, 1)
1,1 )
bl’ 1

It may turn out that yl(gl,gz) is not unique. Then there are several optimal

solutions, a fact which may be of great importance.
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Having obtained A (§., &.) one proceeds to compute A2 , again, for

171 Ce
every allowed (integer values!) combination of {gl,gg} . One uses the familiar
formula
A = i A - _a -
E(gl,gg) min [02y2 + 1(51 algyg,ﬁe a22y2)] (11)
0 < Yo < 52
4 £
for 5, = min { gl“ ’ 52_ }
12 22
Yo ranges over integers in the interval O < Yo < 62 . Because Al(gl, §2)

was evaluated for every integer combination of {gl, 52}, Al(gl_alzyg’gg_aggyg)
can be easily read off table I . But a table of the same form as table I can be

constructed for Ag(gl,gg) and yg(gl,gg), for A5(§1,§2) and y_ (&

5 ngg)J

i A (b . ;
finally for 4( l’bE) and yh( ,bg) One does not need a table ofvnAu(gl,ge)

bl
values, because it follows from the preceding considerations that the last maxi-

mization is done only for bl and b2 and not all integral combinations of

{gl’ gg} .
The optimal set {y*)} remains to be determined. This is easily done by
looking up the local optima of y(gl,gg) . Once yg is known, then the remaining

n-1 wvariables must satisfy

n-1
= - * = .
- aijyij = bi a, y& i=1,2 (12)
J=1
Il_j'_ .l
Thus Z"'cjyj has to be minimized for non-negative integers yj subject to the
J=1

above constraints (12). But we know that this minimum is simply ,

. b.-a. y*b - y¥) i
An—l(b ) We know also that yn_l( 1 alnyn’bE aEnyn) is (are)

_ * _ *
17%1n"n’ b2 Sonn



- 3% .

the minimal value (s) which can be read off the tables. In the same way one finds

i-1 | i-1
y* = v i(bi - I a vE sy - T oa, y¥ _) (13)

oo F1nmu'nwt2

We have now derived a second numerical procedure for solving the linear-
programming fiscal-policy model of sectior 2.

A comparison of both methods, the lirear versus the dynamic programmin
approach, yields two interesting points. (1) The question of multiple optimal
solutions; (2) the computational feasibility. As regards point (1) it can turn
out that the policy function at one or several stages is mot unique, the value
function, of course has to be unigue by definition. The reason for this non-unique-
ness may be explained intuitively. -A linear program has multiple optimal solutions
vhen the linear objective function is tangent to one of the linear constraints; or,
in a multi-dimensional framework, hyperplanes are tangent to each other. In the
same way if there is a non-linear objective function, this function may be tangent
at more than one point to the linear (or non-linear) corstraints. Dynamic pro-~
gramming  has the advantage of providing such a method for computation of these
multiple optimal policy functions.

Given a non-unique policy furction ther there exists a choice between two or
more sets of policy functions which all lead to the samé unilque value function.2
This fact may be of far-reaching importance in ezomomic policy, because very
often. economically optimal policies could therefore substantially increase pclitical

feasibility of fiscal policy.

19Caf. R. A. Howard (loc. cit., p. 328 ff.) who presents a three stage model of
production which allows the adoptiorn of two different cptimal policies of
allocation over time.
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As far as point (2) is concerned, one may encounter serious difficulties in
applying the dynamic programming framework to linear and non-linear programming -
problems.

The number of state parameters may exceed the computational capacity of
modern computeré. In our problem there are only two state parameters; the first
can assume 10+1, the second 2041 different values. This means that at three
stages 2X(11X21) = 693 entries have to be computed. Because every entry y; cen
assume different values the amount of computation soon becomes considerable -
even in such a simple problem. The computational effort is therefore much higher
than in linear programming, in fact, it may soon become unsolvable if the number

of state parameters exceeds 5.20

8. Formulation of a Simple Stochastic Programming: Problem
with Random Variables Appearing in the Technological Coefficients

In section 2 the simple linear programming problem was formulated as a:"diet
problem." The aim was to minimize the budget loss or deficit required to provide
employment for a given number of man-years of unemployed,skilled and unskilled,
labor. 7Por simplicity it was assumed, among other things, that the employment
effects of different fiscal and monetary anticyclical policies were deterministic.
This is certainly a strong assumption given the stochastic nature of business and
consumer behavior. In the following this assumption will therefore be dropped.
Instead of given coefficients aij it will be assumed, that these coefficients

are random variables.

2OCompare J. Hadley, op. cit., p. 425.
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It is:well krnown that these employment effects resulting from different
anticycli¢al policies may only, if at all, be predicted randomly. The differences
between actuaiiénd predicted outcome therefore may be considerable. This fact in
turn suggests a re-formulation of the objective functicn. When the aij are ran-
dom variables, then for any given set cf yj 1t may happer that the tctal amount
of labor 1 demanded is greater, or, as Will be seen later, smaller than bi
In certain cases this could mean a neceséity to work overtime. Nevertheless for
the whole economy there exists an employment ceiling - no matter whether we assume
85 percent or 90 percent of total capacity as full-employment level of the economy
- which, if exceeded, causes some aﬁount of (demanrd-pull) inflation. But this in
turn could mean considerable social costs in resulting inflationary pressures. So
this whole model is based on the lack of knovledge of the precise measures for
anticyclical policies.

It will here be assumed that if the actual amount of labor i exceeds by Wy
the amount originally available for employmert, then a scecial cost ﬁiwi is
incurred. The social costs of overemployment may - as already mentioned - be
incurred even before all the unemployed have found new Jobs. But this Tact does
not influence the general idea of the model.

The linear programming problem with deterministic coefficients had the form:

k4
Min 2 = X vy,
j=1 ¢
(1)

a..y. = b, , for 1i=1,2



- 36‘_

Suppose now we wish to determine a set of yj which minimizes the expected
overemployment costs. In order to be able to do that the density functions of

the a.j, @ij(aij) >, have to be known. Agatn, only empirical evidence can show
i

what kind of distribution function fits best, what mean and variance to use.
Suppose that the coefficlents can be approximated by normal distributions, then

E(a..,) = .. is the mean and E(a..—u..)2 = o°. 1is the variance of o, . (a,. ).
iJ 13 13 713 1 13713

To obtain a solution to the stochastic programming problem the random variables
aij have to be transformedEl into a set of new random variables
L
c; = Z a.,.y.; i=1,2. Of course c., itself consists of the random variables
5=1 iy i
C.. = a..vy.
1J 1J°J

Jj which cause a yj dollar tax loss. Determining the density function of c

y These new random variables express the employment effects of policies

two assumptions must be fulfilled: (1) +there are no increasing returns tonscale
present, or, the random variable denoting the employment:effect of policy J given‘
a one dollar tax loss is independent of itself, i.e., for a given j the random
variable does not change with different levels of tax loss. (2) there is in

addition no (strong) interdependence between the employment effects of different

policies. %This, of course, is a very strong assumption in .a macroeconomic model.
(v).
Given these two requirements the density function of cij’ 0] 'J(Cij), is the

yj-fold convolution22 of @ij(aij). It is easy to show that the mean of this new

~ 5 D A )
density function is y.H, = Mi. , Tthe variance is yj g.., = 0,.. The density

J 1d J 1d . J(y.)
function @i(ci) can now be obtained as the convélution of the @ij J (Cij)

for fixed i . This procedure is legal because convolution gives the distribution

of a sum of independent random variables. The expected value “i and the

ElClF; K. A. Brownlee, Statistical Theory and Methodology in Science and
Engineering, New York, 1965, p. 45 ff.
22

C. V. N. Feller, An Introduction to Probability Theory and its Applications,
New York, London, Sydney, 1966 (Third Printing), p. 250 ff. G. Hadley, op. cit.
p. 169.
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n
a, .y = Zc_:c_.,

. 2 . .
variance Gi can easily be computed from 1573

J=1

The stochastic programming probiem can be reduced to mirimizing the expected

costs of inflationary pressure. The objective function is then, for W= c,-b, ,

L1
40
2 n
Min I = J (z.-%.) @, (2, )¢
i L 1 1 1 L 1
b,
L (2)

s.t. y. >0

Therefore, if all coefficients of the linear constraints are stochastic, the
constraints disappear. They are implicit in the objective function.

There exists a second possibility for formulating the macrceconcmic stochastic
programming model. Despite the strict equality signs in the constraints, not all
the available labor may find employment. The stcchastic coefficients may rerder
it imposesible to predict exactly the employment effects of a giver fiscal and
monetary policy program. The scoial costs arising from the possibility of con-
tinuing unemployment must therefore be added to the costs of threatening inflationary
pressure. Because it is common-place tc estimate these costs in moretary terms
they maj be added to the government tax loss.

Again, if ﬂi is the cost of a shortage of labor of type i , if ¢y - b,o= w.
is the labor shortage, if ki is the cost of unemployment, and if bi - Cy o=y
are the unemployed workers cof type 1 , +then the expected cost of continuing

uremployment or induced over-employment 1s:

by
™ k/ﬁ(ci - bi) @i(ci) a oy T Ki \jh(bi - Ci) Qi(ci)‘d ey
0
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or because, by
k - = -
; b/\(bl ci) @l(cl) dc k., (b M,) o+
0
oo
+ k. \/h(cl - b.) @(ci) dc 5
b.
1
the expected cost is
2 2 e
= - - .
kl(bi M, ) o+ Z.(ki+n,) f(cl bl)<1>(cl)c1c1
i=1 i=1 o
i

If the tax loss is added, the government faces the following minimization problemn:

+00
4 2
Min S oa.,y. + ‘z k. (b, - gi)+ .z (ki+ni) f(ci-bi) @(ci)dci
= i=1
bi

s.t. v. > 0.

There are some difficulties involved in this treatment of our original linear
programming problem: (1) The density functions of the coefficients must be known.
Even if the coefficients are evaluated by estimation methods their variances may
be very high. In the worse cases there would not exist any stable parameter at
all. For longer run considerations the model therefore does not seem feasible.

(2) The independence of a given random variable from different amounts of tax
loss and from other different.random variables. Large scale economies do seem
existent for a given policy. With growing optimism the employment effects of a
given policy will probably increase. Alsé a general tax decrease may have far
more favourable employment effects if there exists already an easy money market

or vice versa. (3) Finally, even if all these problems did not exist, there
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would be computational difficulties. Solving the problem by assuming that the
are large sums of random variables ard applying the central 1imit theorem, would
only yield a local minimum. The reason is that the objective furction need not
te convex at all. A global maximum czly could be fourd by casting the problem
into a dynamic programming framewcrk. Bub here, a3 we already kunow, the compu-

tational feagibility is limited.

C .

1
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the report. .

2a. REPORT SECURITY CLASSIFICATION: Enter the over
all security classification of the report. Indicate whether
“Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-

“rective 5200. 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author- -
ized.

3. REPORT TITLE: Enter the complete report title in all

capital letters. Titles in all cases should be unclassified.

If a meaningful title cannot be selected without classifica-

tion, show title classification in all capitals in parenthesis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reporting period is
covered.

S. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an ahsolute minimum requirement.

6. REPORT DATE: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count

should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written.

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a8. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity., This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator
or by the spoasor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) ‘‘Qualified requesters may obtain copies of this
report from DDC,"’ .

(2) *Foreign announcement and dissemination of this
report by DDC is not suthorized,’

(3) - “U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

1]

(4) “U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

. ”

(5) **All distribution of this report is controlled. Qual-

ified DDC users shall request through

”
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If the report has been furnished to the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

1. SUPPLEMENTARY NOTES: Usq for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or u).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key wotds are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rales, and weights is optional.
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