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ABSTRACT

A convex game is characterized by increasing marginal utility
for coalition membership as coalitioné grow larger. The core of any
n-person game 1is the set of outcomes that cannot be profitably
blocked by any coalition. It is known that various solution
concepts bear direct relation to the core when the game concerned
is convex., Thus, the von Neumann-Morgenstern solution and the
bargaining set C”Z?P coincide with the core and the value is
essentially the center of gravity of the extreme points of the
core (see [10],[6]). 1In this paper we consider another solution
concept - the kernel, and show that for convex games it is a unique
point, thus it coincides with the nucleolus of the game (see [9]),
and constitutes another distinguished point of the core - different,
in general, from the value. Roughly speaking, it is obtained by
pushing inside at equal Ll—distances certain supporting hyperplanes
which determine the core, stopping the push of a hyperplane short of

causing the inside to become void.



Introduction,

This paper can be regarded as a continuation of our study
in [[6]. In that paper we considered the kernels and the
bargaining sets : éi) (for the grand coalition) of convex
games. We succeeded in characterizing the bargaining set,
which, 1ike the von-Neumann Morgenstern solution (see [147),
turned out to coincide with the core of the game., As to the
kernel - we were only able to prove that it lies in the
relative interior of the core; but we did not locate its

exact position.

In this paper we prove that the kernel (for the grand
coalition) of a convex game consists of a unique point and we
characterize its location geometrically. Roughly speaking,
the kernel is obtained by "pushing inside" at equal Ll—
distances certain hyperplanes which support the core, stopping
the push of a hyperplane short of causing the inside to become
empty. Thus, in general, the kernel differs from the Shapley
value which is essentially the center of gravity of its core.

(see [141).

Every attempt has been made to render this paper self
readable; yet, clearly, familiarity with the current literature

is advisable.

In order to achieve our goals we had to extend known results

about the kernels of monotonic games and to study the structure



of the core of convex games - subjects which are interesting in
themselves. For this reason, when space considerations did not
direct us otherwise, we stated and proved some of the theorems

in more generality than needed for the specific goals as stated

in the second paragraph of this introduction.



2. The Structure of the Pseudo Kernel for Monotonic Games,

Throughout most of this paper we shall be concerned with
a cooperative monotonic n-person game with a non-negative
characteristic function. Such a game will be denoted by
(N;v) where N = {1,2,...,n} 1is its set of players and
its not necessarily superadditive characteristic function, by

definition, satisfies*

(2.1) v(s) = 0 all coalitions S, S < N.

(2.,2) v(3) s v(T) whenever S c T c N,

Note that (2.1) can be omitted if we introduce the empty

coalition ana define

(2.3) v{g) = 0,

Given an n-tuple X = (X1,X5,..0,%,) Of real numbers,
. . 4 A
we define the excess of a coalition 25 with respect to

x (in (N;v)) to be
(2.4) e(5,x) = v(S) - x(3),

where x(S) is a short notation for T

"ieg Xy for S £ &

and x(d4) = 0,

*The results of this and the next sections with the excep-
tion of Remark 3.5 will remain true if (2.2) is replaced by
the weaker condition: v(S) ¢ v(T) whenever S c T for
T # N (quasi monotonicity) and v({i}) + v(N) = v(S) for all
i€N and S e N - {i} (condition « ) (See [5].)



An n-tuple x = (x1,x2,...,xn) will be called a pseudo-

imputation®™ (in (N;v)) if it satisfies

(2.5) x; 2 0, i=1,2,...,n,
(2.6) x(N) = v(N).

For each n-tuple x = (x1,x2,...,xn) we define the

maximﬁm surplus of a player k against a player 1

y k£1,
with respect to x to be

(2.7) s (x) = Max e(s,x).
k,t S:k€S,1€s

Definition 2,1.** Tet T = (N;v) be a cooperative n-person

game whose characteristic function satisfies (2.1). A pseudo-

imputation X is said to belong to the pseudo-kernel of T

(for the grand coalition), if

(2.8) sk’&(x) < SL,k(X) or x, =0

for all k,LeN, k £ 4.

The pseudo-kernel of T (for the grand coalition) will De
denoted by PY (T) or, shortly, by PX . It is known
that it is never empty (see [4],[5]).

*The term "pseudo" comes to denote that the usual individual-
rationality requirement is replaced by the weaker condition
(2,5).

*gThe definition can be extended to cover situations in which
coalition structures other than the grand coalition are formed

(see [2]).



It is proved in [5]* that if T satisfies the monotonicity

condition (2.3) in addition, then '"or x, = 0" in (2.8) is

redundant and (2.8) simply becomes

(2.8), Sk’L(X) = SL,k(X) for all k, 2, k # 4.

Relations (2.7) - (2.8) show that the pseudo-kernel is a
finite union of closed convex polyhedra. In this and the next
section we shall characterize them and derive properties con-
cerning the structure of the pseudo-kernel which somewhat
generalize results stated in [4], [5] for the special class

of games satisfying (2.2), (2.3).**

Let T = (N;v) bve a game satisfying (2.2), (2.3) anad
let x be an n-tuple of real numbers. We can partition the
set of coalitions into subsets é1 (x), gz(x),...,&m(x)
which are of the highest excess, of the second highest excess,

etc, Thus,
(2.9)  E(x) = {8: e(5,x) = e(T,x) all T)

(2.20)  Bi*V(x) = (s:s¢ £ u E2(x) U, .o £ (x)
and e(S5,x) = e(T,x) whenever

¢ v B2 .0 Big,

i=1,2,...m and m = m(x) 1is the highest index i for

which évi(x) is not empty. Clearly, 1 sm < 28,

*Corollary 3.9 in [5]. Note that ¥ in this corollary
as _well as in the proof is wrong. It should be replaced by P
**Similar géneralizations for arbitrary games are straight-
forward but longer to state. At any rate, they are not needed
in this paper,



We shall refer to the coalitions in El(x) as the i-th

. s . i .
stage maximum excess coalitions, Their excess s (x) will be

called the i-th stage maximum excess.

(2.11) si(x) = e(3,x) where Seéi(x).

Given that x 1is a pseudo-imputation, it is possible to
tell from the sets gl(x) whether x€ PX(I'). Indeed, let us
define

(2.12) i(k,4,x) = Min {i:@ SeBi(x), kes, 1453,
Clearly,
(2.13) 5 ,(x) = sHlh X))
(see (2.7)). The following lemma follows from (2.8) and (2.13).

LEMMA 2.2: Let T = (N;v) Dbe a monotonic game having a

non-negative characteristic function. A pseudo imputation

x Dbelongs to PK(I') if and only if i(k,2,x) = i(4,k,x)

for each pair of distinct players k and 2,

We can now reverse the procedure. Consider an arbitrary
vectorial partition* (é“, 52,.. .,%m) of the set of all the

coalitions which has the property

*1t is important to remember which coalitions belong to
what stages., Thus, for N = {1,2,3} we consider ({{,N},
{{1,2},{1,3},£2,3}3, {{1},{2},{3}}) to be different from
(gnd, (013,023,038, (04,23, 01,31, {2,313). Tnis is

why we use the vector notation and call the partition vectorial.



(2.14)  i(kx,t) = i(4,k) for all L,keN, 1 # K,
where

(2.15)  i(k,%t) = Min {i: ¥ Se¢ él, k€3, L£51.

fl

Every pseudo-imputation x satisfying
(2116) gl(X) = él, i = 1,2,Ooa,m,

must belong to ©eX(T). Moreover, by scanning all rossible
vectorial partitions, one obtains all the points of the

pseudo-kernel.

Observe that the set of pseudo~-imputations satisfying
(2.16) for a fixed vectorial partition is a convex polyhedron.
Indeed, its closure is the solution of the system of weak

linear inequalities

fX(N) = V(N),
(2.17)< x, =0, i=1,2,...,n,

e(S,x) =2 e(T,x) whenever Seé“, Tégv,u < v,
provided that it is not empty.

Our next object, therefore, is to find conditions which
assure us that a vectorial partition satisfies (2.14). The

following definition will be quite helpful:

Let ?% be a collection of subsets of N and let T

be a fixed subset of N. TLet {TT’T2"‘°’Tu} be the partition

of T characterized by:

(2.18) k,LeTj <e==> (k,2€T and k€A if and only if
LEA for all AcB).



Thus, the Tj's are equivalence classes under the relation

"occur simultaneously in the coalitions of 8% ",

Definition 2.3: The set {T1,T2,.,,,Tu} defined by (2.18) will

be called the partition of T into equivalence classes induced
w €.
Let EE ( f1 , 2‘,7”2, ceny gm) be an arbitrary vectorial part-

ition‘of the set of all the coélitions among members of N. We

shall construct by induction a profile P(EE) generated by [E-:

We start by denoting {N} also as {T]}. Suppose that

(03,73,...,2 } nas been defined, and it is a partition of N,
12 L
Let {T§+;, T3+;,9..,T3+; } Dbe the set of equivalence classes
4 ? 9 i
: v .
which are induced by gl on T%, j = 1,2,...,ui. Renumber
J

the T§+J lexicographically in the lower indices to form
]

. . . . 2
{T%+1, T§+1,..., Ta+11}. The collection P(fzﬁ = {T];T?,...,Tuz;
i+
T?+1..., T$+11} will be called the profile generated
A m+
by . The term is suggested by the diagram below,
1
2 2 2
T T5 Tu2
3 13 3
1 2
- e 0u3
T?+1 ) , ém+1



Clearly,

(2.19) {1, 10 y o (13, (2),..., ()],
oM+

and, in general, the equivalence classes will become l-person

sets also for stages with a smaller index.
Temmas 2,4 and 2.5 follow directly from the definitions.

LEMMA 2.4: If 1 = 181y sm+ 1, then

(2.20) 130 o g ) i, i,
2.2 On implies T, < 7.9,

0 io M T, ¢ implies i, i
LEWMA 2.5: If Se &1 then S is & wnion of sets

Ti+1'

J SO

i
LEMMA 2.6: If Se¢ Eé O then s is a union of sets

= == e

1 ) N .
Tj 's whenever ig<iy=sm+ 1,

PROOF: This is a consequence of the previous two lemmas and

from the fact that {T%,...,Ti.}
.

is a partition of N.

Henceforth, the profile P (£ (x)) generated by the
partition £ (x) = (31(}:), gz(x),...,gm(x)) will be called,

shortly, the profile of x.

Lemmas 2.4 - 2.5 indicate that the profile can be described
as a “partition tree"; namely as a tree whose vertices are the
sets »Tﬁ, T} = N béing its root, such that the vertices that
are below a vertex T? and are adjacent to it form a partition

i,
of 3



10

One of the advantages of the profile P(ZE3 of a vectorial
partition é?' of the set of coalitions is the fact that it
enables us to state the condition (2.14) in a more visual

fashion.

THEOREM 2.7: Let & = {51,52,0“,@“} be a vectorial

partition of the set of coalitions in N. Let P(£) be

the profile generated by fE: The condition (2.14) is

equivalent to the following condition:

i+1 i i+1 i
x G T, T& c Tj and

k #Z 4, then there exists a coalition S in fil such

The separation condition. If T

i+ i+1 a
Iy" =85 and 1,7 NS =4,
io+1 io+1

PROOF: Suppose (2.14) is satisfied. Tet Ty y T, be
v » i i+

subsets of Tjou Consider a player in Tk and a player in
iq+1

TLO whom, without loss of generality, we call players k

and 4, respectively. Clearly, k€A <==> L€A, whenever

rclt ana isiy~- 1 (Lemma 2.4). Since k and 4 belong
to different equivalence olasseg df the stage iO + 1, either
there exists a coalition in Z%:lo, containing k' and not
containing 4, or there exists a coalition in gilo containing
1 and not containing k. By (2.15), either i(k,%) = i, or
i(4,k) = iy; hence, by (2.14), i(k,d) = iy. Consequently,
by (2.15), there exists a coalition S in 5%19 containing
K and not containing L. By Lemma 2.5, S > T;O+1 and
Tio+ N S = g; therefore, the separation condition is satisfied.



Conversely, suppose that the separation condition is satis—

fied, Tet k and 4 be two distinct players. There exists an
i

index i, such that k,i¢ Tjo and k,L belong to two distinct

equivalence classes of the stage iO + 1 which, without loss of
i+1 i+
generality, we name Tko and T&O s respectively. By the

separation condition, there exist'coalitions R and S in
i
such that ke€R, 4Lf£R, €3, k€S, By Lemma 2.4,

k€A <=—=> L €A whenever A€ %1, ix iO - 1. Consequently,

by (2.15), i(k,4) = i(t,k) = i, and (2.14) is satisfied.

0
This completes the proof.

COROLLARY 2.8: Let T = (N;v) be a monotonic game having a

duu-negative characteristic function. Tet

Tm+1 1

p(E (x)) = (nl; 18, 72 T pm+] s r

2 .
2’000, ur\’“.°7 1
.

40 00y

m+1

e the profile of a pseudo-imputation x. With this notation,

x€ PK(T') -if and only if the separation condition in Theorem

2,7 with 5?1 = é?i(x) is satisfied, i = 1,2,...,m.
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3. The Stage Game,

From a visual point of view, a profile may contain smaller
profiles, The figure below exhibits one profile within the

original one.

This suggests that smaller games can be constructed from the
6rigina1 game, which contain fewer players. Such games can

serve for induction purposes,

If one examines Theorem 2.7, one finds that only the
equivalence classes play a role in each stage and not the
individual players. Even the maximum excess coalitions of the
various stages are unions of such equivalence classes (Jemma
2.5). This suggests that it is possible under an appropriate
interpretation to regard the equivalence classes themselves as
players in some certain games. In the present section we shall

develop these heuristic ideas in a precise way.

Definition 3.1: Tet T = (N;v) be a monotonic game with a

non-negative characteristic function. Let x De a non-negative
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1 n+1
n-tuple and let P(ZEYX)) = {T1’ T?,..,, Tig;...; T?* ,...,T€+ 1}
m+
be the profile of x.

TLet T* = {T31 T}E,...,Té } be an arbitrary set of equivalence
Q

classes belonging to a fixed stage 1. The stage game generated

by x and T* is a game (T*; v*) whose players are the

members of T* and its characteristic function is defined by

) = x(r ) 4 x(rh ) el x(TE ) - x(1)
31 32 Ja
(3.1) j v¥(s*) = Max v(SUQ) - x(Q), & # S* c T* s* £ 1*
Q:Q © N-T
\y*(ﬁ) = 0.

- mi i . i i
Here, I = ¢j1 Yoo U Tj and if S* = {Tv ’°°"Tv } T%’

o : 1 B

i i
then S = iv1 U...U Tv .

Remark 3.2: The stage game (T*;v*) satisfies (2.1) and (2.3).

It is also guasi monotonic (see first footnote in 3Section 2.)

Definition 3.3: A pseudo imputation x is said to belong to

the core of the game if,

(3.2) e(S,x) € 0 all S.

Remark 3.4: A pseudo imputation which belongs to the core is

an imputation (see second footnote in Section 2.)

PROOF: 1Individual rationality is nothing but (3.2) restricted

to single-person coalitions.
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Remark 3.5: The stage game (T*;v*) is monotonic if x belongs

T ————— G ————— ——— o a————

We are now in a position to state the main theorem of this

section:

THEOREM 3.6: Let T = (N;v) be a monotonic game having a

non-negative characteristic function. Tet xe¢ P¥(T) and

let T* = (T%;v*) Dbe a stage game generated by x and a
set T* = {T3 yooosy T% } of equivalence classes of an i-th
- d1 a T
stage, 1<i<m+ 1. Denote by x* the a-tuple
* i i
X' = x(T= oo T .
(x( 31), X ( Ja))

Under these conditions, x* belongs to PX(T*),

PROCF: We shall use stars to denote entities related to the
game ['*. Clearly, x* is a pseudo-imputation in T* (see
(3.1)). Consequently, there is nothing more to prove if q = 1.
Suppose a > 1. Since we do not know if TI* 1is monotonic, we
have to use a starred analogue of (2.8) for the definition of
its pseudo-kernel. However, since every pseudo-imputation
satisfying (2°8)a automatically satisfies (2.8), our proof

will be completed if we show that x* satisfies

(3.3) S*i 1 (x*) = 8% . (x%)

: ml mi
TQ9T0 TO:TD

*This result does not necessarily hold if,instead of being
monotonic, T 1is quasi monotonic and satisfies condition a
(see first footnote in Section 2).
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for all pairs (p,0), o £ o, p,y0 € {j1,...,ja}. Here,

(3.4) s*, 3 (x%)

]

Max {e*(s*,x*):

S* = {T31,--°9T$B}’ {V11--°’ VB} = {319~~-’ja}9

pE {vy,..n, vgls 0f {Vi,..., vgl 1,

and
B .
(3.5) e*(S*,x*) = v*¥(s*) - ¥ x* (1) )
' p=1 - W
: * i i
lf S — {T\)1,-Qo, TVB}.

By (3.4) and (3.1),

¥, ;(x*) =Max {  Max_ _ e(n UeotUTD U Qux):
T;,Tg v Q:Q ¢ N-T 1 VB

pE {V‘ly-*"VB}C[j‘]"'-’ 'jd.]’ 0£ {V']"--’ VB} } =

= Max {e(S,x): k€S, 4£5) = s, (%),

where k 1is any player in Té and 4 1is any player in Ti.

The argument for the validity of the last equality (not counting
the identity sign) runs as follows: A priori, there should be
there an inequality sign <, because the set of candidates
increases. By (2.13), sk,&(x) = si(k’L’X)(x). Moreover, since
Ti and Ti are disfinct equivalence classes of the i-th stage
and ke Tg Le Ti, it follows that in the profile of X, k and
4 belong the first time to two disjoint equivalence classes at

a stage not later than i. Since x€ PX(T'), it follows from
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Lemma 2.2, that i(k,4,x) s i - 1, TLet S° ve a coalition
containing k and not céntaining L such that Sk’L(X) =
e(s%,x). By (2.7), s% g)i(k’L’X>(x). Since i(k,2,x) = i - 1,
it follows from lLemma 2.6 that SY is a union of equivalence

classes of the i-th stage and, moreover, s° o T;, SonTé = ¢,

Thus, S° = pl U...u Tt UQ where {v,,..., v.} 1is a subset of
| V1 Ve ! © B

{31,...,ja} containing p and not containing o and Q c N-T.
It is therefore a member of the smaller set of candidates, which
proves the equality mentioned above. In a similar fashion we

prove that s*, | (x*) = Sy k(x) and since x€ PX(T) it now
’

1 1
L

follows that x*e px(T*).

Remark 3.7: If T*% is the set of all the equivalence classes

of stage m + 1 and x is a pseudo imputation, then, by (3.1),
the stage game (T%; v*) is isomorphic to the game (N;v). The
transformation {k} «<—> k 1leads from one game to the other,
Thus, the converse of Theorem 3.6, namely, x*¢ px (I'*) for
every stage game (and,.in particular, the (m % 1)=th étage game

implies x€ PX(T) is trivially true.

Remark 3.8: Theorem 3.6 generalizes results of [5]. The stage

game in which T* consists of all the equivalence classes of a

given stage is known as an intermediate game. The stage game in
: i
which 1 =m + 1 and {j1,.°.,ja} are players of a given Tjo

is known as a reduced gane,
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4, The Stage Games resulting from an imputation in the core of

a convex game,

A cooperative game (N;v) 1is called convex if its character-

istic function v satisfies

(4.1) v(g) =0
(4.2) v(A) + v(B) = v(AUB) + v(ANB) all A,B c N.

Convex games were introduced in [[14], where *their properties,
their importance in game theory and applications were discussed.
In particular, it was shown that such games have non-empty cores,™
In [6] we proved that the kernel for the grand coalition of a
convex game is contained in the relative interior of the core.

In this section we shall show that for an x in the core of a
convex game, all the stage games are also convex. We shall also

study the nature of some of these stage-games.

Convex games are super-additive but not necessarily monot-

onic. However, if the characteristic function satisfies
(4‘03) v({i}) 2 O, i = 1,2,...,1’1,

then monotonicity follows from super-additivity. 1In particular,

(2.1) follows from (4.1) - (4.3).

Note that (4.2) is equivalent to

*Moreover, they are characterized by the fact that their
cores are regular.
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(4.4) e(A,x) + e(Bx) < e(AUB,x) + e(ANB,x)

for all A,B < N and for any arbitrarily chosen fixed n-tuple X.

THEOREM 4.7: If T = (N;v) is a convex game and x belongs

to its core, then each stage game generated by x 1is convex.

if, _furthermore, T has a non-negative characteristic

function then this property passes on to the stage games.

PROOF: TLet (T*;v*) be a stage game generated by x. Since x

is in the core it follows that (3.1) is equivalent to

V*(T*) = x(T§ )+ x(TE ) vl x (T3 )
(4.5) e 2 o
v¥(s*) = Max  [v(SUQ) - x(Q), s* c T*, s* £ T*,
Q:Q <« N-T
where T = 7% u...u Tt  ana ir s* = (2t ,..., ot 3,
J J \Y) v
91 a 1 B
viseeey vg) € {d9s.euyd ), then S = 23 u...U 1l . Clearly,

V1 8

if v(3) =z 0 for each coalition S then v¥*(S*) = 0 whenever

S* © T*, It remains to show that

(4.6) v¥(5%) + v*(R*) s v*(S*UR*) + v¥(3*nR*) all

S*,R* « T*,

Relation (4.6) evidently holds if S* ¢ R* or if BR* < S*.
We can therefore assume that S*, R* £ T*. Tet S and R be
the unions of the members of 5* and R*, respectively. By

(4.5), there exist Qy and Q> in N-T such that v*(8*) +

+ V¥(R*) = v(suQ,y) - x(Qq) + v(RUQz) - X(Qz) < v{((SUR)U (Q1UQ2D+
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+ v((80R) U (Q4NQy)) - x(QquQ,) - Q(Q10Q2) s Max  [v({SUR)UQ)-

Q:Q « N-T
- x(Q)] + Max [v({(SnR) U Q) - x(Q)] = Max  (v((SUR)UQ -
Q:Q ¢ N-T Q:Q ¢ N-T :
- x(Q)] + v*(S* n R*),
If S*UR* = T* +then
(4.7) Max  [v((SUR) U Q) - x(Q)] =x(T% )u...+x(7} ) =
Q:Q « N-T . Jq Ja

= V*(S*UR*) 9

because x Dbelongs to the core of T. In any case (4.6) holds.

The following lemma furnishes much information concerning

particular Q's for which the maxima in (4.5) are achieved.

LEMMA 4.2: Let T = (N;v) be a convex game and let x

be an arbitrary n-tuple. Let R be a coalition in gl(x)

and let S1, 32 be subsets of R and N-R, respectively.

Suppose that Q1 and Q, are subsets of N-R and R,

respectively, such that

(4.8) Max e(54UQ,x) = e(5,UQ,,x)
Q:Q « N-R

(4.9) Max  e(5,UQ,x) = e(S,UQ,,x).
Q:Q c R

M M
Let R UQ; and Q, b)elong to E "(x) and 2% 2(X),

respectively. Under these conditions

(i) Wy s i,
(i1)  u, s i,
(iii)  If e(S; U Qq,x) # e(8,,x) then Wy < i,

(iv) If e(S, U Q,x) # e(5, U R,x) then My < i
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PROOF: By (4.4),
(4.10)  e(54UQqyx) + e(R,x) < e(RUQq,x) + e(S,,x).

By definition, e(S,UQ,,x) = e(S,,x) and strong inequality

holds if the condition in (iii) is satisfied. Consequently,
(4.11)  e(R,x) = e(RUQ,,x)

and strong inequality holds if the condition in (iii) is satis-

fied. This‘proves (i) and (iii).
By (4.4)’
(4.12) e(SZUQQ,x) + e(R,x) = e(S,UR,x) + e(Qz,X).

By definition, e(S,UQy,x) =2 e(S5,UR) and strong inequality

holds if the condition in‘(iv) 1s satisfied. Consequently,
(4.13)  e(R,x) < e(Qy,x)

and strong inequality holds if the condition in (iv) is satis-

fied. This proves (ii) and (iv).

COROLLARY 4.3: Q; and Q, of Lemma 4.2 can be chosen 1o be

unions of equivalence classes of stage i + 1 in the profile

of x.

PROOF: This follows from cases (i) and (ii) of Lemma 4.2 and

from.Lemma 2.6,

COROLLARY 4.4: If Re¢ 61(x) then

(4.14) Max  e(SuQ,x) = e(S,x) whenever S c R.
Q:9 «N-R
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(4.15) Max  e(SUQ,x) = e(SUR,x) whenever S c N-R.

Q:Q e« R
PROOF: Cases (iii) and (iv) of Lemma 4.2,

Tiemma 4.2 can be effectively used in devising programs

for computing the pseudo-kernels (and the kernels) for convex

games. Note that it can be applied to any stage-game (T*;v*)

of a stage greater than i, when the union of the members of
T 1is equal to R, We shall subsequently apply the lemma for
the particular cases i = 1,2 and the stage-games being the

stage m + 1,

We shall now add the assumption that x Ybelongs to the

core of the game, and treat the collection cg)(x) defined by

(4.16) é@(x) = {S:5 ¥ J,N and e(S,x) = e(R,x)
whenever R # ¢,N}.

LEMMA 4.5: If x Dbelongs to the core of a game T

T —— t——— —

in which case %1(}{) = {#,N}. In the first case a@(x)

induces on N the equivalence classes of the second stage

(N;V)
then either J(x) U (F} U (M) = B'(x) or Dix) = &2(x)

of the profile generated by x; in the second case it

induces on N the equivalence classes of the third stage

of the profile generated by x, 1the second stage being {N}.

The proof is straightforward.

LEMMA 4.6: Let I = (N,v) be a convex game and let x

belong to the core of I'. If REéD(X) then

?
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(4.17) Max e(5UQ,x) = Max [e(S,x), e(S U(N-R),x)]
Q:Q © N-R

whenever 3 ¢ R,

(4.18) Max  e(5UQ,x) = Max [e(S,x), e(SUR,x)]
Q:Qc R

whenever S < N-R.

PROOF: Corollary 4.4, if jz)(x) c f%1(x). If this is not the
case then, by Lemma 4,5, 51(30 ={#,N} and @(x) = 8 2(x).

The result now follows from L.emma 4.2,

COROLLARY 4.7: Let T

]

(N5v) be a convex game and let x

belong to its core. et R be a coalition in gb(x) and

consider the stage games (T%*; vﬁ) and (Tﬁ_R; vﬁ_R) of any

stage 1, such that the union of the members of TF is equal

to R and the union of the members of Tf_g is N-R. Under

these conditions

x(R)

vg (T3)
(4.19)4 v (5%) = Max [v(5), v(5 U(N-R)) - x(N-R)],

TE £ 8* < 1%

]

R
Vﬁ__R (TI’%—R) = X(N—R)
(4.20) vﬁ_R(S*) = Max [v(S)., v(SUR) - x(R)],

% * *
Ty # S* e 1 .

vt ouutt e s* o qol , 1t , Ty,

Here, S Yoo
——— Mg U-2 U-B — H 4 U-Z HB
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5. Completely Separating Near Ring Collections.

Definition 5.1. A collection g of subsets of a set N is

called a near-ring* if,

(5.1) A,B egs‘»AUB =N or ANB = ¢ or both AUB angd
ANB belong to E? .

LEMMA 5.2: If T is a convex game and X is an arbit-

——

fary n-tuple then (x) (see (4.16) is a near-ring.
n a ring

PROOF: Combine (4.4) with (4.16).

Definition 5.3: A collection g of subsets of a set N 1is

said to be completely separating (over N), if for each ordered

pair (k,%) of elements of N, k # &, there exists a set in €§

containing k and not containing 4.

Definition 5.4: A collection é of subsets of a set N 1is

called separating (over N), if for each ordered pair (k,4)

of elements of N, if a coalition exists in é y, Which
contains k and does not contain 4, then another coalition

exists in E? which contains 4 and does not contain k.

Let @ be a separating collection of subsets of N.

Let T4, Toyeuuy T be the equivalence classes induced by

u

*We are grateful to J. R. Isbell for suggesting this term.
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1% on N, Tet N Dbe a subset of N containing exuctly one
member from each equivalence class. Clearly, the collection

€~ = {SnN~|SEg} is completely separating over N,

The study of the separating and the coempletely separating
colleétions has been quite useful to the kernel theory (see,
e.g., [41)*. 1In fact, the separation condition in Theorem 2.7
simply states that g ii = {SﬂTZ‘.lSEgi} is separating over the
equivalence class T%. Tj A particular case of this observation

isz:

LEMMA 5.5: If T' is a monotonic game with a non-negative

characteristic function and if x€ PX(I') then ¢§9 (x)

(see 4.16)) is a separating collection.

It will be convenient to associate with a collection

f§:={s1,82,...,3a} of subsets of N +the characteristic

S S. 3
vectors X 1, X Z,..., X a, where
5 f1 if ies
(5.2) xi\J = v

\9 if ijéSv, v = 1,2,...,a.

Definition 5.6: A collection &% = {81, Soyeees Sa} of sub-

sets of a set N is called balanced, if positive constants

C1s Coyeesy C exist such that

*See [9] and [12] for additional properties of separating
collections.
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E% is called minimal balanced if it is balanced and none of

its proper sub-collections is bvalanced.

5§ is called weakly balanced if (5.3) is satisfied by

non-negative constants ClseaesCpho The constants ClyesesCy

are called balancing coefficients.

Balanced and minimal balanced collections were introduced*
and studied in [1] and [13]. They are useful to the study of
various solution concepts such as the core (see [[13],.101),
the bargaining set (see [3]) and, as we shall see in this
paper, the kernel. See [8] for additional information con-

cerning their structure.

LEMMA 5.7: A balanced collection is separating.

The proof is straightforward. The converse statement, however,
is not true. Indeed, any set of six minimal winning coalitions
in the 7-person projective game is completely separating and

not even weakly balanced. It turns out, however, that imposing

a near-ring requirement is a remedy:

*0. N. Bondareva uses the term (g-8) ~ covering [reduced
(q-8) - covering] to denote the palr consisting of weights
and a collection of characteristic vectors of a balanced
[minimal balanced] collection (see [1]). It was convenient
in [(13] +to rule out the collection ({N}. This exception is
not needed here,
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THEOREM 5.8: A separating near-ring collection é of

subsets of a set N = {1,2,...,n] which contains at

least one non-empty subset is weakly balanced.

PROOF: There is no loss of generality in assuming that é is
completely separating. It is immediately varified that the
theorem holds for n = 1, We shall therefore also assume that
nz22, Let 81 = {S:5¢ é, ig€S}. Let %: denote the set
of elements of éi which are.maximal under inclusion; we
shall show that % 1’ is a partition of N - {i}. 1Indeed, it
follows from the complete separating property that each member
of N - {i} belongé to at least one element of gi. By the
near-ring property, the elements of % ';
collection £~ = &7 u&3u...u &7 is balanced. In fact,

are disjoint. The

if ¢(8) 1is the number of elements i such that Se &7,

i
then ¢(5)/(n-1) 1is a balancing coefficient for S in éN.
this completes the proof.
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6. The Kernel and the Pseudo Kernel in Convex Games.

Let T = (N;v) Dbve an n-person game whose characteristic

function merely satisfies
(6.1) v(N) =2 v({1}) +...+ v({n}), v(g) = O.
An n-tuple (x1,xé,...,xn) satisfying

(6.2) x; 2 v({i}), i = 1,2,...,n, x(N) = v(N)

will be called an imputation.

An imputation x 1is said to belong to the kernel X = ¥(T')
of T (for the grand coalition), if (see(2.7))

(6.3) Sy L(x) < s, (x) or x, = v({4}) for all k,4eN,
k £ 4.

Note that, unlike the pseudo-kernel, the kernel is a
relative invariant under strategic equivalence. For this
reason, the kernel is more interesting from the game theoretic
point of view. Note, however, that if v({i}) =0, i = 1,2,...,n,
then the kernel and the pseudo kefnel coincide. For this reason,
it is often possible to use the structure of the pseudo-kernel

in order to obtain properties of the kernel.*

*The need to pass to the pseudo-kernel often stems from
the fact that Theorem 3.6 and various variants of it are not
true if PX is replaced by ¥,
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LEMMA 6.7: If T = (N;v) is & game with a non-negative

——

characteristic function then

(6.4) PX(T) n {Xlxi z v({i}), 41 =1,2,...,n} c x(T).
PROOF: Compare (6.3) with (2.7).

THEOREM 6.2: If T = (N;v) is a convex game with a non-

negative characteristic function then

(6.5) PR(T) = K(T).

PROOF: Tet x€ PX(I'). It has been proved in* [6] that x
belongs to the core of the game. Thus, by (3.2) and (6.4),
(N;v*) be a

x€ ¥(T'). Conversely, let x€ X(I') and let T*
game which is stirategically equivalent to 'y for which

v* ({1}) =0, i =1,2,...,n. Tet x* be the corresponding
payoff. Clearly, =x*e¢ ¥(r*) = PX(I'*), Tbecause the kernel is

a relative invariant under strategic equivalence. Moreover,

I'* is a convex game because convexity is invariant under
strategic equivalence. In particular T* is monotonic and
therefore (see (2.8)a) SE,&(X*) = sz’k(x*) for all k,4, k # 4,
wWhere stars refer to entities with respect to T'*, The latter
equalities, however, imply Sk,L(X) = SL,k(X) for all k,+4,

k # t. Consequently x€ px(r).

*Theorems 2.4 and 2.11 of [[6] actually refer to the kernel,
but ommitting the requirement v{{i}) = 0, i = 1,2,0..,n0,
which appears in the proofs make them valid proofs for the
pseudo-kernel,
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Theorem 6.2 enables us to use results concerning the
pseudo-kernels of convex games with non-negative characteristic
functions in order to deduce properties of the kernels of such
games. In as much as such properties are invariant under
strategic equivalence they will remain true also for convex

games which clearly satisfy (6.1).
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To The Kernel of a Convex Game Consists of a Unique Point.

Characterizing its Location.

As stated at the end of the previous section, the first
statement in the title of this section will be proved if we

show:

THEOREM 7.1: The pseudo-kernel (for the grand coalition)

of a convex game with a2 non-negative characteristic

function consists of a unique point.

PROOF: TLet x,y€ PX(T')., Denote

(7.1) D (x) = {5:5 £ N.g, e(5,x) = e(P,x) whenever
P £ ¢,N}

(7.2) D (y) = {R:R £ N.g, e(R,y) = e(P,y) whenever
P £ ¢,N)

(7.3) s(x) = e(5,x), SGO@(X)

(7.4) s(y) = e(R.y), Re ﬂ(y)

]

Without loss of generality one may assume that
(7.5) s(x) s s(y).

The theorem certainly holds for 1-person and 2-person games.

We shall proceed by induction, assuming that n = 3,



A, IQD(y) is a separating near-ring (Lemmas 5.2 and 5.5)
which contains a non-empty subset of N; hence it contains a
balanced collection & = {R1,R2,,.°,Ra} (Theorem 5.8), If
Rj£¢ij(x) then e(Rj,x) < s(x) < s(y) = e(Rj,y). Consequently
x(Rj) > y(Rj)' If Rjegg(x) then we can only conclude that
X(Rj) > y(Rj). Multiplying these inequalities by the balancing
coefficients, we obtain x(N) 2 y(N), with equality occuring
only if & cD(x) and s(x) = s(y); But equality must occur
because =x(N) = v(N) = y(N); hence we conclude that there

exists a set R in é@(x) n Sa(y) and, moreover,
(7.6) ° x(R) = y(R). x(N-R) = y(N-R),

B. Let m(x) + 1 be the last stage of the profile of x
and let m(y) + 1 Dbe the last stage of the profile of y.

. ‘ *, ok nE L :
Consider the stage games (T ;vep) and (TN-R’VN—R) as defined

in Corollary 4.7, with respect to X and for i = m(x) + 1,

(DH*, *x

Consider also the analogous stage games R 5 VR and

(T** : V** )
N-~R N-R
players in these stage games are l-element sets.

with respect to y and for i = m(y) + 1. The

Since x and y belong to PX(T), they a fortiori belong
to the core of T (see the proof of Theorem 6.2). By Theorem
4.7, all these games are convex and have a non-negative
characteristic function; consequently they are monotonic,
Without loss of generality we may assume that R = {1,2,...,r}.

We can now use Theorem 3.6 to conclude that
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(7.7) (X19...,Xr) € PX(T¥; vE),

(Xr+1,...,xn) EPM (Tﬁ—R; Vlﬂ\]"-R),

(7.8) (¥95eeesy.) € PY(TE*; vE*),

I T
(yr+1,a¢o,yn) e PH(TI\I-R, VN—R .

However, because of (7.6) and Corollary 4.7, (Tﬁ; VE) and
(TE*; VE*) are the same game since they have the same set of
players and the same characteristic function. Similarly,

(Ty_g; vy.g) @and (T§:R; VﬁfR) are the same game. The same
games possess the same pseudo-kernel. Since all these games
have fewer than n ,players, We can use the induction hypothesis
to conclude that their pseudofkernels consist of unique points.
Consequently, by (7.7) and (7.8), x = Y. This completes the

proof in view of the fact that the pseudo-kernel is not

empty (see [4]).

Corollary 7.2: The kernel (for the grand coalition) of a

convex game consists of a unigque point,

Corollary 7.2 brings to an end the main purpose of this
study. We now know exactly the shape of the kernel of a
convex games; namely, a unique point. There remains,
however, the problem of locating this point -~ preferably in
geometrical tefms. Fortunately, general theorems are available
in the literature which will enable us to complete our task:

In [[11], D. Schmeidler introduced the nucleolus of the game
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and proved that it is a subset of the kernel consisting of a
unique point. In view of this result and Corollary 7.2 we can

now state:

Corollary 7.3: The kernel and the nucleolus of a convex game

(for the grand coalition) coincide.

In [[7], we present a characterization of the nucleolus
for a general cooperative game., For games with a non-empty

core it coincides with the lexicographic core defined as

follows:
let Ty =T = (N;v) be an n-person game, n 2 2, whose
core is not empty. We éhall construct games
r, = (N;W)’ L, = (N;vz),..., = (N;gh) over the same set of
are

players N, whose characteristic functions / defined induct-

ively by

(7.9) v, _4(8) if seﬂ(ri_1)
Vi(S) =
viq(8) « 8, ir sszg(ri_1)
Here,
(7.10) dé(ri_1) = {S|e(s,x) = 0 whenever x belongs to

the core of F1_1}

and 6i is maximal under the requirement that Ti has a non-
empty core. The last game rm is characterized by the
requirement that it is the first game in the sequence which

is inessential.
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Definition 7.4: The lexicographic core of T is the core of Tm,

Note that the lexicographic core is a point whose location
can be described in geometric terms, regarding the core as a
fundamental set. Its location can be obtained by "pushing
inside" at equal 4 -distances the appropriate hyperplanes
which determine the core* - stopping the push of a hyperplane

only when it causes the inside to become empty.

By Corollary 7.3 and since a convex game has a non-

empty core,we can finally state:

THEOREM 7.5: The kernel of a convex game coincides with the

lexicographic core.

*Another way of putting it: "pushing inside" these hyper-
planes in such a way that their intersections with the axes
indexed by the members of the corresponding coalitions move
equal distances.
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