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1. Introduction

The frequent occurrence of many-dimensional maximization problems
in the physical and social sciences has prompted the development of sev-
eral efficient algorithms for numerical maximization of functions of
several variables. Some of the most promising of these are the various
types of conjugate gradient methods developed by Davidon [2], Powell [71,
and others. The authors developed an algorithm, bresented in [4], which
is based on maximizing at each iteration a quadratic approximation to the
function on a sphere the radius of which is determined by the goodness of
the previous approximation.

Whenever a new algorithm is presented, it is customary to compare
its performance to some leading or well-known competitors. Apart from the
intrinsic difficulty of performing valid comparisons of this kind at all,
most attempts at assessing the relative performance of various algorithms
suffer from the disadvantage that they contrast one method with only one
other.l

The purpose of this paper is twofold. First we shall introduce a

generalization of our algorithm, based on an observation contained in [4].

1. For a notable exception, see [6].




Secondly, we shall compare the improved algorithm with the earlier version
as well as with the Davidon and the Powell algorithms.2 In general, we
shall find that the pPredominant effect of the improvement is to enhance the

reliability of the algorithm.

2. Quadratic Hill-Climbing

Consider the problem of maximizing the function £f(x), x==(xl,...,xn).

The procedure employed by iterative schemes can usually be expressed as

A R (2-1)

P p+l

where x and x represent the values of the variable vector at the pth
and (p+l)th iterations, and Dp is a vector. Denoting by F the gradient
evaluated at x° and by S p the matrix of second partial derivatives,

ps
Newton's method, for example, employs Dp = —S;;ip.

1
Let llxl[ be the length of the vector X, defined to be (x'x)é,
and consider the quadratic function Q(x). In [4] we proved the following

theorems about a quadratic function Q(x):

Theorem 1. ILet xp be any point and « any number such that

S p " al is negative definite, and define
x
b P . (s o1) 'r (2-2)
=X bl el —
o < P
= - p -
r, I ba < || (2-3)
then Q) Z Q(x) for all x such that || x - xp” =,

2. For reasons of economy we have not included among the competing methods
pattern search and random search algorithms. See [8] and [o1.




Theorem 2. If F o # 0 then the ra defined by (2-2) and (2-3)
X

is a strictly decreasing function of o on the interval (Al,w) where Al

is the maximum eigenvalue of g P
X

Theorem 3. Let a, ba and . be as in Theorem 1, let Ba be
the region consisting of all x such that “ X - xpflé r,r @and assume

F p # 0. Then the maximum value of QO(x) on Ba is attained at ba if
ble

a2 0 and is attained at bO if o < 0. In this latter case bO is

interior to the region Ba'

Theorem 4. Let uy be a unit eigenvector associated with Al. If

F p = 0, then the maximum value of Q(x) on the region Ba consisting of
X

all x with ” X - po S r, occurs at xP + ru if Al is positive and

at xp otherwise.

The quadratic hill-climbing algorithm is based on maximizing at each

iteration, say the pth, the quadratic approximation to the function f(x)

£(x) ~ £(xP) + (x - xP)'F o Py

i + %(X - xp)'S p(x - x

x
on a spherical region centered at x°. Tt is desirable to take this region
as large as possible subject to the requirement that in the region the quad-
ratic approximation remain reasonably good. If F p is significantly dif-

X
ferent from zero, an iteration is accomplished by setting

o =2 + R Fxp I

+
where R is a positive number and choosing xP 1 by

= (s OLI)_lF
ble = xF - -
X ble

or




depending on whether o is positive or not.3 If F is sufficiently

«F

close to zero so that the length of the proposed step is less than some
bPreset tolerance, and g D is negative definite, the process terminates

be
and x* is accepted as the location of the maximum. Tf S o is not nega-
X
tive definite, Theorem 4 is applied and a step is taken in the direction of
the eigenvector corresponding to the largest root of 3 P The method de-
be
scribed in this section will be referred to below as Quadratic Hill Climb-

ing-1.

3. Improved Quadratic Hill-Climbing

Let A be an arbitrary positive definite matrix and define a metric
” “A by ”X”A = (x'Ax)%. 1t was observed in [4] that the theorems of the
brevious section continue to hold if [l If is replaced by “ “A and S - aI
is replaced by S - oa. The region Ba on which the gquadratic approximation
is maximized becomes ellipsoidal rather than spherical as a result of this
replacement. It is the purpose of the present section to exploit this gen-
eralization. The method will be referred to below as Quadratic Hill Climb-
ing-2.

The overall size of the ellipsoid on which the approximation is maxi-
mized is still governed by a parameter whose value can be controlled by the

same method as before. The new feature is that the shape and orientation

of the ellipsoid are now also subject to change. The modified quadratic

. -1
3. It is easy to show that the radius of the region BQ,H(S p ~ ol) F p“'
x X

is bounded by R_l. Therefore we automatically modify R at each itexr-
ation, increasing its value when the quadratic approximation is bad and

decreasing it otherwise.




hill-climbing algorithm is based on the heuristically plausible assumption
that the most useful direction of search at any point is close to the direc-
tion of the immediately preceding step. (If one is on a "ridge" of the
function, one may expect further steps to follow along the ridge, rather
than go transversely.)

Suppose we have completed P steps and that &§ 4is the column vec-
tor expressing the last step (so 6 = xF - xp—l) in the coordinate system
used for making the last step. For the moment, Suppose that ¢ happens to
be parallel to the first basis vector of the coordinate system (i.e., all
its coordinates except the first are zero). We wish to use a new coordi-
nate system for computing the next step which will "emphasize" the compo-
nent in the direction of §. Consider the coordinate change under which a
vector with coordinates (51,52,...,£n) in the old system is given co-

ordinates (BEl,E .,En) in the new system, for some constant B. If

g1
0 < B <1, a vector with (say) equal components in the new system will have
a larger first component in the old system, and the desired emphasis will
be achieved. 1In general, of course, 6§ will not be parallel to a coordi-
nate vector. While one could first rotate axes to obtain a coordinate vec-
tor in the direction of § and then proceed as above, the same effect is
achieved with less computation as follows.

Working in the old coordinate system, any vector x may be expressed

as the sum of

6 ]

X. = —= 6§,

X

which is the projection of x along ¢§ and

X2=X_Xlr

which is orthogonal to §. The appropriate new coordinates for x may then




be written as

§'x 'x
Bxl + X, = B 57Ts § + x - —1?76
= x o+ B D gy
§' 8
- [% s B 1 sain = Bx (3-1)
§'§

where the matrix B is defined by the last equation. (Here & and x
are both treated as l-column matrices, with &' denoting the transpose of
8. Thus §'S is a scalar and 68' an n-by-n matrix.)

At each iteration a new B-transformation takes place. Let them be
denoted by B

Bl' -«- and for any vector let Xy stand for its coordi-

Ol

nates in the system used to make the kth step. Then

X B.B.x,.. (3-2)

k = Bro1Bron -+- BiByxg
(We take BO = I, since there is no previous step and § is undefined.)
For the (k+1)St iteration we maximize over a "sphere"

xk+lxk+l = (kak) (kak) = constant (3-3)

which is in general an ellipsoid in the original coordinate system.4 The

new step computed at this point may be expressed eaéily in terms of the

4. The choice of B at each iteration is based on a comparison of the
actual improvement in the function with the apparent improvement due to
the guadratic approximation. Defining =z = (actual improvement) / (appar-
ent improvement) and e = (z - l)2 - €, the actual modification of B
is given by

B=.9 if 220 or =z 2 2, otherwise
B=B+ (.9-8c if ¢ 20 and
B=8- (.1 -Bc if ¢ < 0.

In practice we employed for e the value .5.




original coordinate system prevailing at the beginning of the process. Set-

ting Bk—l .o BlBO = B, it is easy to verify that the gradient evaluated

. . . -1
at xk and expressed in the original coordinates is (B ")'F x @and the
X
matrix of second partial derivatives is (B_l)'s kB—l. The step in the new
b4

- - -1 - .
coordinate system is clearly —[(B l)'S KB o aI) (B l)'F r and premulti-
X

X
plication by B—l yields the step in the old coordinates and it equals
-1 . . - .
-(s y - oB'B) F k- Thus B'B is the positive definite matrix A men-—
X X
tioned at the beginning of this section.5

4. Comparison of Algorithms: Cum Grano Salis

The efficiency of an algorithm is a composite of at least three
types of factors: (1) its reliability which might be measured by the prob-
ability that convergence to a true maximum ultimately does take place; (2)

its cost in terms of human effort required to make the algorithm "work" on

5. It is obvious that the bresent modification is computationally more expen-
sive per iteration than the simpler variant of Section 2. Nevertheless,
the increase in the amount of computation is not quite as great as may
appear at first. Although the matrix B™! has to be computed, this in-
verse can be obtained directly. 1In general, given a matrix

2 —_
1+ k) k6,8, ... k8,8
2
A= ks, 6, 1+ k65 ... k8,8
kS, 8 k6.8 ... 1 + ke2
L ln 2'n n.J
we have 5 -
1 + kiilﬁi —k6162 . —k616n
_ 2 -
Al 1 k616, 1 +k 1 82 ... k6,8
n i#2
1+k 3 82 i
i=1 1
-k6. 8 ~k8.,8 ee. 14k 82
l n n l#n ld




a given problem; and (3) its cost in terms of the computer time required to
achieve a solution. In the first category we place the possibility that
some algorithm may mistake a saddlepoint for a true maximum. From this
point of view the quadratic hill-climbing algorithms may be superior to the
others which are being compared with it. In the second category we place
considerations of the effort that may be required to calculate derivatives
of the function to be maximized. From this point of view Davidon's method
(requiring only first derivatives) is superior to the quadratic hill-climbing
methods and Powell's method (requiring no derivatives) is superior to
Davidon's. The relative effort required for these several methods may be
equélized by evaluating derivatives numerically, thus dispensing with the
effort of obtaining and programming for the computer the formulas for first
(and second) partial derivatives.6

The comparison of the algorithms from the third point of view, i.e.,
in terms of the computing time required for satisfactory convergence to be
achieved, is a difficult matter. Computing requirements will generally
depend not only upon the intrinsic characteristics of the algorithm but
also upon the efficiency with which the necessary computer programs have
been prepared. Although it would be desirable to program the various algo-
rithms with "equal efficiency," this term is not well defined and must
remain no more than approximate in meaning. Thus, even though the time
required for computation is the most relevant measure of efficiency, the

reliability of the measure is not complete.

6. The use of numerical instead of analytic derivatives may, however, in-
Crease the time required for computation, particularly by causing the
algorithms to perform extra iterations in the neighborhood of the maxi-
mum where numerically evaluated derivatives are sometimes quite inaccu-
rate.




As a supplementary measure of efficiency one may employ the number
of times the function is evaluated in the course of computations. Since
much of the computational work is, indeed, in evaluating the function, this
will shed new light on the efficiency question. Tn particular, it may be
that certain methods perform faster only because we are dealing with simple
functions. That is, the rank ordering of methods with respect to effi-
ciency will not in general be invariant to the nature of the functions. But
it should be emphasized that by itself the number of function evaluations
is not a completely suitable measure. If first and second derivatives are
evaluated analytically, it is not clear how the work performed in these
evaluations should be counted relative to the work involved in function
evaluations. Only some measure of time can provide a common denominator.
In the present paper the derivatives are evaluated numerically so that this
problem did not arise.7

For these reasons, we shall employ both the time required and the
number of function evaluations involved in achieving given accuracy. A
final measure of performance is, of course, the relative frequency of cases
in which an algorithm eventually converges to the true extremum, i.e., does
not terminate at some other point.

The functions employed are partly well-known test functions that had
already been employed by other investigators and partly new functions we
devised for test burposes. They are as follows:

1. Rosenbrock's function

2
z = 100(y - xz) + (1 - x)2

7. The relative performance of algorithms in terms of function evaluations
depends upon the slightly extraneous circumstance of whether the numeri-
cally evaluated derivatives are computed from function values placed sym-
metrically about the point at which the derivatives are required or not.
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which has a single minimum at (1,1) and resembles a U - shaped valley with
8
steep walls.
2. The function

2 2 4
z = (xl + le2) + 5(x3 - x4) + (x2 - 2x3) + lO(xl - x

4

4’

. \ . 9
with a single minimum at (0,0,0,0).

3. The function

zZ = exp(exp(exp(exp(exp(exp(exp(—x2 - 3y2)/10)/10)/10)/10)))

with a single maximum at (0,0).

4. Beale's function, given by
2 2, .2 3,.2
z2=(1.5=-x(1-y))" + (2.25 - x(1 - Y)) o+ (2.625 - x(1 - y7))
. . , . - 10
which is a narrow curving valley with a minimum at (3,.5).
5. A three dimensional Rosenbrock function
z = 100/ - x2)2 + 100(x,. - 2)2 + (1 - x )2
- 37 % 2 7% 1
with a minimum at (1,1,1).

6. The function

2 2
g o1 exp { (y - x°) } Q>0
e k - k. . 2 k > 0 and even
01 + x) QL + x7))
which is a parabolic Gaussian ridge, achieving its maximum at (0,0). It

has the particular advantage that the computational characteristics of this
function can be radically altered by varying the quantities Q0 and k.

Each of these functiohs was maximized or minimized by each of the

8. Investigated previously by [3], [4], [6], [71.
9. Investigated by [7].

10. Investigated by [9].
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four algorithms and we employed several different starting points. Start-
ing points were generated randomly and Tables 4-1 to 4-8 report the summary
results for the experiments in which derivativesll were computed by numeri-
cal evaluation. These tables report for each method (a) the mean time and
the standard deviation of time, in seconds; (b) the mean and the standard
deviation of the number of function evaluations; (c) the mean value of the
function at the point of convergence; (d) the mean distance of the alleged
location of the extremum from the true location and {e) the failure rate of
the algorithm.12 All programs were written in FORTRAN IV and computations
performed on an IBM 7094.

Certain general conclusions emerge easily. (1) In terms of mean
time Powell performs best in almost all cases, its advantage being a factor
of 1.5 to 3.5. (2) Davidon does well in some cases and poorly in others.
(3) Quadratic Hill-Climbing-1 always beats Quadratic Hill-Climbing~2 and

both tend to take more time than the other two methods.13 (4) In terms of

11. Relevant for the two quadratic hill-climbing algorithms and for Davidon's
method.

12. This statistic is based on samples of different sizes for the various
algorithms. The reason for this is as follows. It was desired to have
a matched sample in the sense that a random starting point was gener-
ated and all four algorithms applied with that starting point. The
algorithms were applied in the following order: Quadratic Hill-Climb~-
ing-1, Quadratic Hill-Climbing-2, Davidon, Powell. If any algorithm
failed (mistakenly converged to a "wrong" point or gave some other
error termination), the successful solutions for that starting point by
the preceding algorithms were discarded, a new starting point was gen-
erated and the cycle of four methods restarted. Thus, if in the attempt
to have a sample of 10 tries each algorithm failed exactly once, the

- corresponding failure rates would be 1/14, 1/13, 1/12 and 1/11 respec-
tively.

13. Some limited experimentation with analytically rather than numerically
evaluated derivatives indicates some modest improvement in the time re-
quired for computation by the Quadratic Hill-Climbing and Davidon algo-
rithms.
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the number of function evaluations Davidon tends to perform worst, the two
Quadratic Hill-Climbing methods best and Powell in between. (5) In terms
of the failure rate, Quadratic Hill-Climbing-2 is superior to Quadratic
Hill-Climbing-1 which is, in turn, superior to the other two methods. This
factor becomes particularly noticeable for various forms of the Gaussian
ridge, as shown in Tables 4-6, 4-7 and 4-8. For Q = 1.0 Davidon and
Powell do quite well, with failure rates of .133 and .240 respectively.
For Q = .5 the failure rate of Powell rises to .706 and for Q = .1 Dboth
Davidon and Powell have 100 per cent failure rates. For such a low value
of O OQuadratic Hill-Climbing-1 also fails nearly half the time although
Quadratic Hill-Climbing-2 still has a zero failure rate. Finally, for
Q = .01 all four of the methods have a 100 per cent failure rate. One may
conclude, parenthetically, that the parabolic Gaussian ridge is a severe
test for apparently all algorithms.

As a final test we employed Quadratic Hill-Climbing-2 and Powell in
maximizing the likelihood function associated with a small econometric

model of the U.S. economy (Klein's Model I). After eliminating identities,

the equations of this model are14

Uy = 'Yli+Blzyzi+613y3i+312X11+Y12xzi'813X3i ~By3%55 B 3%g;
Ui TBo1¥y; — Yy, T Yoa¥g17B %5, T ¥pq¥g; (471)
Usg = B3pYyy LY T Y30%537Y33%5;

where (i) x.,,x

1i'%p47 0¥

are assumed to be nonstochastic; (ii) uli' u2i

and u3i are (unobservable) stochastic terms assumed to be jointly normally

7i

distributed with mean vector uy = 0 and covariance matrix z; (iii) observa-

14. see [1] and [5].
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. . 15 )
tions are available on all yli’YZi’y3i’ X s X i=1,...,21; and

i’ 7i’

(iv) the B's, Y's and the elements of Z are to be estimated. The sys-—

tem given by (4-1) can be written more compactly as
U=YB + XA (4-2)

where Y is the (21 x 3) matrix of observations on the jointly dependent
variables, X is the (21 x 7) matrix of observations on the bredetermined
variables, B and A are the corresponding coefficient matrices and U
is the (21 x 3) matrix of residuals.

It is easy to show that the logarithm of likelihood function for yl,

y2 and y3 can be condensed to the following form16
L = - l-logﬁl; det(U'U)J + log(det(B)) (4-3)
2 ‘21

The function (4-3) was maximized employing two starting points: Start 1 is
the point (0,0,0,0,0,0,0,0,0) and Start 2 is the point (.20410,.10250,

’ 17,18
.22967,.72465,.23273,.28341,.23116,.54600,.85400). The results are
displayed in Tables 9 and 10. Inspection of these tables reveals that Quad-
ratic Hill—Climbing-Z performs substantially better than Powell in terms of
time which is not sSurprising since it is generally true that Powell requires

more function evaluations. Thus, as indicated earlier, when the function

15. see [5].
16. See [1].

17. This point represents the parameter estimates by the method of limited
information maximum likelihood and are in effect maximum likelihood
estimates taking the equations of the model one at a time and disregard-

ing the a priori restrictions on the remaining equations.

18. since the logarithm of a negative number is not defined, both algo-
rithms were slightly modified in order to avoid generating steps that
would take one into a forbidden region in the parameter space.
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evaluation is relatively expensive, as in the bresent case, Quadratic Hill-
Climbing has the advantage. 1In terms of accuracy the two methods are quite

similar.

5. Conclusion

There is obviously no single best method for maximizing functions of
many variables. Powell is very fast except when the evaluation of the
function is very time consuming. Quadratic Hill-Climbing-2 is very robust
and yields the true extremum with high probability. Davidon seems, on the
whole, inferior to these two algorithms. The difficulty of choosing between
Quadratic Hill-Climbing-2 and Powell is further evidenced by examining the
question of accuracy. Thus, for the given set of the various computational
tolerances, Powell sometimes gives better accuracy than the two Hill-Climb-
ing methods (Table 4-1), but gives worse results in others (Table 4—2).19
However, numerous questions remain unanswered. Some of these are: (1) Is
it possible to categorize or arrive at a typology of functions which would
allow one to judge reliably a priori which algorithm is going to Operate
better on a given function? (2) How do other methods (random search, pat-
tern search, etc.) compare with the present methods? (3) How can methods
that employ derivatives evaluate these more efficiently? These and other

questions we hope to answer in some future work.

19. The attempt to improve the accuracy of Powell by altering these toler-
ances resulted in substantial increase in computing time.
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Table 4-1
. 2 2
The Function z = 100(y = x™) + (1 - X)
Numerical Derivatives. 25 Random Starting Points in the Cube -2 2 x, vy 22
Quadratic Hill Quadratic Hill .
D
Climbing-1 Climbing-2 avidon Powell
T ( ds) Mean .84 .92 .79 .49
e (seconds) | indard Dev. .24 .18 .16 .11
Number of Mean 254 246 519 395
Function Eval-|Standard Dev. 89 56 126 109
uations
Function Value Mean .20x 1078 15x10710 54y 107 23x107°
Di £ - - - -
tstance from Mean .84 x107° 70x107° 36x107% 114 107°
True Extremum
Failure Rate 0.0 0.0 0.0 .038
Table 4-2
The Function gz = (x, + 10x )2 + 5(x.- x 2 + (x.- 2x )4 + 10¢( - )4
1 2 37 % 2 3 17 %y
Numerical Derivatives. 25 Random Starting Points in the Hypercube -3 2 xi £3
Quadratic Hill Quadratic Hill ,
Climbing-1 Climbing-2  DPavidon  Powell
Time (seconds) Mean 1.77 2.13 1.15 1.34
Standard Dev. .25 .40 .23 .24
Number of Mean 624 632 562 992
Function Eval- Standard Dev. 87 93 125 192
uations
Function Value Mean .18x 10712 32x 1071 g x1077  .38x 1077
Pistance from Mean .47x1074 .71 x10°%4 .28x 1072 34x 1072
True Extremum
Failure Rate 0.0 0.0 0.0 .038
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Table 4-3
. 2 2
The Function z = exp(exp(exp(exp(exp(exp(exp(—x - 3y )/10)/10) /10) /10)))
Numerical Derivatives. 10 Random Starting Points in the Cube -2 2 x, y 22
Quadratic Hill Quadratic Hill .
Climbing-1 Climbing-z _ Pavidon  Powell
Time ( onds) Mean .49 .58 .92 .26
ime (sec Standard Dev. .09 .15 .45 .03
Number of Mean 89 95 276 61
Function Eval-|Standard Dev. 23 33 154 12
uations
Function Value Mean 21.3205 21.3205 21.3205 21.3205
Pistance from Mean 17x 1072 2721070 36% 1072 46y 1072
True Extremum
Failure Rate .138 0.0 . 240 474
Table 4-4
. 2 2.2 3 2
The Function z = (1.5 - (1 - y))” + (2.25 - x(1 - y))y + (2.625 - x(L - yv7))
Numerical Derivatives. 10 Random Starting Points in the Cube -2 g x, y £ 2
Quadratic Hill Quadratic Hill .
Climbing-1 Climbing-z  Davidon  Powell
Time (seconds) Mean .46 .54 .40 .33
Standard Dev. .06 .10 .09 .08
Number of Mean 138 144 241 240
Function Eval-|Standard Dev. 24 29 74 76
uations
Function Value Mean .99 x 1011 8x107 s x107M g5 107H
Pistance from Mean 12 %1077 .18 x107° 22 x107°  .12x1070
True Extremum
Failure Rate .300 0.0 .214 .091




The Function gz =

0 2,2
10 (x3 - xl)
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Table 4-5

2

2 2
+ lOO(x2 - xl) + (1 - xl)

Numerical Derivatives. 10 Random Starting Points in the Hypercube -2 < xl,x2,x3§
Quadratic Hill Quadratic Hill .
Climbing-1 Climbing-2  Pavidon  Powell
ey (seconds) Mean 1.78 1.90 1.21 .65
tme {sec Standard Dev. .27 .67 .16 .20
Number of Mean 640 584 846 563
Function Eval- Standard Dev. 100 205 123 193
uations
Function Value Mean .39x 10710 46 x10710 5, x10°% 50y 1078
D' — — —_ -—
tstance from Mean 12 x107% 17x1074 56x10° % 25x107%
True Extremum
Lffilure Rate 0.0 0.0 .167 0.0
Table 4-6
\ )
. i 2 2.2, 2.4,2)
The Function gz = [l/{Q(l + x ))Jexp {— (y = x9) /(Q(l + x )) }
for 9 = 1. Numerical Derivatives. 10 Random Starting Points in the Cube -5 2 X,y =
Quadratic Hill Quadratic Hill .
Climbing-1 Climbing-2  Pavidon  Powell
Time (seconds) Mean .43 .57 .76 .32
Standard Dewv. .06 .12 .38 .11
Number of Mean 105 123 393 158
Function Eval- Standard Dev. 18 32 230 77
uations
Function Value Mean 1.00000 1.00000 .99991 1.00000
Distance from Mean .31x 10”2 .35x10 % 32x1072  .30x1074
True Extremum
Failure Rate 0.0 0.0 .133 .240
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Table 4-7
2 2
The Function z = [l/(Q(l + x2)}Jexp'{—-(y - x2) /(Q(l + xz)) }

Q=.5. Numerical Derivatives. 10 Random Starting Points in the Cube -5 X x,y £ 5

Quadratic Hill Quadratic Hill . 4‘1
Climbing-1 Climbing-2 Davidon Powell
Time (seco ds) Mean .54 .66 .73 .47
n Standard Dev. .13 .14 .29 .17
Number of Mean 154 165 420 308
Function Eval- Standard Dev. 51 42 193 131
uations
Function value Mean 2.00000 2.00000 1.99231 1.99627
Pistance from Mean J14x1074 21x 1074 21x107% L12x 1071
True Extremum
Failure Rate 0.0 0.0 .091 . 706
Table 4-8

\ ' , 2
The Function z = [L/(Q(l + x2))!exp{ -(y - x2)%/(Q(l + XZ)J }

Q@=.1. Numerical Derivatives. 10 Random Starting Points in the Cube -5 £ %,y < 5

Quadratic Hill Quadratic Hill .
Climbing~1 Climbing-2  DPavidon  Powell
Time (seconds) Mean =77 1.08
Standard Dev. .11 .18
Number of Mean 228 278
Function Eval- Standard Dev. 37 50
uations
Function value Mean 10.0000 10.0000
Pistance from Mean .27x10° 4 .36x 104
True Extremum
Lﬁéilure Rate .474 0.0 1.000 1.000
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Table 4-9
The Function I, = - l-logf}— det(U'U)) + log(det(B))
2 21
Quadratic Hill 4—1
Climbing-2 Powell
Time (seconds) Start 1 41.55 64.48
Start 2 23.52 63.78
Number of Start 1 3289 6324
Function Evaluations Start 2 1830 6233
Function Value Start 1 -2.75562 -2.75797
Start 2 -2.75581 -2.75625
Table 4-10
Location of Maximum
for the Function L = - l-log(—]-'—-det(U'U)] + log(det(B))
2 21
drati i !
Qua ?a }c Hill Powell Ch9w ] 20
Climbing-2 Estimate
Parameter
Start 1 Start 2 Start 1 Start 2
612 -.16426 -.16957 -.15926 -.15295 -.16079
613 .82053 .85037 .81734 .77604 .81144
y12 .31561 .30402 .29741 .31927 .31295
621 .31122 .31977 . 28905 .29574 . 30569
Y24 .30674 .30357 .31245 .31191 . 30662
Yo7 .37202 . 36948 .36366 .36714 .37170
831 -.77638 -.72073 -.79786 ~.89165 -.80099
Y32 1.05149 1.02007 .99084 1.07300 1.0519
Y33 .85120 .84839 .85150 -85300 .85190

20. From [1].




[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[91]

-20-

Bibliography

Chow, G. cC., "Two Methods of Computing Full Information Maximum
Likelihood Estimates in Simultaneous Stochastic Equationsg,"
International Economic Review, 9 (1968), 100-12.

Davidon, w. C., "Variable Metric Method for Minimization,” A.E.C.
Research and Development Report, ANL-5990, 1959,

Fletcher, R. and wm. J. D. Powell, "a Rapidly Convergent Descent
Method for Minimization,” Computer Journal, 6 (1963), 163-68.

Goldfeld, s. M., R. E. Quandt and H. F. Trotter, "Maximization by
Quadratic Hill-Climbing,” Econometrica, 34 (1966), 541-51.
——evnetrica

Klein, L. R., Economic Fluctuations in the United States, Cowles
Commission Monograph No. 11, wiley, 1950.

Leon, a., wa Comparison Among Eight Known Optimizing Procedures, "
Space Sciencesg Laboratory, Working Paper No. 20, University
of California, Berkeley, August 19%64.

Powell, M, 7. D., "An Efficient Method for Finding the Minimum of
A Function of Several Variables without Calculating Deriva-
tives," Computer Journal, 7 (1964), 155-62.

Schumer, M. A. ang K. Steiglitz, "Adaptive Step Size Random Search, "
Paper presented at the Fifth Annual Allerton Conference on
Circuit and System Theory, Urbana, October 1967.

Spang, H. A., "a Review of Minimization Techniques for Nonlinear
Functions," S.I.A.M. Review, 4 (1962,




