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PREFACE

The most important aim of the maferial presented in.thi? manuscript is the
introduction of some new concepts for non-cooperative games. These ideas are
closely related to the basic idea of an equilibrium point. Many of them are ex-
tensions of this important concept. We are concerned most of the time with charac-
terizing these ideas and with finding conditions for their exié%ence. Some simple
applications are also presented.

The manuscript is divided into two parts. The main part, which is self-
contained, consists of chapters I, II, IV and V and centers on the use of Kakutani's
fixed point theorem in a way similar to Nash's treatment of equilibrium points in
[12]. In addition, some intuitive considerations are presented and some simple
applica 'Qns to mixed extensions of finite games are made. The second part consists
of_g@%ptéréﬁill and VI and involves some advanced generalizations of the results
‘"ofc£he first part. For this reason the corresponding chapters have been marked
by asterisks.

The treatment in the second part extends several important methods designed
to deal with equilibrium points, namely: the Fan-Glicksberg fixed point theorem
[2] and [6] which generalizes that of Kakutani; the very recent method of intersecting
sets having a convex cylinder due to Fan [5] and finally the procedure using the
maximum. function originated in [13] by Nash and extended by Nikaido-Isoda [16].
Several simple and st;aightforward applications to mixed extensions of continuous
games are presented.

This manuscript is based on work done during my. stay at the Econometric
Research Program of Princeton University. It includes and extendsvresults

presented in several papers there.
June 1967
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CHAPTER T

I.1. Two-Person Cames: Saddle Points

The theory of games has been built on the famous minimax theorem, due to
von Neumann which is related to some special kinds of two-person games.
_In order to obtain this result and discuss related topics we begin with

the introduction of some fundamental concepts.

Mathematically, a two-person game is defined by

r=(3

where Zﬁ and Zé are the strategy sets of the first and second players,

respectively and are non-empty, and where the corresponding payoff functions

Al and A2 are real functions defined on the product space Zﬁ;ﬁ% . Usually
such a description is referred to as "normal form" in the literature.

This 18 an abstract representation of many real situations where
conflict of interest of two persons is involved.

The intuitive meaning of this definition is that if the first player
chooses his strategy GlEZﬁ and the second player chooses his strategy GEGZi,

the play of the game is completely determined and ends with the payoff A (O

g
1v 1’ 2)
to the first player, and the payoff Ag(cl’og) to the second player.

It is assumed that both players try to maximize their payoff without
bounds. Thisg assumption is motivated by real situations where conflict between

two persons is involved. This fact is observed as a natural principle.

The principal problem of the theory of two-person games is to describe

a rational or optimal behavior for the players.
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A two-person game is specified by the structure of its strategy sets.

For example, the finite two-person games are characterized by the finiteness

of both strategy sets. They. are also called matrix games because the payoff

functions can be. expressed as a matrix. Another important kind of two-person games
used in our exposition has as its strategy sets non-empty sets in a euclidean space.

Thus, it is seen that in general the strategy sets can have a topological

structure.

Consider a two-person game

where the strategy sets are non-empty compact sets, i.e. bounded and closed,
in euclidean spaces. ILet the payoff functions to be coﬁtinuous functions. The
existence of the following gquantities

V.(I) = mnax min Ai(si,s.)
s,€5 g J (3#i:1,2)

<
o
3
tl

min max Ai(si,s.)

S.€Z. s, €L, o

Jd 11

is guaranteed by the fact that the functions maximum and minimum taking over a
variable of a continuous function on the product space, is continuous.

These amounts are called the inferior value or maximin value and the

superior value or minimax value of the player i(i:1,2) , respectively.

In what follows, if it is not mentioned to the contrary we assume such
properties for the strategy sets and payoff functions for all the games. From

an intuitive viewpoint the amount Vi(I? (1:1,2) , is the minimum safe winnings



that the player 1 can obtain independent of the behavior of his opponent,
Indeed, if player 1 choses the strategy GiEZE ; he 1s assured to
obtain at least the amount
min Ai(oi,sj) (3#i:1,2).
s.€X.
J J
Then, since this function of minimum winnings of player 1 depends only on his
choices and since he wishes to maximize hig safe positions, he is sure of
obtaining the amount
Vi(ID = max min Ai(si,s.) (3#i:1,2) .
s,€5,  s.€5. J
1771 373
On the other hand the value Vl(T§ (i:1,2) , is the maximum winnings that the
opponent j%i is able to prevent the player i from getting more independent of
the actions of player 1 .

Again, by the choice GiEZE » the player i can prevent his opponent from

making more than
max A.(s.,oi) (3#i:1,2).
s .€Z. Jd
J J
This function depends only upon the strategy of player i . If he wishes to

minimize the maximum position of his opponent he is able to prevent the position

Vi(IU = min max Ai(s.

l,sj) (i#i:1,2) .
S.€X., S.€X.
J J 1 1

A strategy 5i€Z§ is said to be a maximin strategy of the player i

(i:1,2) in the two-person game I' if

min A.(0.,s.) = max min A.(s.,s.) = V.(T j£1:1,2
o aGps) = max i a(se) = V(D (4:1,2)
345 S D



A strategy 5i€Z€ is called a minimax strategy of the player i(i:1,2) in
the two-person game I' if
max A.(s,,0.) = min max A.(s,,s,) = VI(I) (§#i:1,2).
s,ex, J I * s.€5, s.en, J4 41
Jd o d 1 1 Jd J
Obviously the existence of the maximin and minimax values implies

the existence of the maximin and minimax'strategies. Intuitively, one can see
a.maximum strategy as avsafe defensive behavior and a minimax strategy as a
safe attacking behavior.

From the above definitions, we see that the notions of maximin and
minimax strategy are very different, nevertheless there is an important kind of

two-person game, for which these concepts coincide, namely the constant-sum

two-person games. These are characterizated by

A1<01’02> + AZ(Gl’oe) =c for all 0. €% , 0,€Z,

for some real number c¢ . In such a case the constant ¢ 1is called the sum
of two-person game.
If in the constant-sum two-person game we substitute in the definition

of the maximin value Vi(Iﬁ for the payoff function Ai’ c—Aj we get:
V. () = e-v(D) (i£3:1,2)

By the same substitution in the definition of a maximum strategy of the player

i (i:1,2) and the above we show that for this kind of two-person games a

strategy of a player is maximin strategy if and only if is a minimax strategy.
Now, in this case, the concept of a maximin or minimax strategy of a

player has a stronger interpretation, i.e. it is a strategy which assures by



itself the maximin value to the corresponding player and at the same time

prevents the opponent from winning more than his corresponding minimax value.

In other words it is simultaneously a safe defensive and attacking behavior.
Glven a constant-sum two-person game [' with sum ¢ , we can always

associate with it a zero-sum two-person game Ib > 1.e. a constant-sum two-person

game with zero sum:

FO = { z‘]_JEg;AlJAE—C }

whose structure is the same of the primitive game I' . Indeed, we can consider
that before or after each play the second player pays the amount c . Thus, the
strategic behavior of both players in such games is the same. Therefore, we will
now examine only zero-sum two-person games.

This kind of two-person games with zero-sum can be seen as those situations
where there is a direct conflict of interest between the players. In the zero-sum

two-person games, one can eliminate the description of the payoff function of the

second player. Such zero-sum games will be described by

'=(%x ,Zé;Al }

Motivated by this asymnetry in notation, the first player is usually regarded
as the defensive player. That is, the first player is concerned with maximizing

his position and the second Player is generally considered as the attacking player,

preventing the desires of the first player.



This new representation of a zero-sum two-person game allows a more simple
description by omitting the character of defensiveness of the second player. It
is usual to assign the maximin strategy only to the first player in the same way
a5 the minimax strategy is only fixed to the second player. Moreover, the
corresponding values are referred to as those of the first player.

For a zero-sum fwo-person game I' the maximin and minimax values

always fulfill the following relation

: i ) _ vl
V(1) = max min Al(sl’SQ) =< min max Al(sl’SE) = v (I)

31621 52622 sgezé 31621
This is easily proven by taking a maximin strategy Gléii and a minimax
strategy (which existsibecause the payoff functien is continuous on the product

space) 52€Zé and considering the simple inequality

min Al( 01’82) fSAl( 0,50, ) < max A o

§,.€L

)
< >
0% | s €2,

(5
This relation expresses the intuitively obvious fact that the smallest
safe amount, which the second player is able to limit the first rlayer to is
not smaller than the largest safe level that this player can get by himself.
In general, the equality in the above relation does not hold. One may
verify this fact by taking a simple example. However, it is very interesting to
characterize those zero-sum two-person games for which the strict equality holds.

In such a case, the unique amount

v(r) =v (D) =v



is said to be a value of the zero-sum two-person game. It is then said that

the zero-sum two-person game I' satisfies the.minimax theorem.

For this kind of two-person games we have a satisfactory rational
behavior which is referred to as the minimax principle. The rational behavior
of the players is completely determined by their respective choices of a maximin
and a minimax strategy. This, on one hand guarantees the attainment of the value
of the game V(I') to the first player and -V(I) to the second player, and on
the other hand they prevent their opponents from getting more than this amount.

We refer to the maximin and minimax strategies as optimal strategies.

A pair: (51,52) of optimal strategies which is characterized by the

relation

max A(sl,él) = A(&l,5

leZE

2 -
slézé

is called a saddle point of the zero-sum two-person game I

By virtue of the obvious assertions

min A<61’Sg) < max min A(sl,sg)
sgézé slezi SQEL?

=y o
max A(Sl’02> = min max A(sl,sg) ,

S1€2

€5 -
55 L@ slezi
the existence of a saddle point of a zero-sum two-person game I assures the validity
of the minimax theorem.

Before formulating a wide class of zero-sum two-person games with value

we recall some simple concepts.



A set 2 in a euclidean space is said to be a convex set if for

any pair of points O, G€5 the point
g+ (1-)) G €2 for all  A€[0,1]

A real function A defined on a convex set X2 of a euclidean space is

said to be a convex function if for any pair of points o, O€X

A + (1-A)6 ) =Aa(0) + (1-A)A@G)

for all A€f0,1] . Analogously, a function A is called a concave function if

for any pair of points o , Ge&
AN +(1-2)F ) = Aa(0) + (1-A)A(G)

for all A€[0,17 .
Furtherinore, we will often make use of a more general kind of function.
Given two sets 2 and o in euclidean spaces, a correspondence @

which for each point O0€X assigns a non-empty set (O)(—:i) is said to be

a multivalued function.

A multivalued function @ defined on a set 2 with values in the

set 2 1is called upper semicontinuous if for any convergent sequences

o(k) - o and T(k) - T
then for all positive integers k:7(k)ep(o(k))
implies Te o (0)

Equivalently a multivalued function @ 1s upper semicontinuous if

and only if its graph



Gy = {(0,7): 52 :7€ o(0)} C 2

is closed in the product space.
An initial strong characterization of such two-person games, due to
Kakutaniris given in the following minimax theorem.
THEOREM I.l: TILet I = {Z),ZE;A} be a zero-sum two-person game such
that the strategy sets Zﬁ and Zé are non-empty, compact, convex sets in
euclidean spaces and the payoff function A 1is continuous in the variable
(01,02)€Zix22 concave with respect to Gl€Zﬁ for fixed GQEZE and convex with

respect to GEEZE for fixed OlGZi .

Then, the game I' has the value:

V(D) = Vl(I§ = max min A(s = min max A(Sl’s2) = Vl(I)

N Z\I l’ S2) Z) )y
51621 826 A s2€ a slézi

PROOF: Because the product set of compact and convex sets in euclidean gpaces
is compact and convex in an euclidean space, then the set Z&XZE is compact and
convex. By the continuity of the payoff function A on the product space
Zﬁxzb » we obtain that for any pair of points GlGZi and OQGZE the

following sets

@l(cz) = {TlGZﬁ:A(7i,02) = max A(Sl’og)}
' s, €2
171
and
o, (0)) = {Tgezg:AE(O'l,T2) = min A(O‘l,sg)}

SQEZé
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are non-empty. On the other hand, by the concavity of the *payoff function with

respect to the variable 0162& , for fixed GEGZE , the set @l(og) is convex.

Let Tl’ Ti be any couple of points belonging to the set ¢i(02)§;22} then

A(Ti’og) = A(7i,02) = max A(Sl’GE)

Sl€zi

and therefore by the concavity

AT +(1-M)T,0,) = M(T),0,)+(1-A)A(T,0,) = max A(s;,0,)
sl€Zﬁ

for all A€[0,1] . But this inegquality is an equality since in the third rart

we have the maximum amount of the function A(Ul’oe) for fixed GEEZE . Thus

ATi + (1-/\)7l € l(02) for all  Ae[0,1] .

Similarly, since the payoff function is convex in the variable 02€Zé for

fixed OlGZi ; one then can prove the convexity of the set v ¢b(01) C:zé .

We now consider the multivalued function
P LX) X2,
defined by
?(0,,0,) = q0)x 9,(0,)
Let

o(k) -0 and T(k) > T
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be two converging sequences in the set ZﬁXZé with the property that for any

positive integer k:7(k)e ¢(0(k)), that is

AT (),0,(0)) = max A(s,0,())
11

and
MO T () = min A0y(0),5,)
2 2
By the continuity of the payoff function, the maximum over slGZi of the
payoff function A 1is also a continuous function defined over the set Zé .
Therefore the following seguence converges

max A(sl,Gg(k)) - max A(Sl’GE) .

sleZ‘l s_,leE,l

Similarly, the minimun over 82€Zé of the payoff function A is a continuous

function on Zﬁ . Thus

mén A(Ul(k)’sg) - mig A(GI’SE) .
5255 "2

By the same property the convergence of the sequences
AT (5),0,())) > a(7,0,) and A0 (K),7,(k)) ~A(0),T,)

follows.

All these relations, together with the above two equalities give:

max A(sl,ag) = A(Tl,Gg)
leZﬁ
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and

Smég A(GI’SE) = A(Gl’7é) .

22
These show that the point T belongs to the set ®(0) , and therefore the upper
semicontinuity of the multivaluated Ffunction ¢ 1s established.

Now, by making use of the Kakutani Fixed Point Theorem; which assures the

existence of a fixed point 5€¢(6) for any upper semicontinuous multivalued function ¢
defined on a non-empty, compact and convex set in a euclidean space X having the
property that for every O€X the set ¢(G)(:Z i1s convex; the existence of a fixed
point (51,52)€Zix25 for the multivalued function ¢ is guaranteed.

Such a fixed point (51,52)6 @(51,52) is & saddle point of the two-person
game I

Smég A(Gl,sz) = A(Ol,ag) = szg A(Sl’02> s
22 171

which guarantees the equality between the maximin and minimax values Vl(Iv and
1

v (D). Q.E.D.

In this proof we have used the property of non-voidness simultaneously for
the sets QE(Gl) and ~®l(02) .

This fact can be reformulated in two different ways using the symmetric
description for a zero-sum two-person game. Let I = { Zﬁ,Zé;A,-A } be such a
two-person game, one then can describe the mentioned condition by expressing the

fact that for each joint strategy (01,02) there is another joint strategy

(1,,7,) which satisfies
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A(Tl,Gg) = szx A(Sl’OQ)
144
and

_A(Gl’Té) = max -A(0,,s

)
2
SEGZE

1

that is, for any established compoundbbehavior there is another joint behavior
which maximizes the winnings of each player if his opponent abides by the first

behavior. We relate this condition as the defense property of the two-person

game I .,
On the other hand, one can describe the above condition by another
reformulation: For each joint strategy (01,02) there is another joint

strategy (T ,72) , for which the equalities

_A<7i’02) = mzn "A<Sl’02)
s, €2y
and

A<Gl’7é) = min A(C

lJ 82)
SZGZE

hold true. In other words, for any assumed Joint behavior there is another joint
behavior which minimizes the position of each player if this player abides by the

first one.  This property is called the attack property of the two-person game I'.

An important application of this theorem will be formulated immediately after
we introduce some important concepts.

Given a finite two-person game
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& mixed strategy of the first player ig a distribution of probabilities defined

over the get Zi , that is, a function
X Zﬁ - [0,1]
with

> SV SV
xwl)—o for all qf%_emd Z  x(s

Analogously, we defined a mixed strategy y of the second player.

Usually the strategies in Zé(i:l,Z) are called pure strategies to

distinguish between the two kinds.

A simple interpretation of the concept of mixed strategy can be this:
in a sequence of plays of the two-person game I', in which the choices of the
strategies used by each player must be done in a random manner, since otherwise
the opponent might obtain certain information of his behavior, which is not
desirable in any instance. So the behavior can be described as a distribution
of probability on the strategy sets of both players.

Following this interpretation the corresponding payoff functions Al
and A2 of both players must be replaced by the respective expectations El
and E2 in the case of mixed strategies.

Thus, given a finite two-person game I', let

~

Zﬁ = {X:Z& _;[o,lj;x(al) =0 for all GlEZi and X X(Sl) =1}

and
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2

= { yaZE —a[O,l]:y(Og) =0 for all qgeZE and 2 y(sz) =1}

by the mixed strategy sets of the first and second player, respectively.

~ ~

The sets Z& and Zé are non-empty, compact and convex sets in

euclidean spaces whose corresponding dimension is just the number of elements of
the respective strategy set Zi and Zé minus one,

For every pair
xEZi and  yeX

let

El(x,y) and Eg(x,y)

be the respective expectations which are given by

Ei(XJy) = 2 2 A, ( l,s ) x(s l>y(82) (i:l)2) s

sez_LseZ)

then the two-person game, defined by

T = {Z 2,38, B, }

is said to be the mixed extension of I' .

We can also describe this as

B,(05) = B E(0,7)x0) = D (x, 0)y(0,)  (i:1,2)

olezl o 2€Z)2

where Ei(ol,y) indicates the expectation function for the distribution of

probability
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) { 1 if Ti = Gl

0 otherwige
of the first player. Analogously for the expectation function Ei(x,ag)
with respect to the second player. The fundamental minimax theorem of the
[14]
theory of games, due to von Neumann can now be obtained as an immediate consge-

guence of the above theorem.

THEOREM I.2: TLet = { Z&,ZE;A } be a finite zero-sum two-person

game, then the mixed extension T‘z { ZE}ZE;E } has a value.

PROOF: The mixed strategy sets Zi and ZE are non-empty, compact and convex

in euclidean spaces.

Consider an arbitrary fixed yGZé . Then for any pair x, iEZi we have:
E(Ax+(1-M)x,y)= 2 & A(0,,0,)y(0,) | ( x(0,)+(1-N)x(C ))
~ ‘ 1°72 2 1 2
(o) lez,l 2622

= AE (x,y) + (1-A)E(x,y)

for all real number A ., This says that the function E 1is linear(o)with respect
to the variable X€§a - In particular this equality holds for values of A
restricted to the interval [0,1] . Therefore, the function £ is concave in
the variable x€Zi for fixed yezé .

Analogously, for fixed XEZ& the function E is linear with respect to

the variable y; for any pair v, §€Z§

E(X,Ay+(l—k)§) = AE(X;Y) + (l-A>E(XJ§) s

&ﬁBy simplicity we will use term linear as the restriction of
a linear function.
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for all real number A . Hence the function E 1is convex in yefé for
fixed xéga .
On the other hand, since the expectation function E 1is bilinear, that
is, linear in each variable for any fixed mixed strategy of the remaining
variable; it is a continuous function on the productvspace Eaxgé .

Thus, all the requirements of the preceding theorem are satisfied for

~ ~

the mixed extension I', and therefore the existence of the value of I' isg

guaranteed. Q.E.D.

An interesting interchangeability property of saddle points is formulated

as follows:

THEOREM I.3: TLet I = { Zi,Zé;A} be an arbitrary zero-sum two-person
game where (51,52) and (5;,5%) are two saddle points.

Then, (61,02) and (01,62) are also saddle points of I'.

PROOF': By hypothesis we have

v(I) = mix A(Sl’UQ) = A<01’02) = még A(Gl,sg)
5162 ot
and
V(I) = max A(Sl’8é) = A(Gl’8é) = min A(ol’SE)

SlGZi SEGZE
Hence, an immediate consequence of the first equality is
~J - < - — — ~
A(ol,og) = A(ol,og) = A(ol,cg)
Similarly from the second relation arises

A(&l,org) < A(Gl,O‘N2) < A(ol,ég)
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Therefore

V(D) = 4(0,,6,) = AG,,5))

On the other hand, by using the first part of the first equality and the
last part of the second equality, we obtain the property of being a saddle point

of I' for the point (51,5 Analogously, by taking the other extreme terms of

5)
the mentioned equalities we have verified that the point (51,52) is a saddle
point of I, Q.E.D.

Besides the interchangeability property of the saddle points in a zero-

sum two-person game, we have gotten the equivalence property between them, that

is, the payoffs on any saddle points are equal.

With this property of interchangeability, one then has that if either one
or both players change their strategies from their component of an established
saddle point to another, it will not be any modification on the rayoffs and the
strategic situations of both players.

For the zero-sum two-person games which have been previously
considered the set of all saddle points has a very simple structure. This

formulation is given as follows.

THEOREM I.L: Let = { Zi,Zé;A} be a zero-sum two-person game

such that the strategy sets Zi and Zé are non-empty, compact,
convex sets in euclidean spaces and the payoff function A is
continuous in the variable (Gl,GE)EZixZé , concave with respect
to GlEZﬁ for fixed 02625 and convex with respect to GQGZE
for fixed GlGZﬁ . Then the set of saddle points is non-empty,

compact and convex.
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PROOF: The non-voidness of the set of saddle points of I' is assured by

the theorem I.1.

Consider a convergent sequence of saddle roints

which are characterized by

Srlnz%l A(s),0,(k)) = A(O (k),0,(k)) = Sr;%z A(s,,0,(k))

By the continuity of the payoff function, the maximun over slGZﬂ

of A 1s also continuous function over the compact set Z% . Hence we have

Sm:x A(sl,ag(k)) - ng A<sl’02) .
1624 S157

Analogously, for the minimun function

min A(0. (k),s,) » min A(G
S €% . 2 S, €2
2 2 272

l} 82)
Therefore by using the convergence of the sequence
A(Ul(k), Ue(k)) —9A(Ul,02)

together with the preceding two convergences we obtain

Smig A(sl,og) = A(Gl’GE) = Smég A(Gl,sg) .
171 22
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This indicates that the joint strategy (61,62) is a saddle point of I, i.e.
the set of saddle points of the zero-sum two-person game I 1is closed, and
therefore compact since it is a subset of the compact set ZﬁXZE .

We now will prove the convexity of such a set. First of all, let us
consider two important simple cases.

Let (61,52) and (61,55) be two saddle points of I' , which satisfy
the conditions

sz; A(sl,52) = A(61’62> = Smég AG

11 2 2

and

max A(sl,Gg) = A(Ul’og) = min A(C

. 1755)
SlEZi s2€Zé

By the convexity of the payoff function with respect to 02€Zé for fixed

GlGZi » the following condition obviously holds:

- ~

A(ol,A02+(l-A)02) :;AA(ol,og) + (1-A)A(ol,02) = min A(C

1755) -
SEGZE

for all Ae€[0,1].

This inequality must be actually the strict equality since in the third term
there appears the minimun amount of the payoff function on GIEZﬁ over the
set Z, . Thus, for each point (61,A&2 + (1-A)Eé) with  A€[0,1] :

A(&l,Nﬁg + (l—A)&é): min A(C

l) SE)
SEGZE
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Let 01626' be any strategy of the first player. Then, by the definition of

saddle points (51,52) and (51,5;) the following inequalities hold:

A(01,6,) =A(G,,6,) = V(I)  ana A(ol,&;) =4(6,,6,) = V(D)

Again from the convexity of the payoff function in the wvariable 02€Zé s

on the point (Gl,N52+(l—A)5J with  A€[0,1] we obtain:

5)
A(ol,/\c'r2 + (1-A)02)5AA(01,62) + (1-A)A(ol,02)
Together with the last relations, this condition determines
A(ol,Aﬁg + (l—/\)og) sA(&l,)\&g + (l-/\)og) s

This implies
Sm.ix A(sl,A02 + (l—h)og) = A( Gl,ha
164

Therefore for each  A€[0,1] , the point (Gl,hﬁg + (l—h)aé) is saddle point of T

In a similar fashion, let (61,52) and (01,52) be two saddle points

of I', for which

i

Sm.ix A(Sl’ag) A(Ol’02> = ~mé§§ A(Gl’sg)
1624 Poth
and

~

Smix A(Sl’62) = A(Gl,ﬁe) = még .AOJl,sz)
1624 505
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The concavity of the payoff function in the variable olGZi for

fixed 02625 gives:

A(Nil + (l—k)&1,62) = mz{ A<Sl’62)
51624
for all A€[0,1] .

On the other hand, for any arbitrary 02€Zé by virtue of the definition

of saddle point, one, now has

A(&l,o2) 2A(61,62) and A(ol,o2) 2A(01,62)

This together with the concavity ef the payoff function with respect to GlEZi

determines, at the point (A5, + (1-A)5“l,02) with A€[0,1] ,
- - 0~ - S — _ ~
A(/\ol + (1 A)al,ag) A()\crl + (1 A)Ul,oe)

which is equivalent to

A0+ (1-0)5,0,) = min A0S, ¥ (1-N)F,5,)
2 2

Hence, the point (Nil + (l_A)51’62) with ‘AE[O,l] is a saddle
point T

With the two above assertions, we will now directly show the convexity
of the set of saddle points.

Let G = (0,,0,) and § = (a~l,c’r"2) be two saddle points of I' , then by
virtue of the interchangeability broperty given in the preceding theorem, the points

(51,52) and (51,52)



- 23 -

are saddle points of I
Now, let A be any arbitrary value in [0,1] , then the assertion of the
first simple case considered before, applied to the saddle points (61,52) and
(51,5;) assures that the following is a saddle point: (51,A§2+(1—A)5;)
Similarly, by the same argument applied to the saddle points (31,52)
and (51,5;) implies that (81,A52 + (l—A)&é) is also a saddle point of I'.

Hence, since both points

(al,Aé

~

+ (l—h)aé) and (Ol,hé + (l-A)&é)

2 2

are saddle points of I' , the assertion of the second simple case Jjust considered

for these joint strategies guarantees the property of saddle point for
Oy =2 + (1-A)0 = (WG, + (1-A)G, , A5, + (1-A)5. )
A 1 2 2
This implies the condition of convexity of the set of saddle points of I'. Q.E.D.

An immediate consequence of this result is obtained by remembering that for
the mixed extension f: of a finite zero-sum two-person game I' , the mixed strategy
sets are non-empty, compact and convex sets in euclidean spaces and the expectation
function is bilinear and thus continuous. Therefore, the sets of saddle points
of f: are non-empty, compact and convex sets.

Before formulating a possible exact extension of the abéve results for
two-person games we are going to introduce some important concepts and intuitive
obgervations.

Given a two-person game I'= { Zﬁ’zé5A1’Ag } , one can intuitively
observe it ag the simultaneous superposition of the following zero-sum

two-person games
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Ii = { Z&,ZE;AI } and Ié = { Zé,Z&;AE }

which are referred to the first ang second player, respectively.
We recall that the second player in Ié has the role of first player.
From the corresponding definitions of the maximin ang minimax value of the two-

beérson games I', I gang T ; we have:

1l

nO =@, VD - i)

and

V()

1]
i

2 1
NI, A - )
where Vi(I) expresses the maximin ang Vl(I) is the minimax values of the
bplayer 1i:1,2 in the two-person game ', ang Vl(Ii) s Vl(Ié) are the
maximin values of the firgt and second players in the respective Ii and Ié .

Analogously, the minimax values are Vl(Ii) and V(I.) -

strategy in ', which is also maximin strategy in the corresponding associated

Ze€ro-sum two-person game I or T

2€ro-sum two-person games, always exists for the clags of two-person games now

considered.
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There also always exists for such two-person games a Joint strategy whose
first and secong components are both minimax strategies in the corregponding
assocliated zero-gum two-person games.

Actually, such maximin strategies might be minimax sfrategies, in the
other agsociateq Z€ro-sum two-persgon game. Moreover might be components of some
saddle points in such assoclate two-person games. Tor this kind of two-person
game it is again provided to be g satisfactory rationsl behavior for situations
which involve non-cooperative behavior between the players; in other words, where
cooperation is not permitted by the rules of the two-person game>

A joint strategy (61,52) 1s said to be a double saddle point of the

two-person game I'= { Zﬁ,Zé;Al,Ag } if is a saddle point of both associated

Zzero-sum two-person games, i.e,:

V(Il) = max Al(sl,ag) = Al(ﬁl,ag) min Al(61’82>

S1€2 S,€2,

and
V(L) = mix A (0)5s,) = 4,(6,,6,) = min A (s,5,)
R 1€
In such a case:
1
v(l“l) = Vl(I‘) = v (D)
and

vE(T)

(I,) = v,(1)

These amounts constitute a value of the two-person game I, which now is

defined by the vector
V(D) = (v(ry) , v(1))
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Again, in this generalized description, one nay easily show that the existence
of the value of the two-person game I' under consideration ig equivalent to asking
for the existence of a double saddle point.

Using these concepts, we will now formulate an extension of the first

theorem for the kind of two-person game under consgideration.

THEOREM I.5: Let I'= { Zi,Zé;Al,Ag } be a two-person game such that
—nh L.

the strategy sets Zi and Zé are non-empty, compact, convex sets in
euclidean Spaces; the payoff functions Al and A2 are continuous in
the variable (Ol,Gg)EZixZ/ ; for fixed GEGZé s Al is concave and A2

15 convex with respect to GlEZi ;5 for fixeqd GlEZi s Al 18 convex and

A2 is concave with respect to 02622 .

Then, if for each joint strategy (Ol,ce)GZixZé there is another one

(Ti,?é)EZiXZé with .

Al(7i’02> = mgg Al(sl’GE) 5 A2(7i’02) = 21n A2(Sl’02)
S14 5,€%)
and
Al(01,7é) = min Al(ol’SZ) , Ag(al,Té) = max AQ(Gl,sg)

82€Zé SEEZE
the two-person game I  has g double saddle point.

PROOF: As before, the product space ZﬁxZé i1s non-empty, compact and convex in an
euclidean space, and therefore by the last condition for any Jjoint strategy

(01,02)€Zﬂx2 » the following sets
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L

@2(01) = {T To€ o l(o-l,T ) = min A (gl,s ) and A (G T, ) = max A, l,s ) }
5p5% o540

are non-empty. According to the concavity of the payoff function Al and the

convexity of A2 with respect to the variable GIEZi , for flxed G2€Zé 5 the

set ~@l(02) is convex. TLet us consider Ti, ?i be any pair of strategies of

the first player belonging to the set _@l(oe) C}Zﬁf then

Al(‘A'Tl+(1-A)’rl,02) = )\Al(Tl,O'e) + (1-A)Al(ﬁ-l,02) = max Al(sl,O'g)
8 GZi
1
and
AQ(A7'1+(1-A)5'1,02) = ME(Tl’GB) + (l-)\)A (T 750, ) = min Ae(sl’az)

5)€2
for all 2A€f0,1] . Consequently

AT + (1_/\);16 »cpl(O'g) for all A€[0,1]

The cendition of convexity of the payoff function Al and the concavity

of A2 in the variable 02625 » for fixed 01€Zﬁ » assures the property of

convexity of the get k $2(01)(: Zg

Consequently, the convex set
0(@,0,) = ©,(0,)x 9,(0,)

for each pair (Gl,GE)EZiXZE defines the corresponding multivalued function

P le22 —>Z\1X22 .
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Consider two converging sequences of Joint strategies

o(k) - o and (k) » T

which satisfy the condition that for each positive integer k: T(k)e ¢(o(k))

This fact implies that for all k

fn(0,05(0)) = w8 4 (5,0,()) L A (7 (1),0,(6)) = min a 5(51,0(x))

5162 1 Zﬁ

and

#2010, 7o) = min 4, (0,(),5,) 5 4,00, (1), 7, (0))

H

“max Ag(Gl(k),sg)
2% So€2,

The continuity of the payoff functions Al and A2 with respect to the
variable (01’02)€Zixzé guarantees the convergence of the eight sequences just
represented. Thege elght sequenceg converge to their respective values of the
payoff functions obtained by replacing in their respective places the point
(Ol(k),GQ(k)) by (o 1295 ) and the joint strategy (T (k),T (k)) by (7 Té).

According to what has Jjust been established, the following relations

are completely satisfied

Al( O ) = max A (51,02) s Ag( 7150, ) = min A (s 02)
5162 €y ©

and

A:L(o.l)T > = mll’l A (o.le ) 2 A2<O-l) Tg) = max Ag(o.li 82) J
5p€% Sp¢%




- 29 -

These express the fact that the Joint strategy 7T belongs to the set w(Gl,Gg) .
Hence, the multivalued function ¢ is upper-semicontinuous.

Then, the Kakutani Fixed Point Theorem applied to this multivalued function
assures the existence of g fixedvpoint (61,52)6 m(&l,ae) . This is equivalent

to the fulfillment of the following conditiong

szx Al(sl’02> = Al(Gl,OE) = még 'Al(ol’SE)
162 5%

and

Sm?§ A2<01’32) = AE(Ul’GE) = Smén Ag(sl,cg)
272 ' 1 Z&

Thus, such a point is a double saddle point of the two-person game I. Q.E.D.

Before continuing the exposition, let us note a very gimple fact. Given
an arbitrary strategy of the second player )0262 , consider the set of strategies
of the first player TiEZi for which the payoff function Al is a maximum and
the set of those points where the payoff function of the second player reaches the
minimun for such given strategy GQEZE . Then, the last condition in the preceding
theorem means that the intersection of such sets with those analogous sets for the
second player is non-empty. We note that if in the theorem one changes the mentioned
condition to the new requirement, i.e. the identity between the corresponding sets;
the theorem turns trivial. Indeed, the double saddle points of the two-person
game I' are completely determined by those saddle points asgsured by the theorem I.1

of the associated zero-sum two-person games Ii or Ié .
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An example of s special class of two-person games for which the lasgt

condition of the above theorem holds isg given by the following general expression
I-= { Zﬁ,Zé;A » -cA+d }

where the payoff of the second player is obtained by multiplying the payoff
function of the first player by a non-negative real number c¢ and then by
adding a real number g .

Indeed, one obviously can see by the shape of the payoff function of the
second player that the latter condition of the theorem I.5 ig completely satisfied.

Then, of course, the Z€ro-sum two-person games are obtained by taking in the
Preceding kind of two-person games, the following real numbers: ¢ = 1 and ¢ = O\.
Thus, one must obgerve that the above theorenm is a straightforward generalization
for two-person games of the result related in theeorem I.,1.

The strong condition on the form of the rayoff functions appearing in this
theorem could seem to be a new special restriction of the payoff functiens.
However, the existence of a Jjeint strategy (71,7é)€2ix2§ » for a given

(Ul,Gg)EZiXZé ; Which satisfies the requirements

Al(Ti,Gg) = max Al(sl’GE)

s; €2

and

AZ(Gl’Té) max Ag(Gl,s2)

52€Zé
simply, expresses the fact that the two-person game I has the defense broperty.
The condition that for any (01,02)€Zix22 there is another joint strategy

(Ti,Té)EZixZé with the properties




- 31 -

A1(01’7é) = min Al(ol’SE)
SZEZE

and

i

A2(71,02) min A2<sl’0

s1€2%) e

can be looked at as the attack property of the two-person I' .

So one can reformulate the above theorem by saying that, a two-person
game with the respective concavity and concavity conditions has a double gaddle
point if it possesses the defenge and attack property.

As an immediate consequence of the theorem I.5, one obtains the following

result for the mixed extension of a finite two-person game:

THEOREM T.6: Let I'= { Zﬁ’zé5Al’A2 } be a finite two-person game.
Then, if for any pair of mixed strategies X€Zi and y€Z_ , there is

another pair i€Zi and §€Zé with the property

B (oy) = max B(wy) , B,(%y) - min B, (u,y)
u€'~l HEZ
and
El(X;S_/') = mi,r\l_, El(XJU-) s EQ(X)Y) = max E2<X)u-) s

ueZé u622
the mixed extension I'= { Zi,Zé;El,Eg } has a double saddle point.

PROOF: Again, the mixed strategy sets Zi and Zé are non-empty, compact and

convex in euclidean spaceg. The expectation functions T and & are, of

1 2

course, continuous, bilinear and the conditions of the convexity and concavity

~

of theorem I.5 are thus satisfied for the mixed extension I . Moreover, the
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new condition, automatically assures the fulfillment of the defense and attack

~

Properties for I . Thus, the existence of g saddle point of I ig

guaranteed. Q.E.D.

Considering the previous example, the mixed extension

~
Y

'={z, o3 E, -cB+d }

2

of any finite two-person game

T = { Zy,2,5 A, -cA+d }

where ¢ is g non-negative real number and d is a real number, always has

& double saddle point.

Theorem I.2 ig a Special case of the latter result (with ¢ =1 and
d=0),

We will now consider the question of interchangeability of saddle
points in two-person ganmes.

Given a two-person game I' which satisfies the requirements of the
above theorem, it can be described in a symmetric form, that is, as superposition
of its associate zero-sum two-person games. This formulation permits us to express
the set of double saddle points of our two-person game I' as the non-void inter-
section of the sets of saddle points of the associated Zero-sum two-person games,
As an immediate consequence of theorem I.4, we find that the set of double saddle
points of I' is non-empty, compact and convex since the intersections of compact,
convex sets is also compact and convex. Theorem I.3, guarantees the interchange-
ability of the Joint strategies in the set of double saddle roints of I" .

These conditions are wholly satisfied by the mixed extension of any finite

two-person games.
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I.2  N-person Games: Equilibrium Points

The class of two-person games discussed above is basic in the theory of games.
We will now enlarge the class of two-person games to a wider class, where we will
incorporate the theoretical representations of real situations where more than
two persons are involved.

We define an n-person game (in normal form) by

I‘: {Z ..Z'A

l)' )nJ 'JA}

17" n

where the strategy set of pure strategies in of the player ieN = {1,...,n)}
is a non-empty set and where the payoff function.of the player ieN is a real
function defined on the produce space X = Zl KewoX Zn .

Unless there is not an explicit mention to the contrary, we suppose that the
strategy sets are non-empty, compact sets in a euclidean space.

An n-person game is said to be finite if all the strategy sets are Tinite.

Given a finite n-person game T = {Zl,...,Zn; Al,...,An} then the n-person game

~ ~

..,En} where Zi indicates the distribution of probability

P = [Zl,..._,jzng El’.

set of the player ieN = {1,...,n} and Ei corresponding expectation function,
that is, for each Xjeij and JelN:

N
By (xpseeesx)) EooA(0g, 0 ) x (o) x (o)),

% N
Qle 1 Gne n

is called the mixed extension of .

The expectation. function Ei of player 1eN can be described by
B, (x e X ) = z - Z B, (x
ol n 0, €x 0. €x.

. ,0,

P . .o . . s e e X, 8]
1.2 ’Gl 2 ’Xn)Xl (Gi ) x, (o, )

1 r 1 1 - T r




where Ei(Xl,..-, O, 5¢0.,0, ,.--,Xn) indicates the expectation function for the

1 Tr
compound distribution of probability 'Xi""’ii on the product space Zi x...xZﬁ 5
r 1 “r
1 T, =0,
formed by Xj(Tj) = J J
0 otherwise

for the player je{il,---,ir](: N .

Making the choice diezi for each player ieN » the joint strategy
g = (ql,...,an)e X represents a Play of the game. For this joint strategy the
amount Ai(cl,...,cn) expresses. the winnings of Player ieN 1in the game I for
the above play.

It is observed that in real situations, generally all the players wish to
behave in such a way as to maximize their respective positions without bounds.
This remark is similar to the observation for two-person games.

One of the most important questions in the theory of games is to describe g

rational or optimal behavior of the Players in an n-person game. Of course, this

general problem obviously involves greater complexity than the special examination
for two-person games described in the brevious paragraph. These solutions have a
satisfactory heuristic meaning. One of the most important reasons for the great
increase of difficulty in the examination of n-person games 1is the great increase
in the number of simple strategy sets. Indeed in a two-person game each player
has only one player as opponent, but in the general case "the opponent" of any
given player is the remaining players. We will now divide the opposition into
several groups. First we group together those players with a similar aptitude

toward the fixed player; that is, for instance, the friends of the Tixed player




form one group, those antagonisticvplayérs with respect to him form another group,
and finally those players indifferent to him in a last group. Furthermore, the
behavior of such groups may be régarded as cooperative if in the real game where
abstraction I' .permits cooperation among the players. On the other hand if this
coordination is forbidden by the real situation then the complete game is refered

to as non-cooperative.

From a heuristic point of view, the knowledge of these aforementioned groups
of players associated with each. player in an n-person game, determines the "structure"
of the game. This formally is completely specified by a special function.

We will now introduce some new concepts to add intuitive meaning to our
exposition of n-person games. We will apply these new concepts to special games.

Of course, as can be assumed, these new concepts are built on the preceding in-
vestigations and they are close generalizations of those concepts of two-person
games already considered.

The principal motive of the remaining part of this first chapter, is the
introduction and examination of a few of those concepts which are related to the
non-cooperative formulation only.

Let us consider an n-person game I = {Zl,...,Z 5 A

N 170"

usuval properties, that is, with all strategy sets non-empty and compact in euclidean

A} with the
n

spaces and with all the payoff functions continuous, where only the non=cooperative
behavior between the players is allowed. Then, by having a more simple picture of
the situation in the original n-person game, one may see a player embeded in an assc-
ciated two=-person game, from which one could formulate the new concepts by using

those important assumptions already obtained in the breceding paragraph.
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Of course, the choice of the assoclated two-person game depends upon certain
assumptions. However, from all those DPosible two-person games for the player
ieN = {1,...,n} we now consider it natural to define the following associated

Zero-sum two-person game,

Iy = (% ;N-[i}5 A;)

- where the role of the second‘pldyer is now played by the set of players N=-{i}
with the strategy set given by the Product space

M- (1) (1) T jeg-{i] %3

We recall that the sets 'Zi and ZNA{i}are identical as are the corresponding

members ci and o

N- (1) for simplicity, in this case we will use the first

notation.

We note that formally this game can be maintained.even if the set N-{i}
becomes void. This situation arises when the original game has only the Player i .
In this case, the set Z¢ is represented by only one element which can be in-
terpreted as the strategy of doing nothing (clearly optimal).

We now have to assign a role to the second Player in the associated zero-
sum two-pefson-game Pi of player - ieN . Each criterion adopted will determine g
new concept for the total behavior in the whole game T .

We will concern ourselves first with the special case for which the second
Player in each associated game I& is seen as an "indifferent" Player with respect
to the first player. This means that the second Player neither helps nor attacks
the corresponding player ieN . Of course, the payoff of the first Player still

depends upon the choice of the second player. For this "pseudo behavior" of the




second player itris natural to assume that the first player will maximize his
Position on the choice of the second player.

Formally, a joint strategy o = (81,-..,3n)e % is auspositive very simple

equilibrium point or concisely an equilibrium point of the n=person game

= Z -.-Z' « e i i =
T { 12 LN Al, ,An} » 1f for each associated game Pi (Zi’ZN-{i}’Ai}
of the player ieN :

) = max A

A (o,
* s.€X,
1771

i 81\1-{1} i(si’aN-{i])
The necessity of the adjective positive for equilibrium points will appear later.

Of course, one gguld point out the uselessness of the introduction of the
assoclated game Pi for the player ieN » in the above definition. However, we
Prefer at this point and in the subsequent discussion to use it, since, this
game will be a very useful tool in the introduction of neW'cqngerms in our expo-
sition. Nevertheless, for simplicity, we will not mention it in the proof of
the theorems.

We recall that this new concept has been gotten, by taking the first part of
the definition of the saddle point for each associated game I&

From an intuitive viewpoint, an equilibrium point is seen as a rule of
behavior for which each Player assures the maximum Posible position, if in each

instance all the other players abide by it.

Let o = (31,52) be a positive very simple equilibrium point of a zero-
sum two-person game TI' = {21,22; A} , where the associated games are given by
, Pl = {21,22; A} and P2 = {22,21; - A}
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This first associated game satisfies the equality

A(Gl’02> = Sm:§ A (51’02)
11

and for the second one, we have

) = max -A(S

5
Sp€p

-4 (53,9, 175p)
Thus, the equilibrium point ¢ is a saddle point of game I' and conversely.
This fact is one of the most important reasons for +the introduction of the
concept of positive very simple equilibrium point. On this concept is built a
wide part of the modern theory of mathmatical-economics. The concept of equili-
brium point was introduced by Nash in [12] where he also shows in the theory of
I-person games the usefulness of the Kakutani's fixed theorem. The following general

theorem considers the duestion of existence of such points for the games under

consideration.

THEOREM I.7: ILet I = (s 5B 5 A,

the strategy set Zi of player ieN is non-empty, compact and convex set in

.,An} be an n-person game such that

an euclidean space and his payoff function Ai is continuous in the variable

g = (cl,...,cn) € 2 and concave with respect to the variable cieZi for

fixed GN_{i}E ZN-{i} . Then{ the game I has a positive very simple equi-

librium point.

FROCF': Consider for an arbitrary point o = (cl,...,cn) belonging to the non-

empty, compact and convex Product space X

Zl X...X Zn , and for a player

ieN = (1,...,n} the following non-empty set
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@i(o) = ({1eZ: Ai(Ti’%L[i}) = szg Ai(si’gN-{i})]
i1

Now, let us demonstrate convexity of this set. Let T,% be two points

belonging to the set mi(c) » which satisfy the equality

A, (7,0 ) = A_(7T )

1012 0= (1) 1Ty qy) = mex Ag(sg,op

§.€2,
1 1

{1}
For the point 7, = AT + (1-M) Tel where Me[0,1], by the concavity

of the payoff function Ai with respect to the variable oieZi for fixed

qN—{i} € ZN-[i} » the following relation holds true:

)= max A, (s.o

M ( s ex + 1 Nu{i]) )
iT4

A O+ (10T O riy) > My Tyt O AG

179 (1)

Since in the last term of this relation appears the maximum amount of the
payoff funection caleculated on the set Zi for oy [i}e ZN (1} strict equality

must hold,

A - (1-A)T =
Ai( T+ (1 )Ti , O max Ai(si, )

N- (1) o, - (1)

Hence, the set @i(c) is convex, since all the strategy sets are convex.

Now, for an oeZ consider the intersection of all those sebs

?(c) = N 9 (o)
ieN

This is non-empty, because the point 7TeX obtained by taking each component
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TieZi where the payoff function Ai reaches its maximum, is an element of all
the sets @i(d) . Moreover, because it is the intersection of convex sets, it
itself is convex.

We now define the multivalued function

¢ 2 -3

determined by the set (o) for any oel .

Let
ok) » o and (k) - T

be two converging sequences of point in the product space Z , which satisfy the
condition that for each positive integer k: T(k) € ® (o(k)). Thus, we have for

all k and for all player ieN

A (r.(x),

N N—{i](k)) = max A (s )0y (1 }( k)) .

5,62,
i7i

The condition of continuity of the payoff function Ai with respect of the
variable o = (Gl""’gb) € X, implies the convergence of the following sequences
of real numbers

Ai(Ti(k) , O (k)) - A, (T,

N-{i} )

17%n- {i}

and

(k)) -  max A (s. 57
s.€X,
i1

max A, (s. 5
8 eZ

)

"N- (1) N (1)

since, the sequence of points (Ti(k), o (k)) of the product space I con-

N- (1)

verges to the Jjoint strategy e X .

(T35 % 14

An immediate consequence of these two facts is the equality

)

) = max A (s;,0

A (= .
i 4 s, 621 1 —{1]

29NL (1)
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From this we deduce that the point T is an element of the set ©(0). Thus, the
upper-semicontinuity of the multivalued function is shown.

Therefore, by e straight application of the Kakutani fixed point theorem
to the multi valuated function ® , the existence of fixed point o e ©(c)  is

assured. For this joint strategy for each player i1eN we have:

max A (s

A (o 0 L)
i s e, 1d N- {1} ’
i

o
2% (1))
which is the definition. of a positive very simple equilibrium point of the game
' . (Q.E.D.)
- We note that this theorem was proven because, with respect to the concept

of positive very simple equilibrium point, I' had the defense property, that is,

for each joint strategy o = (cl,...,an) € X there is another point 7TeX such

that for each player ieN

AL ( )

s Ti’GN-{i}) max A, (

et %1% (1)
Intujtively speaking, this means that for each established compound
behavior in the game I' there is another one which maximizes the position of
each player if all the other blayers abide by the first behavior.
Having the preceding characterization of equilibrium points, it is natural

to ask about the equivalence DProperty of positive very simple equilibrium points.

Unfortunately, the answer to this question in the general case is negative, as
-one can easily verify. Then lack of this broperty, is seen by some authors as
critical of the theory. Indeed, generally the equilib rium points are not equi-
valent, which means in other words, that the payoff of a player in different

positive very simple eduilibrium points cannot be coincident.
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One could consider for an established positive very simple equilibrium
point each player for which his payoff is less +than the maximum of his payoff
function on all the positive equilibrium boints, as an "unsatisfied" player.
Thus, an unsatisfied Player will try +to change from such s Positive very simple
equilibrium point in order to get another one where his payoffs are better,
and therefore the first Positive point will be destroyed. From this fact one can
say that a positive very simple equilibrium point can be "unstable".

An important consequence of the preceding theorem is expressed in the

following.
THEOREM I.8: Tet I = {Zl,.-.,Zp, Al""’Ap] - be a finite n-person game,
then the mixed extension I = [il, "in’ El’ ..,En] has a positive very
simple equilibrium roint.

PROOF ; The mixed strategy set Zi for player ieN 1is non-empty, compact and

convex in an euclidean space. On the other hand, the expectation function Ei

of player ieN 1is g multilinear function, that ig, it is a linear function with

respect to each variable Xjeij with jeN , for fixed XN_{i} € kéN—(i}'gk 5
and therefore concave in Xieii . Moreover, by this latter broperty all the
expectation functions are continuous in the variable x = (xl,---,Xn) - Thus,
all the conditions of the theorem I.7 are satisfied, which assures the existence
of a positive very simple equilibrium point of the mixed extension f . (Q.E.D.)

We now return to consider the associated Zero-sum two-person game

- (T 5 . . . - ]
Pi { Y N- (i}3 Ai} for the player ieN in the n~-person game T
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The concept of positive very‘simple equilibrium point has been obtained as
an immediate consequence of the assumption adopted on the behavior of both players
in the associated zero-sum two-person games. We were looking at the second player
like an indifferent one, and the remaining player as a normal first player in a
zero-sum two-person game, that 1s, he wishes to maximize his position as far as
is possible.

Actually, since this view point is unsymmetrical, one can formulate the dual
description, that is, to consider the first player as apathetic on his own winniag
and the remaining player as a normal second player in a zero-sum two-person game.
Then, for this "pathological behavior" of the first player, one can assume that
the second player will minimize, on the strategy chosen of his oppesition, the
Payoff to the first player.

From these considerations, one can exactly introduce the following precise

concept.
Given an n-person game I' = {Zl,...,Zn; Al,...,An] s & Joint strategy
g = (cl,...,cn) € 2 is called a negative very simple equilibrium point of the
game I' if for each associated game r, = {Zi’ZN-{i}’ Ai} for the player ieN:
S _ . -
80930y (1y) =  min By (o5smy (4y)

SN (1) M- (1)

We note that these equalities are naturally obtained, by considering only
the second term in the definition of saddle roint for the game Pi of each
player ieN .

Intuitively speaking, a negative very simple equilibrium point is a behavior
rule which is such that if some players change from it, then the position of some

other player can be improved.
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Motivated by this fact we have introduced the adjective negative for such
& point. Another similar remark will be considered later.

Now, we will show that these negative very simple equilibrium points, for
& zero-sum two-person game can be transforned into saddle points, as the positive
very simple equilibrium points were.

Let TI' = {21,225 A} be a zero-sum two-person game with & = (51,32)e21x22
as a negative very simple equilibrium point, then consider the associate games
which are

I = (S

1 A} and F2 = {Z_,Z ; - A}

l)zg; 2) lJ

The first game assures the equality

A(GIGE) = Sm;g A(Gl’SE)
2772
and the second determines the relation
—A(Glgo-g) = Sm:;- = A(Sl)gg) >
171

and therefore the point & ¢ lez2 is a saddle point of +the zero-sum two-person
game I' , and conversely.

A characterization of such points is formulated in the following existence
theorem.

TEEOREM I.9: Let I = {Zl,---,Zn; Al,..

the strategy set Zi of player ieN = {1,...,n} 1is nor-empty, compact

.,An} be an n-person game such that

and convex set in an an euclidean space, and his payoff function Ai is

continuous in the varisble o = (gl,...,cn) € X , and convex with respect
t iab .

to the varisble QN—[I}

Joint strategy oeXl +there is another one TeX such that for all ieN

e X .. for fixed o, € &, . Then, if for each
N-{i} i i
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A (o,,7 ,..) = min A (o ,s_ ...) ,
it717 N- (1) i1 N=- (1)
SN (435N (4]

the game I’ has a negative very simple equilibrium point.

PROOF: For any point o = (Gl,..-,Un) € X of the non-empty compact and convex

product space % , and each player 1eN , the set

9. (0) = [7ex: Ai(c

s ) = min Ai(

%128y (1))
Si- (17970- (1)

17 N- (1)

1s obviously non-empty.

For the question of the important property of convexity of this set, let us

Al

consider two arbitrary elements T and of the set mi(d) , which satisfies:

Ai(ai’TN-{i}) - Ai(gi’%Nn{i}) = min 5 Ai(ci’SN={i}) °
LETES R Y EN

Then, the convexity properﬁy of the payoff function Ai in the variable
Z f i z A
qN“{i]e N- (1) For fixed 0; € &, , guarantees for each A ¢[0,1]
OGN (I-AN)T ) <M (0,7 ) +(1-AA (0., T ) = mi As (05,50 iy -
Al( 1”7 N- {1} (3-1) N-{l}) - 1( i’ N-(l}) ( )Al( i’ N—{l}) Smln € i lﬁN“{lf
N- {1} N= {1}
The strict equality must hold since the last term is the minimum value of the
Payoff function on the get ZN (i) with Gie Zi fixed. Thus, for any real number
Me[0,1], one, then has:

Ai(ci,%iN_{i} + (1=k)%N_{i}) = min A, ( )

(o) S
i 1’7N- (i}
SN (17570 (1)

This implies that the point AT + (1-M)T  is a member of the set @i(c) .
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Consider for an arbitrary Joint strategy oeZ the intersection of those
sets
®le) = 0 g (o) ,
. i
ieN

which determine a multivalued function

P: X o2

On one hand, for each point ¢eX +the set ®(0) is nop-empty by virtue of
the last condition, and on the other hand is convex because it is the intersection
of convex sets.

We are now going to prove the upper-semicontinuity of the above multivalued

function. Let
ok) —= o and T(k) - T

be two arbitrary converging sequences of elements of the product space X , such
that for each positive integer k : T(k) € ¢(o(k)) . This means that for each
ieN , the following relation holds:
Ai(ai(k), TN-{i}(k)) = . min s A, (Gi(k), SN-{i})

N-{1}" "N-{i}
for any k . By virtue of the continuity of the payoff function Ai ,» of player
1eN , with respect to the variable oeZ , and because the sequence of points
(ci(k), . {i}(k)) of the product space I , converges to the joint strategy
_.(Gi; TN-{i}) € Z , then +the two Sequences: of real numbers having as general terms

the members of the preceding equality converge.

Ai (Ui (k) 2 TN— {l} (k)) 4 Ai (Oi’ TN— {l) )
and

)

) - min A, (o,

min Ai(ci(k) s B S SN" (1}

N- {1} ‘
SN—{i]e ZI\T-{i} ®N-(1)¢ >:N-[i}
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Thus, for each 1ieN , one has

)

) =  min A, (0., s

A, (o, . o, .
ivi’ i V717 TN- (i)
- (1) (1)

T
i’ N-{1}
This expresses the fact that the point T belongs to the set p(a) , and
therefore the multivalued function @ is upper-semicontinuous.
In accordance with the Kakutani theorem there exists a fixed point Oe ¢ (o)

of the multivalued function ¢ , for which

Ai(ci,qN ) = min Ai(d., S )

- {1} S ;N—{i} i’ "N-{i}
for all ielN .

This is the definition of a negative very simple equilibrium point for the
game I'. (Q.E.D.)

The strong condition assumed in this theorem which assures for any point

oeX the existence of another Joint strategy TeZ such that for each player iell

A, (o,

1% Tyqy) = win Ay (

%528 (1))
8- (1)€ - (4)

is called the attack property of the game I' with respect to the negative very

simple equilibrium point‘concept.

For any accepted behavior of the players in the game T' +there is another
one which minimizes the winning of each player if this considered player abides
by the first one. This is a heuristic interpretation of the attack property.

Again, the equilvalence property for negative very simple equilibrium points
in n-person games is not usually satisfied.

A special case of the above result comes from mixed extension of finite

games .
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THEOREM I.10: et . I’ = (= o, A_,...,An} be a finite n-person

l,...,n 1

game, such that the expectation function ‘Ei of any player ieN is linear

in the variable

~ ~ ~

M- 13 (Xl""’xi-l’xi+l""’Xn) € Ayoqy T EgxedBy ) oxe.xB

X -Z, there is another
3 i
leN

for fixed Xiegi - Then, if for each xeX

yeX such that for all ieN :

By iy ) = R By ooy qy)
N- (1) M- (1) ’
the mixed extension-.f = {gl,...,ip; El""’En}‘ has a negative very simple

equilibrium point.

|
~

PROCE ; In the mixed extension game T > the mixed strategy set Zi belonging
to the player ieN is non=-empty, compact and convex in a euclidean space. Be-

cause the expectation function Ei is linear in the variable XNl[i}e XN-{i} ,

~

for fixed X, € Zi > 1t is also convex in such s variable.
Let x be an arbitrary element of the Product space X , then, because the
product space XN—{i} can be considered wider than ZN-{i} , we have for an

arbitrary player ieN

min Ei(xi’SN-{i}) > min Ei(xi’uN-{i}) s

- (135 (1) - (1) - (1)
recalling that Ei(xi’GN—{i}> indicates the expectation function of the player
ieN , for the following element of XN [i}:

1 if = =0
CN-{1) N-{1)
Ko paq (Tosee e, T 5T e, T ) = {
XN_(I] 1 1-17 1+l a 0 otherwise




_49_

On the other hand, because the values Ei(xi,uN {i)) are combinations of

values E (x 5 N (1 }) , that is

e 0 % cee X . ce .
,uN'{l} g eZ c eX g, _ex e E &, 171 Ui"l’6i+l, ")
1771 T1-1771e1 %ip1%Mie n n

ul(cl)'"ui—l(ci-l)'ui+l(01+

the following inequality is immediate

min E.(x.,s. ...) < min B, (x. L)
iTi?TN- {1} = i 1’uN-{1} ’
SN (1) - (4) - (13- (1)

and therefore both amounts are equal.

Thus, the last condition can be reformulated by a similar one, namely, for
each xeX there is a yeX such that for each ieN :

By povpqgy) = min By oy 1))
- (1) 1)

This coincides with the latter requirement in the preceding theorem for the mixed
extention E - That theorem guarantees the existence of s negative very simple
equilibrium point of T. (Q.E.D.)

We note that for finite games, the latter condition in the preceding theorem
is equivalent to the following one: for each point x 1in the product space

~ ~

X = Zl Koo X Zn there is a joint pure strategy oeX = Zl XeooX ;N such that

E, (x >0y (i }) = min Ei(xfs )

- {1}
SN (1) 6%- (1)

for a1l ieN .

Clearly, this new condition implies the o0ld one. Conversely, if for the

point xeX , the corresponding joint mixed strategy y = (yl,...,yn)e X satisfies
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)

) = min E (x 58
Sy (1)€% N-{l}

Ei(xl,y - {i}

N- {1}
for all ieN , then consider for each player ieN the probability distribution
Y5 defined on Zi corresponding to the joint strategy vy .

Let Ti be an arbitrary pure strategy in Zi of the player ieN for which
yi(Ti) # O . Such a strategy obviously always exists. Now, we form the point

TeZ composed by Ti in all the coordinates, then for this roint we have

Ei(xi T (1 }) min E. (Xl’SN-[i})
N-{l} Z:l\T {1}
for all ieN . Indeed, suppose that for an ieN we had
Ei(Xi’TN-{i}) > . min s E. (x 15 (1 }) s
N- {1} N- {1}
. >y .
then, since for any o (i) € N- (i}’
E (x N-{ ]) > min E (x, 175y (1 })
N—{l] N-{l}

and remembering the expression of the payoff function E (x ) and that

N- {1}
J.(TJ,) for all jeN-{i} , it would be

E; Gy (1)) = UZ o Ei@ﬁ”W-u})yN-u}“h-u})
N-{1i} "N- (i}

> min E, (x,
i

’SN—{i}) 2
SN- (1) %5- (1) :

which is a contradiction. Thus, the point 7TeX assures the validity of the

assertion.




In the previous theorem condition of linearity with respect to the variable
XN-{i] assigned to the expectation function has been explicitly used. Even
though the expectation function is a miltilinear function, that is, a linear
function in each variable, it can be a non linear function with respect to the
variable XN_{i}E XN-{i] for some fixed XieXi .

This fact is illustrated in the following example. Given the three finite

sets

= Z = =
z p = Iy o= (L,2)
consider the function A on the product space Zl X 22 X 25 defined by
1 if o, =0.=g¢g
1 2
A(Gl)02J05) = { 5
0 otherwise.

Its corresponding expectation E has the value

E(Xl’XE’XB) +

1,1 %2,1 ¥3,1 *1,2 %o,2 *3,2

for the probability distributions x, = (x. , X, .)€ £, with 1: 1,2,%.
1 i,1 i,2 i

Let Zg = (1,0) be an element of the probability distribution set 3 5

and let _ (Xl’ XE) =((1,0), (1,0)) , v = (yl, y2) = ((0,1),(0,1))

be two points in the product set El b'd 22 » then the expectation function on such
points has the values
E(x,z,) = 1 and - E(y,z,) = O .
3 5
On the other hand, consider the point

ANx o+ (I-N)y = (hxl + (1-A) vy s A X, + (1-)\) Yo )

il

(O\':l'%'); (7\,,1—7\.)‘)6 El X Eg
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where A is an arbitrary real number belonging to the segment [O,l}. Then
on this point the expectation function reaches the value

Bk o+ (1oM) vy 2,) = S

and therefore

A B(x ,25) % (1-A\) E (yrzi) = A ¥,E(K X+ (1-N) yIZB) = A2 ,

which implies the lack of linearality of the expectation function.

In accordance with the above illustration, it seems very natural to ask when
the expectation function of the pl@yer ieN  is linear iﬁ the variable
XN—[i]e XN-{i} « The answer to this question is an immediate consequence of the

following:

ILEMMA TI.11: ,Let.‘Zl,---,Zn be n-non-empty finite sets and let A be g

real function defined on the product space X = Z x...x.Zn_. Then, the

1

expectation function ' E is a linear function with respect to the variable

= .. = E o s e Z
X (xl, ,Xn) € X L Xeeex B,

if and only if, the function A is expressible as
A(Gl,...,cn) = al(cl) oot an(cn)

where ai indicates a function depending only upon the variable GieZi

with iell = (1,--.5n} .
PROOF: First of all, we demonstrate the sufficiency. For a function with such
conditions, the expression of the expectation. function takes the following form

E(x) = E(xl,...,xn) = X e.(xi)
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where the function ei(xi) is the corresponding expectation of ai(ai) , that

is, ei(Xi) = X A(Gi) Xi(ci) , for ieN .

0,€x,
i1

Now, consider two arbitrary points of the product space X :

x o= (xpeeeox ) and oy o= (7y0s7)

and let A be any real number belonging to the unit segment [0,1] , then by using
the later equality together with the broperty of linearity of the expectation

function e; , ome has

o n
G et B a0 °3(x) + (-Mey (v, )]

EMN x + (1-\)y)

i

A
i

]

I MB

eby) w00 B () = A EG) & (1) B(y)
i=

Proving the linearity of the expectation function E .

We now will prove the converse by complete induction on the number n of
sets in the product space X .

If n is unity, the necessity is a trivial result. Now, consider the case
where n 1s 2 , then the expectation function E is a linear function of the
variable x = (xl,xg) € El X EE - In other words, for each pair of elements in
the product space El X Eg and any real number A such that the point A x + =Ny

is in ,Zl X 22 , we have:

EON x+(1-N) v)

1t

E(. % + (1-)) Voo My + (1) y,) =

i

ME(x,x,) + (1-0) B(y,y,) = M E(x) + (1) B(y) .

On the other hand, the expectation function always is a bilinear function, so:

B0y + (1Myy, g, + (M)y,) = A Ge,%,) + (n)? EB(yp,y,)

1l
@A) (EB(x,y,) + E(x,,y))
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By using both Preceding equalities, the following relation between the values

of the expectation function holds:

E(xl,xg) + E(yl,yg) = E(xlye) + E(xe,yl) .

From here the proof of the necesgity for n=2 is straight forward. In-
deed, by taking Yy as a fixed point and x as a variable, the above equality

implies. that the expectation function has the form:

E(xl,xg) = el(xl) + e2(x2)
where by the bilinearity of E » the functions el and e2 must. be linear:
e.(x.) = £ a (0)) x, {(o,) (i=1,2) .
ivi Giezi ivi iti

By substituting the expressions of the functions in the later relation, we

have 5 5

2
GleZl cee o

[A(o),0,) - aq(0;) - ae(ag)].xl(ﬁl) x5(0,) = 0

5 5.
for all xleZl and XEE o Therefore, we deduce
A(cl,cg) = al(ql) + ae(ce)

. - - Z x5
for every point (al,qg)e I ox z, Indeed, if for a (cl,cg)e X%, we had

1
A(Gl,GE) £ al(cl) + a2(62) then by considering the probability distribution

- . . - - 3 t3 Z
xleXl which assigns the unity to GleZl and xgeX2 which for the point 02e 1
is one, the last equality would be false. This contradiction proves the validity
mentioned assertion.

Now, for an arbitrary n » conslder the expectation function defined by the

expression
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a0, X = X ce .
Blx,,ee %) Blxy, 5% 5 9) % (o)

2
g €X n-1
n n

Since the expectation function E is linear with respect to the variable
(xl,,u,xn)e X it is obviously linear in the variable (xl,...,xn_l)e XN-{i]
for fixed XHEEH - The induction hypothesis with n-1 s> applied to expectation

E(xl,...,xn l’cn) assures the following form for the function . A
A(ol,...,cn) = bl(gl,an) vt bn_l(cl,on) .

By substituting the values of function A in the expectation function by
this latter expression, we have

E(xl,...,xn) = fl(xl,xn) doo ot fn_l(xn_l,xn)

where fi indicates the corresponding expectation function of bi with
i: 1,...,n-1, and therefore it is bilinear. We, now will prove that such func-

tions are also linear. For this reason, consider two arbitrary points x and y

~

in the product space X = le...xZn such that for all 1 different from one

or n:y, =X . For all real numbers A such that the point A x + (1-A) y

belongs to the set X , the expectation function, on one hand, is

E(ax + (I-MN)y) = E(xxl + (1-x)yl, X . (1-2) yh)

YRRREE R

fl(xxl +(1-x)yl,xxn +(1-x)yn) + f xXn + (1-x)yn)

o (XE’

oot T Xxn + (1-N) yn)

n-1 b%kl’

In analogous fashion, by the linearity of the expectation function, we
. obtain the following relation

EQx + (1-M)y) = N B(x) + (1-M) E(y) = A B(xpseee,2 ) + (1N) E(ypse-5v,)

= A fl(xl,xn) Feoat A fn—l(xn-l’xn) + (1-N) fl(xl’yh)

Foeet (I-A) £, L (x 15y))
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By identification of the respective values in both equalities, the identity
(N © (1~ - = - f
109+ QMyy 2w Ay ) = A Gey) o+ @n) £ Gy )

holds. Thus, the function fl is linear with respect to the variable
(Xl’xh) € El b En - The considerations demonstrated before gives the following
form for the function .bl
= g .
| by (94,0,) 2, (9) + e (o)
n-1

By repeating this Process for the remaining i and putting an(oﬁ?= Z Ci(Gn) ’
i=1

we get immediately the fact that the function A is expressible as
A(Gl,...,cn) = al(cl) Fouot an(cn) - (Q.E.D.)

Consequently, the expectation function Ei of player ieN in a finite

l,...,Zn; Al,..

the variable XN—{i}e XN—(i} if and only if his corresponding payoff function

n-person game I=({Z -,An} is a linear function With respect to

Ai is expressible in the fellowing form

i+1

i-1 i n
a’ (ci_l,ci)fai(ai)+ &) (Ui+l’01)+"'+ai(%ﬁdn) .

1
"Ai(dl""’an) = ai(ol,ci)+...+

For the mixed extension I’ of a finite n-person game T ‘having such

characteristics, theorem I.10 guarantees the existence of a negative very simple

equilibrium point if for each roint xeX = ZlX-..XZn there is a joint pure

strategy o ¢ & = Zl X...x% which satisfies

) =  min Ei(xi,s

N- (i)
SN—{i}ezl\T—{i]

for all ieN .
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Actually, it is interesting to illustrate by an example, a class of finite
n-person game Tfor which the above condition holds.

By the imposed form on the payoff function A and by the linearity require-
ment it follows that

min Ei(xi’sN—{i}) = min X eg(x.,s_) = X min e_(xi,s,)

DI b jeN 1T jeN s eX J
"N- (1) - (1) - (11570 (1) I F

for all ieN , where eg(xi,sj) indicates the expectation function taken over

Zi of the function ag(ci,sj) > in an obvious manner. Therefore the above

condition is transformed to the asking of the existence of a point oeX with

z eq(x.,o,) = I min eq(x,,s_)
it J i sexn, t 4
Jd d
for all ieN . But this requirement is equivalent to asking for each xeX the

existence of a joint strategy oeX which for all ieN and all j%i

J . J

et (x,,0.) = min &Y (x ,s.) .
ivg s en 1 177

J J

Indeed, suppose that for some ieN and j%i we had

J . J
et (x,,0.) > min eY(x.,s.)
iY77 s ex & i’73
J J

then, by adding over Jj#i we would have

by eq(x"dj) > X min

ER e?(xi,s,)
J#i J#1 5 6%, J

which 1s absurd because we have assumed the validity of the strict equality in
this last equation. Conversely, this latter condition obviously, implies the

above requirement.
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A simple example of nD-person games for which this condition is completely
satisfiedvappears when the payoff function of the player 1ieN has the following

fOI'm . ()
A.(ol,...,c ) = a?(o.) + a8\t

n iti i (Gi’cg(i))

where g(i) % i indicates a fixed blayer for ieN with the following,property:
there is not a Player jeN for which there is more than one ieN satisfying
J=g(i) .

For such kinds of N~person games, given a point x = (xl,---,xn) € X 5
since for any player jeN there is at most one player ieN with g(i) = j
by choosing the strategy Uj € Zj of the player j = g(i)e N if g(i) £d
such that

g(i)
ei (

xi,dj) = min ef(i>(xi,5g(i>) ,
Sg(1)%%g (1)

and any arbitrary cjer for each player jeN which does not belong to any g(i),

the additional condition remains completely satisfied. Thus, the mixed extension

of such an n-person game has a negative very simple equilibrium point, namely, the

int X = (%,...,% £ = L, wit
point x (xl, ,Xn) € X formed of those components X, Xg(i) € j Wi h

g(i) # ¢ which are optimal mixed strategy in the zero-gum two-person game

S . .8(1)
Pi = {Zi’ Zg(i)’ ei (Xi’xg(i))}

(which could bg now considered as the associated game ) and any arbitrary xJ.eZj
belonging to the player jeN which does not belong to any g(i)

In this kind of h-person game, the player g(i) can be interpreted as the
direct opposite of the Player dieN . Then, a more special situation appears

when both players i and g(i) are considered embeded in a strict competitive




- 59 -

situation, that is, if

g(g(i)):\i, a,;l:(O‘:L) = 0 and af(l)(o'l, Ug(l)) = -Ci a;(l)<ol’0g(1)) + di

where ci is a non~-negative real number and. di any arbitrary real number.
Of course, for these special games each player ieN has only cone opposite which
is the player g(i) e N , and therefore the number of Players must be even.
The previous theorem guarantees the existence of a negative very simple equili-
brium point for such a game. Since each component of a negative very simple
equilibrium point is a minimax strategy of the player g(i) 4in the zero-sum
two-person assocated game fﬁ » by the form of the payoff function, it is also
a maximin strategy for himself in his corresponding zero-sum two-person game
fg(i) - But, that point is then also g Positive very simple equilibrium point
of the mixed extension.

This fact induces us to introduce the following new concept involving the
two concepts already considered.

Given an n-person game I = (= % Al,...,An} > & Jjoint strategy

AR n

o = (51,...,3n) € & is said to be a neutral very simple equilibrium point or

very simple saddle point of the game I' if for each associated game

r, = {Zi; ZN-{i}5 Ai} of the player ielN :
. ggx Ai(si’GN-{i}) = Ai(di, UN-{i}) = mlnEZ Ai(ci, sN-{i})
155 SN- (1)5%N- (1)

In other words, oel is a saddle point in each associated game, or equivalently,
it is simultaneously a Positive and negative equilibrium point.
This concept of neutral very simple equilibrium point has been obtained by

considering the third possible way of looking at the role of the Players into
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the zero-sum two-person. associated game to each player, namely: both players
have their respective normal roles, that is, the first Player wishes to maxi-
mize his sure position independently of the behavior of hig opponent and the
second player tries to minimize with safety the winnings of the first player.

From a heuristic viewpoint, a neutral very simple equilibrium point is g
rule of behavior which is such that if all the Players except one remain on it,
then his position will not improve. It will be able to decrease and the winnings
of the other players could be increased. In other words, 1t is optimal for any
one player in the game I' .,

The introduction of the respective adjective Positive, negative and neutral
for very simple equilibrium points has been motivated by the following considerations.

If a positive very simple equilibrium point has been established in an n~person
game, then in a certain respect the group of Players act in a positive manner,
because they do not try to attack with their behavior the other barticipants; in
other words, each rlayer has complete confidence in the actions of the remaining
members.

On. the other hand, if a negative very simple equilibrium roint is established,
then each rlayer is concentrated on attacking any other Participants without con-
siderations of his own winnings. Of course, this form of behavior of the group
of the Players, has a negative aspect from an intuitive roint of view.

Finally, in a neutral very simple equilibrium point each player can be
visualized as a blayer wishing to maximize his own position and at the same tTime
trying to minimize the winning of the other members. Thig symmetry of the beha-
viecr of the players in the game reflects in some sense an aspect of neutrality.

The first result concerning neutral very simple equilibrium points is

formulated in the following theorem:
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THEOREM I.12: Let T = {Zl,...,Zn; Al,...,An] be an n-person game such

that the strategy set Zi of player ielN = {1,...,n} is non-empty, com-

Pact and convex set in a euclidean space, and his payoff function Ai is

continuous in the variable o = (0.,.0.,0 ) ¢ 2; concave with respect to
1’ n

the variable o0.€%, for fixed o .,€ X .5 and convex in the wvariable
i1 N- {1} N-{i}
f fi . in 2
N—{l} N-{ } or fixed OieZi Then, if for each joint strategy oc

there is another one 7eX such that for all iel:

Aylogs oy ggy) = s Ay (0 oy g5y
1%
and
T _ .
A, (o, N-(1}) = min A, (o, S (1))

1
SN—{i}Q;N-{i}

the game T' has a neutral very simple equilibrium point.

PROCF: For any joint strategy o = (Gl,--o,On) belonging to the non~empty,

compact and convex product space I » consider for each player ieN +the non-

empty set
9,(0) = {rex: A, (150 (1 }) = Sr‘nz; A, (s, GN-{i}) and
1 1
BiloTy (3y) = min Ailogs sy 5y))

SN- {1)€ Zy- (1)

We now show that such a set is convex. Let 7T and T be any two arbitrary

points of the set @i(ﬁ) > Which satisfy the following equalities

Ai(Ti, qN_{i}) = Ai(%i’ONu{i]) = ma; A, (b O {1})
518y
and
A, (0,7 1 ]) = Ai(oi,}N_{i}) = min Ai(al,sN_{i}) .

M- (11 - (1)



- 62 .

By the condition of concavity of the payoff function _Ai with respect to

the variable UieZi » for any real number Ae[0,1]

Ai(kfi + (l—K)Ti O (q) >N A (1.,

> Oy 2 ;1 (75 GN-{i})+ (1-\) Ai(%

=max A, (

12 95- (1 PR T P PE
1%

where only the strict equality must hold since the last term is the maximum value

. 5 .
of the payoff function over N- {1]

On the other hand by the convexity of the payoff function .Ai with respect to

i a T A oin t d it int 1
the variable N—{i}e ;N_{i} » for any in the closed unit interva

+ (L-M)T

g
Ai( T )

i ) < X’Ai(o

+ (1-N\) Ai(c

-{1) N- (1) 121 i’%N={i}

)

< min A (o

.;SN_ .
N~ (1) (1) P

where, again, only the strict equality must appear.
Thus, both equalities determines that the point AT + (1-X)T  with Ae[0,1]

belongs to the set @i(G) » Which indicates the convexity of the set @i(c) .

Now, consider the multivalued function

Q- X S

defined by the non-empty and convex intersection of the above sets, that is, for
any = OeXx
Y P(e) = N g (o).
. i
ieN
For the examination of the upper-semicontinuity property of the multivalued

function ¢ , let us consider

o(k) » o and 1(k) -1




- 63 -

two arbitrary converging sequences of elements of the product space 2 , with

the property that for any positive integer k: T(k) € ¢(o(k)) . Thus, for each

player 1elN:
‘Ai(Ti(k)’ GN-{i}(k)) = smz; Ai(si’UN—{i}(k))
i1
and
Ai(Gi(k), TNn{i](k)> = min Ai(ci(k)’ SN- {1})

SN- (1) %= (1)

By the continuity of the payoff function with respect to the variable o0eX ,
the sequences having as general terms the corresponding four members of the two

preceding equalities, converge to those corresponding values of the payoff func-

M

tions obtained by changing in their respective places the point (Ti(k)’gNn{i]aﬂ)

to (Ti’GN—{

e X .

i])e £ and the joint strategy (Gi(k), T (k))e = to

N- {1}

g,, T

( i’ N-{i}
Owing to all these convergences, it is then an immediate consequence that

the following equalities hold true for any iel:

Ai(Tis0 (4y) = e Ay (5559 117!
184
and
A (o.,7_ ..) = min A (0., s ..1)
i’ N-{i} it7i? TN={i)
e (1162 (1)

which guarantee that the joint strategy T is an element of the set (o). Thus,

the upper-simicontinuity of the multivalued function @ is completely proved.
Then by the Kakutani fixed point theorem, the existence of a fixed point

GeX of the multivalued function @ : 0 € ©(0) is assured.

At this fixed point, for each player 1ieN , we have

z
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A(s.,00 0) =A (5,5 ) = omi (o, )
sz; 1(31’ N—{l]) 1( i’ N-{l}) < i c Al( 1’SN—{1]) ’
18% N- (1} (1)
which is by definition an neutral very simple equilibrium roint of the game I .
(Q.E.D.)

Again, the last condition in this theorem establishes the validity of both

attack and defense properties in the n-person game [' with respect to the

neutral very simple equilibrium point concept ¢eX that ig, for any point ogex

there is a joint strategy Tef such that for each player ieN

ATy ) = ey Ay (3500 14y)
and i
AP min A'(Gi’SN-[i})

= 1
- (1) 5%0= (4)

For any established behavior there is another one which maximixes the
Position of each player if the remaining players abide by the first one and
minimizes the winning of each player if this player under considerstion abldes
by the first one. This can be an intuitive interpretation of such a property.

A direct application of the preceding theorem is related to the mixed

extension of finite n-person games.

THEOREM I.13: Let T'= (& ,...,Zﬁ, Ai,...,An} be a finite n-person game ,
such that the expectation function .Ei of any player ieN is linear in

the variable

XN_{i} = (xl,...,xi_l,xi+l,...,xn) € XN-{i] = j;i ;

for fixed x.eX. .
1774




- 65 -

Then, if for each point xeX = XN ii there is another yeX such
ile
that for all ieN:

(v., ) = max E; (s ,
i XN-{l} 5. €% *N- {1]
and o4
Ei(xny_{i}) =S min . (Xi’SN-{i]) s
M- (1) €50 (4
then the mixed extension I' = {El"'°’§n5 Ei’°°"’Em} has a neutral very

simple equilibrium point.

PROOF: For any player ieN in the mixed extension game TI' , the corresponding

mixed strategy set Ei is non-empty, compact and convex in an euclidean space.
On the other hand, since the expectation function Ei of the player ieN is a

linear function with respect to the variable Xy {i}e XN (1) ° for fixed xieii

it is also convex in that variable. Furthermore, for fixed XN

(13€ f- 1y

2

the expectation function Ei is always linear in xieZi s> and therefore concave.

Obviously, it is a continuous function in xeX .

Now, by taking into account the following equalities between the maximum

and minimum amounts of the expectation function

Smig B, (S :ﬁ {l} = um2§ E (U- Jﬁ {l}
and i1 o4
min E. (x 58 ) = min F. (x U )
N- {1} 5 i N-{i}" ~
- (1) (1] U (10 (1]

the latter condition of the preceding theorem applied to the mixed extension
game f holds. This theorem assures the existence of a neutral very simple

equilibrium point for the game T . (Q.E.D.)
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As before the last requirement for the mixed extension of a finite D~Pperson
game I' , can be reformulated in an equivalent way, namely: for any point x
i = = ) joi L= X, X0
in the product space X iéN Zi there is a joint strategy oe XX n
- such that for all ieN

By (0o qqy) = mex Ey(sp,xy (1)’

s.e%
i7d

)

B, (x 5 N-( }) =  min E‘(Xi’SN-{i}

N—{l] N—[l}

Obviously, this new formulation implies the old one. Now, let us consider
the converse. If for an arbitrary point xeX , the corresponding Jjoint mixed

strategy yeX satisfies

Gpomy g)) = mx B sy )

X, €X,
i i

E.(x,,y. ...) = min E. (x.,8_ ,..)
1YY N- (1) 1M1 TN-{1)
- (1) %= (1)

-for all ieN , then, consider the distribution of pfobability ,yi defired on

Zi being to the i-bh component of the joint strategy yeX . Let Ti be an
-arbitrary pure strategy of the Player 1ieN for which yi(Ti) ¥ 0 . -Now, we
take the point T in the product space X  composed of T in each coordinate.

Such a point satisfies the new formuls tion of the condition, that is,

TXy 3)) T szg By (850%y_ (5y)
and 1

)

) =  min E (x 58

SN—{i}GZN—{l)

E (x ,T

N- (1} N- {1}
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for all ieN . Suppose that for some ieN we had

By Ty gy) < SfiiiE 17 11y
or

Ei(xi,T ) >  min B, (x 58

) )
N- {1} N-{1}
SN-{i}E;N—(l]

b Ay, . d E bination
Then, because the values El(yl,xN_{l}) an (X >y N- (1 }) are combinations
of those corresponding values expressing in the latter inequalities where the

maximum and minimum values appear and yi(Ti) ¥ 0 ; for some ieN , we would

have
E; (v, XN-[i}) < Sr'n::g' Ei(sl,x {1})
or i
E. (X, ;¥ (.v) > min E, (x s )
1YY= (1) - 2 N- (1)
SN—{i}GZN-{l}

This is a contradiction. Thus, the new requirement is equivalent to the above
condition.

A very special example of a finite n-person game I’ for which all the
conditions in the above theorem are satisfied, is determined by having the payoff

iy i .
unctions A (0,0 ) = (1)(

. o
ity n %4 %> g(i))
where g(i) indicates the "opposite" player of ieN , for which it is assumed
g(g(i)) = 1 and where the following relationship between the payoff functions
holds:;
i g(i)
o,,0 = - 0,,0 ,. + 4.
%e(1) %1% (1) %% () i

where c¢ji 1s non=negative real number and di any arbitrary real number.
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Thus, the previous theorem guarantees the existence of a neutral very
simple equilibrium point for the mixed extension I’ . Such a reutral very
simple equilibrium point x = (il,...,in)e X is determined by choosing each

component iiezi as an maximin strategy in the zero-sum two-person associated
mixed extension game Pi = {2"Zg(i)§ Ei} corresponding to the player ieN

2
ke

~

of the mixed extension game T

Having the above resvlts, i% is natural to ask about the interchangeability
property for neutral very simple equilibrium points of an n-person game I',
Evidently, the examination of this question has a more complicated character than

the corresponding one of two-persons.

~

Given two arbitrary neutral equilibrium points 0 and o in & of T B

then, consider any point o¥* in the product space £ formed by having each
component Gi*eZi either coinciding to the coordinate . or Gi corresponding

-
L

to the neutral equilibrium roints under consideration. Let I be the set of

players ieN for which Gf = Bi > and let N-I be the set of players iel
with O'j_f = Ei - Obviously, if the subset of players I is empty, then the
point 0% coincides with the neutral very simple equilibrivm point o . Simiw

larly, if N-I is empty, the joint strategy 0% is identical to & .
Suppose that both subsets I and N-T are nop~empty. Then, if the point

0% has only one coordinate of one of them, for instance of o :

~ ~

e, 0. G.,0. ceuyd ) e X
?Tie1747 147 ? n) ’

1’

then, the theorem I.3 which relates the interchangeability of saddle points of
Zero-sum two-person games, assures that such a point o%* is an saddle voint of

the associated zero-sum two-person game Pi of the player ieN . Moreover,



- 69 -

that result also guarantees such a property for the point
(Gl""’ci-l’oi’0i+l"'"Gn) € X
Actually, if the number of the players n of the game I' is bigger than
two, then the joint strategy o¥ has at least two components j and k coinciding
with the respective coordinates of 5 - For the player jeN the payoff func-

*

tion value on the point o » by the definition of neutral very simple equilibrium

point of o0eX , satisfies

Ai(

g > (5.0 = i (&

N~ {1}
Unfortunately, this is all the information which is available for the value
of the payoff function ’Aj on the point 0¥ , when there is not any other re-
Quirements on the payoff functions in the game. Indeed, the serious difficulty
arises from the fact that the point o¥ generally does not belong to the subset
XJ 'Z/F/ X {BJ}
of the product space X , where the minimum of the payoff function Aj is
taken as part of the neutral very simple equilibrium point property for the
joint strategy © . Therefore we cannot compare the values of the payoff func-
tion Aj on the points o¢* and © . Of course, this difficulty does not appear
in the special case when n = 2 .
In a more general case, that is, when each of the subsets of players I and
N-I have at least two elements, the situation evidently is much more complicated

than the simple one already examined. Thus, without further impositions on the
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payoff functions, the interchangeability property between neutral very simple
equilibrium points does not hold true. However, it is interesting to observe
that for the special example of mixed extension of the finite n-person game Just
considered after the theorem I.13 +the interchangeability property is satisfied.

Nevertheless, the lack of the mentioned property does nét destroy the
equivalence property between them, that is, all the payoff functions restricted
on the set of neutral very simple equilibrium points are constant functions.

This fact is obtained by using the equivalence property for zero-sum TWo=
person games which was related as an immediate coﬁsequence of the interchangea-
bility of the saddle points of such games. This property is described as

follows:

THEOREM I.1k: Tet Tt = (2 ;A

IERRRE LN R R

game, then all the neutral very simple equilibrium points of I' are equi=

..,An} _be an arbitrary n-person

valent, i.e., for any two neutral very simple equilibrivm points o and
¢ of T we have _ o~
Ay (05,0 (1) = Ay (0550 (51)

for all ieN = {1,...,n)

PROOF: Consider an arbitrary player ieN of the game I', then in his own zero-

sum two-person assoclated game Fi = {Z.,% both points o and 5

i’ N- (1}’ Ay
are saddle points. Therefore, by the theorem I.3 applied to the game Pi , the

points

. O yenes0, 58,0, yees,0
58,) end (O,050; 150350 e a0y

- - ~

.,0. _,0. .
P R W

are saddle points of Pi too. This fact implies the following equality of the

values of payoff function of the player 1eN
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) = A (o

LIPS 1499 1))

Thus, the neutral very simple equilibrium point o and o are equivalent.
(Q.E.D.)

- From a heuristic viewpoint the lack of interchangeability for neutral very
simple equilibrium point should not be seen as a deficient characteristic, since
the important property on which the stability of a neutral very simple equilibrium
point is based is the equivalence property. Indeed, if some players change their
corresponding components from an established neutral very simple equilibrium
point, then, their payoffs will be decreased and the paycffs of the remaining
Players will increase. Of course, they will not have interest in this new
Pposition.

An interesting property of the structure of the set of neutral very simple
equilibrium points for games described in the theorem I.12 is formulated in the

following result.

THEOREM I.15: et T = {Zl,...,Zn; Al,...,An} be an n-person game

such that the strategy set Zi of player ieN = {1,...,n} is a non~-empty,

compact and convex set in a euclidean space, and his payoff function Ai
is continuous in the variable geX ; concave with respect to the variable
ciezi for fixed QN—{i}ezN-{i} , and convex in the variable

. . i L€X, . i joi >
GN-{l}GZN-{l} for fixed Gle 5 Then, if for each joint strategy oe

there is another one 7TeX such that for all ieN

'Ai(Ti’GN-{i]) = szg.A (s 5 N—{l])
and i1
A (O' ’TN { ]) = min A (G ;SN_{ ])

SN- (1)€5- (1)
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the set of neutral very simple equilibrium points of I' is non-empty,

compact and convex.

PROCE : The non-emptyness of the set of neutral very simple equilibrium points
of the game I' is determined by the theorem I.12.
Now, we are going to prove the compactness.

Let o(k) » o

be an arbitrary converging sequence of neutral equilibrium points of I'. Then,
for any non-negative integer k , we have
A, = A k),o = i A. og.\k),s .
Isﬂafecz (S 2 N [ }(k)) i(ci( )) N“{i}(k)) min ( 1< )’ N_{:l})
i ®N- (1]€ N—{l]
for all 1eN . By the continuity of the payoff function .Ai in the wvariable

o€ defined on the compact set X » the following convergences for each ieN hold:

max.A (s. i (x)) - max A (

)

s, eZ n- (1) s, €X, N“(l)
i i i
and
min . A (c (k),s SN (1 }) -  min A, (Gi’SN-{i]>
M- (1) (1) S- (1) - (1)
Therefore, by using the convergence of sequence
A(G (k);N{}(k)) %A(U;N{]) )
together with the preceding relations one obtains
max A (s 5 ) A (G 2Oy (1 }) = min A, (o Sy {1})

°N- ()
SleZl SN—{i}eZN—{l]

for all ieN ; which is the definition of the neutral very simple equilibrium
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point of the game I for the point o in the product space & . Hence, the

set of neutral very simple equilibrium.points of the game I’ is compact.

- ~

We. now examine the convexity of such a set. Let us consider o and o
be two arbitrary neutral very simple equilibrium points of game I , which are
saddle points in the zero-sum two-person associate game Pi = {Zi’ZN—{i]sAi}
corresponding to each player ieN . Because the game Pi of the player ielN ,
satisfies all the conditions required by the theorem I.4, then, the convexity
of the set of saddle point of Iﬁ remains completely guaranteed. Thus,. for

any real number A belonging to the unit interval, the point Ao + (1-2)oex

is a saddle point of Pi, i.e.:

Ai(h3i+(l-h) 0,5 ABN—{i} +(1-M) QN_{i]) = Sm2§'Ai(si’kaNm{i]+(l“k)8N“[i})
i1

)

d A\O -\)g
min Ai( Gi+(l )ci,s

N (1)
Sy (1195 (1)

for any ieN , which is the definition of neutral equilibrium point for the point
Ao +(1-N)EEZ - Hence, the set of neutral very simple equilibrium points is
convex. (Q.E.D.)

An immediate consequence of the previous theorem is obtained for the mixed
extension game f of an finite n-person game T having the properties required
by theorem I.13: The_set of neutrai very simple equilibrium points of guch a

~

game I' 1s then a non-empty compact and convex set in an euclidean space.



CHAPTER II

II.1 e-Simple Equilibrium Points

Once, having the preceding results, we could aim to extend thesge
concepts by using a more general description of the associated zero-sum two-person
game for each player,

One of the possible ways of generalizing those concepts will be
examined in this section. What follows(@s essentially based on seeing the
second player in the associated zero-sum twp—éerson game corresponding to each
player; divided into two parts which have associated suitable roles, and thereby
introduce a simple structure for the game.

Let us consider an n-person game I = { Z&,.,,,ZQ;Al,...,An }
having the usual properties, that is, where the strategy gét of player i€l
is a nen-empty and compact set in a euclidean space and his payoff function is
a continuous functien in the product space. Furthermore,the real situation repre-
seﬁted by the game I' allows only non-cooperative behavior among the players.

Any arbitrary player in the game I is considered as embedded in the
associated game I} = { Z&’Zﬁ—{i};Ai } ; where the roles of both players 9
generally do not reflect thebroles of the corresponding players in the zero-sum
two-person game, since such roles are imposed arbitrarily. However, we recall
that this viewpoint is of fundamental importance in the theory, because each
é;iterion adopted to answer the question of the roles of the rlayers in the
associated game will immediately determine a new concept for the total

behavior in the game T

- 74 _
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Now, consider for the player i€N the second player in the associated

game which is composed of the set of players N-{i} , divided into two disjoint

sets of players, namely:
N-{i} = e(i) ur(4)

The "subplayer" of the second player formed by the set of players f£(i)
always has an indifferent character with respect to the first player, in the
sense already specified. Therefore one can describe the conflict situation
between player 1i€N  and the corresponding "sub-opposer" player e(i)
depending on the choice of the subplayer f(i) 1in the associated game I}

Of course, all these considerations made on the associated game I; may
confuse the precise formulation, which isg very important to keep straight.
From the formulated assumption, new concepts can be obtained.

More precisely, a function

Ll > PxP

which for each player i€N = {i,...,n} of the n-person game I' assigns two

disjoint subsets of players
e(i) = (e(i), £(i)), with e(i)EEN and f(i)egN

belonging to the set of all subsets of N:?N » 1s said to be a simple

structure-function for the game I' if

e(1)U (i) = N-(1i)
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Furthermore,tthe set of players f(i) is called the indifferent
coalition corresponding to the player 1€N .

An n-person game T having an associated gsimple structure function =
[that is, (Ie)] will ve indicated by Ié and for the purpose of simplicity I;
is said to be a game also. B B

In the remaining pages of this chapter we deal exclusively with games
having an associated simple structure, even though we do not mention it
explicitly.

As was stated before it ig adequate to decompose the associated game of
the player ieN inﬁo a family of associated zero-sum two-person games, which
depend on the different choices of the indifferent subplayer (i) and where

the role of second player is assumed by the subplayer e(i) . Formally, for the

player 1€N = {1,...,n} and a joint strategy for the set of players (i) :

€2,

Te(1)p(1) = X 2

jer(i) 9

we define the 0f<i)—associated Zero-sum two-person game with respect to the

game I; with simple structure function e, by

Lopegy) = o Zﬁ’zé(i)5Ai(oi’ae(i)’°f(i)) }
where the strategy set of the second player is given by the product

O \€ .\ = X 2.
e(1) Te(1) jee(i) J
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We recall that when the set f£(i) is void, the product set 3

9

sented by only one element: the "o-tuple", then, formally the "o-tuple"-associated

is repre-

zero-sum two-person game represents the associated zero-sum two-person game I;
Furthermore, in the special case where the set e(i) is empty, any oN—{i}—
associated game represents s one-person game formed by the player ie€N .

Having just introduced, for each player in the n-person game Ié with
simple structure function e , the role of indifferent player (with res;ect to
i€N), to each element in the subset of players f(i) , we must assign the other
role to the subplayer e(i) . Actually, if the player e(i) is considered also
as an indifferent player with respect to player i€N , we might try to extend the
concept of positive very simple equilibrium point by congidering that the first
player 1€N in the associated game determined by the choice of his indifferent
coalition f(i) maximizes his position by the choice of the second player e(i)

A point O = (51,...,5n) belonging to the product space 2 is said to be

an e-positive simple equilibrium point of the n-person game

Ié = { Zi”"’Z%3A1""’An} with simple structure function e , if for each

Gf(i)—associated game I;(Gf(i)) = {zg,z%(i),Ai} of the player i€N -
810055001y 0p(1)) = X 8305500 (1)005(5)
1771

But, of course, this definition completely coincides with the old
definition of positive very simple equilibrium point for the game I' | Thus,

it does not have any advantages, and therefore such a new concept is useless.



- 78 -

This arose because the behavior of the set of players N-{i} has
been associated under the consideration that the set e(i) acts after the
indifferent coalition f(i) , where both are considered indifferent with
respect to player i€N . But, of course, this representation is completely
equivalent to considering the joint behavior of the set N-{i} in an
indifferent manner.

On the other hand, by assigning the normal behavior of the second
player to the set of players e(i) in the associated game determined by the
choice of the indifferent coalition of the player 1i€N , one can generalize
the concept of negative very simple equilibrium point by assuming in the
introduction, this latter player is apathetic with respect to his own position.

Because of this, we refer to the set of players e(i) corresponding to
the player 1€N , in the game I; with structure function e as his

antagonistic coalition.

Rigorously speaking, given an n-person game I; = { Zi,...,Z%;Al,,..,An }
with the simple structure function e, a joint strategy O = (51,...,5n)€Z
is said to be an é-negative simple equilibrium point of the game I; s if for
each of(i)-assoc1ated game I;(Uf(i)) = { ZE,Z%(i);Ai} of the player
ieN = { 1,...,n }:

4300550 (1) T () = s (r-n?gz (1) " e(1)%2(1))

*We recall that formally if either e(i) = ¢ or f(i) = ¢ then
=9

Ai(ai,oe<i),of(i)) is Ai(oi’ON—{i}) and if e(i)

M Oy Tesy) = A 00 y)
e

Se(1) (1)



A special case of these points arises when the simple structure function e

of the game I' is determined by e(i)

il

(N-{i},¢ ) for all player i€N . TIn such
a cage the concepts of e-negative simple equilibrium point and negative very simple
equilibrium point coincide.

An e-negative simple equilibrium point is a rule of behavior with the
property that if some or all players of the members of some antagonistic coalition
e(i) of a player 1i€N , change from it, then the winnings of the player ieN will
be increased if his indifferent coalition still abides by it. This can be a
possible interpretation of an eé-negative simple equilibrium point. Of course,
if the players changing from such a point, are simultaneously members of the
antagonistic coalitions of several other Players, then the positions of all these
players will be increased. We also note that these kind of points do not satisfy
the equivalence property.

The following theorem concerning the existence of e-negative simple
equilibrium points is a direct extension of theorem I.9 for the class of games

usually under consideration.

THEOREM II.l: Tet I; = { Zi""’Z%}Al""’An} be an n-person game
with simple structure ;unction € , such that the strategy set Zé
of player i€N = (1,...,n} is non-empty, compact and convex in a
euclidean space, and his payoff function Ai is continuous in the
variable O€Z, and convex with respect to the variable oe(i)ezg(i)
for fixed (Gi,0f<i))62€xz%(i) . Then, if for each joint strategy

O€X there is another one 7T€Y such that for all i€N
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Ai<0fTe(i)’of(i)) " I(“.i;lez " Ay (05550(1)%2(1)) >

the game I; has an e-negative simple equilibrium point.

PROOF: For any point ¢ = (Ui,Ge(i),0f<i))€Z of the non-empty, compact and
convex product space 2 , let
p,(0) = { T€Z:Ai(0'i,7'e(i),0'f(i)) = min A (o, Se(i)’of(i)> }
S ,.\€X ..
e(i) 7e(i)
be a non-empty set of points in the product space 2 corresponding to player ieN .
We remark that for those ieN , which have their respective antagonistic coalitions
empty, the get @i(c) for any point 0€X 1is the whole product space X
Let 7T and T be any two arbitrary elements of the set @i(o)
Hence, by definition of such a set, the following equalities hold true:

1
(1)

which imply the relation

Ai(cri,)rre(i)+(1-k)’re<i),of<i)) S’\Ai(ai’Te(i;’ of(i)) + (l'A)Ai(Gi’Te(i)’of(i))

= min Ai(ai,se(i),of(i))
S . €L .
e(1) Te(i)
for any real number X€[0,1] , by virtue of the convexity property of the payoff
function A, with respect to the variable o ,..€% ,. for fixed
i e(i) Te(i)

(Gi,Gf<i))€Z€xZ%<i) - In this last equality we must have only the strict
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equality sign, since the latter amount is the mininum value of the payoff
function considered over the product set Z%(i) . Thus, for any real number,

A€[0,1] , we have

Ai(oi’ATe(i)+<1-A)Te(i)’o.f(i)): min Ai(oi,se(i),of(i)) s
S . €0 .
e(i) Te(1)
which expresses the fact that the point AT +(1-A)T 1is an element of the get
¢&(a) ; since all the strategy sets are convex. Hence, @i(U) is a convex set.

Now, let us consider the multivalued function

P L-Z
defined by the convex set

o(e) n o)
1€N

for any 0€X , which is non-empty by virtue of the last condition of the

hypothesis.

Now, we consider the question of upper-semicontinuity of the multivalued

function ¢ . TLet

o(k) -0 and (k) - T

be two arbitrary converging sequenceé of members in the product space = having
the property that 7(k)ep(o(k)) for any positive integer k . Hence, for any i€N
we equivalently have
Ai(oi(k)’7é(i)(k)’0f(i)(k)) = min Ai<0i(k)’se(i)’0f(i)(k))
S . \€EX 4.
e(1) "e(1)
for all k . By the continuity of the payoff function Ai of playef 1€N , in

the product space 2, the two sequences of real numbers having the general terms
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identified as those parts of the second equality, converge respectively to the values
of the payoff functions obtained by replacing respectively the point
0. (k . . . . i i
( 1( )’Te(k)(k)’of(i)(k)) by (Gl’Te(l)’Uf(l)) In accordance with this
observation, the following equality for each player i€N 1is completely satisfied

Ai(ai’Te(i)’of(i)) = min Ai(oi’se(i)’of(i)> '

N
e(1) (1)

Thus, the point 7T is an element of the set P(0) , which implies the
upper-semicontinuity property of the multivalued function @

As an lmmediate consequence of Kakutani's fixed point theorem applied to

the semicontinuous function ¢ we get the existence of a fixed point 66@(5)

That is,

800001y 02a) = ma L A0 ()0

for all player i€N ., This is the definition of e-negative simple equilibrium point

for the joint strategy 0€X . (Q.E.D.)

The last condition in the above theorem which assures for any point O€Z

the existence of another Joint strategy T€X such that for each player i€N

8000 Te (1)) = iR A (05,5 (5),04)
SN
e(i) Te(i)
can be considered as the attack property with respect to the concept of an

e-negative simple equilibrium point for the game I.
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Each established behavior hag a new one which minimizes the position of
any player if, in each instance, this considered player together with hig in-
different coalition abide by the old original behavior. This is a simple
intuitive interpretation of that attack property.

Using this theorem, one can immédiately characterize such points for

mixed extensions of finite n-person games. This formulation is related in the

following result.

THEOREM II.2: Let I; = { Z&,..,,Z%;Al,.a,,An} be a finite n-person
game with simple structure function & such that the expectation function

Ei of player i€N is linear in the variable

Te()¥e(1) T () W

for fixed

(Xi,xf(i))GXiXXf(i) :Z)ix X 2.

jer(i) ¢
If for each x€X = X I, there is another ye€X such that for all i€N:
jey
Ei(xi’ye(i)’xf(i)) - m Ei(xi’se(i)’xf(i) )

.\ E .
Se(1) (1)
then the mixed extension Ié = { Zﬁ’°°"Z%5El’°'°’En} has an e-negative
simple equilibrium point.

PROOF: The mixed Strategy set Eé of the player i€N in the mixed extengion

game I' is non-empty, compact and convex in g euclidean space. The expectation

function Ei of player 1i€N 1is a linear function with respect to the variable

Xe(i)exe(i) for fixed (Xi’xf(i))exixxf(i) » which is also convex.
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On the other hand, since the payoff function Ei is a multilinear function,
then it is obviously continuous with respect to the variable x€X .
Finally, by virtue of the validity of the following equality between the

minimum values

min

Ei(xi’se(i)’xf(i)) = min E'(X"ue(i)’xf(i))
Se(1)

“e(2) e (1) e (1)

the attack property for the mixed extension game Ié is completely satisfied.

Therefore, the preceding theorem guarantees the existence of an e-negative

simple equilibrium point for the game I; (Q.E.D.)

The last condition imposed on the previous result is equivalent to the
following requirement for each point x belonging to the product space X :
There is a joint pure strategy O€X = Zix...xza guch that for all ie€N

B (83000 (1)%p(s)) = min B (%5805 y%p0)

S ;. € 4.
e(i) “e(i)

The proof of this assertion can be carried out in a way completely
analogously to those we have already done. For this reason we do not repeat
here such a demonstration.

The class of all the finite n-person game I; , for which the
expectation function Ei of each player 1€N is a linear function with
respect to the variable x ,..€X . of his antagonistic coalition, is

e(1) Te(i)
characterized by the payoff function of player i€N formed by
_ gL J
Ai(ai’oe(i)’af(i)) =2;(0,,0,04)) + J_Gf(i) 2:(04:05:0005y)

which is an immediate consequence of the lemma I.11.
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Actually, for this kind of finite n-person games, the attack property
requirement can be formulated as follows: for any point in the product space

~

x€X = X Z. there is a joint pure strategy 0€% = X . for which:
jen ¢ JjEN

E eJ( ’O. )X ) = min Z eq‘(x_’ 8 o.x ) L

. . 1 i i s ) . -

J€e(1) ( ) Se( )EZ ( ) JEe( ) J f(l) /

for all players 1€N with e(i) # ¢ , where ei indicates the expectation function

of the function ai associated with the player i€y .

But such a requirement imposed on the expectation functions by virtue

of the equality

: o9 . J
min z (x )840 %g y = = min et (x,,8.,X.,.4)
s . (i)
S s €4, €e(i £(1) €e(i) s, €2 * * I
e(1)Fa(y) Jee(i) Jee(1) s;€z,
for each player i€N with antagonistic coalition e(i) non-empty, can be
immediately transformed into a more simple statement. Namely, for any x€X

there is an 0€X such that

p) J(x ,0 1 Xp = Z min eq X,y 8.5% 0.
jee(i) * (1 )) j€e(i) szezg ( f(l))

for all i€N with e(i) # ¢ .
Furthermore, we can see easily that this condition is equivalent to having

for each x€X an O€X which for all i€N with e(i) # ¢ , we have

J,. R J
ei(xi’aj’xf(i)) = szg ei(Xi’Sj’Xf(i))
J o d

for all jee(i) .
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It is interesting to illustrate by an example one of the games which
satisfies this very simple form of the attack property.

Let e be a simple structure function of the finite n-person game
which is characterized by the property that each player J€EN Dbelongs at most
to only one antagonistic coalition. Let the subset J be the set of all players

JEN for which there exists an 1€N with: jee(i) i.e,
J = { jeN:jee(i) for some ieN }

Let I Dbe the subset of all players with their non-empty antagonistic coalitions.
Evidently such a simple structure function always exists.

Then, any game with a simple structure having the described property and
the form of the payoff functions already mentioned, fulfills the attack condition.
Indeed, for an arbitrary point x in the product space X , consider for each
player jed a pure strategy OJEZS for which the equality

ej(x. 0.,X ) = min ej(x 38, X )

IV TR() iV Tr(L)
S.€EL.
Jd d
holds true, for the player i€I with j€e(i) . Such a pure strategy
obviously exists.

Now, by forming the joint pure strategy ¢ = (o ,.{Un)EE composed of

17
those coordinates Gjézs for each j€J and any arbitrary component OJEZG
for each Jj€N-J , we obtain the existence of s point satisfying the attack
property for =x€X .

Therefore, by.the above theorem the mixed extension f; of any finite
n-person game Ié having such a simple structure function and_such payoff

functions, has an e-negative simple equilibrium point.
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We will now extend the concepts of e-simple equilibrium points.

Given an n-person game Ié = £Zi’°°"Z£;Al"'°’An} with the simplg

structure function e , a joint strategy & = (51,...,5n)€E is called an

e-simple neutral equilibrium point or e-simple saddle point of the game Ié

if for each Gf(i)—a33001ated game I;(Gf(i)) = { Zé’zé(i)iAi} for the player

ieN = {1,...,n)

max Ai(si’ae(i)’ﬁf(i)) = Ai(éi,ée(i),af(i)) = nmin Ai(ai’se(i)’af(i)) s

s3€24 Se(1)e(1)

that is, if it is simultaneously an e-positive and an e-negative simple
equilibrium point. In other words, if for any Gf(i)-associated game it is
a saddle point.

A special case of e-simple neutral equilibrium point arises when the
simple structure function e 1is given by e(i) = (N-{i},9) for each player i€N .
In such a case it is also a neutral very simple equilibrium point.

Another particular case is found when e(i) = (¢,N-{i}) for all players
1€N . TFor this simple structure function the last equality of the definition of
e-simple saddle points turns trivial, and therefore it coincides with the concept
of very simple equilibrium point.,

We note that such points do not generally satisfy the equivalence property,
that is, it could have different e-simple saddle points where the values of some
payoff functions do not coincide. This arises since the associated games are
Parametrized by the choice of the joint strategy of the indifferent coalitions.

Intuitively speaking, an e-simple saddle point is a rule of behavior

which, on one hand is such that if the players belonging to some antagonist
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coalition e(i) of the player i€N , change their behavior, the winnings of
player 1€N will be increased, if his corresponding indifferent coalition remain
on it., On the other hand, it is such that if all the players except one abide by
it, then his position will decrease. Furthermore, if such a rlayer is a member
of some antagonistic coalitions of some other players, then the winnings of all
these other players will be increased.

In other words, it is optimal for each player and each antagonistic coalition,
given the actions of the indifferent coalitions.

A word of caution about this concept should be stated. If a player changes
from an e-simple saddle point, one should observe that the positions of those
players for which he is seQn as an indifferent player might decrease.

A first result about these points 1s related in the following existence theorem.

THEOREM II.3: Let Ié = { Z&,..,,Z%;Al,,..,An } be an n-person game

with simple structure-function e , such that the strategy set Z& of -
player 1i€N = {1,...,n} 1is non-empty, compact and convex in a euclidean
space, and his payoff Ffunction Ai is continuous in the variable 0€X ;

(15 )

convex with respect to the variable o ,..€% ,. for fixed (o,,0
e(i) "e(i) i

and concave with respect to the variable GiGZE for fixed

<Ge(i)’of(i))Gzé(i)xzf(i) . If for each joint strategy 0€X there is

another one T€Z such that for all ieN

85(T550,3y:0¢(5y) = X A3 (85000 (5),0(5))
1 1
and
8005 T (1)0p(1)) = . (f_nizlz (l)Ai(Ui’se(i)’cf(i)) )

the game Ié has an e-simple saddle point.
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PROOF: Given any arbitrary point g€ of the non-empty, compact and convex product

space 22 , consider the non-empty convex set

9;(0) = { 7EZEA1(7E’Ge(i)’Uf(i)) RS Ai(si’ae(i)’cf(i))

and Ai<0i’75(i)’of(i)) :S <?j22 <.)Ai<oi’se(i)’of(i)) }
el l ell

for player i€l , Indeed, let T and T be any two elements belonging to the

set @i(G), then they satisfy the following equalities

Ai(7i’0e(i)’af(i)) - Ai(%i’oe(i)’of(i)> - max Ai<si’oe(i)’af(i)>

s, €25,
1 1
and
Ai(ai’Té(i)’Gf(i)) = Ai(oi’?é(i)’of(i)) - (?jﬁz (')Ai(oi’se(i)’of(i)>

By virtue of the concavity of the payoff function Ai ; With respect to
the variable GiGZﬁ for fixed <0e(i)’of(i)>€Zé(i)xz%(i)‘ for any A€ [0,1] ,

one has
AT 0T ,0, 4),000) = M0 (1) 0p(1) =N, (Froo 00 )

= max A (s.,0_,.\,0._...)
sex Li7e(d)f(4)
i1
since in the last term there appears the maximum value of the payoff function
regarded as a function on the set Zﬁ .

On the other hand, because of the convexity of the payoff function Ai

in the variable o ,.. €3
e(i)

e(]_) for leed (O'l,O'f(i))€EiXEf,(i) for any real

number A in the unit interval [0,1] » we have:
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A (O AT () (I=MT (5):00(4)) = My (o, Te(1)T2(1)) T(1-MA (00 T 51,0004))

S 41000 % (1) T2 (1)) -

Since the last amount represents the mininum value of the payoff function
considered over the product set Zé(i)

Hence, such equalities imply that for any arbitrary real number A€[0,1]
the point AT+(1-A)T of the product space 2 is an element of the set c%(o)
of player 1€N , since all the strategy sets are convex. Thus the set q&(c)
is convex.

Furthermore, from the last conditions, that is, the defense and attack
properties with respect to the concept of e-simple saddle point, we have that,

for any point 0€X the intersection set

is a non-empty set. Therefore, the multivalued function
DD
which assigns ¢ (0) to each joint strategy o€Z ; remains completely determined.
We now examine the upper-semicontinuity property of this function. Let
o(k) -0 ’ and (k) - 7T
be any two arbitrary converging sequences of points belonging to the produce space X

having the property that for any positive integer k:7(k) (6(k)) . This means

that for each %k and each player 1€N the following equalities hold:
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Ai(Ti<k)’oe(i)(k)’of(i)<k)) =,gr,n§§)_ Ai(si’ae(i)(k)’of(i)(k))
1 1

and
A0 To ()W) 4y () = min 4 (0 (), 504,005, ()
S_/a\€X .
e(1) e(1)

But, because of the continuity of the payoff functions, the sequences having
as general terms one of the corresponding members of the two Preceding eqgualities,
converge to those respective values of the payoff functions obtained by changing in
their respective places the point (Ti(k>’7é(i)(k)) to (Ti’Té(i)) and the joint
strategy (Gi(k),ce(i)(k),cf(i)(k)) to <Gi’0e(i)’0f(i)> . We recall that if
the antagonistic coalition of a player ie€N is an empty set, then the sequence
whose general term is the mininum value of the payoff function over the set Zé(i)
completely coincides with the sequence : { Ai(oi(k),aN {i}(k)) } . An analogous
remark can be made for the remaining sequences.

Thus, by identifying the limiting values of those corresponding sequences,
for each player ieN » We obtain

Ai(Ti’Ge(i)’of(i)) = max Ai(si’ge(i)’of(i)>

S, €2,
i1
and

Ai(01’7é(i)’af(i)) = min

e 81000 56(1)92(1)) -

e(i)
This means that the point 7T is a member of the set @(0) , and therefore the
upper-continuity of the multivalued function is established.

Application of the Kakutani's Fixed Point Theorem to the multivalued
function @, guarantees the existence of a fixed point 6€Cp(5) . That is,

for each player i€l :
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Se(?jgze(i)Ai(ai’Se(i)’af(i)) = Ai(éi’&e(i)’éf(i)) :S?z% Ai(s"ae(i)’gf(i)> ’

which indicates that the point 0 1is an e-simple saddle point of the game I', (Q.E.D.)

Similarly to what has been indicated for neutral very simple equilibrium
points, the last condition in the preceding theorem, that is, for any point C€X
in the product space 2 there exists a joint strategy 7€X such that for all i€N:
(T.,0 . . = (s, . .
A1<Ti’ e(l)’gf(l)) max Al(sl’oe(l>’of(l)>
s. €%,
i1
and

A (0T (1y70(1y) = . minez ACITENTIPLITLY
e(i) Te(i)

is related to the attack and defense property for the game I; with simple structure
function € , with respect to the e-simple saddle point concé;t. This can be intui-
tively interpreted as follows: for any accepted joint behavior among the players

in the game I', there is another one which, on one hand, maximizes the position

of each player if the remaining players abide by the first one and on the other

hand, minimizes the winnings of each player, if he together with his indifferent
coalition remain in the old one.

An immediate consequence of the previous theorem is obtained for mixed

extensions of finite n-person games, and is formulated in the following result.

THEOREM II.L4: TLet Ié = { Zﬁ’“"’Z%;Al""’An} be a finite n-person

game with simple structure function e , such that the expectation

function Ei of player i€N 1is linear in the variable

x_ 0 \€X oy = z,
e(1)e(1) T 2yy
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for fixed

X N )EX KK\ = X X3
(xl xf(l))GXlXXf(l) Zﬁxjef(i) :

If for each x€X = X ZS there is a joint pure strategy oeZ
JEN

such that for all 1ieN

B (05% 0 05y5%p04) S Bi (850% (3)2%p (1))
and
E.(x,0_,.\sX./.\) = min E. (X.,8 /.vsXorin) s
M7 e (1)1 (4) 1V Te (1) (1)
e(1)%e(1)

~

then the mixed extension Ié = { Zi’"'°’Z%3El’°"’En } has an e-simple

saddle point.

~

PROOF: The mixed strategy set Zﬁ of player 1i€N in the mixed extension game f;
having the simple structure function € 1s non-empty, compact and convex in a -
euclidean space, and his expectation function Ei is continuous with respect to
the variable x€X , since it is a multilinear function. Furthermore, it is g

linear function in the variable Xe(i)GXe(i) for fixed (Xi’xf(i))€XiXXf(i)
Hence the first requirements of the preceding theorem applied to the mixed extension

~

game I; are completely satisfied.

Finally, since the equalities

i E.(x., Ny ) = i E.(x., N )
Se(i?égé(i) iV Se(l) *r(1) ue(?;EXe(i) iv®y Yo (1) Xf(l)
and
Siﬁgi Ei(si’xe(i)’xf(i)) = Sjixi Ei(ui’xé(i)’xf(i))
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always hold true, for any x€X and any player 1€N , the last condition guarantees
the validity of the attack and defensge properties for the mixed extension I; with
respect to the e-simple saddle point concept.

Therefore, the preceding theorem applied to the mixed extension game r

assures the existence of an e-gimple saddle point of . (Q.E.D.)

We recall that the last condition indicated in the above theorem is

equivalent to the following one: for any point x in the product space X = X Z%
1€N
there is another Yy€X such that for all 1€N

E. (y » X »X ) = max E. (s )X s )

e(1)’7f(1) s, €%, i e(1)’7£(1)
and
Ei(xi’ye(i)’xf(i)) " mlnz Ei(xi’se(i)’xf(i))
e(i)(1)

Of course, this fact can be directly proved as well as that which has been
shown for the analogous attack and defense property with respect to the neutral
very simple equilibrium point, and therefore, we do not repeat it again. For all
those finite n-person games Ié ; which fulfill the linearity requirement of the
expectation function Ei in the variable Xe(i)GXe(i) for player 1€N , by
lemma I.11 his corresponding payoff function must have the following form:

Ai(ci,oe(i),af(i)) = a, (cr ,of( )) t Z. al(cr 0. ,of< ))

jee(i)
Now, on one hand because in the latter term of this expression there appears a
sum of functions depending only on one variable 03625 of the antagonistic coali-

tion e(i) of the player i€N , and on the other hand, since the mininum and
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maxinum values of any expectation calculsted either on pure strategy set or mixed
strategy set coincide, then the attack and defense properties for such a kind of

games can be expressed as follows: for each x€X there is a joint pure strategy
O€Z such that for all player 4i€N with e(i) £ ¢

i J = e’ X e‘j S.,X
ei<ci’xf(i))+j€§(i)ei(oi’xe(i)’xf‘(i))—Srlnz%l[ (855 ())+J€§() (s17%e(5) (1))l

and
e;(x.,o cvsXaray) = min ej(x S b's )
117 e (1) 78(4) 1M Pe (1) 1(1)
S €D .
e(i) Te(1)
for all j€e(i) , where the function ei indicates the expectation function of
the function ai .
A special case, which satisfies such attack and defense properties occurs
when the simple structure function e 1is determined by e(i) = (g(1),N-(g(iM {i}))
for each player i€N , where g(i) (:NF{i} is a subset of players with at most one
element. Thus if j€g(i) then g(j) = glg(i)) = {1}
Actually, for such games I; » the payoff function of player 1€N occurs

in the following form:

Ai(oi,o

= al g(i)
2170 (e(1)U) T #1O0 (a(1)u) 5 OD 1) O (gayuiayy)

where the function af(l) is identified with zero if the get g(i) is empty.
For any game with such a simple structure function and where the payo Tf
functions of the players are formed as above, with the further property that:

5000 (g(yura)) 20
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and

g(i = 1 +
&5 <ci’0g(i)’0N-(g(i)U{i})) =% ag(i)(og(i)’ai’aN—([i]Ug(i))) 4

non-negative
for all the players i€N with g(i) # ¢ , where c; 1is any |real number and dy
any real number, the attack and defense properties aré completely satisfied., That
1s shown as follows. ILet x be any arbitrary point in the product space X ,
then, for each player i€N with g(i) # ¢ , we choose the pure strategy oiEZé

such that

(1) ] (1)
O T TRl - CIE RNy

S, €2,
i™ 1
This obviously exists. Moreover, with respect to the player Jj€g(i), on this pure

strategy GiEZé of player ie€g(j) = g(g(i)) one has:

g(i) = m
% (SJ’Gg(J)’Kl\T.-([i}Ug(in)—s e
g(3) "&(3)

(3) -
T ey ) ) -

Therefore, by choosing a strategy GiEZE with

g(i)( _ g(d
e; MOxe .3) = max eV (s.,x_ ,..)
i 177N- {1} s en 1 i’7N-{1}
i1
for all the players i€N with empty antagonistic coalition, we have obtained a
Jjoint pure strategy O0€X for which the defense and attack requirements are

completely satisfied by x€X . Thus the validity of the assertion hasg been

established.



- 97 -

II.2 e-Simple Stable Points

We have seen that any new concept about the behavior of the players has
been obtained by imposing a role on each associated or Gf(i)—associated zZero-sum
berson game. The considered intuitive concepts about the behavior of the prlayers
in these associated games were essentially those of indifferent and normal.

For the very simple and simple saddle points concepts, one has accepted
the normal role of both playersin the associated game. Of course, this considera-
tion has an appropriate meaning for any zero-sum two-person game satisfying the
maximin theorem. However, the intuitive meaning of a normal player develops
difficulties in the general case when the maximin and minimax value do not coincide.

In this case one should assign a role to each player in a zero-sum two-
berson game, in order to develop the concept of normal player. OF course, here
we believe that the more natural role assoclated with the players considered as
normal, is the actuation in accordance with their corregponding maximin and minimax
strategies. We recall that if the maximin theorem is valid for a zero-sum two-
berson game, then such roles assigned to the normal players coincides with the
old concepts just considered.

Actually, we can have thesge considerations for both Players separately,
since their behavior is completely independent.

Therefore, by using the new viewpoints just introduced regarding the
role of a normal player in s two-person game, we will obtain other important kinds
of concepts of behavior in a game with an arbitrary number of players.

For a player i€N 1in a n-person game I; = { Zi,o.,,ZQ;Al,,ou,An }

with the simple structure function e with the usual propéfties consider for
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- _ . _ e
any joint strategy Gf(i)ezk(i) the Gf(i) gssoclated two-person gam
I;(Gf(i)) = { Zﬁ’zé(i);Ai } . If player ie€N choses the strategy GiEZ%
then, he is assured to obtain independent on the actions of his antagonistic

coalition the payoff amount
min Ai<0i’se(i)’of(i))
S ;. \€Z ,.
e(i) Te(1)
But, since if player i€N wishes to improve his safe position, he is able
to obtain the maximin value of the game I;(Gf(i)):
Vi(Gf(i)) = max min Ai(si’se(i)’of(i)) ,

si€Z€ se< )EZQ( )

i i
by using a maximin strategy. Such a maximin strategy GieZé is characterized by
satisfying the following equality
min Ai(oi’se(i)’af(i)) = max min Ai(si’se(i)’af(i)) ,

Se(i)ezg(i) siEZé Se(i)GEe(i)

These can be transformed to the following

F.(0.,0.,.y) = max F,(s.,0.,. )

iVi7TR() s e TiTE(i)
i1

where Fi indicates the mininum over the product set Z£<i) of the payoff function
Ai of player i€N .

Now, if player 1e€N plays a maximum strategy in the game I;(af(i)) s
his safe winnings will not be depended on the behavior of his opponent player, which
is now his antagonistic coalition. Thus, with respect to player i€N one can

consider the actions of his antagonistic coalitions as omitted, that is, having
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no effect on his own safe position. From this fact, the antagonistic coalition e(i)
of the player 1€N can be seen as the set of Players that can enter into a non-
cooperative alliance, thus, the behavior of its members is directed toward hurting
player 1i€N . However, it is very important to recall that such a consideration
has a dual nature, namely: in reality the players of the antagonistic coalition
hurt the corresponding player or the player i€N sees the members of his antagon-
istic coalition as players in which he should not have confidence. Of course, in
both cases the normal player 1i€N should choose a maximin strategy, thus, the
description of the behavior of his opponent can be omitted.

Having these facts, one is induced to consider a point formed by all the
maximin strategies in the respective associate game which has been introduced in[8].

Formally, a joint strategy & = (61,.,,,5n)621 is said to be an e-maximin simple

stable point or concisely Em—simple stable point of the game

Fé = { zi”"’Z%;Al’°"’An} with simple structure function e if for each
Oy i 0 ran) = ; - i€N =
£(1) associated game I}(Of(l)) { Zé’zé(i)’Ai} of player i€N = (1, ,n}
the strategy 5i€ZE is a maximin strategy. That is
min Ai(ai’se(i)’of(i)> = max min Ai(si’se(i)’of(i))
S_,.\€X . S.€4, S _,.\€Z ,.
e(i) Te(i) 1771 "e(i) (i)

The reason for the introduction of the adjective stable is that the safe
position of any player is independent of the acts of his regpective antagonistic
coalition.

We observe that generally any two such points are not equivalent.

The outcome for the player i€N with respect to the gm-simple stable

point G€Z in the game Ié , satisfies
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- - i )
Ai(oi’ge(i)’of(i)) = max min Ai(si,se(i),af(i)) Vi(of(i)) .
S.€X, s_,. .\ €L ,.
1771 e(i) "e(d)
From an intuitive point of view, an gm-simple stable point is a rule of
behavior on the one hand assures at least the amount Vi(6f(i)) to each player,

independently of the behavior of his antagonistic coalition and on the other
hand such that the value Vi(éf(i)) 1s the maximun safety value which the
mentioned player is able to get, if in each instance all the players of his
indifferent coalition remain on it.

From the definition, we have immediately that a point g€x 1is an

&n-Simple stable point of the n-person game I; = { Zﬁ"'“’Z£5A1’°"’An } if and

only if it is a positive very simple equilibrium point of the n-person game
r‘={21;...,2n;Fl,..-;Fn}

obtained by replacing in the game Ié the payoff function Ai of player ieN

by the minimun function

Fi(ci’of(i)) =S wmin Ai(ai’se(i)’af(i)) .

Hence, in the special case of the simple structure function formed by
e(i) = (¢,N-{i}) for each player i€N , the concepts of e,-simple stable point
and equilibrium point coincide, and therefore there is complete confidence among
all the players at such a point.

Another extreme case arises when the simple structure function isg
determined by e(i) = (N-{i},¢ ) for player i€N . We note that in this latter
extreme case, there always exist an Em-simple stable point for the games usually

considered.
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The following result arises immediately as a direct application

of theorem I.7.

THEOREM IT.5: Let Ié = { Z&’""’ZE;Al""’An } be an n-person game

with simple structure function e such that the strategy set Zﬁ of
player 1i€N is non-empty, compact and convex in a euclidean space and

his payoff function Ai continuous in the variable o = (o ,on,,Gn)EZ

1

Then, if each function
F3(05,0p04y) = min 8;(04586(1)7%¢ (1))
S . \€EXD .
e(i) Te(i)
is concave with respect to the wvariable Gi€Z€ for fixed Gf(i>€z%(i),

the game I; has an Em—simple stable point.

PROOF': Consider the n-person game I' = { Z&,,.,,Z%;Fl,,uo,Fn} where the payoff
function of player 1€N 1is the function Fi . This game completely satisfies all
the requirements of theorem I.7, since the minimun function Fi is continuous with
respect to the variable O in the product space 2 . Thus, the existence of a

very simple equilibrium point g€Z for the game T

F.(0.,0.,.y) =max F,(s.,0.,.y)
iV 17T e() c e, b (i)
1 1
for all 1€N , is guaranteed. Such a point 0€Z is an Em—simple stable point

of the game I; . (Q.E.D.)

We note that because the very simple equilibrium points do not satisfy the
equivalence property, then the Sm—simple stable points do not have such a

property either.
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For the mixed extension of any n-person game the Em—simple stable point

can be characterized as follows:

THEOREM II.6: Tet Ié = { Zi,...,Z%;Al,,..,An } be a finite n-person

game with simple structure function e . Then the mixed extension
I; = { Zﬁ’“'“’zh;El""’En } has an e, -simple stable point.

PROOF: For any arbitrary player i€N , consider the minimun funection

Fi(xi’xf(i)) - mn Ei(xi’se(i)’xf(i))
S_,.\€EL .
e(1) (1)
defined on the product space X= X ii - We now examine the concavity of this
jen

function. For this reason, let vy and ii be any two points in the mixed
strategy set Zﬁ , then, for a real number A in the unit interval [0,1] ,

by the multilinearity of the expectation function of player ieN > one has
Ei(hyi+<l_A)yi’Xe(i)’xf(i)):AEi(yi’Xe(i)’Xf(i))+(1_A)Ei(yi’xe(i)’xf(i))

for every x€X , and therefore by recalling the minimun's property:

Py g (107 ) ZAF; (v;0%p05y) + (L-)F; (3;%p(3))

for all xe€x . Hence, the minimun function Fi of player i€N 1is a concave
function with respect to the variable x.€Z. for fixed x_,..€X RN
i1 £(1) (1)

Since, all the requirements of the previous theorem applied to the mixed
extension Ié are completely satisfied, the existence of an Em-simple stable

point for I, has been proven. (Q.E.D.)
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Because of these results concerning Em—simple stable points for those games
under consideration, which have been obtained by assigning to the first player in
the corresponding game determined by the joint strategy of the indifferent coali-
8 normal role
tion,|it is very natural to introduce the dusl description, assigning a new normal
role to the second player, without any specification of the first rlayer. That
1s, considering the second player formed by the antagonistic coalition as & normal
player, in the sense that his behavior is in accordance with some minimax strategy
in the associated game, without any reference to the first player.

This assumption leads tovthe following formal definition.

Given an n-person game Ié = { Z&,.o.,Z%;Al,a.e,An } with the simple

structure function € , a joint strategy o = (5l,n.o,6n)€E is =said to be an

e-minimax simple stable point or shortly Em—simple stable point of the game I;

if for each Gf(i)—a35001ated game I}(Of(i)) = { Zﬁ’zé(i);Ai} for player
1eN = {1,...,n} the joint strategy Ue(i)ezé(i) = X 2. is a minimax

jee(1)
strategy, that is

5 = : i
Smﬁg Ai( i’ae(i)’af(i)) =S mlzlZ qmig Ai(si’se(i)’gf(i)) =V <Gf(i))
i1 e(i)™™1 "i™%4

or equivalently:

G50 (1)0p(1)) = | min G1(80(1)%(1))

e(1)%e(1)

for all 1 N, where Gi indicates the maximum function over the strategy set
Zﬁ of the payoff function A; of player ieN .
If an Sm—simple stable point G€X has been established in the game I; 5

Hmntmamm&meofphya’ij has the property that




- 104 -

Ai(&i’&e(i)’af(i)) =< min max Ai(s $Se(s )’Gf(1)> ( f(i)>
Se(1)%%%(1) 515

Usually, these points do not fulfill the equivalence property, as can easily
be verified,

Intuitively speaking, an Em—simple stable point is a rule of behavior which
on the one hand assures to each antagonistic coalition that its corresponding player
cannot safely obtain more than Vi(ﬁf(i)) » independently of his own behavior and
on the other hand such that the value is the maximun value that the antagonistic
coalition will be able safely to limit its corresponding player's behavior, if in
each instance all the players of his indifferent coalition abide by it.

Two special caseg of Em-simple stable points arisge immediately, namely:
when the simple structure function is given by e(i) = (¢,N-{i}) for each ieN .

In such a case any point is an Em—simple stable point, which is in accordance with
the heuristic point of view, gince no player hurts any other players. On the

other hand if we have e(i) = (N-{1i},9) then the definition is transformed into

Smig A, (s ’GN (1}) min sz§ A, (s 57 Sy {1})
- (1) Fr- (1)
for all the players ien .

Directly from the definition, one immediately has that a point is an

gm-simple stable point of the game L, = {Z,..., Z),A

1Ay } only if it is

an e-negative simple equilibrium point of the n-person game

={Z,.. Gosevns G )

obtained from the original game I; by substituting for the rayoff function Ai

of player i€N the maximun function

ijce(i),a £(1 >) = mig A, (s N (')’Gf(i))
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From this simple observation, the following theorem results as an immediate

consequence of theorem I.16,

THEOREM II.7: Let I; = { Zi,...,Z%}Al,...,An } be an n-person game
with simple structure function e such that the strategy set Z& of
player 1i€N is non-empty, compact and convex set in a euclidean space
and his payoff function Ai 1s continuous with respect to the variable

o = (Gl,,..,an)EZ , and the function

C1(0e(1)70p(1)) = max Ai<si’0e(i)’0f(i))
S, €,
i1
is convex in the variable oe(i)ezg(i) for fixed Gf(i)EZ%(i) . Then,

if for each joint strategy O€Z there is another one 7T€5 such that for
all ie€N

G (7. ,.\,0.,.\) = min G:(8 /00 .8)
itTe(1)7£(1) itTe(1)’7f(1)
Se(i)€zé(i) ;

the game I; has an gm-simple stable point.

PROOF:  Consider the n-person game Ig': { Zi,..,,Zég Gl""’(}n } with simple
structure function e , where the payoff function of player 1€N is the maximun
function Gi . Gi is continuous with respect to the variable og€& Thus,

such a game fulfills all the requirements of theorem IT.1, and the existence of

an e-negative simple equilibrium point G€Z

G.(0 ,.\,0.,.y) = min G.(8 /avs0., 1)
iVe(i)’ (1) iVPe(1)’7r(4)
Se(1)%e(1)

for all player i€N , for this game Ig is completely guaranteed. Such a point is

an Em—simple stable point of the game I; . (Q.E.D.)
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The last condition imposed in the above theorem as well as those
- corresponding conditions in the previous theorems, can be observed to be the
attack property with respect to the concept of gm-simple stable point. This can
be interpreted by saying that for any established behavior there is another one
such that if all the players of the indifferent coalition of any player abide by
the first one, the second one is minimax for his antagonistic coalition in the
corresponding associated game determined by the choosing of his indifferent coalition.
We should observe a very important fact which is concerned with the special
case where the simple structure function in the previous theorem has the indifferent
coalitions f£(i) for all the players i€N , empty.
In such a case the attack Property is transformed to the following condition:
there is one T€X such that

max Ai(si’TN-{i}) = min

A (s.ys_ .4)
iYL= (1)
51624 - (1) Fa- (1)

max
Si€Z€
for all players i€N » which is the definition of Em—simple stable point for
the point 7T
Therefore, the above characterization is completely useless in such a case.
Of course, one might intend an analogous formulation of the above result for
this gituation. But, unfortunately, this new characterization cannot be done by
the techniques used until now, since the multivalued function q&(a) of all the
players 1€N would be completely independent on the variable TEZ
Moreover, in such a description there is involved the existence of a poinﬁ
at which all the functions Gi reach their minimun on the product space. Thig
is a more complicated question then those just considered, and therefore, we will

not deal with it.



- 107 -

An immediate consequence of this theorem, which deals with mixed extension

of finite game is related in the following result.

THEOREM IT.8: TLet Ié = { Zﬁ,...,Z%;Al,...,An } be a finite n-person game

with simple structure Ffunction & , such that the expectation function Ei
of player i€N is linear in Xe(i)éxe(i) for fixed (xi,xf(i))éXifo( )

i

and for any x in the product space X there is another one y€X which

satisfies
max E, (s, N Xy = min max E.(ssou_ /. v,X00.
< & 1( 1’ye(1)’ f(l)) “ x S e 1( i’ Te(i)’ f(l))
i1 e(i) Pe(i) "i™71

for all i€N . Then, the mixed extension Ié = { Zﬁ’”“"zgsEl"°“’En }

has an gm—simple stable point.

PROOF: Since expectation function Ei of player i€N 1is a linear function with
. . €
respect to the variable Xe(i)EXe(i) for fixed (xi,xf(i)) XiXXf(i) » then for

any arbitrary real number A€[O,l], one’ has

E; (x5 Axe(i)J’(l'A);‘e(i)’Xf(i))zmi(xi’xe(i)’xf(i))J’(l‘A)Ei(Xi”_‘e(i)’xf(i))

for any pair of points %o (1) and ie(i) in Xe(i)
Hence, in accordance with the maximun's property, the following inequality

holds true

M1y (Mo 1) p0) =030 (1) %(1))H 1) Gy (B g yog )

where the continuous function Gi is given by

Gi(xe(i)’xf(i)) :SI_HZ% Ei(si’xe(i)’xf(i)) 1{“2‘5 Ei(ui’ie(i)’xf(i)) ’
1 1 1 1
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which expresses the fact that the function Gi is convex with respect to the
i € . i . .
variable xe(l) Xe(l) for fixed xf(l)€Xf(l)
Thus, a direct application of the Preceding theorem to the mixed extension
game I; which satisfies all the corresponding requirements, assures the existence

of an Em-simple stable point for thisg game I; . (Q.E.D.)

A very special example of a kind of n-person game to which the previous
result applies is that Just considered after theorem II.L. These are characterized
by having the simple structure function e with antagonist cocalition of all the
players formed by at most one element.

Indeed, for any arbitrary point x€X consider the Joint strategy vyex
composed by taking each coordinate yjégé for each player Jje€N which is a member
of' one antagonistic coalition e(i) with i€N as the minimax in the Xf(i)_
associated game, that is,

] . J
e, ) T e e )
i1 by R R

where e indicates the expectation of the payoff function

J
400950 (gyuay) = 2000 ()

of player i€N ; and any mixed strategy yJEE% of player Je€N which does not

belong to any anticoalition coalition. Such a joint strategy satisfies the attack

property with respect to the concept of Em—simple stable point on the element x€X .
Therefore, the mixed extension of such a game has at least one gmLsimple

stable point.
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These results enable us to extend the new established concepts.
Given a n-person game ;é = { Zﬁ"“°’2£5A1”"’An } with the simple

structure function e , a joint strategy o = (o .,6n)€2 is said to be an

l)oa

e-simple stable point of the game Ié , if it is simultaneously an Em—simple

and gm-simple stable point, i.e,:

min A. (s ,0 0 ) = max min A(s.ss 1.\,0.,.\) =V.(G.,. )
. e(1)’7f(1) 17717 %e (1)’ 7 £(4) 17(1)
%(1)%e(s) %% Se(1)Pe(i)
and

7, ey ey B, ol M@ T T )

for all the players i€N = {1,...,n}

Because neither the gm-simple nor the gm—simple stable points have the
equivalence property, then the above does not have such a property either.

On an e-simple stable point G€X +the outcome of player i€N satigfies

the following inequality

Moy Pee) = o A )0)
(1) %e(1)
<  min max A, (s, 1% (1)% (1 ))

se(i)GZé(i) s, €Z

An e-simple stable point is a rule of behavior which is maximin for each

player and minimax for his antagonistic coalition in the associated gante deter-
mined by the choice of his corresponding indifferent coalition.
For the special case where the simple structure function is determined

by e(i) = (¢,N-{i}) , the new concept colncides with the concept of positive
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simple equilibrium point. Another extreme situation arises when e(i) = (N-(i},9).

In this case the definition is transformed into the following requirement

min A.(G.,s_ ;.,) = max min A, (s 5 8 )
iV 17 TN- (1) N-{1i}
W= (1) - (1) €% Sy (1R 4y
and
max A, (s ,0 ) = min max A, (s 5 8 )
N-{i} N-{1i}
s, €2, Swo(1) G- (1) 5%

for all the players ieN .
By using the already known minimun function Fi and the maximun function
G; » another equivalent formulation of an e-simple stable point of the game

1

= { Zﬁ’°"’2%5Al”'°’An } can be produced by considering simultaneously the

following two games

1—\!

{ Zi’°'°’Z%5Fl"°"Fn }

and

1
. G o
:é { Zi,.,.,Zg, 170 &) }

Thus, a point ig an e-simple stable point of the game I; if and only if

it is a positive simple equilibrium point of the game Fé and is an e-negative

1

simple equilibrium point of the game Ié
Unfortunately, we do not have in the previous section any existence
theorem of this kind of points for the games under consideration, and therefore

we must establish a complete new formulation.
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THEOREM II.9: TLet Ié = { Z&,...,Z%;Al,...,An } be an n-person game

with simple structure function € such that the strategy set Zﬁ of
player i€N ig a non-empty, compact and convex set in a euclidean space,
his payoff function Ai is continuous with respect to the variable
o = (Gl,...,Gn)€E ; and the function
F1(0350e05y) = mL A (058 (5)0T005y)
SN
e(1) (1)
is concave with respect to the variable 0.€% for fixed o_,,.€2_,.
171 (1) 7r(1)

and finally the function

PN R o S = max A.(s.,O o
Gl( e(i)? f(l)) s ( 17Y%(1)’ £(1 ))
1771
is convex in the wvariable Ge(i)ezé(i) for fixed Gf(i)ez%(i>
If for each joint strategy 0€X there is another one 7€X such that for

all ie€N

F. (7’,Gf( )) =S?2§. Fi(si’of(i))
i1

and

ey o)) = ma elegpoyy)
“e(1)%e(1)

then the game I; has an e-simple stable point.

PROOF: For any arbitrary point o = (Gi’ae(i)’cf(i)) in the non-empty, compact

and convex product space 2 » consider the non-empty set

@i( o) = { re=: 7. (T’,o (i)) = Smig F, (s ,of( )) and

Q@

i (Te(1)%¢(1)) = . (‘_n;gz " %5 (5e(1y0p(1y) 1
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Indeed, let 7 and T be two arbitrary elements of the set qg(o) s

then one has the following equalities

Fi<7i’of(i)) = Fi(%i’af(i)) = max Fi(s"gf(i))

s, €2, *
1 1

and

G5 (Te(1) (1)) = Gyl e(1)%¢(1)) = s &3 (e (1) Te1))

Ye(1) (1)

from which immediately we deduce for any real number A€[0,1]

Fi()tfri+(1_)t)=ri,of(i)) = mz.j% Fi(si,O'f(i))

]
and
Gi(/\Te(i)+(l_/\)7e(i)’0f(i)) " mirelz G; (Se(1):%p(1)) »
, e(i) Te(i)

since the minimun function Fi is concave in the variable GiGZé and the maximun
iy i . i . i . Ly .
unction G; 1s convex with respect to Ge(i)GZé(l) for fixed Gf(l)€z%(l)
Thus, that the point AT+(1-A)T€Z  is a member of the set @i(G) , since all
strategy sets are convex, which implies the convexity of @i(U).

Now, we define the multivalued function

Q= E-—)Z

by the convex set

for each 0€X , which is non-empty by virtue of the last condition. Now, we are
going to examine the upper-semicontinuity of such a multivalued function. TFor this

let
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0(k) > 0 and (k) > 7

be any two arbitrary converging sequences of elements in the product space
having the property that T(k)€p(0(k)) for each prositive integer k .
Equivalently, for each k and each player i€N -

S, €2,

i1
and

(ATl(Te(l)(k)’o.f<l)(k)) = min Lvl(se(1>’0f<1)<k)> .
S_,.\€X .
e(i) e(1)

By the continuity of the payoff function Ai of player 1i€N in the
product variable o€ » the four Sequences of the real numbers whose general
terms are thoge respective four members in the last equalities, converge to the
values obtained by substituting the point (o <k)’7é(i)(k)’cf(i)(k)) by
<Gi’7é(i)’0f(i)) in the respective places. Thus, for each Player 1i€N , we have

FAT.,0.,.\) = max F.(s.,0_,.,)

1177 (4) Si€zi it r(4)

and

G = i G (s
i(Te(i)’Of(i)) min i(qe(i)’of(i)) ’
SN
e(1) 7e(d)
which expresses the fact that the Joint point Te€Z belongs to the set o{o) .
Thus, the multivalued function ¢ ig upper-semicontinuous, and therefore satisfies
all the requirements of Kakutani's Fixed Point Theorem. Then, the existence of a
fixed point 56@(5) 1s completely guaranteed. i.e,

Fi(oi’af(i)) = ma; Fi(8350005y)
5162
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and
Gi(ae(i)’of(i)> = min G'i(se(i)’of(i))
S ,.\€EL .,
e(i) "e(i)
for all the players i€N , which is in accordance with the definition of e-simple

stable point of the game I; . (Q.E.D.)

For any accepted behavior among the players, there is another behavior which
is such that, if all the players of the indifferent coalition of any player abide
by the first one, the second one is minimax for his antagonistic coalition and
maximin for himself in the associated game determined by the choosing of the in-
different coalition. This is'a possible interpretation of the last condition in
the above theorem, which is observed as the attack and defense property with
respect to the concept of e-simple stable points.

Agalin, we point out the uselessness of the previous regult in the special
case where the simple structure function is such that every indifferent coalition
is empty. Indeed, the attack and defense requirement turns into the thesisg of
the theorem. As was remarked before for gm-simple stable points, we will not
examine the treatment of such a question.

By applying this theorem to the mixed extension of a finite n-person

- game, one immediately obtains the following result:

THEOREM II.10: Tet I; ={Z """ngAl"°”An } be a finite n-person

game with simple structure-function e ,such that the expectation function
E;, of player i€N is linear in Xe(i)GXe(i) for fixed (Xi’xf(i))EXiXXf(i)
and for any x in the product space X there is another ye€X which

satisfies
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min Ei(yi’se(i)’xf(i)> = max min Ei(ui,se(i),xf(i )
S_,.\€EX . u,€X, s ,. €5 ,.
e(1) Te(i) 171 Te(i) (i)
and
maX B (S.,¥ ,.\,X,.,.\) = min max  E.(s.,u_,.\,X. .\)
s.ex, b L7Te(1)7e(d) U \€X .\ os.exn b oe(1)’7E(d)
1771 e(i) "e(i) i
for all i€N . Then, the mixed extension I'= { Z&"'“’Z%;El"'°’En }

has an e-simple stable point.

PROOF: Since the expectation function Ei of player i€N is a linear function
with respect to the varisgble Xe(i)exe(i) for fixed (Xi’xf(i))éxixxf(i) , for any
arbitrary real number X in the interval [0,1] , one has

Ei(xi’Axe(i)+<l_h)ie(i)’xf(i)) = AEi(Xi’Xe(i)’Xf(i))+(1_A)Ei(xi’ie(i)’xf(i))

for any pair of points Xe(i) and Xe(i) in Xe(i) . By considering the maximin

property, the following relation arises immediately:

Gi(AXe(i)+<l_A)ie(i)’Xf(i)) ESA.Gi(xe<i),xf<i))+(l—h) Gi(ie(i),xf(i))
where the continuous function Gi is defined by

Gi(xe(i)’xf(i)> - max Ei(si’xe(i)’xf(i)) - max Ei(ui’xe(i)’xf(i)) .
5. €2,
i1 u. €2,
i1
Then, the convexity of the function G, in the variable x ,..€X ,.
i e(i) “e(di)
for fixed (Xi’xf(i))ex'xxf(i) remalns completely determined.

1

On the other hand, by the multilinearity of the expectation function Ei s

for any arbitrary real number A in the unit interval [0,1] , one obtains:
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Ei()‘xf(l‘}‘);‘i’xe(i)’xf(i))=AE1(X1’Xe(i)’Xf(i))J’(l“MEi(;‘i’Xe(i)’Xf(i))

for any pair of mide strategies X, and ii in Xi from which, in accordance

with the.minimun property the following equality holds

- % = - X
Fi(hxi+(l A)Xi’xf(i)) _.AFi(xi,xf<i))+(l A)Fi(xi,xf(i))
where the continuous function Fi is given by

Fi(%%p054) = (‘_“)122 " RACITLNGITEINIEY - (m;EX (.)Ei(xi’ue(i)’xf(iﬁ .

which determines the concavity property of the function Fi with respect to the

variable xiEXi for fixed (Xe(i)’xf(i))GXe(i)XXf(i)

Thus, all the requirements of the previous theorem applied to the mixed

~

extension game I; are completely satisfied, and therefore the existence of an

€-simple stable point of I; is guaranteed. (Q.E.D.)

Having the Preceding results, it is interesting to observe that the concept
of e-simple stable points includes as a special case of the &-simple saddle point
for the games under consideration. Indeed, if a point Ge€X is a saddle point in

the corresponding 5f(i>—associated game of all the players i€N > l.e.

i 2%)( Ai(si,ae(i),of<i)) = Ai(cri,cre<i>,of(i)) = i m1x€12 Ai(ai,se<i),of(i))
19 e(i) Te(i)
then, by remembering the inequality
szg . még Ai(si’se(i)’of(i)) :;S mlzz Smig Ai(si,se(i),af(i))
1771 Te(i) e (1) e(i) Te(i) "1™

which is always true, one obtains the relations
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min A(0.,8 ;.vs0,/.\) = max min A (8,58 1.\s0.,.1)
i e(i)’7r(1) iY77 %e(1)7£(1)
Se(1)%%e(1) " 51€24 Se(1)Za(1)
and
Smiié Ai(si’ée(i)’éf(i)) " migz Smig Ai(si’se(i)’éf(i))
i 71 e(i) " e(i) i~

for each player ie€N . Thus, such a point g€ is an e-simple stable point.
Actually, one can describe another characterization for such special points
complementary to that expressed in theorem II.3, as g consequence of theorem II.O,

A simple formulation of this is expressed in the following result:

THEOREM TII.1l: ILet FS = { El,.,.,zn;Al,.“,An } Dbe an n-person game

with simple structure function & such that the strategy set Zé of’ player
1€N is non-empty, compact and convex set in a euclidean space, his payoff

function Ai continuous with respect to the variable o€5 ;5 convex with

respect to the variable Ge(i)ezg(i) for fixed (oi,af(i))€2€xz%<i) and
concave with respect to the variable GiEZE for fixed (Oe<i),0f<1962é(i)xz%(i),

Then, if for each joint strategy O€X there is another one 7€ such that for

all . i€N :
s Ai<si’Te(i)’0f(i)) = Ai(Ti’Te(i)’Gf(i)) = min A3 (Tyo 80 (1) (1))
1€%4

e (1) (1)

the game I; has an e-simple saddle point.

PROOF: By virtue of the concavity of the payoff function Ai of player i1€N
in the variable Oi€zé for fixed (Ue(i)’af(i))€Zé(i)xz%(i) , for any arbitrary

real number A in the unit interval [0,1]
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Ai(’\Gi+(l_>‘)5‘i’oe(i)’Uf(i)')z My (Gi’oe(i)’cf(i) J+H(1-M)ay (6i’0e(i)’0f(i))

for any pair of strategies Gi and 61 in Zé . From this inequality, by using

the property of the minimun, the validity of the relation

Fi(hcfi+(l—/\)(71,0'f(i)) zAFi<oi,orf(i>)+<1-A)Fi(5i:0f(i)>

is completely established, where as always the continuous function Fi indicates

the minimun of payoff function Ai over the product set Zé(i) . Thus, Fi is
concave with respect to GiGZE for fixed Gf(i)ez%(i)

On the other hand, because the payoff function Ai of player i1€eN , ig
convex with respect to variable Ge(i)ezé(i) for fixed (Gi,af(i))EZéxZ%(i> ,

then for each real number A€[0,1] , one has
Ai(oi’me(i)-‘-(l—,\)ée(i)’of(i)) = /\Ai(oi’oe(i)’cf(i))+(1—A)Ai<oi’0e(i)’of(i))

f 3 0 - .
Or any pair of points Ge(i) and Ge(i) in the product space Zé<i)

Therefore, by taking the maximun in this latter expressgion over the strategy

set Zﬁ ; the following inequality results immediately
-A)o b - G (0
Gi(cme(i)+(1 A)oe(i),of(i)) =A (i(oe(i),of<i>)+(1 A) i(oe(i),of<i)) s

where the continuous function Gi indicates as always the maximun over Zé
of payoff function Ai - Thus, the concavity of Gi with respect to variable
O ,.\€D ,. for fixed o,_,..€X_,. is assured.
e(i) Te(i) £(1)77r(1)
Pinally, the latter condition together with the observation that for any

Jjoint strategy 0€X and any player 1i€N the maximun Vi(cf(i)) and minimax value
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i .
v (Qf(i)> of the Of(i)-a53001ated game are always related by:
: i S .
<Z
Vi(cf(i)) <V (Gf(i>> » which guarantees the fulfillment of the last
requirement of theorem IT.9 when applied to the game Ié

Thus, that theorem assures the existence of an e-simple stable point GeX

for the game I , which is determined by

Fi(orl,of< )) = s[.naeDZ{).F (s ’Of(l))
and
G-- (O_. . ;6 . ) = min G‘.(S . )6‘ N )
1V e(1)’7r(4) 1Y Te(1)’ V(1)
e(1) (1)

for all player ieN .

Now consider for an arbitrary player i€N +the ﬁf(i)—associated game
Il(of(i)) = { Z%’Zé(i);Ai} where the strategy sets Zé and Zé(i) are non-empty,
compact and convex in euclidean Spaces and the payoff function Ai is continuous
. . . E . y .
in the variable (Gi’oe(i))ezﬁx (1)’ concave in GiEZﬁ for fixed Oe(i)GZé(i)
and convex in O _,..€X . for fixed o.€X. . Then, by theorem T.l the game

e(i) Te(i) 1771

I}(Gf(i)) has a value, that is,

max min A (5,58 ;.vs0.,.\) = min max  A.(s.,8 ,.\,0.,..) ,
s.€x, s, ,. -1 e(1)775(1) S \€D .\ sen b P Te(i)TE(1)
171 Te(i) (i) e(i) “e(i) "i~4
which implies the validity of the following assertion:
Ai(ci’oe(i)’af(i)) = F050005y) = G310 1y0p(1))

for all the players i€l . Therefore the point G€X is an e-simple saddle point

of the game I; . (Q.E.D.)
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The latter requirement can be seen as an attack and defense property in
a modified sense with respect to the concept of e-simple saddle point, which can
be interpreted as follows: for any established behavior there is another one which
is optimal for each player and his antagonistic coalition in the associated game
determined by the old choices of his corresponding indifferent coalition.

Again, as what has been pointed out after theorems IT1.7 and I1.9, we recall
the uselessness of this result when the simple structure function is determined by
having empty indifferent coalition sets for each player.

We observe that under the established conditions this result can be
independently obtained without any reference to theorem IT.9. The natural way is
determined by congsidering for each player i€N and each point O 1in the product
space 2 the set
cpi(0)= {T€Z:Ai(Ti,Te(i),0f(i))= max Ai(si’Te(i‘)’o-f(i))= min Ai(Ti’se(i)’Gf(i))}

s, €2, se(i)EZ)e(i)
that is, the set of all the saddle points in the Gf(i)-associated game,
is a non-empty set. Actually, to apply the fixed point technique it is necessary
to obtain the convexity of the intersection of such sets., But this property arises
as an immediate consequence of theorem TI.L applied to Gf(i)-associated game, for
each player i€N which guarantees the convexity of set @i(o) of saddle points.
Thus, we now can proceed in the usual manner, obtaining the desired result.

The above theorem contributes another characterization of e-simple saddle
points which in a simple analysis neither includes the result expressed in théorem
IT.3, nor is included in the old existence theorem. One should observe that they
are two vefy closed formulations, even though complementary, in the sense that the
latter conditions in the respective theorems are determined by very different

requirements,
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On the other hand, the result €xpressed in theorem II.3 can be applied
to a wider class of games than the corresponding kind of games considered by
theorem II.9, becauge it remains valid even in the special case where all the
indifferent coalitions are empty. This fact contributes more generality to the
first characterization,

Using the previous theorem, one can immediately formulate the corresponding

existence theorem for the mixed extension of finite n-person games, which is given

as follows:

_THEOREM IT.12: Tet Ié = { Zﬁ,.,.,Z%;Al,...,An} be an n-person game

with simple structure function € , such that the expectation function

Ei of player i€N is linear in Xe(i)GXe(i) for fixed (si,xf(i))GXifo(i)

and for any x 1in the product space X there is another y€X which satisfies

s Ei<si’ye(i)’xf(i)) = Ei(yi’ye(i)’xf(i))zs " Ei(yi’se(i)’xf(i))
i~ e(i) “e(i)
for all the Players ieny . Then, the mixed extension

I'={ Zi""’Z%;El""’En } has an &é-simple saddle point.

PROOF: From the linearity with respect to the variable xe(i)GXé(i> for fixed
(xi,xf<i))€Xifo(i) of' the expectation function E; of player i€N , this function
is convex too. On the other hand, by the multilinearity, Ei always is concave

in the variable xiGXi for fixed (Xe(i)’xf(i))€Xe(i)XXf(i) . Then, since the
latter requirement, of the Previous theorem apprlied to the mixed extension game I;,
is completely satisfied, the existence of an e-simple saddle point of I; is

guaranteed. (Q.E.D.)
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We do note that the above theorem coincides with theorem II.10. Indeed,
the latter conditions of both theorems indicate the validity of the minimax
theorem in all the associated two-person games, since the payoffs are bilinear
in the variable of the player and his antagonistic coalition.
For instance, a kind of finite n-person game, for which the previous result
is available, arises when the simple structure function e 1is determined by
e(i) = (g(i),N-g{iM(i}) for each player 1€N , where g(i) 1is a subset of
players with no more than one element . Thus, if jeg(i), then g(j) = g(g(i)) = (i) .

Furthermore, the payoff functions are related by

11 0075(1) T (g(20002)) 7 org(3)Cas) % (gnu0))) s

where s is any positive‘real number and di any real number, for all the
players i€N with g(i) # ¢
Indeed, for any given element x in the product space X , let yiEZé
be one maximun strategy of player i€N with g(i) = {3 and let yg(i)exg(i)
be a minimax strategy of player JEN both in the Xf(i)—associated two-person
game. FEvidently, such elements always exist. Then, the joint strategy yex
formed by having y; as the i-th coordinate for player i€N with g(i) % o}
and any strategy y; for player i€N with g(i) # ¢ , satisfies the modified
attack and defense properties onuthe point x€X .
Therefore, for the mixed extension of such a finite n-person game the
above theorem, which guarantees the existence of an e-simple saddle point is available.
We note that the existence of an e-simple saddle point for the games under
consideration, has been obtained in the remarks after the theorem II.L, by observing
that the attack and defense properties described in this theorem are completely

assured.
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Therefore, this constitutes an example where both formulations of the

attack and defense properties corresponding to the theorems TT.L and TI.12 are

satisfied.
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CHAPTER ITT ¥

III.1. e-3imple Points by Fixed Point Procedure.

The results expressed in the brevious chapter, leads us to ask about the
corresponding mathematical extensions of those general results for games where
the strategy sets have a more complicated topological structure.

In this chapter we treat three different general extensions which apply

!
when the strategy sets are compact and convex set. in a real topological linear
spaces. As immediate consequences of these new treatments we will obtain exig-
tence theorems for mixed extensions of the continuous games which will be intro-
duced after some considerations.

The first extension, which is examined in this section, is based on the
generalization of Kakutani's fixed point theorem due to Fan [ 2 ] and Glicksberg
[ 6 ]. Another generalization of those results considered in thé following
section employs a result concerning the intersection of sets having convex sec-
tions introduced in [ 9 ]; which is an improvement of a recent very useful
theorem given by Fan in [ 5 J. This treatment contains as special cases all the
results obtained by using the fixed point procedure.

Finally, in the last section we deal with another generalization which is
based on the idea of Nikaido-Isoda introduced in [ 16 ] which is to resolve the
existence of equilibrium points.v

The results obtained in the second section neithér include as special cases
nor are contained in the results of the third extension.

Before formulating the treatment for e-simple points, the following important

concepts and facts should be recalled.
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A linear topological space or topological vector space* is a vector space

Z over the field of real numbers R together with s topology such that the

addition. and multiplication. functions

+: ZxZ o X% ¢t Rx% 5 %

are continuous functions.

If in a linear topological space there exists a fundamental base of convex

neighborhoods for the point O, it is said to be locally convex. In such a sSpace
we can always choose g symnetric neighborhood U » that is U=-1U » belonging
to the fundamental base.

It is well known that every finite dimentional linear topological space is
locally convex. Furthermore, if a Hansdorff linear topological space has finite
dimension, then, its topology is euclidean.

A typical example of s linear topological space which is non-locally convex
is {1/2 determined by all the infinite sequences o = (Ul,---,Un,--.) of real

numbers Gi such that

by ’U_Il/g
i=1 *
We now extend the notion of upper-semicontinuity for multivalued function defined

on linear topologlcal spaces
Let X be a non~empty, compact Hausdorff space, then a multivalued function
o X S5 X

is said to be closed or upper-semicontinuous if for each pair of convergent

directed systems :
o(k) -0 and k) - T

in the space X , such that for every k in the directed set D : T(n)ep(o(n)) ,
then 7Te®(o)

x
We do not use the adjective real because we only deal with such spaces.
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This definition, in terms of the graph of the multivalued function Q

Gp = ((6,8)e 2x2: Teoplo) ,

is equivalent to determining the closeness of this set in the product space Z x T .
Using these concepts, one can now furmulate the following fixed point theorem
due to Fan [ 2 ] and Glicksberg [ 6], which is the fundamental tool for the sub-

sequent discussion in this section.

THEOREM ITI.l: Let I be a non-empty compact convex set in a locally

convex linear Hausdorff space. If the multivalued function

B Y
is such that, for all oeX , the set ¢(¢) is non-empty and convex, then

there exists a fixed point 0eX ; that is, oe ¢(0)

PROOF : Let U be a closed symmetric neighborhood of O , then by the upper-

semicontinuity of the multivalued function ¢ , it can be seen that the graph

G = {(o,T)e 2 x % = e(p(o) +U)Nz)
%

of the multivalued function
= n
Py (p+ U) N 3
is a closed set. Furthermore, the set

G = {(0,T) e Zx Z: T e (9(0) + U) N = N{o}) =G, M

n
Pyt 5

is also closed, since the graph

A = ((0,0) e = x X)

of the identity function I , is closed.
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Therefore, the projection of set Gcp ng on the space Z :
U

Py = foeZ: o e (9(o)nU) N 5}

is a closed get.

By virtue of the compactness of Z , there exist a finite number of points

o ...,Gn > such that

l)

((0,) + )

hcp

ZC

1

Let H be the convex hull of the finite set of points (o ..,Gn}, which

1%
is a compact set. Since the relative topology is euclidean, we can apply the
Kakutani fixed point theorem to the upper-semicontinuous multivalued function

H

¢

U:H—>H

defined by the non-empty convex set
Y (@) = @()+U) NnE.

Therefore, there exists a fixed point
oe®((c) +U)NE,
which implies that the set E‘U is non-empty.
From the compactness of the set X ; Tor any two arbitrary closed symmetric
neighborhoods of O , U and V one has

ronr

U v 2yny o

that is, non-void intersection, and so the intersection set

n .z
U U

is non-empty. Thus, any element o of this intersection is a fixed point

0 € 9(0) of the multivalued function o. (Q.E.D.).
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Now, in order to obtain a systematic exposition, we recall a very simple

result which is formulated below:

LEMMA TIII.2: Let

A: Zx 3% R and B: X5 R

be two continuous real functions, where £ 1is a compact Hausdorff Space,
such that for each 0eZ there is a Ter with A(7,0) = B(0) . Then, the

multivalued function
SUHED VD

defined by
®(0) = (7e5: A(r,0) = B(0))

is upper-semicontinucus.

PROOF: Consider two arbitrary convergent directed systems
o(k) - ¢ and (k) - 7
in the space I , such that for every k in the directed set D: 7(k)e P(a(k)) ,

and therefore:
A(t(k), o(k)) = B(o(x)) .

From the continuity of the functions A and B , the following composition

directed systems converge:

B(o(k)) » B(o)
and
A(t(k),0(x)) —A(T,0) .

This implies A(t,0) = B(g) .

Thus, the point T is an element of set @(o) , and the upper-semicontinuity
of multivalued function ¢ has been shown. (Q.E.D. ).
By using the results Just considered, we now formulate a first existence

theorem which concerns e-positive simple equilibrium points.
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We recall that the cartesian product of linear topological spaces is, with
addition and scalar multiplication defined coordinate-wise, and with product
topology, a linear topological space. Moreover, the product of two locally con-

vex linear topological spaces, is locally convex too.

THEOREM IIT.3: Let Pe = (X

with simple structure function & , such that the strategy set Zi of

n,An] be an n-person game

player ieN  is non-empty, compact and convex in a loecally convex linear
Hausdorff space, and his payoff function Ai continuous in the product
variable 0eX and concave with respect to the variable GieZi for fixed

N (115 (1)

Then, the game: Ié has an e-positive very simple equilibrium point.

PROCF: Consider the non-empty, convex and compact set S in the locally convex
linear Hausdorff product space. For an arbitrary point o0eX and a player iecl

let us consider the following non-empty set

max A, (s

9. (o) = (1ex: A, (T
+ + S.€X,
i1

1% (13 13- (1))

This is convex by virtue of the concavity of the payoff function ‘Ai in the
varisble o0,eZX,
i i
Now, the multivalued function ¢, determined by @i(U) for every oel ,
is seen from the previous lemma to be upper-semicontinuous. Since the function's
maximum 1s continuous with respect to the variable oey .

Define the multivalued function

= N 9 ¢ Z - I,
ieN

whose graph G-QD is the non-empty intersection over ieN of the closed graphs

G « @ 1is therefore upper-semicontinuous.

P35
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Now, since for any oeX the non-empty set 9(o) (C £ is convex, we can
apply the Fan-Glicksberg fixed point theorem to the multivalued function o .
Thus, the existence of a point ©e o(o) is guaranteed.

At such a point, we have
A, (

o0y 1)) = o Aoy )
i i
for each player ieN, +that is, the Joint strategy 7 ig an e-positive simple
equilibrium point of game Fé--(Q-E.D.).
Some special consequené;s of this result can be obtained which are related
to mixed extensions of games defined on topological spaces. Before formulating

2 .
them the following concepts and facts should be recalled : a normed space is g

linear topological space with respect to the strong topology, that is, the topo-

logy defined by the natural distance.. Furthermore, the vector space forming this
Banach space, can become a linear topological space by assigning some other

interesting topologies. In general, let X Dbe g vector space and let X Dbe the
space of all linear real functions on I . Then, a linear subspace T of 5 1is
sald to be total if f(g) = O  for all feT implies o = O . Every total linear
subspace T of the space i of linear functionals on the vector space X , de-
termines the T-topology of £ , which is obtained by having the fundamental base
of convex neighborhoods of point O , defined by

N(e,F) = (oeZ: [f(o)] < ¢ for all feF) s

i
where F is a finite subset of T and is a real number, ¢ >0 . The T~topology
of the vector space I with total linear subspace T of T is locally convex.

2 1is then a locally convex linear topological épace. Of all the possible special

cases, there are two very interesting ones. The first one arises when the total

2See reference [ 1 ].
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linear subspace T coincides with the dual space Z¥* , that is, the set of all
continuous linear real functions defined on the Banach space Z. The total
property of ZI¥ is guaranteed by the distinguished points property which in
turn is an immediate consequence of Hahn-Banach theorem. In this instance, the

T-topology of % is called the weak topology. Finally, the remaining important

case 1is obtained when the Banach space X coincides with the dual space A¥

of all continuous linear functionals on the linear topological space A , and the
total subspace T is the natural embedding of A in A¥* , that is, if it is
determined by

T = { f*se ¥ deA , f*S(G) = 0(d) for all oeZ }

In such an instance, the T-topology of £ is usually called the weak¥*-or w*-

topology of X . Therefore, if the space X 1s Hausdorff and compact, then the

dual space C*(Z)  of the Banach space C(Z) of all continuous real functions
on X is a locally convex, real-linear Hausdorff space, with respect to the
w¥-topology.

Given a compact Hausdorff space I , let ¥ be the space of all the regular
countable additive measures on X . Then, by the Riesz representation theorem
the space Y can be represented by C*(X) such that the corresponding elements
yeY¥Y and ¥ e C*(Z) lsatisfy:

I

E(f*) = f£¥(f) = / (o) dy
bN
for feC (Z) . Furthermore, the set X(C Y of regular countable additive
measures on I with total measure one is compact and convex in C¥*(Z) with

respect to the w¥*-topology.
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Having these facts, we can now extend the concept of mixed extension to s
more general class of games.
Iet I = {Z

Z ;A

1R .,An] be a n-person game where for player ieN

100

the pure strategy set Zi is a compact Hausdorff space, and the payoff function
Ai is continuous on I . Then, the mixed strategy set X, € Xi = Zi is de-

fined by the set of regular countable additive measures on Zi with total

~ ~

measure one, and the mixed extention game I' = {Zl,...,in; El,...,En] by

having for ieN as payoff function the continous expectation

Ei(xl,...,xn) = \/ﬁ A_(Gl,...,cn) d(glx...x xn) s

which is the restriction on X = X Zi of a multilinear function. This kind of
ielN
h-person game plays an analogous rule in this chapter to that played by the
mixed extensions of finite games in the previous chapter.
Using the preceding theorem, one immediately obtains the following result

due to Glicksberg [ 6 ], which is related to the existence of e-positive simple

equilibrium points for mixed extensions of the games just considered.

THEOREM IITI.k: Let Pe = {2

SRR Al,...,An} be an n-person game
with simple structure function & , such that the strategy set Zi of
player ieN is a compact Hausdorff space, and the payoff function .Ai

is continous in el . Then, the mixed extension game

r = [E .o L,E ; B

e 1200 By LB ) with simple structure function e , has an

e-positive simple equilibrium point.

PROOF': Consider for Player 1ieN , the set Ei which is compact and convex in
the locally convex linear Hausdorff space C*(Zi) , and the expectation function

Ei which is continous in the variable xeX . Ei is concave in the variable
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€X. for fixed - ' . P R
Xi 5 or fixe xN_{i]e XN-{i} 'x - Xj » Since it is the restriction
Jel- {1}
on X of a multivalued function, all the requirements of theorem III, 3

.~ are satistied. hus, T

applied to the mixed extension Ié ]has an e-positive simple equilibrium point.

(Q.E.D.)
This result contains as a special case the following minimax theorem due

toFan [ 2 ] and Glicksberg [ 6 ], which is obtained by imposing the zero-sum

-condition on the two-person game.

THEOREM. IIT.5: Tet . I = {21,22; Al pe a. zero-sum two-person game, such
that the strategy sets Zl and ZE are compact Hausdorff spaces, and the
payoff function A is continuous on ,Zl X 22 - Then, the following

equality is satisfied:

b

max min Adx Xx.) = min max_ \/F Ad(x, Xx,) ,

xlefl Xgefé 5 e 12 xgei2 Xlezl 5 e 1 2
1.2 12

that is, the mixed extension I = {21,52; E} has a saddle point.

We, now examine for the games under consideration, the analogous treatment

for the dual concept of e-negative simple equilibrium point. A general result

is described below:

THEOREM IIT.6: Let r, = (Zl,---,Zn; Al""’An] be an n-person game

with simple structure function e , such that the strategy set Zi of
player ieN  is non-empty, compact and convex in a locally convex linear
Hausdorff space, and his payoff function .Ai is continous in the product

varlable oeX , and convex with respect to the variable Ge(i)eze(i)
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for fixed (ci, Gf(i)) € Ei x Zf(i) - Then, if for each joint strategy

geZ  there is another one TeX such that for all ieN

19T (1) % (1)) = min _Ai(gi’se(i)’cf(i)>’

the game Ié has an e-negative simple equilibrium point.

PROOF: Consider the non~empty, convex and compact set X in the locally convex
linear Hausdorff product space. For any point ¢ in the product space £ and

any player ieN , let us consider the following non-empty set

¢, (0) = (rexm: A, (o (o

12%e (1) % (1)) = min 1756 (1) % (1)) -

"e(1)%% (1)
this set is convex, since the payoff function Ai of player ieN 1is convex
With respect to the product variable o NE DL
e(i)” “e(i)
From here, we can define the multivalued function q)i which is given by

the set ¢i(0) for every oeZ . By lemma IT.2 this multivalued function Py

is upper-semicontinuous, because the function's minimum is continuous with re-

spect to the variable ger . Therefore the multivalued function
P = N ¢o: % -2,
. i
ieN

whose graph Gcp is the non-empty intersection over ieN of the closed graphs
Gcp ;0 is upper-semicontinuous also. Furthermore, for any Joint. strategy
OcX the non-empty set 9(0) C £ is convex.
Now, by a direct application of the Fan-Glicksberg fixed point theorem to

¢ , the existence of a fixed point oe o (0) is assured.
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For this fixed point . oex » the following equality holds

G,.,0 5] = i (o )
G e(1) % (1) nin Ay ( 17%(1)7% (1)
S ,.\€X .
e(i) "e(i)
for all ieN . Thus, the point 0eX is an e-negative simple equilibrium point of

game T_ . (Q.E.D.)

‘fiis existence theorem involves .a question of linearity on the payoff
functions. This draws a corrgspondence between the kind of games Just considered,
and those illustrated after theorem I.10 = for mixed extension of finite games. We.

will now extend the result formulated in lemma I.11. These results will be a use-

full tool deciding the question of linearity of the expectation functions.

LEMMA IITI.T: Let Czl,..,,zh - be non-empty compact Hausdorff space and let

A be a continuous real function defined on the product space I = le...xzn .

Then, the expectation function E is the restriction of a linear function,

~

with respect to the product variable xeX = er...xzn of the respective set

ii of mixed strategy over Zi > with ieN = (1,..., n} if and only if, the

function A is expressible as

ces = g, ) +... o]
A(O’lJ ’Gl’l) al( l) + + an( l’}.) >
where ay is a function depending only on the variable GieZi » with ieN.
PROOF': The sufficiency can be seen. immediately.

Now, let us consider the converse which we: will prove by induction on the
number n .

For n=1 the assertion is trivial. ILet n=2 » Tthen the expectation
function . E is the restriction of a linear function. Thus, for any pair of ele-

ments x = (Xl’XE) and y = (yl,yg) belonging to the product set Z) X ZE’
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one has

EMN x + (I-A)y) = NE(x) + (-N) E(y) .
On the other hand, because the expectation function is the restriction of a
multilinear function, we have:

EN x + (1-N\)y) = XEE(X) + (1-0)° E(y) + (1-x)x[E(xl,y2) + E(xg,yl)].

. From these two equalities, we get:

E(x) + E(y) = E(x,y,) + E(y;5%,)

for all x and y of El X 22 .

El X 5 this equality guarantees the form

Now, by choosing y as any fixed point in

E(x = +
(x),x,) e (x) +e (x))
for the expectation function, where the functions e and e, are restrictions
on il X 52 of linears functions:
= Y d i
e; (%) J[ai(ci) X, (i: 1,2)
Z.
i

By replacing in the last equality, all the functions, we obtaln

JF [A(Gl,dg) - al(dl) - 32(02) ] d(xl X x2) = 0
)
for all xleil and x2e§2 - This implies that the function A has the following
form

This proves the validity of the assertion for n=2.

Now let n be arbitrary. Then, to the expectation function E(Xl’"';%kl’qﬂ)

~

with fixed o e€X , which is obtained by taking the mixed strategy X el
n n n,on n

given by
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M

n;GH(f) = f(cn)

for all feC(Zn) » one can apply the hypothesis of induction. Thus, the function

A has the shape: A(cl,...,o ) = bl(gl,cg) +eout+ b

g.,0
4 )

n< 1’ n

Replacing this function in the expression of expectation E , we get

E(xl,...,xn),= fl(xl,xn) +oo ot fn(xn—l’xn)

where the bilinear function fi indicates the corresponding expectation of bi
with 1eN . Now one can easily see that the assertion of the case for n=2

Just examined, applied to function fi with 1eN gives

g.,0. = g @) .
Pi(0550,) = a;(o) + c; (o)
D=1
Then, by calling o (0 ) = I ¢, (0.) , we have that the function A is
non i=1 i’ 'n ,
expressible as
A(G:"“;U ) = Za,(0,) s
1 n 1eN it 4
thus the statement for an arbitrary n is demonstrated . (Q.E.D. )

Having this result, we now can formulate an existence theorem for mixed

extension games of the games under consideration.

THEOREM III.8: ILet r, = (z

with simple structure function & , such that the strategy set Zi of

o5k 3 A

10 L l,...,An} be an n-person game

Player 1ieN is a compact Hausdorff space, and the payoff function Ai is

the sum of the continuous function &, ag with jee(l) in oeZ :

)+ = aj(o

Ai(ci’ge(i)’cf(i)) =23 (0% jee(1) 1 12952% (1))

Then, 1if for each xeX there is a Joint pure strategy oeX such that

By (5000 (1% g)) = B %)
Ye (1) (1)
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l,...,Zn; El,..

simple structure function e , has an e-negative simple equilibrium point.

for all ieN » the mixed extension Ié = {i

.,En} with

PROOF': Consider for Player ieN +the compact convex set Zi in the locally
convex Hausdorff linear topological space C*(Zi) - The expectation function

Ei is continuous in the variable xeX . Furthermore, by the form of the payoff

function 'Ai’ the lemma expresses that Ei is convex with respect to the variable

X 4.y €X ., = X 5,» for fixed X, . X, xX_,.
e(i) e(i) jee(i) 9 ( 1’Xf(1)) €4y (i)

On the other hand, the last condition of the previous theorem applies to the
mixed extension game Eé - Thus, there exists an e-negative simple equ%librium
point of fé . @Q.E.D.)

By using the same fixed Point procedure, one can characterize the e-simple .

saddle points for the games under consideration. A first formulation of this is

given in the following theorem .

l,...,Zn; Al,..

with simple structure function € , such that the strategy set Zi of

- THEOREM IIT.9: Let Pe = (2

.,An} be an n-person game

Player ieN isg non-empty, compact and convex in a locally convex linear
Hausdorft space, and his payoff function Ai is continuous in the product

. . . 5 5
variable oeX , concave in cieZi for fixed (Ge(i)’cf(i))e e(i) ¥ £ (1)

in . 2 i 2 . If T
and convex in ce(i)e e (i) for fixed (Gi’cf(i))e Zi X £(1) or

each joint strategy el there is another 7TeX such that

Ai(Ti’Ge(i)’cf(i)) B Ai(si’ce(i)’cf(i))
1824




_]_59..

and

Ai<gi’Te(i)’cf(i)) = minezAi(ci’Se(i)’cf(i))
Se (i)™ %e (1)

for all ieN , then the game Fe has an e-simple saddle point.

PROOF: Consider the non-empty, convex and compact set X% in the locally convex
Product linear Hausdorff space. For any point oeX and any player ieN , we de-

fine the following non-empty sets

m
cPl(G) = {rex: Ai(Ti’Ge(i)’gf(i)>: szzAi(siJGe(i)’Gf(i))]
174
@m’i(c) = {tex: Ai(ci’Te(i)’Gf(i)) = ] Ti?ez ( )Ai(gi’se(i)’cf(i))}
el e (i

Because the payoff function ‘Ai is concave with respect to GieZi and 1s convex

in the variable Ge(i)eze(i)’ then both sets are convex, and therefore, their

intersection m
@i(c) - ‘@i(o) ﬂ-@m,i(c) ’

which is also non-empty is convex.

m

These three sets determine the multivalued functions @m 5 @i and @i

2=

which are related by:

m
By lemma III.2 +the multivalued functions Qi and ¢ . are both upper-

2
semicontinuous, since the payoff function together with their minimum and maximin
functions are continuous in the broduct variable oeX . Hence, the function @i

is upper-continuous, too, since its graph is the non-empty intersection of the
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graphs Gg and @ - Finally by the same reason the multivalued function
i CPm,i -
o= N @ = N (0. N .): = oz
iel ' ieN oMl

is upper-semicontinuous, with the non-empty convex set g (o) c Z.
By applying the Fan-Glicksberg fixed point theorem to @ , the existence of
a fixed point 0 e ¢ (o) is assured.

At this fixed point GeZ , we have:

A (G ,0 (i) f(l)) = Sm:g A (s ,0 e(i)’ f( ))
1574
= min AT NI,

" (1)%% (1)

for all {eNy . Thus, this point is an e-simple saddle point of game Pe . (Q.E.D.)

As a special consequence of this result we obtain the following existence

theorem for_g-simple saddle points for mixed extension games.

l,...,an Al,..

simple structure function & , such that the strategy set Zi of player ieN

THEOREM IIT.10: Let Ié = (=

.,An} be an n-person game with

is a compact Hausdorff space, and the payoff function Ai is the sum of con-
tinuous functions ai)ag ; in 0eZ with jee(i) :
’ J
Aj(o50 0. y) =a (0,0, ) + T  adg
i1’ e (1) F (1) iY77 (L) jee (1)

g,,0

1793°% (1)

If for each =xeX +there is a Joint pure strategy oeX such that

Ei(ci,xe(i),xf(i)) = u?:§.Ei(ui’xe(i)’xf(i))
and S
Ei(Xi’Ge(i)’Xf(i)) = min E, (xl,u (1) % (1))

Ye (1)%e (1)

for all iell , then the mixed extension Pé has an e-simple saddle point.
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PROOF: Again, consider for player ieN the compact convex set ‘Ei in the
locally convex linear Hausdorff space C*(Zi), The expectation function Ei 1is
continuous in the product variable xeX . On the other hand, by lemma II.7, the
expectation function Ei is concave in xieXi and convex with respect to
Xe(i)exe(i) . Finally, the last condition assures the fulfillment of the last
requiFemeni of previous theorem applied to the mixed extension game fé‘. There-
fore the existence of anlg-simple saddle point of fe is guaranteed. _(Q,E.D.)
In a fashion sim%lar to the preceding chapter, Erom the theorems III.3 and
IIT.6, which respectively characterize the concepts of e-positive and e-negative

X e . . . mo .
simple equilibrium points, one can derive existence theorems for em, e ~simple

stable points. A first formulation is given as follows:

1,...,An} be an n-person game

with simple structure function € , such that the strategy set Zi of

THEOREM III.1l1: et I = (Z,,...,2 ; A
_e- l) Jn v

player ieN is non-empty, compact and convex in a iocally,convex linear

Hausdorff space, and his payoff function Ai is continuous in the product

variable oeX , and Fi is concave with respect to GieZi for fixed

z . a4 0t
Gf(i) € £ (1) Then, the game Fe “has an Em51mple stable point

PROOF: Consider the n-person game It = [Zl,...,zn;,Fl,

completely satisfies all the requirements of theorem III.3, since the payoff

...,Fn} s Which

function ‘Fi of player ieN is continuous with respect to oceX . Therefore,
-we have the existence of a very simple equilibrium point oeX of game I
Such a point is an_gm-simple stable point of game Pe . (Q.E.D.)

A special result related to mixed extensions, directly follows from this

theoren.
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TEEOREM IIT.12: Let I, = (I

with simple structure function e , such that the strategy set Zi of

IERRREL Al""’An] be an n-person game

player ieN 1s a compact Hausdorff space, and the payoff function 'Ai is
continuous in the variable oel . Then, the mixed extension game

I = co T . _gi it
‘e {Zl’ ’Zn’ El’ ,En} has an e - simple stable point

PROOF: For player ieN , since the payoff function .Ei is a restriction of a

multivalued function, the function

Fy(x5%5)) = min By (5o (519 % (1))
U X
e(i) e(d)
is concave with respect to x,e%, for fixed x_,..e X_ . . . Thus, all the re-
171 (i) Tf(1)

~

quirements of the previous theorem applied to the mixed extension Pé are

satisfied. And so the game fe has an_gm-simple stable point. (Q.E.D.)

The characterization of Em—simple stable points is formulated in the

following theorem.

177"y

with simple structure function -e , such that the strategy set Zi of

THEOREM III.13: Let r, = (Z.,...,2 ; Al""’Aﬁ} be an n-person game

player 1eN is non-empty, compact and convex in a locally convex linear
Hausdorff space, and his payoff function Ai is continuous in the product
variable geX , and Gi is convex  with  respect o

5 . ) . s +
Ge(i)e e (i) for fixed Gf(i)ezf(i) Then, if for each joint strategy
oeZ there is another TeX such that

G (o) % 1)) = . minez Gi (5 (1)7% (1)
e(i) e(d)

for all ieN , +the game Té has an_gm-simple stable point.
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PROCF : Consider the n-person game I = (& L3 G,,--+,G )}, which has all

1’777 Yy n

its payoff functions continuous. Therefore, it satisfies all the requirement
asked by theorem IIT.6. Hence, we have the existence of an e-negative equilibrium

voint of game Ig . This point is an.gm-simple stable point of game Pe . (Q.E.D. )

An immediate consequence of this theorem is obtained For mixed extension

gamess

THEOREM IIT.1k4: ILet L = {Zl,...,Zn; Al’°°”An} be an n-person game with

simple structure function e , such that the strategy set Zi of player ieN

is a compact Hausdorff space, and the payoff fumction Ai is the sum of the

continuous functions a; > ai in o0eX , with j e e(i) :

A (o ,0 ,0.,.\) = a(o,0. . )+ % aq(c,,o,,o )
i1’ e (L) (1) i1 (L) See (1) i3 (1)
If for each xeX there is a joint strategy yeX- such that
) = i B, >
. rz:l;X Ei (UiJ ye (i)’xf (l)) . THll’J,GX iazx 1(ui’ue (i)’xf(i))
14 e (i) e(i) i i

for all ieN , then the mixed extension game Pe has anxgm-simple stable point.

PROCF : For player iell , because the expectation function Ei is the restriction
of a multivalued function, and by the form of payoff function Ai , Tthe lemma III.7

assures that the function

G O (1) Xeny) = mex By (X (1% (1)
u., eX,
i1
is convex with respect to Xe(i)e Xe(i) for fixed Xf(i)e Xf(i) . Then, the pre-

ceding theorem guarantees the existence of an Entsimple stable point of mixed

extension fe . (Q.E.D.)
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The e-simple stable points are considered in the following existence theorem.

THEOREM III.15: Let ?E = (3,55 A

with simple structure function € , such that the strategy set Zi of

.,An} be an n-person game

player ieN 1is non-empty, compact and convex in a locally convex linear
Hausdorff space, his payoff function Ai is continuous in the product
.variable ogeX , and Fi(ci’gf(i)) is concave with respect to oieZi for
fixed Uf(i)ezf(i) and Gi(ce(i)’of(i)) is convex with respect to

2 i . .
ce(i)e e (i) for fixed cf(i)ezf(i) If for each Jjoint strategy oeX

there is another one 7e€Z such that

Fi(73:9% iy = STZ; Fi(e59005y)
and i
6 ey %)) = Gle Ty
e(i) "e(i)

for all ieN , then the game Pe has an e-simple stable point.

PROOF: Again, consider the non~empty, convex and compact set ¥ in the locally

. convex linear product Hausdorff space. For any point o0ecX and any prlayer ieN ,

let us define the sets

m
(Pi(g) = (TeX: Fi (Ti’cf(i)) = St-ﬂz';-Fi(Si’o‘f(i))}
and s
':Pm’i(c) = {TeZ: Gi (Te(i)JGf(i)) = . minez Gi(si’cf(l)n
e (i)

which, by the continuity of payoff functions Ai are non~empty. On the other

hand, because the function Fi is concave in the variable GieZi for fixed
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m
g ) s . . .
f(i)ezf(i) the set ¢ﬁ( ) 1is convex, and because the function Gi is convex in

Ge(i)eze(i) for fixed Gf(i)ezf(i) , the set qﬂ,i is also convex. Moreover, the

intersection ¢E(G) = @?(0) ne i(G) is non-empty and convex too.
2
These sets define the multivalued functions q>? 5 1% 5 and ¢i . By lemma
2

IT.2 the first of these are upper-semicontinuous. Thus, the graph q>i which is

m
the non-empty intersection of graphs o and P is cleosed, that is, the

m,1
multivalued function $i is also wupper-semicontinuous. By the same reason, the

multivalued function  defined by
o= N 9 = "Ny )2 5=
ieN ieNn * ™t

with the convex set ¢ (o) dis also upper-semicontinuous.

Then, the Fan-Glicksberg fixed point theorem applied to  , gives the exis-
tance of a fixed point o e ¢ (o)

On such a point 0eX , we have:

Fi(c"cf(i)) = max Fi(si’cf(i))

sieZi
and

G.(@_,.,,0 = min G,(s ;. \s0.,.
( ): . ) . 5 l( e(l)’ f(l))
e(i) e (i)
for all i1eN , that is, it is an e-simple stable point of game Pe . (Q.E.D.)

From this result, we immediately derive the next existence theorem for

mixed extension games.
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THEOREM IIT.16: Let T = {zl,...,zn; Ay

with simple structure function e , such that the strategy set Zi of

.,An} be an n-person game

player ieN is a compact Hausdorff space, and the payoff function .Ai is

the sum of the continuous functions ai, ai in oceX , with Je e(i):

Ai(ai’ce(i)’gf(i)) = ai(ci’gf(i)) * jei(i) 83 (0,050 (;4)

If for each xe€X there is a Jjoint strategy yeX such that
min E.(y,u /. vsX./. = max min E,(u,,0 /. vs%X./.
min B G yr) = m mie B0t
(1) 7e(d) i (1)
and
ey Ei(ui’ye(i)’xf(i)) " mlnex ié?x Ei(ui’ue(i)’xf(i))
ii e(i)e(d) 171

~

for all ieN , then the mixed extension game Pe has an e-simple stable

point.

PROOF : Because the expectation function Ei of player ieN i1s the restriction
of a multivalued function, and by the form of payoff function A, lemma ITI.T

assures that the function

Fi(xi’xf(i)) = umin - B (x5 Uy Fr(1) )
‘ e(i) e(i)

. . . ) "
is convex with respect to Xe(i)exe(i) for fixed Xf(i)e Xf(i) Thus, all he

requirements of preceding theorem for mixed extension fe are satisfied. And

so the existence of a e-simple stable point of fe is guaranteed. (Q.E.D.)
Indeed, such a point is an E-simple saddle point, since in all the associated
two-person games the minimax holds true, by virtue of the bilinearity of payoff

functions.
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Another very simple application of theorem IIT.15 gives a different

characterization from that of theorem II.9 for e-simple saddle points.

TEEOREM ITT.1T7: Let FE = {Zl 100

with simple structure function e , such that the strategy set Z  of
- i

Player 1eN is non-empty, compact and convex in a locally convex linear

,...,Zﬁ; A .,An} be an n-person game

Hausdorff space, and his payoff function ‘Ai is continuous in the product

i i .€2., for fi ! 2L X 2
variable oeX , concave in o,e%, for fixed (Ge(i)’cf(ife . (1) (1)
i . i . ) Z.X . T
and convex in Ge<l)eze(i) for fixed <01’0f(1))€.1 Zf(l) If for
each joint strategy oef there is another one TeX such that
. LT = LT, v 0. = i LT, e v9Ga g,
mer by (8% (1% (1)) T AT Te (i) % (1)) mn o A (s (5% )

S.€2,
1771

for all iell , then the game Pe has an e-simple saddle point.
PROOF: By virtue of the concavity of payoff function Ai of player ieN in
i 2 T fixed i
the variable o,€X, Tor fixe (Ge(i)’gf(i))e Ze(i) X Zf(i) , the function
g,,0 is co in o,ex, T fixed .o by . On th ther hand,
Fi( i f(i)) concave in €%, for fixe f(i)e £ (1) n the other hand,
i i i 3 Z for fixed o] 2 %
by the convexity in the variable Oe(i)e e (1) r fixe ( i’cf(i))e i X £ (1) 7
the function Gi(ge(i)’df(i)) is also convex in Ue(i)eze(i) for fixed
2 .
2 (1) (1)
The last condition assures that for any joint strategy oeX the following
inequality must be an equality

max F.(s.,cf(i)) < min G. (s (i ,0

1 1
5. 5
51€%1 Se(1)%% (1)
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and. therefore, the latter requirement of theorem ITI.15 is satisfied.

This theorem then guarantees the existence of a e-simple stable point oex

of the game Pe , at which one has

F.(0,,0.,.\) = mex F, (s,,0.,..)
iV (L) 5, €, i1 F (1)
and +
G (O (1) % (z)) = min Gy (8¢ (3)7% (1))
S ,.\EXZ .
e(i) e (i)
for all ieN . Furthermore, by the above relation, at such a point
g.,0 g = G.,0 = 0 o
EACITLATETLINY P08y = 60 (5% 1))

for all ieN , which shows that the point 0eX is an e-simple saddle point. (Q.E.D.)
This characterization is an extension of theorem II. 11, which can be obtained
directly by using the fixed point technique. We point opt in a similar way that this
Procedure envolves the maximin result given in theorem III.S5.
Finally, the following formulation results as an immediate consequence of
this theorem which is theorem ITI.16 itself, since the minimex property is satis-

fied by the bilinearity of payoff functions.

THEOREMIIII.lS: Let ?E = (Z, 505 A,

with simple structure function € , such that the strategy set Zi of player

.,An} be an n-person game

ieN 1is a compact Hausdorff space, and the payoff function Ai is the sum

of the continuous functions a;s ai in o0eX , with Je e(i):

_ J
Ai(ci’ce(i)’cf(i)) = 230055005y + jeze(i)ai<ci’cj’cf(i))

If for each =xeX there is a joint strategy vyeX such that
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fax Ei(ui’ye(i)’xf(i)) - Ei(yi’ye(i)’xf(i)) = min Ei(yi’ue(i)’xf(i))
u w . EX 7.
ieXi e(i) Te(i)

for all ieN , then the mixed extension game Fe has an e-simple saddle point.

Fingdlly, we note that the remaining results of this third chapter are useless
when the simple structure function has f(i) = ¢ for every ieN , since this last
condition is the thesis of each theorem. This situation is similar to what has

been seen in the previous chapter.
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IIT.2. e-Simple Points by Intersection of Sets with Convex Cylinders Procedure.

Now, we are concerned with extending the general results obtained in the
Preceding section which have been derived from the fixed point procedure. The
nev generalization presented in this section is based on the procedure due to Fan
in | 5 J, where equilibrium points were considered. This procedure uses a very
useful result by the same author [ 4], which concerns the intersection of sets
with convex cylinders. For our purposes, we need a stronger result which has been
introduced in [ 9], for attacking the generalizations of this section. However,
the procedure remains that due to Fan.

The more fundamental result is expressed in the following theorem due to

Fan [ 3 ], which is observed as a generalized form of the Knaster-Kuratowski-

Mazurkiewicz's theorem. The assertion of this result is expressed as follows:

If the n + 1 closed subsets Zl,...,Zn of the n-dimentional simplex Z , a

euclidean space, with the vertices o -,Un satisfy the condition that for each

0
subset {il,.-.,ir] with 1 <r <n+ 1 of the set (0,...,n), the face of &
determined by the vertices Ty seves0y is contained in the set Z'.i u.. .UZi

' 1 r 1 r

Then, the intersection

DB
[

i=1

is non-empty.

THEOREM IIT.19: Let - & be an arbitrary set in a linear space A . For

each point oeZ, let S(o)C A, such that the convex hull of any finite
- n

numbers of members 0y,-++,0, of I is contained in U S(ci) . If for
=1
some oeX the set S(o) is compact, then the intersection
GQA §(a)

is non-empty.
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PROOF : First of all, we will show that for any finite number m of members

m
I RRETL A of set X , the intersection in S(oi) is non-empty. Let 010
be m arbitrary points of Z and M = ({1,...,m} . Let T be an (m-1)-

simplex in an m-dimensional euclidean space, whose corresponding vertices are

tl,...,tm. Define the continuous function
P T > A
given by m
(z 5
P a.t.) = Za,o
i=1 44 ii
i=1

for any convex combination of the vertices of T , that is, for ieM , o, >0
m

and _Z @, = 1 . This function determines the m closed subsets K. = @ -ls(oq(:T
i=1"1 1 1=
with 1eM . Therefore, since for any finite subset N(C M and any convex com-

bination we have
ZB.U.C U S(O.);
ieM Tt = ieMm 1t

we have in general

-1
Zptie ¢ (Z o )C U K (CT.
i

ieM eM ieM o=

Thus, the simplex spanned by the vertices ti with 1eM is contained in the

union of set Ki with 1eM . Therefore the requirements of the Knaster-Kuratowski-
Mazukiewicz's theorem applied to the simplex T , whose induced topology is euclidean,
together with the sets Ki are satisfied. 8o, the intersection iQM Ki is non-
empty. This fact implies also that the intersection

n s.(o.)
iem * 1

is non-empty. Now, by using the existence of a compact set F(o) for at least
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one 0geA , the assertion that the intersection

N s(s)
gel

is non~empty, results immediately. (Q.E.D.)
Using this result one can now formilate the following theorem introduced

in [ 9], which is a straightforward extension of the result given in theorem IIT,

21 considered in [ 4 ] by Fan.

THEOREM ITI.20:  Let Zl,.-., ZD be compact convex gets each in a linear

Hausdorff space and for each iell = {1,...,n} let h(i) Dbe a subset of N.

Given n subsets 8 .,5_ of the product space L = X Zi , such that

1’ n ieN
for each 1eN and each 0eX +the cylinder

s, (0) = (Tem: (o) nn(a)) © 8

is convex and the cylinder

S?(G) = (TeX: € Si]

T
(O (1) T (1)
is open. If for each o0eX there is another TeX such that

(T ) € Si

n(i)? “N-n(4)

for all ieN , then the intersection

3
n .
ieN ‘

is non-empty.
PROOF : First of all, let us consider some simple facts. Suppose that the set

h(i) corresponding to ieN is empty, then for an arbitrary point 0eX , the

cylinders have the following forms:

2 if 0es,

S.(0) = (veX: cesS.} = { *
* * ¢ if  ofs;
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and

i
S (a) = ({tex: TeSi} = Si

Thus, under the latter condition one has for all ceXl

si(c) = si(o) = 8, = Z.

On the other hand, if h(i) is the same set N , then for an arbitrary point

oeX , the cylinders are expressed by

93]
—
Q
~—
1l

{teX: 7T ¢ Si] = Si

and . 2 if GeSi
{TeX: GeSi} = {

[€)]
[
—
Q
~—
Il

if G¢Si

Consider the set PC N of all ieNl with h(i) empty, and the set QC N
of all 1eN for which the set h(i) coincides with N and finally R = N- (PUQ)
the set of 1eN with both sets h(i) and N-h(i) non-empty.

Let us define for each point JeX the set A(0) in the product space I ,

given by the complement of the intersection of cylinders Sl(c):

A(G) = ¢ [ n s(0)]
iell

which by the properties of the cylinders, is compact.

Now, by the last condition, for oeX there is a point TeX such that

a. i : O = ’ s . .
(Th(i)’ N—h(i)) €8, for ieR ; €S, L  for 1eP and TeS, for ieq
Thus, Sl(G) = 2 for 1eQ and therefore obviously TeSl(O) for ieN . This
implies that the intersection
n A(o)

‘ 0eX

is empty.

Then, a direct application of the contrapositive result of Lemma III.19

to the sets A(0) with 0ef determines the existence of a point
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& convex combination of m points o(l),...,0(m) , which does not belong to the

m
U A(a(3))
=1

union set

Hence, for each Jje {1,...,m} and each iel , one has Te Si(c(j)) , that
is, (Gh(i)(j) 5 TN-h(i)) € si' for ieR ; Te Si(o(j)) = % for ieP and
T e SiKG(J)) = % for ieQ . Then, for ieQ o(Jj)e §; for all je(1,...,m}
By virtue of these relations, of the following assertion holds true: for
each. ieN and each je (1,...,m}: o(j) € Si(T) ; and consequently from the

convexity of cylinders Si(d):

n
= i T
T -E:aj a(j) e Si( )
J=1
for all ieN . This implies that
T € . S, ,
ie i

which proves the theorem. (Q.E.D.)
A special casé of the above theorem which constitutes a very useful result
has been established by Fan in [ L ]. This arises when the set h(i) = (i}

for all 1eN . The precise formulation of this is given in the following theorem.

THEOREM III.21: Let Zl,...,Zn be compact convex sets each in a linear

Hausdorff space. Given n subsets S «.,8 of 2 , such that for each

17 n

point JeX and each ieN = {1,...,n} the cylinder

v si(o) {TeX: (Ti’GN—{i])esi}

is non-empty and convex, and the cylinder

Si(c) = {tex: (o ) € Si )

i TN- (1)

is open. Then, the intersection

n
ieN Si

is non-empty.
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. PROOF: Since for each point ¢erX and ieN , in the cylinder Si(G) we can
choose an 7(i)e Si(G) for each 1ieN . Thus, for any point oeX there is
another 7Te€X such that (Ti’ON-{i})e Si for all ieN . Thus, for any point
0eX there is another 7Tef such that (Ti,qN_{i})e Si for all ieN , namely,
T = (Tl(l),...,rn(n)) - Consequently, all the requirements of the preceding
theorem applied to the sets 8q5---,8, with h(i) = {1} for all ieN , are
satisfied.and we have the desired result. (Q.E.D.)

Once, having the results Jjust considered in this section, we are able to
extend the most important theorems related +o games given in the previous
section. DBefore going into details of these new formulations, the following
important concepts should be recalled: a real function .A defined on a

Hausdorff space X 1is said to be lowér semicontinuous on X ; if for each real

number A , the set
{oeZ: A(0) >N}

is open. Analogously, A is called uppersemicontinuous if the set

{oeZ: A(0) < N}

is open. A real function on X is continuous if and only if it is both lower
and upper-semicontinuous.

Directly from the definitions, one obtains that if all Ar with reR are
lower semicontinuous real functions defined on X , then, the function

G(o) = sup A (0)
reR

is also lower semicontinuous. Similarly, if the functions Ar with . reR are
upper semicontinuous, then the function

" F(o) = dinf Ar(c)
reR
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is also upper-semicontinucus. Furthermore, an upper-semicontinuous function on
& compact set attains its supreme value and for a lower semicontinuous there
exists the minimum. Analogously, one can reformulate the corresponding results
for upper and lower semicontinuous functions. Indeed by noting that a function
is upper semicontinuous if and only if its negative is lower semicontinuous, the
analogous results are immediate.

A real function A defined on a convex set 2 of a linear topological

Space 1s said to be gquasi-concave on I , if for any real number A the set

(gez: A(o) > A)

is convex. Similarly, it is called quasi-convex on X if the set

foeZ: A(o) < A}
1s convex. Obviously, a convex function is quasi-convex and a concave function
is quasi-concave.

Using these concepts, one can now formulate the following theorem.

THEOREM III.22: Let Zl,...,zn be non-empty, conpact and convex sets

each in a linear Hausdorff space, and let Al""’An be real functions

n
defined on the product space £ = _Xl Zi s
i=

ieN = {1,...,n} and fixed % (1)€ Zh(i) , the function A, ( . , . )

such that, for each

is lower semicontinuous in the variable ON-h(i)

i i i o} . .y - If
concave in the variable Uh(i)e Zh(i) for fixed N—h(l)eZN-h(l) 5

€ ZN-h(i) and it is quasi-

given the vector A = (A ,...,xn) , for each 0eX there is another

TeXZ such that

A (T

)y Nen@)) M

for all 1eN , then, there exists a point GeZ such that

A Gy Sy > N

for all ieN .
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PROCF : For ieN , consider the set

Si = {oez: A (o

i h(i)*anh(i)) > ki} )

Then, on the one hand, the cylinders

Si(o) = {TeX: Ai<Th(i)’QN-h(i)) > Ai]

are convex, since the functions Ai are quasi=-concave in the variable Gh(i) .
On the other hand, the cylinders

1
= : o] T A
S™ (o) (ex: A, ( b (1)’ N—h(i)) > N
are open because the functions Ai are lower semicontinuous in the variable

qN n(i) Furthermore, for each point o in the product space I there is

another TeX such that
o
(Th(2) nen(1)) € 51
for all ieN . Then, theorem III.20 assures the existence of a point OeX , a

member of all the sets Si - Such a point satisfies the theorem. (Q.E.D.)

As a consequence of this result, we, now formulate following Fan [ 4] +the

following general minimax theorem due to Sion [17°]1-

THEOREM III.Z23: et T = {Zl, Z.; A} be a zero-sum two-person game,

X

such that the strategy sets are non-empty, compact and convex in a linear
Hausdorff space, and the payoff function A is lower semicontinuous and
quasi-convex with respect to the variable 02622 for fixed Olezl , and

1t is upper semicontinuous and quasi-convex in the variable o e, for

1771
fixed 02622 . Then
ma.x min A(Sl’se) =  min max A(Sl’SQ) .
s_eX s, €2 ‘ SAEXZ S.€X

11 272 272 11
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PROOF: Given a real number & > 0O consider the vector
Ay = ( Sm:; sm2§ A(sl,sg) -8, - sz; m;; A(sl,sg) -9 ),
2% 1% 1771 5%

which is well defined. Indeed, because the payoff function A is upper semi-
continuous in the variable aleZl ; and it is lower semicontinuous in the variable
02622 > then on the one hand the values

max A(s 02) and min A(Ul,SQ)

l)
slezl 52622

are attained. On the other hand,. by what has been indicated for the maximin and
minimum function of a family of lower and upper semicontinuous function, then the
functions whose expressions have been Jjust considered are lower and upper semi-
continuous respectively. Thus, the maximin and minimax values exist.

Then, by taking h(i) = {i} for ieN = (1,2} with A = A and Ay =-A,
we see that all the requirements of previous theorem are satisfied for ‘Aﬁ > and

therefore the existence of a point o. = (08

o)
5 1 02) such that

A(ca,a ) > min max A(s,,s.) - 8
172 8.€Z S.€XL 172
’ 272 11

<  max min A (s;,s,) +8& ,
S. €L 2 e
1571 SpS4p
is assured. From here, one has the inequality

min  max A<Sl’82) < max min A(s

52622 sleZl sleZl 52622

1755) J

where, only the equality sign must hold since the converse inequality is always

true. (Q.E.D.)
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Unfortunately, we now are not able to extend this theorem for n-person games,
with the generality expressed in it.
The following theorem concerning e-simple positive equilibrium points, is

a result due to Fan [ 5 1, which is a generalization of theorem III.3.

THEOREM IIT.2k: Tet Pe = {Z 2 ;5 A

ERLEER l""’An] be an n-person game

with simple structure function e , such that the strategy set Zi of
player ieN is non-empty, compact and convex in a linear Hausdorff space
and his payoff function ’Ai is continuous in the product variable o¢gXl .

Then, the game Pe has an e-positive simple equilibrium point.

PROOF : For each player ieN and a number & > 0O , consider the set

= e g,,0 g > A g \Cory)=0}.
Sp,0 T LB A0 ()0 () > maE A (8450 ()% )P
i1l
Define h(i) = {i} . Then, because the payoff function of player A, is a con~
tinuous function on the product space, the function s@%%i Ai(si, . ) . ) s
alsoc a continuous function with respect to the product variable oeZX . Thus, the
cylinder 1
) = TEL: .0, . . . ST -
86( ) (Tex Al( 1’Te(1)’Tf(1)) > max Al(sl, e(i)’Tf(i)) 5 )

S.EXL,
i 1

is a non-empty and open set in the product space. On the other hand, because the
payoff function Ai of player dieN 1is a quasi~concave functlion in the variable

g .
leZi , the cylinder

8,5 (0) = (ved: A (7,0, 5)50:(4y) > e Ai(e550, (1% 1)) = 0}
1%

_ 1s convex. Therefore, by a direct application of Theorem III.21 to the sets

S, since all the requirements are satisfied, gives that the intersection
i
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ns, .C = for any & >0
. 5,1 =
ieN

is non-empty.

“Now for each real number & >0 .let the non-empty set - é& 5 be the closure
. 2

of set 'SB,i in the product space .2 . Then, the sets S6 = iQN Sb,i have

the finite intersection property, and therefore since I 1is compact, there

exists a point @ such that
T eN; N _§
§50 téN o7l
. Such a point satisfies

T LT
max A, (s e(1)’ f(i))
sieZi

Ai(ai’ae(i)’af(i))

for all ieN . Hence, it is anlg-positive simple equilibrium point of game Pe. (Q.E.D)
The most important reason, for which we could not extend in & simple waQ—the
above result with a generality comparable with that expressed in theorem II1.23,
is due to the fact that the sections . Sg (o) should be open, which cannot be ob-
tained immediately if the payoff functions are lower or upper semicontinuous.
An immediate consequence of this result is concerning the existence of
Eursimple steble points as an extension of theorem III.11 which is formulated as

follows:

THEOREM ITT.23: Let T, = [Zl,...,zn; Al,...,An] be an n-person game

with simple structure function ¢ , such that the strategy set Zi of player
ieN is non-empty, compact and convex in & linear Hausdorff space and his
payoff function .Ai is conmbinuous in thé product variable geX , and Fi

is quasi-concave with respect to GieZi for fixed ﬂf(i)ezf(i) . Then,

the game Fe has an ‘gm-simple stable point.
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PROCF : Consider the n-person game I'" = {Zl,...,Zn; Fl,ou.,Fn} s which satisfies

all the conditions of the previous theorem, since the payoff function Fi of player
ieN 1is a continuous function on the product space. Then, a very simple equilibrium
point of game TI'' exists. Such a point is an Sm-simple stable point of game Ié

(.E.D.)
In a similar menner, we now formulate a result concerning the existance of

e~-negative simple equilibrium points, which will be seen to be an extension of

theorem III.6.

THEOREM III.26: Let r, = {zl,.,.,zn; A .,An} be an n-person game with

120

simple structure function e , such that the strategy set Zi of player ieN

is non-empty, compact and convex in a linear Hausdorff space and his payoff
~Tunction Ai is continuous in the product variable o¢eX , and quasi-convex
i i Z for fixed (o,,0 z 2 .
with respect to the variable Oe(i)e e (1) or fixe ( 50 f(i))e i X £ (1)
If for each real number & >0 and each joint strategy oeX there is another

7eX  such that
INCH Te(1)% (1)) < min A'(Gi’se(i)’cf(i)) 0

S0 (1)%e(1)

for all ieN , then the game Pe has an e-negative equilibrium point.

PROCF': For each player i1eN and real number & > 0 , consider the set

S = {oeZ: Ai(gi’ce(i)’gf(i)) < min A, (o,

. s 0.0 ) + 8]
5,1 Se(i)eze(i) ivi Se(l) £(1)

Let h(i) = e(i). Then, the section

s;(o) = (ve: A (r,0 0,0 ) < min A (T8 (1) e (s)) + B )
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1s open in the product space I , since the payoff function Ai of player ieN is
continuous in the product variable oeZ , which implies also the continuity of

the function Se?z?eze(i) Ai( ', Se(i)’ *,) with respect to o0eX . On the other

hand, the section
= {1ex: o g i o a +
S5,1(9) = (762t Ag (04,7 (5159 (;)) < min Ay (9558 (3% (1)) ° ]
S . \€X .
e(i) Te(i)
is convex, by virtue of the quasi-convexity of payoff function Ai with respect to

the variable Ge(i)eze(i) » Finally, by the last condition, for any point oeZ

there is a joint strategy 7TeX such that
g
(Te (1) Oqe (i) € 5,4

for all ieN . Thus, all the requirements of theorem III.20 are satisfied. Then,

the intersection n s for any & > 0
ieN 8,1

is non-empty.

Now, defining for each & > O +the set § as the closure in the product

9,1

space X of set 8. ., , we have for the family of sets & = N8, . the
5,1 0 jey 001
finite intersection property. Hence, because X is compact, there exists a point

GeX Dbelonging to the following intersection

ce N n 8§

550 ieN Ot
At this point, one has
g,,o 5} = i ) o
8509550 (1)7% (1)) i 85005580 (5% (1)
S ,.\E€X 4.
e(i) Te(i)
for all ieN . Then, such a point is an e-negative simple equilibrium point of

gamé r, - (Q.E.D.)
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We point out that the last condition in this theorem is analogous to the
corresponding requirement of theorem III.6.

From here, we can characterize immediately the Em-simple stable points.

THEOREM IIT.27: Let I = (z, Lo

with simple structure function e , such that the strategy set Zi of

,.,.,Zn5 A .,An} be an n-person game

player 1eN is non-empty, compact and convex in a linear Hausdorff space
and his payoff function Ai is continuous in the product variable oeZ ,
and g; is quasi-convex in the variable Oe(i)eze(i) for fixed Of(i)ezf(i)a
If for each real number 8 > 0 and for each point oe€X there is a joint

strategy T€X such that

Gi(Te(i)’Gf(i)) < min o5 Gy (8 (1% (1)) + O

®e (i) e(i)

for all ieN , then the game Pe has an Em-simple stable point.

PROCE ; Consider the n-person game I = {Zl,,..kzn; gl,.,,gn} , Wwhich has

all the payoff functions continuous. Thus, all the requirements of the previous
theorem applied to game I'"' are satisfied. The, there exists an e-negative
simple equilibrium point for game TV . Such a point is an_Em-simple stable point
of game T - (Q.E.D.)

Thi; result generalizes the corresponding theorem IIT.13.

By using the same technique, We now extend theorem III.15 regarding e-

simple stable points.

THEOREM IIT.28: Let I = {Zl,,n.,zn; Al,,on,Ap} be an n-person game

with simple structure function e , such that the strategy set Zi of

player 1ieN is non-empty, compact and convex in a linear Hausdorff space,
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his payoff function Ai is continuous in the product variable oceX for
fixed cf(i)ezf(i) and Gi quasi-convex with respect to Oe(i)eze(i) for
fixed cf(i)ezf(i) « If for each real number o > 0 and each Jjoint strategy
ceX there is a point 7eX such that
T.,0 o - ®
FilTo0p(s)) > mex Fyle,00 )

i
siezi
and

Gi(Te(i)’Gf(i)) < . minEZ Gi(se(i)’gf(i) + B
e(i) "e(i)

for all 1ieN , then, the game Fe has an e-simple stable point.

PROCF ; For each player 1ieN and a real number & > O , conslder the sets

5F,5,1

[GeZ: Fi(ci’qf(i)) > max Fi(s"cf(i)) -5}

8.€X, *
i 71
Sa,5,0 = (96% G0 (5)5% ;) < min 5 03 (Se (1) % (1)) *®
Se (1)%%e (1
and the intersection
= n
Ss,1 % 5,1 1 8,5,10%)
= H 50 -
{Tex: Fi(Ti,Gf(i)) > max Fi(ai, f(i)) 5)
5.€2,
i~ :
N {rex: Gi(Te(i)’Gf(i)) min Gi(se(i)“%(i))+ 5}
S ,.\EXZ 4.
e(di) Te(d)

is convex. Finally, by the last condition, for any point o¢eX there is a joint

strategy TeX such that

SRTNI GIOLA



165

for all ieN . Thus, all the requirements of theorem III.20 applied to the sets

S5 ; are completely satisfied, and therefore, the non-emptyness of the intersection
2

n s_. . for any & >0
ieN O»%

is assured.

From here, by defining for each & > 0 +the set Eb ; @8 the closure in the
2

product space X of set 86 ;0 one can easily show the finite intersection pro-
J
perty for the family of sets S = N 58 ;e Hence, by the compactness of X ,
ien 7T
there exists a point EQZ belonging to the intersection

e N n s

550 ieN o1
On this point we have
A, (o, e (i)’ f(i)) max A, (s, e (i)’ f(i))
siezﬁ
= min A (G

i i’se(i)’af(i))
S (1)%% (1)

for all ieN , that is, it is an e-simple stable point of game Ié . (Q.E.D.)

With this result, we are able to obtain the following characterization of

e-simple saddle points, which is a generalization of theorem III.17.

THEOREM ITT.29: lLet I = (Z5 005 A,

with simple structure function € , such that the strategy set Zi of

q.,An] be an n-person game

player 1eN in non-empty, compact and convex in a linear Hausdorff space,

his payoff function Ai is continuous in the product variable oeX ,

. . . o -
quasi-concave with respect to o,ex; for fixed ( (1)’ f(i)) € ze(i)xzf(i)
. i ~ X % .
and quasi-convex with respect to Ge(i)tze(i) for fixed (Gi’df(i))ezi Zf(i)

If for each real number & > 0 and each joint strategy o¢eZ there is a
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point . TeX such that

Ay (7T ()% (1)) > e Ay (e %e ()% (1)) 8/2
1 1

<S migZ Ai(Ti’se(i)Gf(i)) + 3/2
e(i) Te(i)

for all ieN ., then, the game Pe has an e-simple saddle point.

PROOF: First of all, we will show that under the conditions of payoff function,
the functions Fi and Gi are quasi-concave and quasi-~convex respectively.

Assume that the function

F,(0.,0,,. = min A (o,,s O,
1 (9 f(l)) & en “l(‘l’ e(i)’ f(l))
e (1) (1) |
.- . v . 0. EZ '.
were not quasi-concave with respect to qiezi for fixed £(1)5% (1) Then,

there would be 0., \€X_,. , and a real number A such that the set
£(1) 7£(1) .

Fy, = {Tiezi: 'Fi(Ti’Bf(i)) > A )

: : 1
is not convex. Hence, there exist two points Ti on,,T? belonging to Fh and
a real number Me[0,1] such that
' 1 2 .
AT -A) c < M.
PO M Ty Beggy) S
1 2
On the other hand for Ti and Ti we have

1 - .2 -
B (7081 %(q)) > end A(T, (1) %e(s) >

for all Se(i)eze(i)’ and in particular for the point Ee(i)eze(i) for which

Ei(xri + (l—h)Ti’Gf(i)) - Ai(KTi + (1-x)¢§,§e(i),af(i)),< S
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which is impossible by virtue of the quasi-concavity of payoff function Ai in

) ) s o ’ ) )
the variable Giezi for fixed ( e (1)’ f(i))eze(i)x Zf(i) Then, the function

F, 1s quasi-concave in Uiezi for fixed o

i £(1)%r (1)

In a similar way, assume that the function

G, (o o] = . (8, . .
i (o) % (1)) max A (8559 (519% (1))
5.€2,
174
were not quasi-convex in Ge(i)eze(i) for fixed Gf(i)ezf(i) . Then for some
5 Z A
cf(i)e (1) and a the set
= . G <A
& {Te(i)eze(i) 1(Te(i)’of(i)) )

would be not convex. Then, for some two points Tl . and T2 . in G and
e(i) e(i) A
some Me[O,l]

1 2 -
Gy * B o4y B qy) 20

in particular for s Ei € Zi where the minimum is attained:

1 - - 1 2 -
G T o1 = - o A
1Ty o)) =BG wT gyt @) T T ) 2
1 2
But, for the points Te(i) and Te(i) we have
A(s T+ o ) <N and A(s 72 o ) < A
i’e(1)’ £(1) i’ e(i)’ £(1)

for all siezi » Which is a contradiction, since the payoff function Ai is

. . £ : -
quasi-convex in Ge(i>eze(i) or fixed ( 10 f(i))ezi X Z Then, the

£(1)
function Gi is quasi-convex in the variable Ge(i)eze(i) for fixed Gf(i)ezf(i)°
Thus, the game Pe satisfies the first conditions of previous theorem.

Now, we will show that the last requirement is also verified. From the latter

condition, for a given & > 0O and any 0cX there is an TeX:
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< 'Fi<Ti’Gf(i)) + 8/2 < ma.x Fi(si’af(i)) + 5/2

8.€2
for all ieN , and therefore, from
max F.(s.,Uf(.))_f min G, (s (.),cf(.)) ;
s.ex, -t * 5 €x . et *
i1 e( e(i)
we obtain
-;F.( ) > max F (s B ) -8
171778 (1) G er. "t (1)
and ol
T o i ! o +
Gy (T (1) %)) < min & (e (1) % (1)) °

P (1)° e(l)

for all 1eN . Thus, the last condition of theorem III.28 is also satisfied.

Then, the existence of an e-simple stable point geX of game Fé is quaranteed:

Fi(ai’af(i)) = szg Fi(si’af(i))
and ii
Gi(ae(i)’af(i)) = win 5 Gi(se(i)’6f(i))
e (1)%% (1)

for all dielN.
On the other hand, by taking the strategy cf( ) ( ) we have for each

player ieN +the Ef(i) - associated zero-sum two-person game. This game satis-

fies all the requirements of theorem III.23, since the payoff function is quasi-

concave in 0.€X. and quasi-convex with respect to o ,. ,eX ,., . Thus, for
17 e(i)"e(d)
ech player i1ieN. in the Ef(i)-associated game the minimax theorem holds, that
is
F i 5]

max 1(51, (1 )) min Gi(se(i)’ f(i)) s

5.€X2, ENIVS

i1 e(l) e(1)
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and therefore, we have

Ai(ai’ae(i)’Bf(i)) - Fi<31’af(i))

= 5 o
G; O (1) % (1)
for all ieN . Thus, such a point is an e~simple saddle point of game Pe . (Q.E.D.)
Having the previous results, we can now extend the results of theorem ITI.Z20.
Thus, with this new simple extension, we are able to get more generality of some
already considered results and moreover to formulate a further characterization

of e-simple saddle points.

THEOREM IITI.30: Let = 2 .be compact convex sets each in a linear

l,..., N

Hausdorff space and for each ieN = {1,...,n} let h(i) and h'(i) be two

subsets of N . Given 2n subsets &

1""’Sn and Tl""’Tn of product
space X = X X, , such that for each iell and each 0eX +the cylinders
ieN *
g) = : 150 . S,
51090 =t (m oy ) € 8]
and _
Ti<0) = {TGZ: (Th' (i)JUN—h, (i))e Ti}

are convex and the cylinders

s?(c)

Il

TeX:
{7e € Si}

(% (3 en (1)
and Ti(O)

{Tex: ) € T.}

T
(Opr (1) "jent (1)
are open. If for each 0eX there is another point 7T in the woduct space
2 , such that
o
(n(1) wn(s)’e 8 @88 (e ()% pe (q))8 T
for all ieN , then the intersection
N (si n Ti)

ielN
is non empty.
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PROOF: We recall that if h(i) is empty, then under the last condition the sections

are S.(¢) = 8.=2 and S (o) = S8, =2 .
1 1 €

. . { z if GeSi
. * g if ofs,
Analogously for the corresponding cases of h'(i) .
Let P(C N be the set of all ieN with h(i) empty and let. P’g; N be
the set of ieN for which h'(i) is empty. Similarly, let Qvg N and Q! g N
- be the sets of ieN for which h(i) and h'(i) coincide with N , respectively

and finally
R=N-(PUQ) and R'=N- (P UQ') .

Define the set A(o) in the product space, for every oeXl , to be given by
the complement of the intersection of sets. Sl(c) n Tl(T):

A(0) = ¢ [n (ste) note)),
ieN

which by the closeness of the sections, is compact. On the other hand, by the
last conditlion, for a o0eZ +there is a point in the product space TeX such that
) e s

(T (17 “N-n (1) i

for all ieR ,
(e}
(T (ay Nent (1)) € T3

for all 1ieR' , GeSi = % for ieP and ceTi = 2 for 1ieP' ; TeSi for 1ieQ

and TeTi for ieQ'. This condition implies the non-emptyness of the inter-
section n A(s) .
oex

Now, as an immediate consequence of the contrapositive result of Lemma III.19

applied to the sets A(0) with oeZ , one has guaranteed the existence of a point
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T = X o, 0(j)
=1 Y

convex combination of m points o(1l),...,0(m), which does not belong to the
union set

Ao(3)).
1

T

J

Then, for each Jje {1,...,m} and each ieN , TeSi(G(j)) n Ti(c(j)) .
Hence, (Gh(i)(j), TN_h(i)) €8, forall ieR, (Gh,(i)(j) s TN—h’(i))e T,
for all ieR!'; TeSi(G(j)) = 2 for every ieP and TeTi(G(j))= % for every
ieP?; TESi(G(j)) = % for 1ieQ and TeSi(c(j)) =X for ieQ!' . From the last
condition one deduces, that for ieQ: G(j)eSi and for ieQ’: G(j)eTi for
je{l,...,m}. Then, by all these relations we have for each ieN and each
je{l,...,m} +the condition

5(3) € 8,(x) N T, ()

holds, and therefore by virtue of the convexity of sections Si(G) and Ti(G)

m
T = % o, o0(j)es (t)NT. (7)
o i it
J=1
for all ieN . From here, we obtain that the point 7TeZX is a member of the

intersection igk (SirlTi). This implies the validity of our theorem.. @.E.D.)

We regard theorem III.20 as a particular case of the above result, which

\
v

occurrs when for each ieN +the sets n(i) and h’(i)‘ are egual and the sets
S, and T, colncide.
i i
By applying the result expressed in the preceding theorem, we now in the

following formula tion. extend the theorem;III.Eg;

THEOREM ITT.31: Let Zl,...,zn be non-empty, compact and convex setsg

each in a linear Hausdorff space, and let Al,...,An; Bl""’Br be 2n

4
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real functions defined on the product space » = ;% Zi 5 such that, for each

ieN = {1,...,n} and given subsets h(i) and h'(i) of N and fixed Uh(i)ezh(i)
the function ‘Ai is lower semicontinuous in the variable GN—h(i)eanh(i) and it
is Quasi~concave in the variable Gh(i)ezh(i) for fixed GN—h(i)ezN-h(i) . For
each 1eN and each Gh,(i)ezh,(i) B ﬁhe function Bi is lower semicoantinuous

in the variable qN—h'(i)E;N—h'(i) and it 1s quasi-concave in the variable
oh,(i)ezh,(i) for fixed GN—h'(i)ezN-h'(i) . If, given the vectors A = (xl,.”xn)

and Kl = xi,..., ﬁh) » for each o0ef there is another TeX such that
B (T s0 ) > A and B_(v,,. 0., .) >l
i* h(i)’ N-h(i) i it h*' (i)’ N-h'(i) i
for all ielN , then, there exists a point 0ef such that
Ay iyng)) > Ny end B O sy O q)) > Ki

for all ielN .

PROQF : For ieN, define the sets

Sy = loem Ao vty ng)) >N )
and 1
= . ag g A
Tyo= foex By(o, 4y, Nent (1)) > M)
From here on the one hand, the cylinders
8;(0) = [rex: Ai(Th(i)’GN-h(i)) > )

and 1
T.(0) = {Tex: Bi(Th'(i)’GN-h'(i)) > Ay }

are both couvex, since the functions Ai and Bi are quasi-concave in the

variables Gh(i)ezh(i) and Uh’(i)ezh‘(i) , respectively. On the other hand,
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the cylinders

I

Si(o) {Tex: Ai(ch(i)’TN-h(i)) > Ki ]

and

Tl(c) {(teZ: Bl(oh' (i)}TN_ht (l)) > )\i:: ]

are open because the functions Ai and Bi are lower-semicontinuous with respect

-N-h?

by the last condition for each point oceX there is a point T in the product

i X a. , ively. M T
to the variables Gth(i)E;Nuh(i) and (i)eszh'(i)’ respectively. Moveover,

space X such that

(Tn(1)2on (1) € 5; end (Th'(i)’gN-h'(i)) €T

for all ieN . Thus, all the requirements of previous theorem applied to the sets
Si‘ and Ti » are satisfied, and therefore the existence of a point Tex belonging
to all the sets,‘Si n Ti is guaranteed. Such a point fulfills +the theorem. (Q.E.D. )

This result permits us to extend a particular case of Sion's minimax result

given in theorem III.23.

THEOREM ITI.32: Let I = (250525 A,

that the strategy set Zi of player ieN is non-empty, compact and convex in

..}An} be an n-person game, such

a linear Hausdorff space, his payoff function A is continuous in the product

i
. i — s . £1 . '
variable, dquasi-concave in the variable ieZi for fixed Nu{i}GZN-{i} , and
quasi-convex with respect to the varisble qN~[i]€ZN—{i} for fl%ed oieZi .

If for each real number & > 0 and each Joint strategy oeX +there is a point

Te2, such that

A o > i
i(Ti, Nm{i}) Smln . Sazz Ai(si’SNu{i}) )
M- (119N (1] 5155
and .
g < i
Ai( i’TN—{i}) gazz min Ai(si’SN—{i}) + B

1% S ()% (1)
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for all ieN . Then, there exists a point 0OeX  such that

Ai(ci’GN-[i}) = min mex A, (s ,8 )

: N- {1}
Sy- (115 (1) 5%

it

max min A (s.,s 5 )
iY77 TN- (1}
5482 SN- (11%5- (1)

PROCF : Given. a real number © > O , consider for player 1eN , the following

two vectors

A = (min max A. (s s ) - B
) i?°N-{i)
o Sy ()%= (1) Bi%H
vh% = ( max min Ai(si’sN-[i]) + B )

s,€X0,
i1

SN- (1) 2= (1)

Now, let h(i) = {i} and h'(i) = N-{i} with ieN and the functions

Ai = Ai and Bi = —Ai . Then, all the requirements of theorem III.3l applied To

the functions Ai and Bi are completely satisfied. Thus, there exists a point

68 €Z such that
S O

A {(o.,0 L)Y > min max A (s. 178 ) -
it i’ N-{i} N-{1)
o (110m- (1) Si%%
< max min Ai(si’SN-{i}) + B

Z .
51825 S 1) (1)
for all ieN . Now let O be a cluster point of the directed system 06 with
5 =0 . Then by virtue of the continuity of payoff functions for the Jjoint
strategy 0eX we have
LCH G ) = max i A (s.,s
(G min MCTEL TRy

oN- (i}
5:€% Sy 4)%%- (1)

)

= min mex A (s 5

(1)) %% R

for all ieN. (Q.E.D.)
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We do note that unfortunately, such a point, characterized in the above theorem,

is not necessarily an e-simple saddle point of game I .

Now a further application of the general result expressed in theorem
o II1.20 of is related with another examination of e-simple saddle points which

is obtained in the following simple way:

THEOREM IIT.33: Let Pe = {= °’Z£’Al"' ,An} _be an n-person game

17"

with simple structure function . e , such that the strategy set Zi of

player 1eN is non-empty, compact and convex in a linear Hausdorff space
and his payoff function Ai is continuous in the product variable oeZX ,

i i i f fi o] C._,. N
quasiconcave in the variable oieZi or fixed ( e(1)’ f(l))eze(i)>\ £ (1)
and quasi-convex with respect to fhe variable o ,..€X ,. for fixed

. oe(i)Te(d)

c . 1 Jodn
(Gi f(i))e Zixzf(i) If for each real number & > O and each joint

strategy oeX there is a point 7eX such that

A (75500 (5% 1)) > Sm§§ A (859, 05y%(5)) - ®
1854
A (0 e (1% (1)) < MR A (9850 %y) + B
! e(i) "e(i)

for all ieN , then, the game Fe has an g—simple saddle point.

PROOF : For each player ieN and a real number & > 0 , consider the following two
sets
= : o.,0 . g o] -
5,1 (oe2: &, (o, e(i)’gf(iQ) > e Ay (545 e(1)%2(1)) - ®)
1774
and
= . i > C. °
Ts,1 (oex: Ai(gi’ce(i)’gf(i)) < min A4 l’Se(i)’Gf(i)) + 8}

Se(i)eze(i)
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Let h(i) = (i} and h'(i) = e(i) for all ieN . Then, for a joint strategy

oeX both sections

i
S5(0) = (e: Bi(957 1) e (1)) > séié. A (sT 1y Tp(a)) = B
and L1
i (c) = {tex: A (T.,0 T, ) < min A (T.,s T, ) +5 )
o} T TiM A e (d)? (1) it'i’Te (1) (1)

z
%e (1) (1)
are open, because the payoff function .Ai of player ieN is continuous in the

product variable oeX. This implies also, the continuity of the functions

max.Ai(si, . . ) and min Ai( © Sg(yy )
s.€X, S /.\E€EX 4.
1771 e(i) e (1)

with respect to 0eX . On the other hand, both sections

Sa}i(c) = {TeX: Ai(Ti’Ge(i)’cf(i)) > szg Ai(si’ae(i)’df(i)') -5 )
and T

o) = {TeX: qg,,T a i o, ,s o
Ta,i( ) {te Ai( i’ e(i)’ f(i)) < min Ai( 'i’se(i)’ f(i)) + 5 }
s ,. €1 .
e(i) Te(i)
are convex by virtue of the quasi-concavity of payoff function ‘Ai with respect
to o0.€x., and the quasi-convexity with respect to the variable 0 ,, €2 ,., .
i1 e(i) Te(i)
Finally, by the last condition, for any joint strategy oeX +there is a point T

in the product space I such that
o ' o)
(T30 (17) € 5,1 °ond )(Te(i)’ N1} € Ts,1

for all 1 €N . Thus, all the conditions of theorem III.Z?0 applied to the sets
S6 5 and T8 ; are satisfied, and therefore the intersection
J 2

n (s..nmT, .) for any & > 0

is non-empty.
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Now, by defining for each & > 0 the set 56 5 n T6 g as the intersection
k } 2
of the closures in the product space I of sets S6 5 and T6 5 it can be easily
2 2
seen that the family of sets RR = iQN (86,1 n T&,i) has the finite intersection

property. Hence, because I 1is compact, there exists a point TeX belonging in
the following intersection

E)'e n ﬂ (-é .ﬂﬁ.j ,) o

550 ien ©0s1 9,1
Such a point satisfies:
A (5 .5 g = o g
1008 (1) % 1)) = mx 8058 50,00 )
s.eZi
= min o T
81058 (1) % (1))
S . N\EX .
e(i) e (i)

for all ieN , that is, it is an e-simple saddle point of game Fe . (Q.E.D.)
This later characterization of e-simple saddle points has tﬁ; advantage of

the characterization given in theorem III.29, i.e., that it is valid even if the

simple structure function has all the sets f(i) empty. In this case theorem

ITI.29 has not any value. This situation appears for almost all the other

theorems which are concerned with e~simple points.

Although the results obtained in this paragraph using the intersection
technique extend all the corresponding theorems of previous sectiorg it is re=
markable to note that it is not known whether or noit.~  this method
includeis in ~a natural way the fixed point procedure; i.e. whether or
nob the Fan-Glicksberg fixed point theorem can be obtained as a conse=
quence of theorem IIT.19 and its corollaries. The similarity of these facts has alo

been pointed out by Fanin [ 3 ] .
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ITIT.3 e-Simple Points by Maximum Function Procedure

In this section we will deal with the treatment of e-simple points for games
defined on compact sets in linear topological spaces. This further extension is
built on the base of a result due to Nikaido and Isoda [ 16], concerning maximum
of functions, which has been used to examine the existence of equilibrium points.
This new treatment does not generalize completely that which we Just examined in
the previous section, since its applications can be rerformed only for games whose
payoff functions are convex and concave, but not quasi-convex and quasi-concave.
However, the new procedure will allow us to exbend the examination to games, which
do not have the Hausdorff property for their sets. Thus, even though there is
certain similar%ty Between the results expressed in this section and those just

examined by the "intersection of sets with convex sections" procedure. Neverthe-
less, neither do the results obtained here include the other, nor are they in-
ciuded_in them.

The fundamental tool of this section, on which our examination is built is

the following theorem due to Nikaido-Isoda. [ 16], which uses the Brouwer's fixed

point theorem. This last theorem, which is a special case of Kakutani's fixed

point, is concerned with simple functions and assures the validity of the asser-
tion: If a function A: £ - % on an non-empty, compact and convex set X 1in
.an euclidean space into itself, is continuous, then, there exists a fixed

point: o = A(o) .

THEOREM III.35: Let @ be a real function defined on the product space

%2 X I , where the set X 1s non-empty, compact and convex in a linear
topological space, such that for each <eX +the functions @(T,0) and

- ®(0,0) are continuous in the varisble o0eX and the function @ (0,T)
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is concave in 0eZ . Then, there exists a point 0OeX such that
¢(0,0) = max @(s,5) .
sex

PROOF: Suppose that there is not a point having the property just mentioned.

Then, for each point 0eX +there is another point teX such that

?(0,0) < o(7,0)

Define the following set

6, = {oeZ: ¢(0,0) < ¢(1,0))

included in the product space X . By the continuity of the functions o(T,0)
and @(0,0) in the variable o0eX for fixed oeZ , there exist a finite number

n
5T € Z such that U 6_ = 3.

of points = =1 Oy

170

Consider the functions

pi(c) = max [Q(Ti,c) - ¢(0,0), 0]

for i: 1,...,n . From here, we have immediately that

n
po(c) = = p.(e) > © for all oeZ .
i=1
Now, consider the following continuous function P : 22 given by
n 0,(9)

¥(o) = T —4—o0 1,

i=1 (o) 1

which is well defined, since the product space I is convex.

The convex hull of points < T in the product space X is homeomor-

l,..., n

phic to a simplex in a euclidean space. Thus, the application of Brower's fixed
point theorem to the continuous function ¥ guarantees the existence of a fixed

point TeZ : _
n p,(0)
g = 2 m——T, .
i=l  p(T)
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By replacing this value in the function ¢(0,T) , which is concave in the variable

T¢X for fixed o0eX , we obtain

n
o(o,0) > =

which is impossible, since by the definition of the function c qKTi,a) > ¢(0,o)

for all i: 1,...,n with p4(0) >0 . Then,

i n g (3) k nooale) .
CP(G:ET) > Z —_— (P(T-:O) > X o CP(GJG) = CP(G:G)
T i=1 o (%) + i=1 p (o)

Thus, the existence of a point 0eX such that
CP(G;G) = max CP(S:E)
seX

has been guaranteed. Q.E.D.
We point out that this result cannot be immediately extended for gquasi-concave

functions. In fact, under this new condition we cannot obtain the necessary

inequality - n ;%(a)
¢,(6,5) > =
i=1  p(o)

CP(TiJU)

Having this result, we now will show how we can use it to examine the

€-positive simple equilibrium points.

IEMMA III.36: Let r, = (=

simple structure function e . Then, a joint strategy ces is an e-positive

l,...,Zh; Al,...,An} be an n-person game with

simple equilibrium point of the game I’ , if and only if

where the function qi is defined by

(Pl(O:T) = 1§N Al(cl:TN-{l}) ° |
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PROQOF = Let the point 0eX be an e-positive simple equilibrium point of the game

Pe . Thus, _
£ Ai(c o

s N—{i}) = max A, (

S.€2,
1771

N {1})

for all 1ieN , and therefore, the following inequalities hold true:

@l(ayﬁ) = I max A (s 5

) > mex qi(s G) ,
1elN S.€%,
1771

sex

.. {1}

where on the second inequality sign only the eguality sign must hold. Hence,

¢ (5,06) = max 9 (s,0)

+ sel. 1

which proves the necessity of the assertion. Now, we examine the sufficiency.
Let us assume that the point der satisfies

P (3}3) = max - P

S:8> P)
1 g€l

€

and suppose that it is not an e-positive simple equilibrium point of game Pe .

Thus, there exists a point T in the product space 2 and a non-empty set

ICN such that

A, (o

5 i’BN—{i}) < A (7.

529 (1)’

for all iel . Define the strategy TeZ by
Ti if diel

T = {
Gi if  idI

then, according to the assumptions, one has

¢ (5,5) = = A, (0 g.....) < A (T

( , ) (T, ,0 ..
1 S el N-{i} ieN it i N-{i})

which is impossible. The contradiction, thus obtained, assures the validity of

the theorem. (Q.E.D.)
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Now, by using these facts, the following characterization of e-positive

simple equilibrium points due to Nikaido-Isoda [16] is a simple matter.
THEOREM IIT.37: Let I‘E = (5T Ay

with simple structure function e such that the strategy set Zi of

.,Aﬁ} be an n-person game

player ieN 1is non-empty, compact and convex in a linear topological space,
his payoff function Ai is concave in the variable GieZi for fixed

Sy s . . . . for Fixed
GN-{i} € ;N—(i} > 1t is continuous in the variable N-{i}EZN-{i] or fixe
ciezi and finally the function

g.,0
o A (909 4

)

18 continuous with respect to 0eX . Then, the game Pe has an e-positive

simple equilibrium point.

PROOF: Consider the function

= = A, (0, .
Cpl(G,T) :LEN l(,o-l TN—{l}

)

defined on the product space X X I . For each point TeZ , the functions @l(T;U)
and @lﬁc,c) are both continuous in the variable oeZ , since they are the sums
of continuous functions. On the other hand, the function @l(O,T) is concave

in the variable oeX for fixed 7eZ , since it is the sum of concave functions.
Therefore, the conditions of theorem III.35 are thus satisfied for the function

@l - This guarantees the existence of a point GeX with the property

qi(B,E) =  max q&(s,ﬁ) .
se

From here and the lemma just considered, it follows that the point ces is an

e-positive simple equilibrium point of game r, . (Q.E.D.)
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A very special case appears when the payoff function of player 1eN is
continuous in the product variable. It is important to note that the continuity
requirements on the payoff functions have some unusual and delicate forms.

As an immediate consequence of this result we now have the Tfollowing existence

theorem.

THEOREM III.38: Let ‘?9 = (2,002 5 A,

with simple structure function e , such that the strategy set Zi of player

"’An} be an n-person game

1eN 1is non-empty, compact and convex in a linear topological space, his
corresponding function Fi(di’gf(i)) is concave in the variable GieZi for

fixed Gf(i)ezf(i) and continuous in GNu{i}ezN—{i} for fixed cieZi
Then, if the function

> F

oot (055955

is continuous in 0eX , the game Fé has an em—simple stable point.

PROCF': Consider the n-person game I'' = (& ,---,Zﬁ; F ,...,Fn} , which completely

1

satisfies all the requirements of the previous theorem. Thus, that game I'' has
an e-positive simple equilibrium point. Such a point is an‘gm—simple stable pcint

of game T, - (Q.E.D.)

A further application of theorem ITI.3T arises for zero-sum two-person games,

whose formulation is given in the following theorem of Nikaido [ 151

THEOREM III.3?39: et T = (= 225 A} be a zero-sum two-person game, such

lJ
that the strategy sets are non-empty, compact and convex in a linear topo~

logical space, and the payoff function A is continuous in each variable

separately, concave in GleZl and convex in 02622 . Then, the game T

has a saddle point.
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. PROCF : Since the payoff of the second person is -A , then, we have

A (01,02) + A

1 (0)595) = 0.

2

Furthermore, all the other requirements of theorem III.37 for game I' are com-
pletely satisfied. Thus, the existence of a saddle point of game I' 1is
guaranteed. (Q.E.D.)

By counsidering a similar examination, we will obtain the existence of e-

negative simple equilibrium points as a simple consequence of the following lemma.

TEMMA IIT.LO: Let r, = {Zi,...,zh; Al,...,An) be an n-person game with

simple structure function e , such that for each real number % > 0O and

each 0cY there is a joint strategy 7TeZ such that

Ai(ci’Te(i)’Gf(i)) < min A4 (Gi’se(i)’df(i)) B
S¢ (1)%%e (1)

for all iel for which

80059 (1% 1)) > . mfnez b (95580 (1% (1)

and e(i)™ e (i)
A (o.,T ,.\,0_.,.y) = min A A(O.,8 ;.1s0. 1)
iV it e(d) £(4) i?7e (1)’ £(1)

i
€
fe(i) Te (1)
for all d1ieN-I .
Then, a joint strategy Ter is an e-negative simple equilibrium point

of game Pe , if and only if

QE(B:B) = max @2(516)
ge

where the function Py ig defined by

QE(G:T) = iiN [—Ai(Ti’Ge(i)’Tf(i))]
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PROCF': First we examine the necessity. Let the point 0es be an e-negative

simple equilibrium point of game Ié . Thus, it satisfies
o,,0 5} = i . 5}
A; (o e(i)’ f(i)) min A 7% (1)’ f(i))
S s.\€X 4.
e(i) "e(i)

for all 1eN , and therefore, we have

$.(3,5) = = 3 [-A, (C.,8_,.\,0.,.\)]1> mex o¢.(s,0) |,
2 ieN seTj?eZe(i) i1 e(@) rE)T S sex  °

where only the equality sign must hold. Hence, it follows immediately that

mg(a,ﬁ) =  max $2(s,3) .
sex

This shows the necessity. Now, we are going to show the sufficiency. Assume

the point Tef satisfies

‘@2(0;0) = max '@2(5;0)
SEZ

and suppose that 1t is not an e-negative simple equilibrium point of game I

From here it follows immediately that there exist a non-empty greater subset

ICN and a real number B > O such that for all iel

A8 1y %)) > e b8 1y % (s)) +
“e(i) Te(d)

But then by the hypothesis, for & >0 and 0eX there is another Jjoint strategy

TeS such that

O] T M RGPy 0
e(i)Te(i)

for all iel and
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for all 1ieN-I , and therefore, we have

?,(%,5) = = [-A,(G,% . \,0. . )] > £ [ (5,5 0 . )l=0.5,5) ,
2 ieN iV i7e(i) £(1) S e ivi? e (@) £(1) 2
which is impossible, according to the definition of point 0es . The contradice

tion proves the sufficiency. (Q.E.D.)

Having this simple result, the proof of existence of e-negative simple point

arises immediately.

THEOREM IIT.41: Let Pe = (=

..,Zﬁ; A ,An} . be an n-person game

17 ARk
with simple structure function € , such that the strategy set Zi of player

ieN is non-empty, compact and convex in a linear topological space, his
payoff function A, is convex in the variable o ,..eZ ,. for fixed
i e(i) "e(i)
c c \ X it i i i i g.,c X
( £ (3 )kZi Zf(i) , it is continuous in the variable ( iy f(i)kzi Zf(i)

for fixed o_,.\€Z ,. ,, and finally the function
e(i) e (1)

= A (c
ielN

% (1) % (1)’

is continuous in .0eX . If for each real number & >0 and each 0cY +there

is a joint strategy 7TeX such that

A 00T (1) % (1)) < mR Ay (Gi’se(i)’cf(i)) + 9
e(l) e(i)

for all d4ieIl <for which
o i o

809559, (3% (y)) > min By (9580 (1) % (1))

and

BTy Tey) T PR ARy %))
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for all ieN-I . Then the game Pe has an e-negative simple equilibrium

point. (Q.E.D.)

PROOF: Consider the function

CPE(G)T) = z [“‘A-(T-;G s T . H

defined on the product space XXX . By virtue of the continuity of the payoff
function Ai of player i1eN , on the one hand, with respect to the variable
(Gi’gf(i)) e % X Zf(i) , and on the other hand, of the sum of them with respect
to the variable oceX , then, it follows that for each point 7eX , the functions
@2(T,0) and. QQ(G,O) are continuous in o0eX . The convexity of the payoff func-
tion A, in the variable o , el ,. assures that the function @
i e(i) "e(1)

e

concave in o0eX for fixed TeX . Thus, all the conditions expressed in Theorem

(0,7) 1is

III. 35 are completely satisfied by the function @2 , and therefore the existence

of a point 0eX with

@2(6;6) =  max @E(S,B) is guaranteed.
seXx

Now, by using the result included in the previous lemms since the last condition
.1s satisfied, we obtain that such a point is an e-negative simple equilibrium

point of game r, - (Q.E.D.)

THEOREM III.L2: TLet r = {Zl,...,ZE; Aj,..-,A ) De an n-person game

with simple structure function & , such that the strategy set Zi of
player ieN 1s non-empty, compact and convex in a linear topological space,
. . . . . . . .
his corresponding function Gi( e(i)’cf(i)) is convex in the wvariable
2 f i o
Ge(i)e e (1) or fixed £(1)
b T ixed 0O hN f1
Gf(i)e (1) or Tixe e(i)e e (1) ? and finally

F(1) and continuous with respect to
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é&?iweuVQNiﬂ.

is continuous in oeX . If for each real number & > 0 and each joint

strategy o0el there is a point 7TeX such that

& e (1) % (1)) < < minez 1 ()% ) ¥ 8
e(i) Te(d)

for all ieI for which

¢ (9 (1) %)) > . minez G; (50 (1) % (1)
and e(i) Te(i)
G.(Te 1,0, \) = min G.(Se 30 )
ite()E(1) e (1)5% (1) 17e(i) £(1)

for all ieN-I .

‘Then the game Fé has an ,E?-simple stable point.

PROOF: Consider the n-person game I" = {Zl,--~,2n5 Gl""’Gn} - This game

'™ satisfies all the conditions imposed by the preceding theorem. Thus we know
of the existence of an e-negative simple equilibrium point for game I . Such a

point is an_gm—simple stable point of game T, - (@.E.n.)

The corresponding characterization of e-simple stable points will arise as

a simple consequence of the following lemmsa.

" l}...,n

simple structure function e , such that for each real number B >0 and

LEMMA ITT.43: Tet r, = {zl,...,z ; A A } be an n-person game with

each joint strategy o0eX there is a point <tef such that

o > o -3
Py (7509 1)) max P, (s;,0054)
sieZi

for all iel for which
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CF (05500 05y) < mex Fi(s0004y)

sieZ_
and *
F (t.,0.,.\) = max F_ (s,,0_, )
it i e (L) g ex 14 (i)
i™71
for all ieN-T , and
i C g + O
G Te(1) %)) < S G5 (5 (1) % (1)
e(i) "e(d
for all ied for which
o} i o
G (% (1% (1)) zoomn G; (80 (1) % (1))~
and finally e(i) e (1)
= i g
G; (Te(1)2% (1)) e G (o (1) % (1)
) S ,.N\EZ .
e(i)e(d)
for all i1eN-J . Then, a joint strategy 0OeX is an e~simple stable point
of game Pe s if and only if
- - G =y _ max [9 (s,0) + @ (s,0)]
¢§(c,o) + @2(0,0) = ey * 2
where the functionsare given by
i
@ (G:T) = z F.(U.;T . )
= iy + 17 f(E)
and o
g = - o} o
% (9,7 LG (9 (5% (1))

1eN

PROCF : First of all, we examine the necessity. For this reason, consider the

point GeZ  as an e-simple stable point of game Fe . Thus we have
F.(G.,6_,..) = max F.(s.,0_, .)
it (1) o er i’? £ (1)
and o
G o = 1 G
G (% (1)7% (1) A G; (5 (179 (3))
S, N\EX .
e( e (4
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for all ieN , and therefore

Foo oy G - . -

L0+ Bpo0) = B OE Ee ) BT () Beg)]

i i§1\r s er. F100% ) * ifl\T o e =63 (5 (1% 1)
13 e(i) e(i)

> max ¢F (s,0) + max @ (s o) > max [@F(S,B) + @G(Saa} P
Z ) 1 2
sex seX sex

where only the equality sign must hold. Hence,

9, (5,5) + 9(5,5) = mx [9(5,5) + 9(s,) 1 -

Conversely, let us assume that the point o¢ef satisfies

9. (5,5) + 0(5,3) = max [ ¢ (s,3) + o0(s,3) ]
1 2 1 2
Sen
and suppose that it is not an e-simple stable point of game Pe . Then there exists

& real number & >0 and larger subsets I( N and J(C N such that

Fi(ai’af(i)) < . ng F. (s Y f( )) - B
i7i

for all ieT ,
G,(o_,.\,0.,. >  min G; (s_ ;s + 8
1 ey fe)) > Gle (g 0Gey))
e(i) e (1)
for all ied where I or J are non-empty. But, by hypothesis, for & > 0 and
oeZ there is a joint strategy 7Tef such that

Fi(%i’af(i)) > sfzgl F (b 5 f( >) - B

for all i1el

Fi(%i’af(i)) = sz; F. ( f( ))
i 74

for all ieN-I ,
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G Ce(a)y %)) < min G (50 (1) (s)) * O
S r.\€X 4.
e (i) e (4
for all ied and
G. (T T = i G T
(1) % 1) e 1 e (1) % (1))
S . \EX .
e(i) Te(i)
for all ieN-J . From these relations and the above inequalities, in each instance
we have F oo - Q- - . _ _
@ (T)O) + ACP (T;G) = Z*F.(T-:U . ) + Z ["G-(T .50 . )]
1 2 jey 1 (i) . ite(i)’ £(4)
> % F.(0,,0.,.,) + = [-a (O ,.,5..)]
jey i3 £(i) e it e(i)’ £(i)
B~ o G = -
- which is impossible, according to the definition of the point 0eZ . The contra-

diction proves the sufficiency. (Q.E.D.)

Once established by this result, the examination of e-simple stable points

is straightforward. An existence theorem introduced also in [10], will be recon~

sildered as follows:

THEOREM III.4k: TLet r, = {Zl,...,zn; Al""’An} ‘be an n-person game

with simple structure function e , such that the strategy set Zi of player
ieN 1is non~empty, compaét and convex in a linear topological space for each
df(i)ezf(i> , his corresponding function Fi(ci’of(i)) is concave in GieZi
and Gi(ge(i)’cf(i)) is convex in Oe(i)eze(i) ; for each (ci,ce(i))ezi X Ze(i)
both functions Fi(ci’cf(i)) and Gi(de(i)’gf(i)) are continuous in
Of(i)ezf(i) > and finally both functions

[0
z T, (o, f(i)) and = G

1elN ielN i(ce<i))cf(i>)
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are continuous in o0eX . If for each real number B > 0 and each joint
strategy o0ef there is another 7TeI such that

F.(v.,0.,.\) > max F.(s.,0.,.,) - &
£(i) Siezi iY77 TE(L)

for all ieI <for which

Fi(0,50 ;) < max Fo(s;,0. 1)

s.€X,
i 4
T, ,0 = o
F,(7y5 £(1) wax ¥, (s, f(i))
s.€2,
i 71
for all 1ieN-I , and
T o < mi o
G (T (1) % 1)) < mn o G(s )0 )) B
S . \E€XL 4.
e(i) Te(i)
for all dedJ for which
o) o , i
G; (9 (1% (1)) > min G; (8¢ (1% (1))
S ;. \€X 4.
e(i) e(i)
and finally
(T o] = mi c
ey %)) = _mn o Gle oy
e(1) Te(1)
for all the remaining ieN-J . Then the game Pe has an e-simple stable point.
PROCF: Consider the functions
cﬁ(c,’r) = = F.(0,,T.,..)
1 jey 10 £(i)
and
0(0,7) = B [-G, (0, ;10 Tpp)))
ieN e\t

defined on the product space. By virtue of the continuity of functions Fi and

Gi of player ieN , with respect‘to the variables Gf(i)ezf(i) B and on the other

hand, by the continuity of their sums with respect to the variable o0eX , then,
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it follows immediately, that for each point TeX +the functions @i(T,G) + wg(T,O)
and @i(c,d) +.¢g(0,0) are both continuous in o0eZ . The concavity of the

function ”Fi: in. the wvariable OieZi and the convexity of the function Gi in

. . B G . . .
‘Ge(i)eze(i) 5 assure that the function @l(G,T) + @2(0,T) is convex in the varia-

ble 0ef for fixed teX . Thus, all the requirements given in theorem III.35
.Tor the function ¢§ + ¢g are satisfied, and therefore the existence of a point
gex

A(6,5) + 95(5,5) = max [ (s,5) + of(s,3) ]

S€2

is shown. Now, by the last condition, the preceding lemma is also satisfied.

Then such a point ges is an e-simple stable point of game Fe . (Q.E.D.)

- As an application of this result, we will now characterize the e-simple

saddle points in the next theorem, where we assume stronger conditions of continuity.

i

THEOREM IIT.L5: Let T, = L2 3 A

e 10T T

simple structure function € , such that the strategy set in of player ielN

.}An} be an n-person game with

is non-empty, compact and convex in a linear topological space and his payoff
function is continuous in the product variable o0eX , concave in OieZi for
i o o] % z dc in O % i ixe
fixed ( (1)’ f(i))e < (1) £(1) and convex in e(1)% (1) for fixed 7
G . ) Y ol
( 12 f(i))eZiiX Zf(i) If for each real number & > 0 and each joint
strategy oeZ there is another e such that

Fi(Ti’Gf(i)) > max Fi(si’df(i)) = B
siezi

for all iel for which

Fi(qi’gf(i)) < max Fi(si;cf(i)) p)
sieZi

F.(1,,0.,.,) = max F_(s.,0.,. )
it i’ TE(L) Siezi iY77 f ()



- 194 -

for all the remaining ieN~I R

AT N0, < i
Gl( e(i)’ f(l)) min G'(Se(i)’af(i)) * 0
S /. \EZ .
e(1)™"e(1)
for all ied for which

Gi(ge(i)’cf(i)) > ] minez Gi(se(i)’cf(i))
e(i) Te(i)

and finally

T = i o}
Ci e (1) % (1) i G (5 (1) % (1))
S_/:\€Z .
e(1) Te(1)
for all the remaining 1eN-J . Then the game Pe has an e-simple saddle point.

PROOF: For player ieN , Since his payoff function Ai is concave in OieZi R
then, also his corresponding function Fi(gi’gf(i)) is concave with respect to

the variable cieZi for fixed Of(i)ezf(i) - On the other hand, by the convexity
of Ai in Ge(i)eze(i) , the convexity of function Gi(ce(i)’gf(i)) with respect

to Ue(i)eze(i) for fixed Uf(i)ezf(i) holds true. The conditions of continuity
required by the previous theorem, are obviously completely satisfied. Finally for
the last condition, the validity of the last requirement of the above theorem holds

true. Thus, the existence of an e-simple stable point gex of game Pe is

demonstrated:
F.(6.,0.,.y) = max F.(s.,o_,. .)
iV i TF(L) g ex 1i £(i)
i~71
and
T ) = i 0
0% (1) % (1)) = min & (e (1) % (1)

e (1)%% (1)
for all ieN. ’

Now, for player ieN , consider the Bf(i)-associated zZero=sum two-person game.
This game, since the payoff functicn Ai is concave in Giezi and convex in

Ge(i)eze(i) > has the minimax property, in virtue of theorem IIT1.39. Then, it
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e, 1) T e Gleytgy) s
1 1

and therefore, one has

Ai(ai’ae(i)’af(i)) = F'(ai’af(i))

= G (0051591 ))

for all 1ieN . Such a point is an e-simple saddle point of game Pe . (Q.E.D.)

A further characterization of these points will follow immediately after the

following result, which indeed is essentially the lemma III.43.

LEMMA IIT.U6: TLet ré = {=

.,An} be an n-person game with
simple structure function € , such that for each number & > 0 and each
joint strategy oeX there is a point TeX such that
T,,0 o) > o o - 0
Ay (T e(1)7% (1) Smig A (s e (1) % (1)
i1
for g1l iel for which

80050, (1% (1)) < mex By (8559 (3)2% (1)) 3

s.€2,
1 1
A (t.,0 .0, ) = max A.(s.,0 , ,0_,. )
it i’ e (1) f(1) g ex 14 e(i)’ £(i)
i1
for the remaining ieN-I , and
800557 (1) % (3)) < min A1(0558,(1y% (1)) + B
S /. \€X .,
e(i) Te(i)
for all ieJ for which
i o
By (0550, (5% (1)) > SR By(05580 (5% (1))
and finally e(1) e (1)
o = i g o
A, 17T (1% (1)) mn 2y ( 1% (1)7 % (1)’
S . €L
e(i) e

Tor all the remaining ielN-J .
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Then a joint strategy 0TeX is an e-simple saddle point of game Pe , 1if and

only if Lo o _ _
C‘Pl(G;G> + CPQ(U;G) = 1;12'35 [CPl(S,G) + @2(5)(3')]

. PROOF: First we will show the necessity. Let the point 0er be an e-simple

saddle point cof game Pe . Then

- - - - - =
ACIPL TP AR max Ay (8150, (315%;))
5,€2,
i1
= m 5 G
min By (9458, (1)2% (1)
S ;. \E€X .
e(i) "e(i)
for all 1ieN , and therefore
9 (5,5) + 9.(5,5) = £ A.(9,,5 ,..,0.,.\) + Z[-A (T.,5 ,.\,0.,..)]
1 2 jey 101 e(i)’ £(1) sey o1 e(d)’ £(i)
= 3  max Ai(si’ae(i)’af(i)) + I  max [-Ai(ai’se(i)’af(i))]
ieN s.eZ, ieN 8 _,.\€X .
1571 e(i) 7e(i)
> max [cPl(S,-C'Y) + @2(5;5)1 E
seX
where only the equality sign must hold, that is
seX
Conversely, let us assume that the point 0cX satisfies
@l(a,B) + @2(5,3) = max [@1(5,5) + @2(5,5) ]
sex
and suppose that such a point is not an e-simple saddle point of game Pe . Then

there exists a real number & > 0O .and larger subsets ICN and JCN such that

850009 1) %)) < e Ay (55590 (19% 1)) - ©
i i

for all i1iel ,



- 197 -

1y %)) > . I?”)lez (_)Ai(ai’se(iyaf(i)) + b
ell [SH

i
Ai( i
for all ieJ with I or J non-empty. But by hypothesis, for & > 0 and the

point O¢x there is another joint strategy TeX such that

1000 (1) % 1)) > ey, 1@yt 7
for all iel '

A% 1% a)) = e A (90 1)y ))
for all ieN-I , o
B3 (0% (1% (1y) < min Ay (008 (11292 (5)) *+ B
8 . EX .
e(i) e (1)
for all dieJ and finally
g, o = i o 5]
Ay (0% (497 % (1)) i 8300558 (1y2% (1))
S /. \EZ .
e(i) Te(d)
for the remaining i1eN-J . From all of these strict inequalities, we have in each
instance
@l(T;G) + @E(T;U) = X Ai(Ti’Ge(i)’Gf(i)) + X [-Ai(ci’Te(i)’Gf(i)) ]

ieN ielN

> Ai(gijae(i)’af(i)) + X [—Ai(ai’ae(i)’af(i)) ]

ieN ieN
= @1(6,3) + @2(0,0)
which 1s impossible, according to the definition of joint strategy 0eX . The

contradiction proves the assertion. (Q.E.D.)
Having this simple result a further examination of e-simple saddle points is

a very simple tasgk.
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THEOREM III.47: ILet I = {zl,...,zn; Al,..

with simple structure function € , such that the strategy set Zi of player

"Ah} be an n-person game

1eN 1is non-emply, compact and convex in a linear topological space, for
i i _ g i in
each Gf(i)ezf(i) his payoff function Ai(ci’ce(i)’ f(i)) 1; concave in
og.ex, for fixed o , (el ,. and is convex in ad ,,\eX ,. for fixed
i 71 e(i) "e(i) e(i) "e(d)
. . Ly s b . -
0,ex, ; for each 0,eZ; it is continuous in (0 1\’ )eZé aﬂd

(i

~each real number 8 > 0 and each joint strategy o0eX there is a point

it d nti 1s i g.,0_,, 2 XZ.,.y - If fo
for each Ge(i)eze(i) it is continuous in ( 57 f(l))e 5 (1) r

Te2, such that

c - B
b (P50 (1) % 1)) > g Ay (8559 (1% (1))
i1
for all ieI for which‘
Ai(gi’ce(i)’of(i)) < maXAi(Si’Ge.(i)’cf(i)) ’
s.€2
A.(T.,G . ;U . ) = maXA ( ; )
ivi’Te(1) £ (1) s, €%, ( )’ E(1)
for the remaining 1eN-T , and
. .' 0
A (00T (1) % (1)) TR Ap(T8 (50 (5)) + B

for 811 diedJ for which
. G
8;(9359 (1% (1)) > min 81 (%3586 (1) % (1))
and finally
ATy tey) = me A (05 ()% ()
S s.\EX 4.
e(i) “e(i)

for the remaining ieN=J . Then the game Pe has an e-simple saddle point.
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PROOF : Consider the functions ®l(G,T) and @2(0,1) defined on the product
space. On the one hand from the continuity of payoff function .Ai of player ieN ,
with respect to the varisble 'Gf(i)ezf(i)’ for fixed (Gi’ge(i))ezi X Ze(i) , the
function ,@l(T,G) + @2(1,0) is continuous with respect to o0eZ for fixed Tel .
On the other hand, the function @l(c,c) + ¢2(G,G) is continuous, because it is
zero identically. Finally by the concavity and convexity properties of payoff
function ‘Ai , we have that the function @l(G,T) + @2(0,1) is convex in the va-
riable oeX for fixed 7TeX . Thus, all the requirements given in theorem ITT. 35
Tor the function ¢l + ¢2 are completely satisfied, and therefore the existence

of a point Oex :
9, (5,0) + 9,(5,5) = max [9,(s,3) + ®,(s,5) ]

is given. Now, by the above lemma, since the condition on it for game Fe is

also satisfied, such a point is an e-simple saddle point of game Ié . (Q.E.D.)
We note that the Nikaido's result given in theorem III.39, astes also
immediately as a particular case of the previous existence theorem.
Finally, we recall that as has been pointed out in other sections, some of

the theorems considered in this section have notvalue in the case when the simple

structure function has an empty indifferent coalition for all the players.



- 200 -

CHAPTER IV

Iv.1 E-Equilibrium Points

s

"y

This chapter is devotedﬁto an extension of the concepts formulated in
the first and second chapters for ;eneral games. Technically, the first part
is a straightforward extension of those results.

The introduction of e-simple equilibriﬁm points has been founded on the
concepts of simple structure functions and associated zero-sum games. The
associated game of a player represents the real situation he sees in the game,
‘since he 1s considered embedded in it. .From this point of view, the situation
of' the players depend strongly upon the structure function, that is, on the
composition of the respective indifferent and antagonistic coalitions. These
technical concepts have been introduced using the important intuitive concepts of
enemy and indifferent player. The very important concept of friendness player,
is only considered when the first player in the associated game is assumed normal,
since he is trying to obtain greater winnings, we can consider heuristically that
he 1s friend of himself.

Now, one can try to extend the concept of friendness in a natural
‘manner, similar to what has been done for indifferent and antagonistic coalitions.
In this way a structure for the game will be imposed.

Let us consider an n-person game I = { Zﬁ"“"Z%3A1’°°°’An } with the
usual properties, that is, where the strategy set of player 1i€N is a non-empty
compact set in a euclidean space and his own payoff function is a continuous
function in the product space. Furthermore, the real situation involving the

representation of game I' allows only non-cooperative behavior among the players.
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For a given player i1€N of the game I', we now can see the set of players

N , divided into three disjoint groups of players, such that
N = d(i)Ue(i)Uf(i)

The new set of players given by d(i) , possesses the role of the player i€N
himself in the old description, that is the player 1i€N is now replaced by the set
of players d(i) . TIn the old descriptions the first player was considered normal
in the associated game, now the players in d(i) represent this. They are the
players in the game I' , who are trying to help player i1€N with respect to his
own position. By this reason, it seems natural to consider the players in the
set d(i) as the friends of player 1€N . On the other hand, the remaining sets
e(i) and f£(i) are regarded as in the old description, to be the antagonistic and
indifferent players, respectively. In this new approach the condition N-{i} = e(i)Uf(i)
is not necessarily satisfied.

Formally, a function

E:N — l_DNXE’NX];:’N

which for each player i€N = (1,,..,n} of the n-person game I' assigns three
such that d(i)JU e(i) U £(i) = N
disjoint subsets of players given by E(i) = (a(1), e(i), £(1i))|, is called a

structure function of the game I'. Furthermore, the set of players d(i) 1is said

to be the friend coalition of player i€l .

Again, an n-person game with an associated structure function E P
which is represented by Iﬁ = (IE), will be for simplicity, also called a game.

We note that the concept of simple structure function, now appears as a
special case of this new concept just introduced. In fact, if the friend coalition
of each player i€N 1is formed by himself alone, that is: d(i) = (i} , then the

simple structure function is obtained.
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It is interesting to point out, that due to the flexibility and the symmetry
of this new structure function, one can easily handle many "pathological" situations,
which arise when a player does not belong to his corresponding friend coalition.

On such circumstances, he is a member of his indifferent coalition, or even more
peculiar he is a member of his own antagonistic coalition. Of course, these gitu-
ations generally are not counsidered in the literature, but it is interesting to
observe that they could still have real representations.

Having already introduced the new structure function and in accordance with
the above, we again consider the player i€N embedded in game I' , in a two-person
conflict depending on the choice of the indifferent coalition (i) ; where his own
friend coalition has the role of the first player and his antagonistic coalition
has the place of the second player.

In a formal manner, for the player i€N = {1,...,n} in the game Iﬁ and a
joint strategy Of(i)ez%(i) of the indifferent coalition f(i) , we define the

of(i)_ assoclated zero-sum two-person game with respect to the game Iﬁ with

structure function E , by

L)) = L2000y Ze (1381 O g1y 0a (1) 02(1)) )

With the introduction of the new associated game, now, we are able to intro-
duce new concepts regarding games Iﬁ with an associated structure function. 1In
fact, such an introduction will be a natural consequence of the assigned character
of the constituent parts in the associated two-person games. Of course, the role
assigned to the indifferent coalition (i) of the player i€N , will remain con-

stant throughout the discussion, similar to the way 1t was done in the previous

considerations.
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First of all, we will extend the concept of positive simple equilibrium point.
This will be done by assigning to the player formed by the coalition e(i) , the
indifferent character in the associated game. Furthermore, the first player (formed
by the friend coalition d(i) ) is considered as having a normal player, thus it
will try to maximize the position of the corresponding player i€N .

Tndeed, the situation described by the above assignations, can be seen
more naturally by considering the indifferent coalition of player 1i€N to be
formed by e(i)uf(i)

A point 0O = (Gl"'°’6n) belonging to the product space 2 is called an

E-positive equilibrium point of the n-person game Iﬁ = { Zi,,o.,ZQ;Al,a,o,An }
with structure function E , if for each 5f<i>—associated game

I}(&f(i)) = { Zﬁ(i)’zé(i)sAi} of player i€l :

8 Oq(1) 01y Te(s)) = mx A (8500 50005y)
S, .\€X. .
ai) Ta(i)
This concept was introduced in [ 11 ] . TFrom an intuitive viewpoint, an

E-positive equilibrium point is a rule of behavior which is such that if some members
of the friend coalition of a player change from it, then the profit of this player
will be decreased, assuming that the players not in the friend coalition abide by it.

Before formulating an existence theorem for E-positive equilibrium points,
the following concepts should be reformulated. A real function A defined on a

convex set 2 in a euclidean space is called quasi-concave on Z , if for any

real number A the set

{oe:a(o)>A }

is convex. Similarly, it is said to be quasi-convex:on 2 if the get
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{ oeZ:a(o) < A}

is convex. Equivalently, one can define such a function by replacing the strict
inequality sign by the non-strict inequality sign in the definition of the level gets.

Again, we note that a concave funection is quasi-concave. Indeed, let T and T

be two points such that
A(T) > A and A(T) > A

for a real number A , then because the. function is convex, for any real number L

in the closed unit interval, we have
APT+H(1-A)T) = pA(T)+(1-R)A(T) > A

which implies the quasi-concavity of the function. Similarly, a convex function

is quasi-convex.

An important property of such kinds of functions which will be used later

is formulated in the following result.(*)

LEMMA TV.1: Let Z& and ZE be non-empty, compact and convex sets

each in a euclidean space. Let A and B be a continuous real function

defined on the product space Z&xZé , such that for each UEEZE , the

function A<01’02) is quasi-concave and the function B(Gl’02> is

quasi-convex with respect to the variable GlGZﬁ . Then, the functions
sz‘% A(O‘l, 82) and szz}z% A(Gl, 82)
22 272

are respectively quasi-concave and quasi-convex in the variable GlEZi ]

*)
These definitions and results expressed have already been used
in the more advanced approach given in Chapter ITT.
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PROOF: Let Gl and 5& be two points in Zﬁ for which the function

min A(-,sz) takes values greater than a given real number A . Suppose that
SEGZE

for a real number  WME[O,1]

. ~ _ ~ <
Smén A(pol+(l u)al,sg) =A
2 2
Then, for at the point TéGZé ;> at which this minimun is reached, on one hand we

would have

On the other hand, because on the points 51 and 1

N

A(Gl’SE) > A and A(Gl,sg) > A

for all SEEZ% , 1t follows that

A(al, Tg) > A and A(O‘l, 72) > A

This is impossible since the function A 1is quasi-concave with respect to the

variable O €Z& at the point 7_€2, . Then the function min A(-,s.) is
1 2 2 2
52€Zé

quasi-concave in the variable GIGZi .

Similarly, let the function max B(-,sg) not be quasi-convex with respect
32€Zé

to 02625 . Then, for some real number A s> the set

{BA = {0,€%: wmax B(O’l,sg) <A}
Sp€%%
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would be non-convex, and therefore for some two elements ?i and ?1 in BA

and some real number [ in the closed unit interval, we would have

max  B(UT +(1-K)T,,s.) = A
5,E2, 2 1’52

From this, for the point TéGZé where this maximun is reached, it follows that

B(UT +(1-p)T , 7,) =A

This is impossible, since B(T ,T2) and B(?i,Tg) are less than A and the function

B is quasi-convex in the variable OIGZi . Hence, the function max B(-,s
52€Zé

2) is

quasi-convex in GlGZi . (Q.E.D.)

Another very simple and useful tool for all the theorems considered in the
subsequent discussion is given in the following formulation, which could follow

immediately from Lemma IIT.2.

LEMMA IV.2: Let 2 be non-empty, compact set in a euclidean space.
Let A Dbe a continuous real function defined on the product space 2Zx% .

Then the multivalued functions

m

PLe Lo
defined by
0 (0) = { T€2:A(T,0) = max A(s,0) }
SEX
and
cpm(c) = { 1€Z:A(T,0) = min A(s,0) }

SEX

are upper-semicontinuous.
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PROOF: Consider two arbitrary converging sequences
o(k) - o and (k) 57

in the space X, such that for every positive integer k : T(k)€¢m(0(k)) s
that is

A(7(k),0(k)) = max A(s,0(k)) .
SEX

Now, by virtue of the continuity of the function A in the variable product,
the function maximun is also continuous, and therefore the convergence of the

following sequences of real numbers is guaranteed:

A(1(k),0(k)) - A(T,0)
and

max A(s,0(k)) —»max A(s,0) .
sS€X SE€EX

This implies equality between the limiting values:

A(T,0) = max A(s,0) ,

s€X
which means that the point 7T is an element of the set wm(G) . Hence, the
multivalued function mm is upper-semicontinuous. By taking B = -A in the

previous discussion, the upper-semicontinuity of multivalued function wm can be

proved. (Q.E.D.)

Having these results, we now are going to formulate an existence

theorem for E-positive equilibrium points.

THEOREM IV.3: TLet Iﬁ = {2 ,,.,,Z%}Al,..a;An} be an n-person game
with structure function E , such that the strategy set Zﬁ of player

i€N is non-empty, compact and convex in a euclidean space, and his
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payoff function Ai continuous in the variable 0€X ; and quasi-concave
with respect to Gd(i)ézg(i> for fixed (Ue(i)’gf(i)>€Zé(i)xz%(i) .
If for each joint strategy C€X there is another point T€S such that for
all 1i€N

A

.(Td(.),O'e )95 ) = max Ai(sd 1179115 ( 5 )
R O N DICOREO

then the game Iﬁ has an E-positive equilibrium point.

PROOF: Consider for a point O 1in the non-empty, compact and convex product space

the non-empty convex set \

;(0) = { TEZhAi(Td(i)’Ue(i)’of(i)) = max A (84(1)2%(1)7 (1)) }

*a(1)%a(1)
Indeed, given two arbitrary elements 7 and T of the set ®i(0) , we have from
the definition:

A 0Ta(1)%e(1)%2(1)) = A1 (Ta(1)% (1) T5 (1)) = omE A (Sa0) T (1) %5 (1))

a(1)Fa(1)

which implies
Ai(ATE(i)+(l_h)?d(i)’oe(i)’of(i)):AAi<Tﬁ(i)’Ge(i)’af(i))+(1'A>Ai(?ﬁ(i)’ce(i)’cf(i))

=  max A, (s
i

a(1)"%(1)°%¢(1)) -
SRR ORECREE

for all real numbers A in the unit closed interval, since the payoff function Ai
is quasi-concave in Gd(i)ezﬁ(i) - This means that the point AT+(1-A)T 1is an
element of mi(c) , since all the strategy sets are convex. Hence, the set ¢i(a)

is convex.
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Let us consider the multivalued function
Ve 20— 2
defined by the convex set

v(e) = n o)
ieN

for each point ¢ in the product space X . The set V(o) 1is non-empty by the
last condition. Furthermore, by TLemma IV.2, the multivalued function wi(o), for

each player 1i€N , is upper-semicontinuous and therefore, because the graph of the

multivalued function + is the intersection over i€N of the graphs of P,

G, = & G
? iew %

we obtain the upper-semicontinuity of o
Thus, as usual, we are able to apply the Kakutani's Fixed Point Theorem
to the multivalued function V , obtaining a fixed point 0€2:0€y(T) , on which the
payoff function of player i€N is:
A00g(1) Oe(1)Te(s)) = max  Ai(8q051:00051:00051)
CPPRN >
d(i) "a(i)

Then, this point is an E-positive equilibrium point of game Iﬁ . (Q.E.D.)

The last condition of this theorem, which is regarded as the defense property
of the game with respect to the E-positive equilibrium concept could be interpreted
as follows: for any accepted behavior among the players there exists another behavior
such that if all the players which are not in the friend coalition of a player abide

by the first one, then, the second one maximizes his own position.
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As an application of the result described previously, we formulate the

following existence theorem for mixed extensions of finite n-person games.

THEOREM IV.4: ILet I; = { ZiseensDshysee A } be a finite n-person

game with structure function E , such that the payoff function of player

1€N is of the form:

_ J
85 (T3(1)%e(1)%£(1) “jei(i) 830050411y T¢ (1)) -

If for each point x€X = X Si there is another point y€X such that for

jen ?
all i€N :
Ei(yd(i)’xe(i)’xf(i)) "L maﬁz; Ei<sd(i)’xe(i)’xf(i)) ’
da(i) "a(i)

~ ~~ ~

‘then, the mixed extension Iﬁ = { Z&,...,Z ;El,...,En } has an E-positive

equilibrium point.

PROOF: Consider for player 1€N , the expectation function Ei , which by the form

of the payoff function Ai » has the following form

- J
% Can) Fe() (1)) = 2y S Re () e(n))

where ei denotes the expectation function of the function ad . Because each

i
function ei is linear with respect to the variable xjéXj , Lemma TI.l11 then says

that the expectation function Ei is linear in the variable Xd(i)GXd(i) . Thus,
the requirement on the form of payoff functions of theorem IV.3 is satisfied by the

mixed extension game Iﬁ with structure function E . Furthermore, the last condi-

tion is also verified. Thus, the existence of an E-positive equilibrium point of

~

mixed extension I' is obtained. (Q.E.D.)
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An example, for which that condition holds true is illustrated by the game
Iﬁ » With structure function E given by the partition P = (Pl’°'"’Pr) of the
players set N , that is, for all 1€P€P then d(i) =P and e(i)uf(i) = N-P ,
and the payoff functions are determined by

> ad @,

A3 Og3)%e(1yue(a)) = searn) L Te(iur(1))

where for every joint mixed strategy X, and for each j€d(i) = P there

(1)uf(1)
is a yjezg for which

J _ J
e ) T S ey
Jd J

“ for all Jj€d(i) = P , where ei denotes the expectation of the function ai
A special case is obtained when for each Pe€P all the functions ai with 1,jep
coincide. Thus, in such situations there is some E-positive equilibrium point.

The dual concept of E-positive equilibrium point can be derived, by regard-
ing on the one hand, the second player, in the associated game of each player,
determined by the choice of hig indifferent coalition, as normal. Thug, the
antagonistic coalition ig acting to hurt this corregponding player. On the other
hand, assigning to each friend coalition an apathetic behavior with respect to the
position of its corresponding player.

On the base of this observation, formally, given an n-person game
Iﬁ = { Zi""’Z%5Al’°’°’An } with structure function E ; a joint strategy O€X

is said to be an E-negative equilibrium point of the game T

E if for each

of(i)_ associated game I;(éf(i)) = { Zﬁ(i)’zé(i);Ai} of the player i€N :
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8;G3(1)% (1) 0¢(1)) = ™1 _Ai("d(i)’se(i)’af(i))

for every player 1€N .

This concept is a simple extension of the e-negative simple equilibrium
point which also is found in [11] . This latter concept is derived when the
structure function E of the game FI‘ is determined by having all the friend
coalition identified with the corresponding player.

Heuristically speaking, an E-negative equilibrium point is a rule of
behavior which is such that if some of the players belonging to the antagonistic
coalition of a player change from it, then, the position of this player will be
increased, if his friend and indifferent coalitions abide by it.

We note that, apparently, one may think that this concept essentially coin-
cides with the e-negative equilibrium point by associating the following simple
structure function e(i) = (e(i), d(i)uf(i)) for every player i€N . But,
unfortunately, we do not obtain such a connection, since we can be in a patho-

logical situation, that is, some players could be a member of his own antagonistic

coalition.
A general characterization of this kind of points is formulated in the

following result, which is essentially theorem II.l.

THEOREM IV.5: Let Ij = { Zsee B A, A } be a finite n-person

game with structure function E , such that the strategy set Zﬁ of player

i€N = {1,...,n} 1is non-empty, compact and convex in a euclidean space, and

his payoff function Ai is continuous in the variable 0€X , and gquasi-convex
with respect to Ge(i)efé(i) for fixed (Gd(i)’of(i))Ezé(i)xz%(i) . If for
each joint strategy O€X there is another point T€X such that for all i€N :
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Ai(od(i)’7é(i)’of(i)) " migz Ai(ad(i)’se(i)’af(i))

e(i) “e(i)

then, the game Iﬁ has an E-negative equilibrium point.

PROOF: For a point O 1in the non-empty, compact convex product space 2 , let

8., . \EL ..
a(i) "a(i)
be a non-empty set in X , corresponding to player 1i€N . Tt is convex, since the

payoff function Ai is quasi-convex with respect to the variable Ge

€
e

(1) e(1)

Define the multivalued function

Ve 22

as the convex set

¥(0)= No, (o)
1eN

for each point O 1in the product space X . The set ¥(0) 1is non-empty by virtue
of the last condition. By the continuity of the payoff functions, then, Lemma IV.2,
assures the upper-semicontinuity of the multivalued function Vo,

Thus, Kakutani's Fixed Point Theorem applied to V¥ , assures the existence

of a fixed point 0€X:0€V(F) . Such a point is an E-positive equilibrium point of
the game Iﬁ . (Q.E.D.)

The attack property of the game Iﬁ with respect to the E-negative
equilibrium point is expressed in the last condition of the previous theorem,

and has the following intuitive meaning: for any accepted joint behavior between

the players there is another actuation such that if all the players which are not
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members of the antagonistic coalition of a player abide by the first one, the
second one minimizes his own position.

As an immediate consequence of this result regarding E-negative equilibrium
points, we derive the following existence theorem for mixed extensions of finite

games.

THEOREM IV.6: Let Iﬁ ={Z ""’Z%EAl""’An } be a finite n-person

game with structure function E , such that the payoff function of player

1€EN is of the form:

2 aj

8:(0001)%e(1) (1) " cect) 1(04(1y7937%¢(1)) -

If for each point x€X = X fi there is another point y€2  such that for
jen *
all 1ie€N

Ei(xd(i)’ye(i)’xf(i)) T éin Ei(xd(i)’se(i)’xf(i)) )

then, the mixed extension Iﬁ = {Z l,...,Z%;El,...,En} has an

E-negative equilibrium point.

PROOF: By way of the form of the payoff function A  of player 1€N in the
Ea— i

game Iﬁ , Lemma I.ll then assures that the expectation function Ei is a linear

function with respect to the variable Xe(i)exe(i) . Thus, all the conditions re-

~

quired in the previous theorem, are satisfied by the mixed extension Iﬁ and so

~

the game Iﬁ has an E-negative equilibrium point. (Q.E.D.)
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We note that the E-negative and E-positive equilibrium points are connected
by a simple relation. In fact, consider for the game 1IT, = { Zi,.,.,z SAL, . ..,A )
E n’ 1 n
with structure function E the following associated n-person game:

{ Zi,... -Al,...,—An } where the new structure function E is defined by

E(i) = (e(i),d(i),f(i)) for all player i€N , Thus, from the definition, we have

that the E-positive equilibrium points of game I', coincide with the ﬁ—negative

E
equilibrium points of game IE* and the E-negative equilibrium points of game Iﬁ
E
‘are the E-positive equilibrium points of game I'x
E

Both previous concepts, together, determine an extension of e-simple saddle
point. This is achieved by assigning the normal roles to the respective friend and
antagonistic coalitions of every player in the associated game determined by the
actions of his respective indifferent coalition.

Formally, given an n-person game Iﬁ = { Zi,.O,,ZQ;Al,..o,An } with the

structure function E , a joint strategy 0€Z is said to be an E-neutrsl

equilibrium point or E-saddle point of game Iﬁ , 1f for each 5f(i)—associated

game I‘i(af(i)) = {E (1) e(i);Ai }  of the player i€N :
e, a0 %e(1)Te() R Cag) Feqay Teqay) = mn L MGy (s Tegsy)
a(1) %a(s) "a(1) (1)

In other words, if it is an E-positive and E-negative equilibrium point.

An E-saddle point is a rule of behavior which for each player 1i€N is a
saddle point of the resulting game, if all the players of the indifferent coalition
abide by it. In other words, it is optimal for each friend coalition and antagonistic
coalition with respect to the position of the respective player, given the actions

of the indifferent coalitions.
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A first result concerning these points for the games under consideration

(which is a simple extension of Theorem II.3)is formulated as follows:

THEOREM IV.7: Let Iﬁ = { Zﬂ,...,Z%}Al,...,An } be an n-person game
with structure function E , such that the strategy set Zﬁ of player ieN

is non-empty, compact and convex in a euclidean space, and his payoff function
Ai 1s continuous in the variable 0€X , quasi-concave in the variable
Gd(i)EZE(i) for fixed (Gd(i)’af(i))Ezﬁ(i)xz%(i) ; and quasi-convex in the
variable Ge(i)ézg(i) for fixed (Od(i)’af(i)ezﬁ(i)xz%(i) . If for each joint
strategy ¢g€Y there is a point Ter, such that

A (T, .5 N\ ) = A, Ny N\ X

e tew) 7, me | Bl % e
and'

81001y Te(1) (1)) = . (‘fﬁz (_)Aiwd(i)ﬂse(i)"’f(i)) :

then, the game Iﬁ has an E-saddle point.

PROOF: For a point O 1in the product space define the non-empty set -

;(0) = { €Ay (T4(3)0e(1)0p(1)) =  max A1 0sq¢1y (1) %2(1))
S, \EX .
a(1) Ta(i)
N TERA (045 y0To(1)/0p(1y) = m A O(ayrse(a)Pe(a))
Se(1) (1)
for player i€N . It is convex, since the payoff function Ai is guasi-concave in

the variable Gd(i)Ezﬁ(i) and quasi-convex with respect to Ge(i)EZQ(i) .
Thus, by the latter condition on the payoff functions, for any 0€X

the set
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¥(o) = no, (o)
ielN
is non-empty and convex, since all the strategy sets are convex. This then

determines a multivalued function

Vi Z - Z

which, by virtue of the continuity of payoff function, and Lemma IV.2, is upper-
semicontinuous. Hence, the Kakutani Fixed Point assures a point 5€ZX&€W(&)

Such a point is an E-saddle point to the game Iﬁ . (Q.E.D.) .o~

Again, the latter condition on the previous theorem has the character

of the attack and defense property for the game Iﬁ

with respect to the E-saddle point concept. This can be seen in the following

with structure function E ,

heuristic point of view for any accepted Jjoint action between the players in the
game Iﬁ » there is another one which is such that, if all the players of the in-
different and antagonistic coalition of a player abide by the first one, the second
one maximizes his own position and minimizes it in the resulting game of the actions
of his friend and indifferent coalition.

As a special case, we obtain the following result regarding mixed extension

of finite games.

THEOREM IV.8: Let Iﬁ = { Zﬂ”°°’2£3Al’“'°’An} be a finite n-person game

with structure function F » such that the payoff function of the player i1i€N

-1is of the form:

_ Jsk
A1 08(1) % (1) p(1)) = jE?(i) kezki) 877 (050005¢5)
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If for each point x€X = X i% » there is another point y€X such that
JEN
for all ieN
By a1y %e (1) %e(1)) = Qs BBy FeayXes))
d(i) "a(i)
and
Ei(xd(i)’ye(i)’xf‘(i)) = ma Ei(xd(i)’se(i)’xf(i)) ’
SN
e(i) Te(i)

then, the mixed extension Iﬁ = { Zﬁ,...,Z%;El,...,En } has an E-saddle point.

PROOF: By the form of the payoff function Ai of palyer 1i€N , Lemma I.1l assumes
that the expectation function Ei is bilinear with respect to the variable
(Xd(i)’xe(i))€Xd(i)XXe(i) for fixed Xf(i)€Xf(i) « Thus, all the requirements of

~

the preceding theorem applied to the mixed extension Iﬁ are completely satisfied.

~

Then, the game Iﬁ has an E-saddle point. (Q.E.D.)

As what has been commented in the first two chapters about the equivalence
and interchangeability properties of e-simple points, one can easily observe that
the E-positive, E-negative equilibrium and E-saddle point do not satisfy generally
such properties. Nevertheless, in the special case where the structure function
has all the indifferent coalitions empty, then for E-saddle points the same properties

hold true. 1Indeed, these facts are illustrated in the following results.

THEOREM IV.9: Let Ié = { Z&""’Z£5A1’°"’An } be an n-person game

with structure function E such that all the indifferent coalitions (i)
are empty, the strategy set Zé of player 1€N 1is a non-empty, compact

and convex set in a euclidean space, and his payoff function Ai is
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continuous with respect to the variable O0€X . Then, all the E-saddle
points of game Iﬁ are equivalents, that is, if 0 , 0€X are two

E-saddle points of game Iﬁ , then

for all the players 1€N .

PROOF: For each player i€N , consider the associated game I} = { Zﬁ(i)’zé(i);Ai 1.
Because the payoff function Ai igs continuous, the requirements of theorem I.3 are
satisfied for the points O and G . Thus, the payoff function of player 1i€N

coincide on them. (Q.E.D.)

For the typical kind of games consgidered in Theorem IV.7 we have the

following result which is a simple extension of Theorem I.L.

THEOREM IV.10: Let I = { Zﬁ,,,o,Z%;Al,..,,An } be an n-person game with

structure function E such that the indifferent coalitions f(i) are eumpty,
the strategy set Zﬁ of player 1€N 1s non-empty, compact and convex set
in a euclidean space, his payoff function Ai is continuous with respect to
h i € i~ i i . E ;

the variable 0€X , quasi-concave in Gd(i)ezﬁ(i) for fixed Ge(l) Zé<l)

and guasi-convex in O'e(i)€ze(i) for fixed O'd<i)€zd(i) . 1If, for each

joint strategy O€X there is a point T€Z such that

A (Ta01) (1)) = Sd(f?izﬁ(.)Ai(sd(i)’ae(i))
and
80041y Te(s)) = | mB 'Ai(od(i)’se(i))
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for all 1i€N , then the set of E-saddle points of game Iﬁ is non-empty,

compact and convex.

PROOF: By theorem IV.7, the set of E-saddle points of game IO

E is non-empty. Now,

we are going to show the compactness of this set. Consider an arbitrary sequence

o(k) »0 of E-saddle points for the game Iﬁ , that is, for any positive integer k:

i . X Ly ) =AL . . = . RENL O
] mlzz Al(cd(l)(k)’se(1)> Al(ad(l)(k>’0e(1)(k)) . ma?Z Al(sd(l)’ e(l)(k)>
e(i)%e(1) d(i) "a(i)
for all the players i€N . By the continuity of payoff functiong, the three
sequences having their general terms formed by the latter expressions given in the

equalities, converge to the values obtained by replacing the point (Gd(i)(k)’ae(i)(k))

with (Gd(i)’oe(i)) .  Thus, for the limit points, we have
min Ai<od(i )8, .)) = Ai(O'd 11%(1 ) =  max Ai(sd i)’oe .)) .
Se (1) (1) et 7 Sa(1)%a(1) ( .

for every i€N . Then, the set of E-saddle points of game Iﬁ is compact.

For the convexity, let G and & be two arbitrary E-saddle points of
game Iﬁ - For the player i€N , consider the associated two-person game

I} = { Zﬁ(i)’zé(i);Ai} where the points

~

Ca(i)yOe(s)) om0 (Og)0,))
are saddle points. Then, from the definition it follows that

V= Ay Te(s)) = 46 5y015y) = 850401y % (1)) -

since they are equivalents. From here, the two points (Gd(i),aé(i)) and

(od(i)’oe(i)) are saddle points of game I& . Now, consider the point
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Ca(y Moy B-Mes) »

for a real number A€[0,1] . On this point, the payoff function Ai takes the
value Vi’ since it 18 quasi-convex in the variable Ue(i)ezé(i)

Now, we will show, that these points are saddle points of game I}
Consider an arbitrary point O ) d( ) By the definition of minimax strategy

for the points Ge(i) and Ge(i) we have for this point Gd(i)ézﬁ(i) that

Ai(ad(i),E'e(i)) =V, and A, (od(l),oe(l)) =7

Now consider, the set

B 70 01y (1) 2450043y, (1)) =7 )

o4

where the value w ig given by

S

im0 (1) 06 (1)) A5 (040378 4y) T -
This set must be convex, by virtue of the quasi-convexity of the payoff function Ain
Thus, because NJe(i)+(l-A)0e(i)€Awi, we have
A0 v A H(1-A)G L) <AL L-A)5_ =
1( a(1)’e(1) ( ) e(l)) 1( d(l))AU (i) +( ) ))

& . . .
and therefore, the point (Gd(l)’ e(i )+(l A)G (i)) is a saddle point of I}

Finally, we will brove that the point

a7 gy Oy ) W)+ (0, )

with ME[O,1], also it is a saddle‘point of game I; . On the one hand, on

it we have
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V=ao, ) Ai(od(i)’(’;‘e(i)‘“(l‘mi

(1))

for all Gd(i)Ezﬁ(i) » Since the payoff function Ai is quasi-concave in

Gd(i>€Zﬁ(i) . On the other hand, for an arbitrary Ge(i)ezg(i) » 8ince the

points Ud(i) and cd(i) are maximin strategies,

Ai(éd(i)’oe(i)) =V, and Ai((?d(i)’oe(i)> =7, .

Then, by taking the value w. as
i

w =min { A, (G
i i

a(1)%(1)) 2 A4(0q03y50 1)) )

one has that the set

Awi: {od(i)ezd(i):Ai(cd(i)’ae(i)) =w; }

is convex, since A. 1is quasi-concave in O.,.\€4.,.\ . This, becauge
’ i 4 a(i) "a(i) ’

u&d(i)+(1-u)€d(i)@wi then ,
Ai(u5d(i>+(l‘ﬂ)5é(i))Ue(i)) EfA(G“,A) = Vi:

for all ae(i)SZQ(i) .

Then, the point GN AeZ is saddle point of I; , which implies that
>

the set of saddle points of I} is convex. 1In particular for all the points

of this type
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Q
"

T Wa() NGy AT (NG, )

AG + (LGS,

Hence, this pointis a saddle point of the game I} for each player 1€N ,

that is, the set of E-saddle points of game IE} 1s convex. (Q.E.D.)

Again, as what has been pointed out for very simple saddle points of
n-person game in general the interchangeability among E-saddle points does not
hold true. The reason for this is essentially the same as for those points.

As a special case of the above theorem, one can formulate the corresponding
Property for mixed extension of finite games,

All the results introduced until now have, from a technical point of view,
the same structure, which is the application of Kakutani's fixed point theorem to
an appropriate multivalued function. The difference between them arises only in
the different definitions of these multivalued functions. Then, it seems natural
to think about an uniform result which involves all the previous theorems only as
particular cases. The advantage of such a result is to have a simple tool for sub-

sequent applications. Thig is formulated in the following theorem.

THEOREM IV.11: Let Iﬁ = { Zi,,.,,ZQ;Bl,,,.,Bn } anad

Ig = { Zi,...,Z%;Cl,...,Cn } be two n-person games with the same structure
function E , such that the set Zé of player i€N is non-empty, compact
and convex in a euclidean space, and his payoff functions Bi and Ci are
continuous in the product variable 0€x , where Bi is quasi-concave in

the variable od(i)Ezﬁ(i) for fixed <Ge(i)’0f(i))ezé(i)xz%(i) and  C,
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1s quasl-convex in the wvariable Ue(i)ezé(i) for fixed
(Gd(i)’of(i))€Zﬁ(i)xi%(i) . If, for each joint strategy O€X

there is a point T€X such that

B (Ta(1)%(1)° T (1)) =Sd('r;l2§d(') B3 (54(1)Te(1)%e (1))
1 1
and
Ci(gd(i)’Te(i)’of(i)) " (‘;2% " % (0a(1)7 Se(1) %2 (1))

for all i€N . Then, there exists a joint strategy 0€Z , which is
an E-positive equilibrium point of game Iﬁ and an E-negative equilibrium

point of game Ig

PROOF: Consider for a point ¢ in the non-empty, compact and convex product

space 2 the non-empty set

9;(0) = { TGZ:Bi(Td(i)’oe(i)"’f(i)) = max B (5a(1)%e(1)%e(1)) }
Sa(1)%a(1)

N T€2:C5 (04 5) Te(1):95(1)) T o G003y (1) Te(s)) )
e(i) Te(1)

which is convex, since the strategy sets are convex, the payoff function Bi is

quasi-concave in cd(i)ezﬁ(i) and the payoff function Ci 1s guasl-convex in

O-e(i)€ze(i)

Let us consider the multivalued function

v Tz

defined by the convex set
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V(o) = n 0. (o)
ieN

for a fixed point 0€X . The set ¥(o) is non-empty by virtue of the latter
requirement on the payoff functions Bi and Ci . Furthermore, by virtue of the
continuity of the payoff functionsg Bi and Ci’ Lemma IV.2 assures the upper-
semicontinuity of the multivalued function V¥ . Thus, the Kakutani Fixed Point
Theorem guarantees a fixed point 0€X:0ey(F) . Such a point is E-positive

equilibrium point of game ]7; and an E-negative equilibrium point of game Ig . (Q.E.D.)

Having this useful result, we note that the existence theorem for E-negative
equilibrium points for the games expressed in theorem IV.3, arises as an immediate
consequence of this theorem. In fact putting Bi = Ai and Ci = Ki for every
player 1i€N where Ki indicates an arbitrary constant, one can see that this latter
result coincides with Theorem IV.3. Furthermore, by introducing Bi = K. and

1
Ci = Ai where Ki is constant, this theorem coincides with theorem IV.5 which
guarantees the existence of E-negative equilibrium points. Finally, by considering
in the above theorem Bi = Ci = Ai » Wwe obtain theorem IV.7.
Other simple applications of this result will be realized in the
next paragraph,

Of course, one could easily associate an intuitive meaning with the above

result by considering the simultaneous realization of both games.



- 226 -

IV.2. E-Stable Points

The second section of second chapter where the e-simple stable points were
introduced, motivates us now to assign new roles to the associated two-person games
of the players. The principal reason for the introduction of these different roles,
is because, in the associated two-person games the maximin and minimax value do not
generally coinecide. Thus, it seems natural to consider the normality of the
players formed by the friend and antagonistic coalitions referred to the maximin
and minimax strategies.

Given a game Iﬁ = { Z&,...,Z%;Al,...,An } with the structure function E ,
and with the usual properties, consider for a Joint strategy Gf(i>€z%(i) of the
indifferent coalition of player i€N , the Gf(i)—associated two~person game
I}<Uf(i)) = { 2€<i),zg(i);Ai } , then, the maximun position guaranteed to
player 1€N with whole safety, is the maximin value of the game I1<Gf(i)) s

which, by simplicity, is again referred to as:

Vi(cf i ) =  max min Ai(sd YN ’Gf(i )
) ) Ba(1) Fe(n)Doqay | ) BT

This value is obtained by an appropriate maximin strategy of his friend coalition,

which is analytically characterized by

Fi(ad(i)’af(i)) = max Fi(sd(i)’of(i))

Sa(1)%a(1)

where, for reasons of simplicity, again we keep the old notation for the function
Fl0a(5)0p()) = mIn ATy 50 ) -

Now, if the role of the friend coalition is normal, with respect to the above

sense, and the antagonistic coalition is looked at as hurting this player
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(that is, it either attacks him or this player sees his antagonistic coalition
as a group of players in whom he cannot have any confidence), then, the following
concept introduced in [8] results immediately.

A joint strategy O0€X is said to be an E-maximin stable point or for

short an Em-stable point of the game Iﬁ = { Zi’°"°’2%5Al’°°“’An } with structure

function E , if for each Gf(i)massociated game I}(Gf(i)) = { Zﬁ(i)’zé(i);Ai}
for player i€N , the Joint strategy 6d(i)ezﬁ(i) is maximin, that ig

Fi((_’d(i)’&f(i)) = max Fi<sd(i)’6f(i)) :

a(1) (1)

Intuitively, an Emistable point is a rule of behavior which on the one
hand assures at least the amount Vi(&f(i)) to each player, independently of the
behavior of his antagonistic coalition and on the other hand such that the value
Vi(6f(i)) is the maximun safety value which the mentioned player is able to obtain
by an appropriate behavior of his friend coalition, if in each instance all the
players of his indifferent coalition sbide by it.

Once, the Em—stable point G€X has been established, the outcome of

player 1€N satisfies:
Ai(od(i)’ae(i)’gf(i)> =V 0p01y) -

Of course, the concept of gm-stable point is a special case of thig new one,
Furthermore, it is interesting to observe that also the concept of E-positive
equilibrium point arises as a special case of Em-stable point. 1Indeed, congider

a structure function E determined by

E<l) = (d(i): ¢Jf(i))
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for all i€N . Then we have

F10% (1) %2(1)) = A3(0q(5):95(5))

which indicates that the E-positive equilibrium point is an Em—stable point.
Of course, this fact is obvious according to the heuristic viewpoint.

Another important connection between both of these concepts is related as
follows: a point 0€X is an Em—stable point of game Iﬁ = { Zﬁ,...,ZQ;Al,...,A

if and only if it is an E-positive equilibrium point of the n-person game
x .
PE = {El,...,Z)n,Fl,...,Fn }

obtained by replacing in the .game Iﬁ the payoff function Ai by the minimun

function Fi - Indeed, they are equivalent for aﬁy game I% with structure

function E such that

a(i) = d(i) and (1) C F(1)U e(4)

—

for every player 1iel .
Using this connection, since the E-positive equilibrium points have a
characterization given in theorem IV.3, we can easily formulate the existence of

the new points, which is given in the following result generalizing theorem II.5.

THEOREM IV.12: TLet I, = { zi"°"Z£;Al’""’An } be an n-person game

with structure function E such that the strategy set Zé of player i€N
is non-empty, compact and convex in a euclidean space and his payoff
funection Ai is continuous in the product variable o€z and the function
‘ _ _ . . . . h
Fl(ad(l)’of(l)) of player 1€N 1is quasi-concave with respect to the
1 i . \. If f h  o€ex
variable od(i)€zﬁ(i) for fixed Gf(l)EZ%(l) If for eac

there is a T€Z such that
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Fi(Tg(1y%(1)) = . Fi(34(1)7%¢ (1))
d(i)"a(i)
for all i€N , then the game Iﬁ has an E -stable point.
PROOF: Consider the game IE = { Z&,...,Z%;Fl,...,Fn } . This game completely

satisfies all the conditions involved in Theorem IV.3, since the function Fi is

continuous with respect to the product variable o€ . Thus, there exists an
E-positive equilibrium point of game Iﬁ , which is an Em—stable point of the
original game Iﬁ . (Q.E.D.)

We note that the above result also is an extension of Theorem IV.3, by

what has been said above.

The latter requirement is seen as the defense property for game I% with
respect to the notion of Em—stable point. Given an arbitrary situation there exisgts
another behavior such that if all the players of the indifferent coalition of g
Player abide by the first one, the second one is maximin for his friend coalition

in the resulting game. This is 3 suitable interpretation of that condition.

An immediate consequence of this theorem is obtained for finite games.

THEOREM IV.13: Let I = { za,.o.,ZQ;Al,,..,An } be a finite n-person
game with structure function E such that the payoff function of player i€l

is of the form

_ J
Ai(od(i)’oe(i)’of(i)) "j€d%2) ai(oj’ce(i)’cf(i)) y

If for each point xe€X = X i% there is another point yeX such that
JeN
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. mi%z Ei(yd(i)’se(i)’xf(i)) = . maxX . minZ Ei(ud(i)’se(i)’xf(i))
e(1)%(1) a(i)“*a(1) Se(i)%e(1)
for all ieN , then, the mixed extension T% = { i&,...,E;;El, "En } has

an Em-stable point.

PROOF: For the player ie€N » by virtue of lemma I.11, the continuous expectation

function Ei is linear in the variable x Thus, the function

a(1)a(1)
Fi(Xq(sy%p(3)) = min By (%4(1)7 Se(1)%(1))
S /. \€ED .
e(1) Te(1)
is concave in Xd(i)GXd(i) - Furthermore, the last requirement of theorem IV.12
1s satisfied by the mixed extension Iﬁ . And so the game I% has an E -stable

point in mixed strategy. (Q.E.D.)

The natural dual notion of Em-stable points is easily obtained by substituting
the dual roles in the associated games assigned to each player. Thus, if the antagoni s-
tic coalition in is assumed to have a normal behavior, then it is natural to consider
that it will act in accordance with a minimax strategy. On the other hand, the friend
coalition is seen as an apathetic player, or rather, without any specified tagk.

These considerations hold to the following formal notion treated also ivx [81.

Consider an n-person game Iﬁ = {'Zi,,..,Z%;Al,...,An } having the
structure function E , then, a joint strategy G€X is said to be an E-minimax

stable point or for short Em—stable point of game Iﬁ if for each 6f(i)_

associated game I}(Gf(i)) = { Zﬁ(i)’zé(i);Ai} of player 1€N the joint

strategy Ge(i)ezé(i) 1s a minimax strategy, that is

max Ai<sd(i)’&e(i)’6f(i)) = min max Ai<sd(i)’Se(i)’of(i))zvi(af(i))
a(1) () "o(1)e(1) Pa(1)Fas)

or equivalently:
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Gi(ae(i)’&f(i)) = min Gi(se(i)’6f(i))
e(1) e ()

for all i€N , where Gi indicates the maximun function over Zé(i) of the payoff
function Ai

A possible interpretation of an Em—stable point is as a rule of behavior
which assureg each antagonistic coalition that its corresponding player cannot safely
obtain more than the amount Vi(af(i)) independent of the behavior of his frieng
coalition. With the property also that this value is the maximun value that the
antagonistic coalition will be able safely to limit player 1€N to against the
corresponding behavior of his friend coalition, if in each instance all the rlayers
of his indifferent coalition abide by it.

Once, such an Em-stable point G€X has been established, the outcome of the

player i€N with respect to 0€X gatisfies

Ai((}d(i)’(}e(i)’af(i)) =V 005y)

An interesting case arises when every friend coalition d(i) 1is constituted
by only the player ieN himself. Here an Em—stable point is an gm-simple stable
point.

Another case of an Em—stable point appears if the friend coalition of each

player is empty, that ig, if for player i€N :

E(l) = ( 0, e(i)Jf(i))

In this situation, the definition of Em-stable point coincides with the
E-negative equilibrium point, since
Gime(i)’of(i)) = Ai(oe(i)’af(i)) ’

for each ie€N .
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On the other hand, there is another important connection between such concepts,
namely: a point geX is an E -stable point of game Iﬁ = { Z&""’Z%;Al’"°°’An }

i1f and only if it is an E-negative equilibrium point of the n-person game

1
L={2Z,....254,.., 6}

n
obtained by substituting in the game Iﬁ the payoff function Ai by the maximun

function G 5 Furthermore, they are equivalent for any game Iﬁ with structure

function E such that

e(i) = e(i) and (i) £(i)V d(i) ,

!

for every player i€N .

For this relation, then by using theorem IV.5, one has the following existence

theorem which is an extension of theorem II.7.

THEOREM IV.1kh: Tet Iﬁ = { Zi,...,Z%;Al,n..,An } be an n-person game
with structure function E such that the set Zﬁ of player 1€N 1is
non-empty, compact and convex in a euclidean space and his payoff
function Ai is continuous in the variable 0€X and the function
Gi(ae(i)’of(i)) of player 1€N 1is quasi-convex with respect to the

variable Ge(i)ezé(i) for fixed Gf(i)EE%(i) . If for each 0€X there
is a 7€ such that

G _ : ~

1(Te(1)7%¢(1)) = min %3 (8e(1)9¢(1))

(1) (1)

for all 1i€N , then the game I% has an Em—stable point.
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PROOF: Consider the game = { Zi Gprenns Gn‘} . This game fulfills
every requirement of theorem IV.5, since the function Gi is continuous in the

product variable. Then, the existence of an E-negative equilibrium point for Iﬁ

1s guaranteed. This point is an E'-stable point of game Iﬁ - (Q.E.D.)

The last condition of the above theorem can be expressed as: for any
established behavior among the players, there is another one which, if 3ll the
Players of the indifferent coalition of a player abide by the first one, the second
one is minimax for hig antagonistic coalition in the resulting game. Thisgs property
is observed as the attack property of the game Iﬁ with respect to the notion of
Em—stable point,

We point out that the previous characterization can be derived in another
simple way, Indeed, given a game { Zi ,A ,uo,,A } with structure

function E , the zero-sum two-person game

10ea) = (s Byayseay )
has its maximin and minimax values
vi(cf(i)) and Vi(of(i))

connected with the respective values of the assoclated game I}(Of(i)) by the

expressions:
vi(of(i)) = -Vi(of(i)) and X_]'i(af‘(iﬂ = Vil02sy)

Then, it follows from these equalities that an Em—stable point of the game Iﬁ

ig an Em—stable point of the game
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].-‘E: = {%,...,Zn;"Al,ann;—An }
where the structure function E 1is given by
(1) = e(1) , &(i) = a(1) , B(i) = £(1)

for every i€N , and conversely.

These statements, in other words, describe the dual roles of the
Em-stable and Em—stable points for n-person games. This dvality is analogous to
that between maximin and minimax in zero-sum two-person games.

As an immediate consequence of the above theorem, the following result is

congidered:

THEOREM IV.15: Let I’E = { El,,,.,zn;Al,..,,An } be a finite n-person

game with structure function E » such that the payoff function of player i€N

is of the form

A (T ,.\s0 0, .\) = = a*?(o 00,0, ) .
ivTa(i)’ Te(1) (1) jee(i) I a(i)’ 377 e(4)
If for each point x€X = X 2, there is another point y€X such that
JEeN
max Ei(sd(i)’ye(i)’xf(i)) = min max Ei(sd(i)’ue(i)’xf(i))

"a(1) (1) “e(1) Fe(1) a(1)Fa(s)

~

for every i€N , then the mixed extension Iﬁ = { Z&,...,Z%;El,,.c,En } has an

Em—stable point.

PROOF: For player i€N , Lemma I.11 gives us that the continuous expectation function

E. 1is linear in the variable x ,. .€X ,.. . Hence, the function G. 1is convex in
i e(i) e(i) i
Xe(i)EXe(i) - Thus, the conditions of previous theorem for mixed extension Iﬁ are

~

fulfilled. And so Iﬁ has an E -stable point, (Q.E.D.)
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Having developed the two previous notions which have been obtained by
assigning different roles to the Players in the associateq games, it seems natural
to introduce another point by considering that both prlayers (that is, the friend
and antagonistic coalition) act in a normal way. This assumption leads immediately
to the following formal definition also considered in (117 .

Glven an n-person game Iﬁ = { Zi,...,Z%;Al,...,An} with structure
function E , then a joint strategy 0€Z is called an F-stable point of game Iﬁ
' G .\ -assoc LG, ) = , , sver ien
if for each £(1) associated game 1(0f(1)) { Zﬁ(l),Zé(i>,Ai } of player ien

the projection Gd(i)ezﬁ(i) is a maximin strategy of the first player and the

projection Ge(i)ezé(i) 1s a minimax strategy of the second player. 1In other words,

Fi 005y 0p0sy) = max T (s3059:0005)
(1)77£(1) Sd(i)ezd(i) (1)77£(1)
and
o), B ey
e(i) “e(i)

for every player i€y .

An E-stable point is a rule of behavior which is maximin for each friend
coalition and minimax for the corresponding antagonistic coalition in the resulting
game, with respect to the respective position of the Players, if in each ingtance
all the players of the indifferent coalition abide by it.

Once an E-stable point G€Z has been reached, the outcome of player 1i€N

satisfies:
Y1001y =850 p03)0, (1 0e(5y) <V @ sy)

A characterization of these kind of points is immediately obtained by using

theorem IV.11 applied to the games IE and IE'.
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THEOREM IV.16: Let FE = {Z)l,...,zn;Al,.,.,An } Dbe an n-person

game with structure function E such that the strategy set Zé of player ie€x

is non-empty, compact and convex in a euclidean space and his payoff function

Ai is continuous in the variable 0€X 5 the function Fi quasi-concave in
N2 i G, i - in O ,. €5 ,. i

a(1) (1) and the function 45 quasi-convex in e(1) (1) for fixed

GZ%(i) . If for each O€Z there is T€XZ such that for each i€

1 7a(1) % (1)) = V1 0p(1y)

and

vi<of(i)> ,

G5 (To(1y T8 (1))

for all i€N , then the game Iﬁ has an E-stable point.

PROOF: Consider the games Iﬁ = { Zi,...,Z%;Fl,,..,Fn } ana

1
Iﬁ = { Zi;--.,zg; Gl,..., Gh } derived from the original game Iﬁ . From the

continuity of the payoff functions Ai » the functions Fi and Gi are seen to

be continuous in O0€Z . Therefore all the requirements of theorem IV.1ll are
satisfied by IE and IE'. Hence, the existence of an E-stable point for
game Iﬁ is guaranteed. (Q.E.D.)

The last condition is observed to be the attack and defense property with
respect to the concept of E-stable point.

From this result, we immediately derive the following theorem for finite games.

THEOREM IV.17: Let Iﬁ = { Z&""’Z£5Al""’An } be an n-person game with

structure funection E such that the payoff function of player 1€N is of

the form:




- 237

DR LS

Ai(od(i)’ce(i)’of(i)) ”j€d<i) kee(1) 1 75% % (1)) -

If for each point x€X = X ZS » there is another point y€X such that

JEN
min B (Y1425, »Xpriy) = max win B (u,, NPTV
se(i)eZé(i) iMa(1) Te(1)’ (1) () Fa (1) Se(i)ezé(i) 1V7a(1)” e(1)¥r(1)
and
max E.(sd i)' Ye(1) %p(1y) = min max E.(sd ) Pe(1), % (e ,
oGy T o) e(r) fa(nyBary ) D)

for all 1i€N , then, the mixeq extension Iﬁ = { Zi,...,Z%;El,.,.,En } has an

E-stable point.

PROOF: For player ieN » in virtue of Lemms I.11, the continuous expectation function

Ei of player i€N, is bilinear in the variable (Xd(i)’xe(i))GXd(i)XXe(i) « The

function F. 1isg concave in x_,. €X.,. and the function G. is convex in
i a(i) "a(i) i

Xe(i)exe(i) - By the latter requirements on these functions, all the conditiong of
the previous theorem for mixed extension I% are satisfied. And so, Iﬁ hag an

E-stable point, (Q.E.D.)

Indeed, such an E-stable point is an E-gaddle point, because in each agsociated
two-person game the minimax theorem holdsg true, since it satisfies all the requirements
of theorem IV,7.

An important special cage of these B-stable points G€X occurs, when for

each player i€N the equalities

1 O(s)) = 40 (5)8(5y0005) = Ty
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hold, 1In this instance, since in the game I;(&f(i)) the minimax theorem holds,

the point 0€X is an E-saddle point.

This simple observation leads to a second characterization of E-gaddle

points in games, which appears as an application of theorem IV.16.

THEOREM IV.18: ILet I% = { Z&""’Z£5A1"""’An } be an n-person game

with structure function E such that the strategy set Zé of player 1€
is non-empty, compact and convex in a euclidean space, and his payoff function
1s continuous in the variable O€X , quasi-concave in Ud(i)ezﬁ(i) for fixed
(Ge(i),cf(i))€§é(i)xz%(i) and quasi-convex in Ge(i)ezé(i) for fixed

) . € .
(Gd(i)’cf(i))Ezﬁ(i)xz%(i) If for each joint strategy O€Z there is a

point T€X such that

f10a(1) Tea) Pr)) 7, e AiCa(s) Te(a)Oe(s))

a(1)a(1)

and

s mi% VAi(Td(i)’se(i)’gf(i))
e(i) e(1)

for all i€N , then, the game Iﬁ has an E-gaddle point.

PROOF: By virtue of the quasi-concavity and quasi-convexity of payoff function

Ai of player 1€N , Lemma IV.l assures the quasi-concavity of function Fi with
. . . o . )

respect to Gd(i)GZé(i) and the quasi-convexity of function ; in 0e<i)€Z% 1)

for fixed Of(i)€z%(i) . Thus, since the last condition implies the latter require-

ment of theorem IV.16 this then determines the existence of an E-stable point O€X

of game Iﬁ . At such a point we have
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T3 (0e(i)) =201y (1) T o)) Svi(‘(_T‘f‘(i))

for every i€N .

On the other hand, applying theorem IV.7 to the associated two-person game
I}(Gf(i)) = { Zﬁ(i)’zé(i);Ai } considering both players normal, the existence of
minimax theorem is guaranteed, that is: Vi(éf(i)) = Vl(éf(i)) . Therefore, according

to the definition of maximun and minimax strategies, we have

85001y 0e (1) Oe(s)) = F10505)0p(5))
=G5 (0g(5y:00(1))
for every player i€N . Hence the point &€ is an E-saddle point of the game Iﬁe(Q,E.DQ)
We are now in a similar position to Chapter II, since theorems IV.7 and IV.18
are two complementary characterizations for E-saddle points.

The previous theorem can be proved in a different fashion by assigning to

each point O€X and each player 1i€N the set

93(0) = ATEBA (T (1) Te(4):02(4y) o Mala(ay Te(1)%s(a))
a(i) “a(i)
= min Ai(7a(i)’se(i)’af(i)) }
Se(1)Fe(1)

that is to say, all the saddle points of the Gf(i)-associated game. Then, we need
only the convexity of this set to apply the fixed point technique. But, this condition
is guaranteed by theorem IV.10. Thus, by using the usual Procedure we obtain the

desired result.
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A simple consequence of this result is formulated in the following

characterization for mixed extension games.

THEOREM IV.19: Let Iﬁ = { Zﬁ,...,Z%;Al,n..,An } be a finite n-person

game with structure function E such that the payoff function of the

player 1eN 1is of the form

_ ik
Ai(cd(i)’ae(i)’of(i)) ‘jed%g) keé?i) i (Gj’ok’gf(i)) :

If for each point x€X = X gi, there is another point y€X such that
jev 7
for all ieN
B a1y Ye(a)y Xe(a)) = e By Ye(ay sy
"a(i)Ta(1)
= win Ei(yd(i)’se(i)’xf(i))
8 ,.\€X ,.
e(1) "e(1)
then, the mixed extension Iﬁ = { Zi’“'"’zh;El"'°’En } has an

E-saddle point.

PROOF: The expectation function Ei of player i€N is bilinear in the variable
(Xd(i)’xe(i))EXd(i)XXe(i) for fixed Xf(i)EXf(i) » since the requirements of
lemma I.11 are satisfied. Thus, for the latter condition, theorem IV.18 guarantees

an E-saddle point for the mixed extension Iﬁ . (Q.E.D.)

We note that, indeed, theorem IV.19 and theorem IV.17 coincide, since the
minimax theorem holds in the associated games.

In conclusion we note that the formulations of the existence theorgms for
E-stable points are completely useless in the case where the structure function hag
all the friend coalitions void. Moreover, in such an instance also the second char-

acterization of E-saddle points determined in theorem IV.18 is also without usefulness.
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IV.3. Comparison of the Concepts for Different Structure Functions

The results derived in the previous sections are concerned with the
existence of those concepts, which arose as natural extensions of the notions
introduced in the two first chapters.

No reference to the relationship between the concepts for different

structures assigned to a game, has been yet considered. This will be partislly

attempted in the present paragraph.

THEOREM TV.20: ILet Iﬁ = { Zi,,.,,ZQ;Al,Q,g,An } be an n-person game

with structure function E such that the strategy set Zé of player
1€N is non-empty and compact in a euclidean space and the payoff
function Ai 1s continuous. If a structure function E satisfies:
d(1)DHd(i) for all players ieN . Then the set P(I')) of E-positive

E

equilibrium points of Iﬁ is contained in the set P(I') of r
E E

PROOF: For any point O in the product gpace Z

. max A; (s a(1)?%e(1)%p(1)) = i mi%_ Ay (S?l(l)’ (1) °7(1)
a(1)€ d( ) 3(1)%G(a)
for all players i€N , since a(i)Dd(i).  Thus, for an E-positive equilibrium

point 0€X of game I% with structure function F s that is,

21000y Te(a)Oez)) =m0, 05),0,))
“a(1) (1)
for all i€N , we have
Ai(G ,0 ,0 = max A (s ,0 Nes )

- G_ )= : i
a(i) e(i) F(i) s heE , d(i) e(i) F(i)
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for every player i€N , since

214 (1)Fe (1) 02(2)) = Ai(6a<i>’aé<i)’cf‘<i>

In the last inequality only the strict equality sign must hold, since, in the

second term the maximun over the set 2 appears. Hence, the point O€X
a(i)
is an E-positive equilibrium point of game Il » that is to say:
E
P(FE)QP(I’E) . (Q.E.D.)

From here, we can derive, from a heuristic viewpoint, that, after an
E-positive equilibrium point has been reached in a game, the friends of a given
Player can be seen as an indifferent player. Thus, the afore mentioned behavior does
not lose its new character in the new structure.

Furthermore, without any reference to thisg result, theorem IV.3 applied to
the structure function E also contributes a characterization for E-positive
equilibrium points such that d(1)Dd(i) . Indeed, by the same arguments in the

proof just considered, under such conditions, Iﬁ satisfied all the requirements

of theorem IV.3.

An analogous statement is derived for the dual concept of E-negative

equilibrium points.

THEOREM IV.21: Tet Ih = { Zi,...,Z%}Al,...,An } be an n-person game
with structure function E, such that the strategy set Zé of player ieN
is non-empty and compact in a euclidean space and the payoff function Ai
is continuous. If a structure function E satisfies: e(i)De(i) for all
the players i€N , then the set Q(Iﬁ) of E-negative equilig;ium point of T

E
is contained in the gzet Q(I') of the game T

E E
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PROOF: For an arbitrary point O€S we have

min A (0, ivsS \s0, .0 ) < min A, (o yS_ L0 )
o) Bary - ST S e ) ) )
e(i) e(i)
for all players i€N , since e(i)De(i) . 1In particular, this holds for an E-

negative equilibrium point O€X of the game Iﬁ . Therefore, from that inequality

and the definition of this point we get

. s S s
d(i) e(i) £(i) s €& A1) e(i) (1)

\

for all players i€N . In all these inequalities only the strict equality sign must
hold since in the latter terms the minimun over the set Zé(i) appears., Thus, we

have Q(Iﬁ)ng(Ig) . (Q.E.D.)

Any antagonistic player can be seen as an indifferent with respect to the
corresponding player, after an E-negative equilibrium point has been established.,
Thus, it is invariant under this change in the structure, This ig a possible
intuitive interpretation of the above result. Moreover, under the requirements of
theorem IV.5 for structure function E , we obtain the characterizaticn of E-negative
equilibrium points,

Considering both of the previous results together, we get:

THEOREM IV.22: TLet Iﬁ = { Zﬁ,,.,,Z%;Al,,,,,An } be an n-person game with
structure function E , such that the strategy set Zﬁ of player i1€N is
non-empty and compact in a euclidean space and the payoff function Ai ig
continuous, If a structure function E satisfies: a(i)) d(i) and
e(i):)é(i) for all the players i€N , then the set R(Iﬁ) of E-saddle

points of Iﬁ 1s contained in the set R(I) of game I
H E
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PROOF: Directly from the definitions, we have that
R(L) = 2(I}) (L)
Hence, by both previous lemmas,

PL)CR(D)  ant oL CA(T)

- E
which implies R(FE)CR(F_), (Q.E.D.)
- E
In particular, an E-saddle point of game I% with all the indifferent
coalitions empty, it is an E-saddle point for game I: with the structure function
B

E such that d(i)DHd(i) and e(i) De(i) for every player ie€N .
After reac;;ng such a point_;ny antagonists and friends of a given player
can be seen as indifferents. Thus, the point remains invariant under the new structure.
This is a possible interpretation of the above lemma.
By this connection of the concept of E-saddle point between different
structure we note that theorem IV.7 contributes a direct characterization for
E-saddle points where the structure function E is related as above.
The situation for stable points is a little more complicated, and therefore

we formulate some auxiliary results.

LEMMA IV.23: Let A be a continuous function on the product space

Z= X Z& > Where for each 1i€N the non-empty set Zé is compact in a
i1eN

euclidean space, Let

P = (d,e,f) and = (d,e, )

| Hgs

be two partitions of the set N , such that

dJd , eCe , £DOF .
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Then for each point O€X ,
max  min A(sd,se,cf) = max  min  A(s_,s ,0 )

s . €4 s €5 s € s €2 d e T
d d e e - o STl
d d e e

and
min  max A(sd,se,O'f) = min  mex A(s_,s_,0 )

s € g €4 s € 5 € d e T
e e d 4 - = = <
e e d d

PROOF: Given a O€X , then for any point TdGZ)d , because e -f , we have

min A(T_,s ,0.) = min AT, s
SeEEe " et f s _€Z d
e U(F-T) eU(f-T)

ey (£-7)798)

and therefore

max min A(s_,s ,0.) = max min A(s._,s -
542 5. € el f 5,5, 8 €2 @’ "e U (£-1)
eU(f-£) eU(F-F)

,O'f)

On the other hand, since e = e yY(d-d) U (f-F) for each Td€Zd , we have

min A(Td,s 50 ) = min  A(T ,s ,0 )
s _ €% ) e U(f-f) 7 s € d e T
ey (f-f) ey (f£-1) e e

which implies the following inequality

max A(s_,s Ure 7y20%) = max min  A(s ,s ,0
s, s _ € d_ e M(f£-1)778 s € s €2 is 7
eU(f-f) eU(f-1) d d e e
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From these relations we deduce the validity of the first assertion.

Now, in a similar way we prove the second inequality. Given a point O€X

then for each T U(d-a)GZeU(d—(_i) the following relation holds

max A(sd,Te,O‘f) = max A(s ,T Ny O'f) s
s € s € d eU(f-F)
a4 i a

which implies the inequality

min  max A(sd,se,crf) = min max A(s_,s_ _ ,O'f) .
se@e sd€2d s 2 -2 d eU(f-f)
eU(d-d) eu(d-d) d
On the other hand,
min max  A(s_,s ) ,O'f) = min  max A(s_,s_,0 ) .
s €2 s € d eU(d-d) s € s €& d e T

eU(d-d) eu(a-d) a a e e d d

Thus, by composing both relations the second assertion is guaranteed. (Q.E.D.)

LEMMA IV.24: Let A be a continuous function on the product space 2= X Zi

1€N
where for each i1€N the non-empty set Zi is compact in a euclidean space.

Let

P = (d,e, f) and P = (d,e,¥F)

be two partitions of the set N , such that

dCd , eDe , £H¥

Then, for each point C€X

max min A(sd,se,of) = max min A(s_,s_,0_ )
sdGEd seEZe ~ S_€ s _€n d e ¥

d d e e
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and
min  max A(sd, Se,O‘f) = min  max A(s_,s_,0 )
s € sdGEd s_€X4 s_€X d e T
e € e e d d
PROOF: First we will prove the first relation. Given an arbitrary point
fora T _€X _ » we have that
d U(e-e) d U(e-¢)
min A(Td,se,cf) = min A(T ) ,s_,O'f)
seGZe s_EZ_ duy(e-e) e
e e
since dDe-e . From this, we obtain
max min A(sd,se,cf) = max min A(s ) ,s_,Gf) .
sdéZd seGEe 8 _ €& _ S_€X dU(e-e) e
dU(e-e) dU(e-e) e =&
On the other hand, because a:)f—f’ » the following is always true
max min A(s } ,s_,O"f) =max  min A(s ,s 50 )
S _€&X . s_€x d (y(e-e) e s € s €% d e T
du (e-e) duU(e-e) e = d d e e
and therefore the validity of the first assertion is proven,
Now, we prove the second relation. For an arbitrary point oex
and a given 7T €% ,
e e
max A(sd,Te,O'f) = max A(s T ,0 ),
5462, s & o au(f-F) ¢ op
du (£-F) da y(£-%)
and therefore,
min  max A(sd,se,(ff) = min ma.x A(s ¥ se,O_)
seEZe Sdezd s € s 22 d U(f-1) f
dU(f-F) d u(£-7)

TEL
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On the other hand, because d = dU(e-2) U(£-£) , for 7é€Zé , we have:

max A(s ) ,7é,0f) max A(s_,Té,G_) ,
S 2 _du(s-f) s_€X d
AU (f-f) duy(r-F) d d

which implies

min max A(s _ ,se,Gf) win  max A(s_,s_,0 )
SFOMEE 2 _dy(s-%) s € s €& 4§ e F
d U(f-f) a u(£-%) e e 4 4

Thus, by combining both relations the second assertion is proved. (Q.E.D.)
As an immediate consequence of this, we get the following simple statement.

THEOREM IV.25: TLet I% = { Zi,..,,zg;Al,...,An }  be an n-person game

with structure function E s such that the strategy set Zé of player 1€N
is non-empty and compact in a euclidean space and the payoff function Ai is

continuous. If a gtructure function £ satisfies:
a(i) Da(i) , e(i) = &(i) (1) C (1)

for all the players 1i€N , then the set S(I%) of E -stable points of game Iﬁ

is contained in the set S(I') of the game I' |
k E

PROOF: Let O€X be an E -stable point of game Iﬁ ; that is:
1%a(1)%% (1)) = Vi0p(3y)
for every player i€N . By lemma IV.2h applied with

d=a(i)3d(i) =d , e=¢e=e(i), f=f1)C (i) = F
for player i€N , and at point GO€S we have

Vi(of(i)) zvi(aﬂi))
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But
Fi(ad(i)’af(i)) } Fi(c}a(i)’&f‘(i)) ’

which implies

o, 0. )=vi(s )

d(i) F(1) tUE(4)
for all players i€N . In thesge inequalities only the strict equality sign must
hold since in the second terms appears the maximin of the game I&(& ) .
(1)
Hence, we have S(Iﬁ) Cs(I') . (qE.D.)
“"‘ E

We can easily perform an analogous interpretation similar to what has
been done for the previous results.
In a similar way, we derive for Em-stable points the following assertion

by comparing different structures.

THEOREM IV.26: TLet Iﬁ = { Zi"’“’zégAl"°"An } be an n-person game

with structure function E , such that the strategy set Zﬁ of player i€N
is non-empty and compact in a euclidean space and the payoff function Ai

is continuous. If a structure function E satigfies:
a(i) = d(1) , e(i) He(i) , (1) C 7(1) ,

for all the players i€N , then the get T(Iﬁ) of E'-stable points of

game Iﬁ is contained in the set T(Iﬁ) of game I'
E

PROOF: Let GO€X be an E -stable point of game T that is:

E s

G (O (5y:0p(1)) = Vi((}f(i))
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for all players 1€N . Now, by applying lemma IV.23 with

, e—é(i)ge(i)zé R f=f‘(i)2f(i)=f

for player 1i€N , we have

_)
(1)

On the other hand,

G. (0 _ . \s0..\) = G.(C 0 )
which implies
¢,(6_ o ) svi(o_
e(i) £(1) £(1)

for all players i€N . Here only the equality sign must hold, since in the

second term there appears the minimax value of the game I;(&_

F(1)
T(I“E)g T(I‘E) . (Q.E.D.)

) . Hence

Unfortunately, we are not able to obtain a similar result for E-stable

points. The reason for this is due to the formation between the antagonist, friend

and indifferent coalitions given in the Preceding results, about stable points,
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CHAPTER V

V.l E-Composed Points

In the previous chapter the original notions of the first chapters have been
extended in a natural manner. The examination just considered was essentially moti-
vated by the introduction of the structure function, which involves the three basic
concepts of friend, antagonistic and indifferent players. Of course, one could try
to extend all those results by seeking to incorporate a new notion similar to these,
with respect to a player. For the moment, we do not have any new concepts, which
would play analogous roles as these considered, For this reason, the results
treated in the Preceding chapter, in reference with our systematic exposition, are
tabled, Nevertheless, there are some other possible ways of extending them,

In this chapter we are concerned with two different approaches to generali-
zations. These approaches have completely distinguished outlines and therefore we
will consider them geparately,

Until now, we have assumed that all the players have the same characterization,
Indeed, when the associated games, determined by the situation of the indifferent
players was considered, the friend asnd antagonistic coalition of every player were
assumed to behave, with regpect to our associated game, only in one specified way.
In other words, the assumptions on the behavior of the friend and antagonistic
coalitions, have been the same for all the players.

Of course, such a restriction could be weakened in many ways. Thisg
examination will be the subject matter of this paragraph, which constitutes one
of the two approaches considered in this chapter.

As before we congider the prlayers of the original game, embedded in the

corresponding two-person game determined by the situations of the indifferent
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coalitions. Thus, these situations at the instant of the analyzing are congidered
fixed. Actually, the corregponding friend and antagonistic coalitions of different
Players can be seen as behaving with non-analogousg roles,

Among all the possibilities of associated behaviors in the coalitiomng,
there are some quite simple ones, which will be examined as follows. These are
simple illustrations of the general case, which will be introduced in & more natural
manner after this formumlation.

As a first special case, let us congider that the set of players N of
game I' is divided into two disjoint sets, Ni and N2 . For all the players
1€N in the set Ni ; their assigned antagonistic coalition e(i) , in the agsociated
game, 1s supposed to be indifferent with respect of their position, and their friend
coalitions are seen ag normal players. On the other hand, for every player iGNé p
his own friend coalition iz considered a normal Player without any reference to hisg
antagonistic coalition,

Formally, given a game I% = { zﬁ’“"’ZE;A1’°°°’An } with structure.function

E , and a partition {Nl’Né } of the set N, a joint strategy 0€Z is said to an

+ ; +
NiN; . E-composed point or concisely an E-composed point with respect to N; B N2 i
PR 8
of game Iﬁ , if
f00(1) % (1) 0p(1)) = mx A (50000 10000)
8., .\€4 .,
a(i) "7d(i)
for all the players iENl and
F G y0ay) = max  F(s.,..,G.,..)
iva(i)’r (1) e irta(i)’ (1)

Sa(1)%a(1)

for every player iEN2 .
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Of course, this concept is a straightforward extension of the concept of

E-positive equilibrium point which isg derived if the set N iz empty, and of the

2

notion of Emnstable point, obtained when N is void.

1
In a similar fashion to what hag been derived in theorems IV.20 and IV. 25,

it follows immediately that given a game I' with structure function E , and a

vartition {Nl,l\T2 } of the set of players. If a structure function FE satisfies:

d(1) Hd(i) for all the players i€eN; and

a(i) Hd(i) , e(i) =e(i) , £(1)C (1)

+
+

for all players ie€N

-
I

then the set of NN, E-compoged points of game I% :

2,8’ )5

+ + L ) L+
P(NlNE,s’Iﬁ) is contained in the set P(NlN

+

}S,Iﬁ) of game I% .
The exigtence of such a point will be derived in the same way as the other

N

concepts of this paragraph, as a direct application of the following general theorem,

which extends theorem IV.11.

THEOREM V.1l: Tet I%' = { Zﬁ,.o,,ZQ;Bi,.,,,Bi }o(jep = {1,...,p}) be
n-person games defineg on the same strategy sets with the structure
functions Ej’ regpectively such that the zet Zé of player 1€N ig non-
empty, compact and convex in a euclidean space, for all JEP , hisg payoff
function Bi in game I%, is contiruous in the product variable

and gquasi-concave in the %ariable Gg(i)éz%j(i> for fixed

Gej(i) Ufj(i)€zﬁj(i) Ufj(i) o If for each joint strategy O€X

there is a point Te€XZ such that

)

) = max Bg(s N A

J
B (. 0, ,O ad(i) ed(1) ij(i)

Poad(l) 1) (1) s, €.
(i) al(i)
for all Jj€P and all the players i€l , then there exists a joint strategy

0€x , which is simultaneously for all JeM , an ijpogitive equilibrium

point of game I% .
J
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PROOF: For an arbitrary joint strategy O in the product space consider the set

? = 2 ? . ) . ’ . = max q S . 3 . ,T .
?3() = {7 Bl(TdJ(i) oeJ(i) GfJ(i)) s . €. % a9 (1) GeJ(i) £9(1)
(1) (1) |

)}

which is convex by virtue of the quasi-concavity of the payoff function Bg in

o . €2 . and by the convexity of the strategy sets.
a’(1) (1)

Let us define the multivalued function

Vo =2

as the set

¥@) = n n 9o
1€N jeM
for all the points O0€X . The get ¥(0) is non-empty by virtue of the latter
condition. On the other hand, because the payoff functions are all continuous,
and so from the lemma IV.2 we establish the upper-semicontinuity of the multivalued
function ¥ . Then, the Kakutani fixed roint theorem guarantees a point
0€2:G€y(G) . Such a point is an EJ-positive equilibrium point of the game I% s
J

for all j€P . (Q.E.D.)

Having this general result, the existence of the previous E-composed points

ig derived as an immediate conseqguence,

THEOREM V.2: TLet Iﬁ = { Zﬁ,...,ZQ;Al,.,.,An } be an n-person game with
structure function E such that the strategy set ZE of player 1i€N 1is
non-empty, compact and convex in a euclidean space, his payoff function Ai

is continuous with respect to the product variable 0O€X Ai is quasi-concave

i v i N i . . o fo:
in the variable Ud(i)ezé(i) for fixed Ge(i)Ljf(i)ezg(l)Ljf(l) If for a
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partition { Nl,N?} of the set of players N and each joint strategy

0€X  there is a point T€X such that

b (Tq(1y%e(1)Te(1)) = X Ai(84(3)00(5)%2(s))
Sa(1) (1)
for all the players iENi and
Fi(Td 1T ) = max Fi(sd v Fes )
(1)77£(1) Sd(i)€zﬁ(i) (1)” (i)

+ +
for all players iGNé »  Then the game Iﬁ has a NiNE < E-compoged point.
2

PROOF: Given the n-person game Iﬁ with structure function E , congider

the following associated games
I]?:z{Z].Jqu)En;Bl)oae,Bn}} Igz{zl;...,zn;cl,,.,,cn}

whose structure function coincides with E .

The payoff functions are given by

A, (0) if ien
1

B,(@) = { *

K. it ieN

1 2,8
and
K, if il

c;(@) = { N

P05y gy) 1 el o

for player 1€N , where Ki indicates an arbitrary constant,

Thus, all the payoff functions Bi of game Ig are quasi-concave in the
variable Gd(i>€Zﬁ(i) for fixed Ge(i)U f(i)ezg(i)ljf<i) .  Furthermore, from
the quasi-concavity of Ai’ lemma IV.1, and the definition of structure Ffunction E,

° o ’“sm ° S . E . .
we see that the payoff function Ci 1s guasi-concave with respect to Od<l)€ d(l)
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Hence, the games Ig and Ig completely satisfy all the requirements of

theorem V.1 and therefore, there exists a joint strategy G€X which is simultaneously

an E-positive equilibrium point for both the game Ig and the game Ig . Clearly,
+ +
such a point is an E-composed point with respect to l\Tl 5 N2 - (Q.E.D.)
’ =

For example, if for every player i€N a(i) = {i} , then for any partition

{Nl’NQ } a game Iﬁ satigfying the requirements of continuity and quasi-convexity
+

of the previous theorem, always has an Nl N;S E-composed point.

From this we easily derive the characterization for finite games.

THEOREM V., 3: Let = { Zﬁ,..a, l’°"’A } be a finite n- -person

game with structure function E such that the payoff function of player ieN

has the form

410a(a)Te(s)%aw) = B 000 7))

If for a partition {Nl’NE} of the set of players N , and for each point

x€X = X Z 5 there is another point y€X such that

JEN
1la(n)Te() o)) T By )
“a(1)%¥a(1)
for all i€Nl and
s E'(yd(i)’se(i)’xf(i)) . mg - Ei(ud(i)’se(i)’xf(i))
Se(i ) e i) a(i) "d(i) “e(i) Te(i)
for all i€1\T2 , then, the mixed extension Iﬁ has an NINZ s E-composed point,
2

PROOF: Again, by lemma I.1l, the expectation function Ei of player 1€N is linear
in the variable Xd(i)GXd(i) » Which implies the concavity of the functionsg minimin

in such a variable. Thus, all the requirements of the previous theorem apply to mixed

+ +
extension I% . Hence, the game Iﬁ has an N1N2 . B-composed point. (Q.E.D.)
J
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In a certain sense, specified as follows, the latter concept has a dual
description, which can be easily obtained, by changing the roles of the players
in the associated games., Indeed, given an n-person game I , whose zet of
players N 1is seen to be divided into two sets Nl and N2 . On the one hand,
the players 1€N in the first set l\Tl have the property that their corregponding
antagonistic coalitions, in the associated game determined by the behzvior of their
respective indifferent ﬁlayers, act in a manner so asz to hurt the first player,
that is, the friend coalition., The first player is not trying to defend hisg
respective player 1€N , but only is assumed to be apathetic with respect to him,

On the other hand, for all the players in the complement of N S\ their antag-

5
onistic coalitions are assumed to behave normally which is in accordance with a
minimax strategy. Here, again the friend coalition has no specified role with
regpect to the position of his representative player,

These considerations can be described by the following formulation: given
an n-person game = { Z& l,go ,A } with structure function E , and g
vartition {Nl’NE} of the set of players N , a joint strategy O€X iz said to be
an NN

; s E-compozed point or shortly an E-composed point with respect to
2

N:_LN;,S of game I‘E , if
8400401y %) Oe(y) = MR A 00 9e(5)Fpes))
Se(1) (1) |
for all the players ieNl and
Gi(&e(i)’éf(i)) - ng Gi(se(i)’af(i))
Ye(i) Te(i)

for all the players i€1\T2 .
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In particular we get the notion of E-negative equilibrium point when the
set l\T2 is empty. Furthermore, in the other extreme, when the get Nl is void,
the notion of Em—stable point is derived.

By the respective duality between the concepts of E-positive and E-negative
equilibrium points and the E. and E -stable points, the following simple connection
with E-composed points is immediately derivable.

Given an n-person game Iﬁ = { Z&,...,Z%;Al,,,.,An } with structure
function E , consider the game I = { Z&,..,,Z);uA yeos,=A } obtained from the

E n 1 n
original Iﬁ by substituting for payoff function its respective negative, whose

structure function E 1s given by:

Then, from the simple relations between the minimax and maximin
expressiong it follows that for an arbitrary partition {N‘,Ng} of N, a joint

+ +
strategy is an NlNE{SE-composed point of game I' , if and only if it is an
’ E

N N; Sﬁ-composed point of associated game T
, -
E

Also from theorems IV.21 and IV.26, one derives the following

1

immediate comparison: Given a game I' with structure function E and a partition
{Nl’NE} of the set of players N ; if a structure fumction E fulfills e(i) De(i)

for all the players iGNl and

a(i) = d(1) , e(3)De(d) , £H)C F(H)

for all the players 1i€N then the set of NiN; < E-composed points of game I .
2

2’ E
Q(Nl,NE,S,IE) is contained in the set Q(Nl,N

2’S,F:E) of game I=

B
As an immediate consequence of the general result formulated in theorem IV.1,

we now derive a characterization of the points just introduced.
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THEOREM V.U4: Tet I% = { Zﬂ,n,a,Z%;Al,,.a,An } be an n-person geme

with structure function E such that the strategy set Zﬁ of player 1€N

1s non-empty, compact and convex in a euclidean space, and his payoff

function Ai is continuous with respect to the product variable O€X

and A, 1is quasi-convex in O ,..€X ,., for fixed O_,, N2 :
i 4 e(1) ™~ e(i) a(i) uf(i) "a(i) ufr(i)

If for a partition {Nl’Ng} of the set of players N and for each joint

strategy O€X there ig a point TEX such that

8100501y Te(1)%¢(1)) g (q?gg(ﬂ) 8100501y % (1) % 2(1))

for all the players i€1\Tl and

61 (To(3)0p(s)) = min Gyls5y,0005)
S ;. \€D .
e(i) Te(i)
for all the players 1€N2 , then, the game Iﬁ has a N1N2,s

E-composed point,

PROQOF: For the game Iﬁ with structure function E , consider the following
n-person games derived from Iﬁ :

IE = {El)wu:zniBleo;Bn }y Ig = {Zl“”’zngcl’”"’cn }
whose structure function E 1is given by
d(i) =e(i) , e(i) =a4a(i) , (i) = £(i)

for player 1i€N , and their payoff functions are defined as

—Ai(G) it ieny

K. if 1€N2

B, (0) = {

1
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and

K, if  ieN

Gl(e(i)’gf(i)) it del,
where Ki is an arbitrary constant.
. . . ] €

Because the payoff function Ai is quasi-convex in Oe(i) Zé(i) , then
lemma IV.1 says that the functions Bi and Ci are guasi-concave in the variable
Ze(1)%e(1) -

From this and the conditions satisfied by the original game I% , the
assoclated games Iﬁ and I% fulfill all the requirements asked by theorem V,l.
Thus, the existence of a joint strategy OG€Z which is simultaneously E-positive
equilibrium point of both games IE and IC is guaranteed. Such a point is an

E

E-composed point with respect to Ni,N; < (Q.E.D.)
J

From here, one immediately derives the following characterization regarding

finite games.

THEOREM V.5: Let I‘E = { Zl, ...,Zn;Al,...,An } be a finite n-person game
with structure function E such that the payoff function of player i€N
has the form
J
A O .1 .\s0 ;. \sT/n) = Z (0, T .50\ ) -
ivd(i) Te(i)’ T £(4) jee(1) * a(i)’ 3’ ()

If for a partition {I ,N2} of the set of players N , and for each point

~

X€X = X 2Zi. , there is another point y€X such that
By (Xg01)¥e(i) Fe(a)) = mn Ej(xg(4y0505y%e(s))
S ;. \€4 .
e(i) Te(i)

for all iGNl and
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max Ea(sd sV Ve(1) Xp(1 ) = min max Ei(sd(i)gue(u)yxf<i))
awZay 0 w0y B l

TN E-composed point.

for all 1€N, . Then, the mixed extension Iﬁ has an NN,
[l jk)

e(i}

is guaranteed by lemma I.1l. On the other hand, the function's maximun is also

PROOF: The linearity of the expectation function Ei in the variable x -Q\GXe(i)

~d

convex in that variable. Thus, theorem V.4 for mixed extension game Iﬁ is

verified, and therefore the validity of our assertion is proven., (Q.E.D.)

Finally, before we go into detail in the examination of the general case,
we congider the following description, which is derived by assuming that the
players forming the two sets Ni and N2 of the partition of set of players I ,
have other different characteristics associated with them. Thus, the antagonistic
and friend coalitions, having the respective roles of first and second player in the
situation determined by the acts of the indifferent coalition, are considered normal
with respect to the position of their represented player, if this player is a member
of Nl and they behave according to a saddle pdint, whereas 1f he belongs to l\T2
then the approach of maximin and minimax behavior is assumed.

This assumption leads immediately to the following formal definition given
an n-person game Iﬁ = { Z&,O°O,Z£;Al,°,,,An } with structure function E , and a
partition {Nl’NE} of the players set N , a joint strategy G€X ig called an

E-composed point or an E-composed point with respect to l\Tl,N2 o
FERY

s s s +ot - . s .
Ih » If it is an NiNZ,s and 1\1’1\T2)S E-composed point of game I% , that ig, if

N N2,S of game

mox Rilsa(a)0e(1)0u(a)) T A g5y 0erayOegay)=  min A G 5ys5y:000))

Sa(1)Fa(1) Se(1)e(1) -

for all the players iENi s
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F'(Gd.' ,Gf i ) = max Fi(sd i ,6f i )
Cayfo) =, o Blay S

and

G @ (1) Tp(1)) " mgg O3 (8e(1)%2(1))

e(1)% (1)

for all the players i€N2 .
This concept extends in a natural way to the notion of E-saddle point
and E~stable points introduced in the previous chapter.

From the general result expressed in theorem V.l, we now derive the following

result which characterizes the latter notionm.

THEOREM V.6: Let Ié = { Zi""’Z%5Al""’An } be an n-person game
with structure function E such that the strategy set Zé of player 1€N
is non-empty, compact and convex in a euclidean space, and his payoff
function Ai is continuous in the product variable O€Z ; with a
partition {Nl,Nz} of the set of players N , such that for all i€l
the payoff function Ai is quasi-concave in Gd(i)EZﬁ(i) for fixed
. . € .

Ge(i) uf(i)ezé(i) ue(i) and quasi-convex in Ge(i) Zé(i) for fixed
Gd(i) Uf(i)ézﬁ(i) UE(1) ;5 and for all 1€N2 the function F, is quasi-
concave in the variasble O_,. €%, and the function G, 1is gquasi-convex

a(i) a(i) i

i NS . i 3 S\ e joi
with respect to Ge(l) Zé(l) for fixed Gf(l) Z%(l) If for each joint
strategy O€X there is another point T€X such that
A (Tq(3) % (1) %¢(1)) = max  Ai(8505y505):0¢(1))
S . . \EZ .
d(i) Ta(i)

and

8505y Te(1)%2(1)) " ng 25 (Cq1)7 % (1) (1))

e(i) Te(i)



- 263 -

for all the players 1€N, and

1
B (Ta(1)%¢(1)) = = T (Sa(1)9¢(1))
“a(1)~7a(1)
and
G (T ,o\sT i) = min e (s 1.0, .0)
ite(i)’ (1) , it7e(i)’ £(1)
e(1) (1)

for all the players i€N2 , then, the game Iﬁ has an N=N% E-compoged point.
2

S

N

PROQOF: From the original game Iﬁ ; we now derive the four following games:

R {Z,.. B 5B,..0,8 ), I - =

= . - l,n..,Z)n;Cl,.,,,,Cn }

Ig { Z&"”’Z£5Dl’°°°’Dn } and Ig = { Zﬁ,,..,zgéEl,,,o,En }

whose respective structure functions are E and E , where E is defined by

a(i) = e(i) , e(i) = a(i) , E(i) = £(i)

for each player i€N ., His payoff functions are given by
A. (o) if i€N
1 1
B;(0) = {
K. if i€enN
1 2
o) = -A; (o) if 1€N)
i\ =
Ki if 1€N2
Ki if iel\Tl
D, (o) = {
Fi(gd(l)’gf( )) if  ieN,



- 264 -

and

K. if 1€1\Il
-2, (o o (.)) if  del,
where Ki indicates an arbitrary constant.

From the gquasi-concavity and quasi-convexity of the payoff function Ai P

R o . €

we see that the payoff functions Bi and Ci are guasi-concave in Gd(i) Zﬁ(i)

and O _ €2 respectively. Furthermore, the payoff functions Di and Ei
d(1) d(i)

are also quasi-concave. Thus, this last condition implies that all the requirements
of theorem V.1l applied to the four games just considered, are satisfied, and there-
fore there exists a point which is simultaneously an E-positive equilibrium point

of the above four games. Such a point is an W, E-composed point of the

s S

Nl

original game Iﬁ . (Q.E.D.)

We point out that in the previous theorem the quasi-concavity and quasi-
convexify properties of the payoff functions of players belonging to the set N2
were not assumed but only these properties for the maximun and minimun functions.
If such conditions are assumed, then we also obtain the existence of a polint dex
which in this case ig an E-saddle point. Indeed, applying theorem IV.7 for all the

players i in the set N to the associated game I;(Gf(i)) = {Zé(i)’zg(i);Ai}

2 2
we have by the minimax theorem, that

Fi 01y %¢(1)) = %10Ce(1)T¢(1)) -
This implies that the point G€X 1is an E-saddle point of game Iﬁ .
As an immediate consequence of this result we obtain the following theorem

regarding finite games.
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THEOREM V.7: Let FE ={Z ,...,%0 A

N l’°°"An } be a finite n-person

game with structure function E such that the payoff function of player
i€l 1s of the form

aJ (

8i(Oq(1)0e(1)0¢(1)) = &, . = i (050350 004y)

jeda(i) kee(i)

If for a partition {Nl’Ng} of players set N , and for each point

X€X = X ZS, there is another point y€X such that

JEN
E; (Vg(1) %e (1) *r(1)’ =Sd<ir;lz§d(i)Ei<Sd(i)’xe(i)’xf(i))
and
E; (%q(1)Ye(1) % (1)) =Se(i?2§e(i) E; (%4(1) Se (1) %2(1))
for all the players iGNl ,» and
min E.(yd 1) 8e(1) Xe(1 ) = max min Ei(u 1) Se(1) % (1 )
() @esy T e ey ey T
and
max Ei(s iV V(1) Xe(4 ) = min max Ei(s YL NPRVE SV )
Sd(i)ezd(i) a(i)’’e(i)’ (1) e (1) e 1) Sd(i)ezd(i) a(i)’ Te(i)’Tf(1)

~

, then, the mixed FE has an 1\T=1\T2

for all the players 1€, ,

5 s E-composed point.

PROOF: The bilinearity of the expectation function Ei with respect to the variables

Xd(i)exd(i) and Xe(i)GXe(i) for fixed Xf(i)exf(i) follows from lemma I.1l1 and the

form of payoff function of player i€N , The maximun function Fi is concave in
. . ini f i . i i . R 5
xd<l)€Xd(l) and the minimun function Gl is convex in xe(l)GXe(l) Thus,
theorem V.8 determines the existence of an NiNZ S E-composed point of mixed
2

~

extension Iﬁ . (Q.E.D.)
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We note that indeed, this point is an E-saddle point, since the minimax
theorem ig satisfied by all the assoclated two-persgon games.

Having all these results, it is natural to extend all of them into a general
notion which is constituted by all the previous particular notions. This notion will
be derived by assuming that the players in the game act in different ways according
to some prefixed concepts. We actually have six different general notions, so we
suppose for the general approach, that the players set is partitioned into six sets,
namely: Nl, N2, N3, NH’ l\T5 and N6 . Thus, for all the players belonging to the
first set Nl the antagonistic coalition is assumed to be indifferent with respect
to the position of the respective player and the friend coalition as a normal player.

For all the players in the set N the friend coalition ig supposed to be a normal

2 2
player without any reference to the antagonistic coalition. The antagonistic coali-

tions for players in N., is considered normal while the corresponding friend coalition

3

is apathetic. TFor players in Nh the role of the friend coalition is not considered.

Finally, for players in N both coalitions are assumed to play rational roles with

>
respect to saddle points, and for those in N6 both players are considered rational
with respect to the maximin and minimax principle.

From here, in a precise manner we have the following formulation:given an

n-person game Iﬁ = { Zi""’Z£5A1’“"’An } with structure function E, and a

partition N = {Nl’Ng’N3’Nh’N5’N6} of the set of players N , a joint strategy

- + - - = =
€ . . _ . _ .
g€ is said te be an NlNZ,sN3Nh,sN5N6,s E-composed point or an E-composed point

with respect to N+N+
172,

SN3NH,SN5N6,S of game Iﬁ , if

21@q(1)Te(1)0e(1)) =sd<$2§d<i)Ai(Sd<i>’5e<i>’6f<i>)

for all the players iENlLJN5
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P a(3)05(1)) =sd<.?axd<-)Fi(sdh)’&f(i))

for all the players i€N2LJN6

80 a(1)Te(1) (1)) P (r)n:ég (-)Ai(éd(i)’se(i)"}f(i)>

for all the players i€N3LlN5 and finally

630e(1)e(sy) = M a3(8e(5y05(4y)
8 /. .
e(1) Te(1)
for all the players iéNuLlN6 .
This concept covers all previous concepts treated until now.
A comparison among such points arises immediately by considering their relation
to the points introduced in the previous chapter. Indeed, given a game I' with
structure function E and a partition N = {Nl’NE’N3’NM’N5’N6} of the set of

players N , if a structure function E satisfies: d(i)D)d(i) for all the players

iem U N5 , e(i)gé(i) for all i€N3U Ng
d(i):_)61<i) »oe(i) =e(d) , £(3)C ¥(4)

for all the players i€1\T2 and finally

d(1) =ad(i) , e(i)De(d) , £(1)C ¥(1)

. + + - = = = .
for all 1€1\TL‘L , then the set of N1N2,3N3NM,SN5N6,S E-composed points of game Iﬁ :
+ + - = = 4+ + - = =
. o . 1—1_ 110
R(NlNE,sN3NM,sN5N6,s’Iﬁ) is contained in the set R(N1N2,3N3N4,3N5N6,s’ E) of game I

A characterization of this kind of points arises immediately as a consequence

of theorem V.1, and is formulated in the following result.
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THEOREM V.8: Let I = { Zs.. DA e e A }  be an n-person game with
structure function E such that the strategy set Zi of player 1€N is non-
empty, compact and convex in a euclidean space, his payoff function Ai is
continuous in the product variable O0€X . Given a partition {Nl’NZ’N3’NM’N5’N6}

of the get of players N , such that for all iENlU N_. the payoff function Ai

p)

is quasi-concave in O'd<i)€zd(i) for fixed Ge(i) Uf(i)eze(i)u £(

convex in Ge(i)€ze(i) for fixed Gd(i) Uf(i)ezd(i)u £(1) for all the players

i)’ and gquasi=-

i€1\T3U].\T5 . Also for all i€1\T2UN6 the function Fi is quasi-concave in
. . G i i _cor .
Gd(i)ezd(i) and for all 1€NLLU N6 and the function . 1s quasi-convex with

respect to O'e(i)EEe(i) , for fixed Uf(i)@f(i) . If for each joint strategy

0€x there is another point T€X such that

A5 (Ta(1)%e(1)"% (1)’ =Sd(';l2§d(') A (5401)%(1)% 2(1))

for all iENlU M5 s

83 q (1) Te(1)%e(1)) = (?Zg (_)Aiwd(i)’se(i)"’f(i))

T 11 1 s
or a 1€N3 UM5

F.(Tdi,O'fi) = max Fi(s 981 )
CayPe) =, o Bl %)

for all i€N, u(N M5) UN,  and

5
G.(T ,.\,T./.y) = min G, (s ;.0 ./.y)
ite(1)’ 7 £(1) i Me(i)’ (1)
(1) (1)

for all i€N) U (N5—M6)U Ny , where M. 1is an arbitrary subset of N . Then,

>

the game FE has an N]_NQ, SN?)N)-I-, SN5N6,S E-compoged point.
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PROOF: Having already the game Iﬁ with structure function E , consider the

following n-person games:

Ig = { Zﬁ,o.a,zggE&,,..,Bn } o, Ig = { Z&,..a,Z%;Cl,una,Cn }
IJE3={21,,,,,EH;D1,M,Dn} and I§={El,.oo,2n;El,,..,,En }
f

whose respective structure functions are E and E , where £ 1is defined by

for every player 1€N . Furthermore, the payoff function of player i€N is given by

A, (o) if i€N, UM
1
B, (0) = { * 5
Ki otherwise
-A, (o) if i€N., UM
c,(0) = { + 3775
Ki otherwise
Ki - otherwise
and finally
= G, (0. ) if iel) V(N ~M)U N,
E,(0) = { 1Ve(i) £(1) 575
Ki : otherwise

where Ki indicates an arbitrary constant. From the gquasi-convexity of the payoff

. . . € .
function Ai with respect to the variable Gd(i) Zﬁ(i) for player 1€M5 , lemma

IV.1l gives that all the functions B, and C, are also quasi-concave in 0., . €Z_, .
i i a(i) "a(i)

and O € respectively. Hence, because the last condition of theorem V,1
d(i) d(i)
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is satisfied by the preceding four games there exists a point 0€Z which is
simultaneously E-positive eguilibrium point of all of these games. Now, consider
the players in the set NS_M6 . The associated two-person game
’ = ; 5 i -M_ fulfills all
I}(Gf(i)) {Zﬁ(i)’zé(i)’Ai(od(i)’oe(i)’of(i)>} of a player 1GN5 M5 ulfills a
the requirements of theorem IV.7 applied to Ik(éf(i)) . Thus, in such a game the
minimax theorem holds true, and therefore
Ai<0d(i)’ge(i)’cf(i))=s e Ai(sd(i)’ce(i)’cf(i)) T s 810 q(5) %e (1)’
a(1)5¥a(1) e(1) “e(1)
for all i€N_-M. .
5 5
: : . = . + + - - = =
From this, we obtain that the point C€X is an NlN2,SN3Nu,SN5N6,S

E-composed point of game Iﬁ . (Q.E.D.)

From this, we immediately derive the following existence theorem regarding

finite games.

THEOREM V.9: Let I‘E = {Zl,...,En;Al,...,An } be a finite n-person

game with structure function E and let N = {Nl’NZ’N3’NM’N5’¢}
be a partition of the players set N , such that the payoff function

of player iGNiU N2 is of the form

>

J
sea(s) ai(oj’oe(i)’cf(i)) ’

859301y %(1) % ¢(1)) =

that of the player i€N3U Nu is

. Ny N\ . = ; N . ;
Al(od(l) Ge(l) Of(l)) jee(1) a1(Gd(1) GJ of(1)>
and that of the player i€N5 is
_ Jk
81(0401)%(1) % ¢(1)) = & 28y (05,0,0005y)

jea(i) kee(i)
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If for each joint strategy x€X = X ZG , there is another point y€X

JEN
such that
B a1y Xe(1) ®e(a)) =, ™% BilSg(5)Xe(sy Fe(s))
a(i) "a(i)
for all iGNlL,M5
B3 (1) Ye(1) Xe(a)) 7 ™R Bilxg(syoSe(s) ¥e(a))
e(1) Te(i)
for all i€N3 M5 B
min (y 'V ) = ma.x ’ min E. (U /oy 8 /onsXaray)
(1) Ye(1) " r(4) / C1tTa(i)’ Te(1)’ (1)
%(1)Pe(1) Ta(1)a(1) Se(1)Pe(s)
for all iENEU (N5_M5) , and finally
o "% FlayVeqyreay) T " ™ Blaga) e(s) Fe(n)
ai) "a(i) Ye (1) e(1) Pa(i)7a(1)
for all iGNuU (N5—M5) , Where M5 indicates an arbitrary subset of N5 s, then, the
mixed extension E; has an NZNZ,SNéNL’SN; E-composed point.

PROOF: From lemma I.l11l, the linearity of the expectation function Ei in the variable

L€ . . .
Xd(i)EXd(i) for all the players 1 NlLJN follows as does the linearity of Ei in

5

the variable Xe(i)EXe(i) for all the players i€N, N

5 5 - Analogously, we have

that the minimun funection F, for 1€l is concave in x.,..€X.,. and the
i 2 a(i) "d(i)

maximun function 2. for i€N is convex with respect to x ,..€X ,.,. Thus,
i L e(i) Te(i)

from the last condition on the expectation functions all the reqguirements of
theorem V.8 for the mixed extension Iﬁ are satisfied, and therefore there exists

~

o+ e - = )
an N1N2,8N3NM,SN5 E-composed point of game Iﬁ . (Q.E.D.)
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We do note that, although in this theorem the last set N6 of the
partition was explicitly congidered null, the result obtained by changing this would
coincide with the just treated formulation. Indeed, for those players in the set
N6 , the minimax theorem for their corresponding two-person associated game holds

true, and therefore they can be considered as members of the set N5 .

V.2 E-Partially Composed Points

In this section, as has been mentioned in the introduction of the previous
paragraph, we are concerned with a further approach, based on a different point of view.

Until now, we have considered all the players to have been assigned some
behavior in the situation they are assumed embedded in, that 1is, in the asgociated
two-person game . Of course, as before, we have obtained a more general concept by
combining all the available notions. But, one could consider the possibility that
some players are not associating with any of those notions, but in another new,
specified or not specified manner. Thus, if we possess some new concept, all the
previous results might be extended by the incorporation of this one. But, if one
does not have such a new notion, which is the case for us at the present moment,
the global description of the behavior in the game is given only partially, that is,
it will be described explicitly only by the consideration of the joint acts of a
subset of players in the whole game. In this way, we will obtain new concepts which
we will incorporate into those just considered, partially; that means only for a
certain group of players.

First of all, let us consider one of the most simple of these new notions
which is formally introduced as follows: given an n-person game
I% = { Zﬁ,,.,,Z%;Al,.a,,An } with structure function E and a subset M contained

in the players set N , a joint strategy g€Y is said to be an E-partially positive

equilibrium point with respect to M(CN of game Iﬁ , if for all the players

1M ¢
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80401y 06(1) (1)) = max Ay (8q(5)0e(1)Te(s)) -
Sa(1) (1)

At this point, we do note that although the notion of these points does not
involve the wholePset N but only the subset M , it does not mean that they are
independent of the actions of the players in N-M. .

Directly from the definitions, we have that a point is an E-posgitive
equilibrium point of game Iﬁ if and only if for every subset Mg;N it 1s an
E-partially positive equilibrium point with regpect both subset M and N-M .

In a way similar to that used in the preceding chapter for E-positive
equilibrium points, we have that if MM and for the structure function =
d(i):)a(i) for all i€l , then the se;-of E-partially positive equilibrium points
with_;espect to M of game Iﬁ:P(M,Iﬁ) is contained in the set P(M,T")

E
of game I

OnEthe other hand, the notion just introduced is a straightforward
extension of E-positive equilibrium point which appears when the set M coincides
with the set of players N ., On the other hand, one can derive this as an E-positive
equilibrium point of a modified game. Indeed given a game Iﬁ » consider the follow-

ing associated n-person game

I§={21J°°=JEHBB1:°°°:B }

n
where the new payoff function Bi is defined by
Ai(O‘) if ieM

K. otherwise

1

where Ki indicates an arbitrary constant. Then a point is an E-partially positive
equilibrium point with respect to M of Iﬁ if and only if it is an E-equilibrium

point of the associated game Ig .



- 274 -

A characterization of points is & particularization of the following
general result, which could also be useful in obtaining other exisgtence theorems

for most general concepts.

THEOREM V.10: Let I%j = { El,...,En;Bi,...,Bi } (jep = {3,...o0})

be P n-person games defined on the same strategy sets with the respective

structure functions Ej , such that the set Zﬁ of player i€N 1is non-
empty, compact and counvex in a euclidean space. Which for any P given

subsets MjC:N with JjeEP for game I% , the payoff function Bg of
et A j

player iEMj in the game I% , 1s continuous in the product variable O€EX
J
and quasi-concave with respect to the variable O 2 for fixed

. €L
(i) (i)
v . €L . . Tf for each joint strategy g€L there is a
S1yud() eI(1) url(i)
point TEZ such that
Bi(T PP ) = nax Bi(s . 0. O
d1) eJ(1) (8) s €% . @) ) (1)
ad(1) a’(d)
for all JEP and all the players 1€M . Then there exists a joint strategy

ge€x , which is simultaneously an Ej-partially positive equilibrium point

with respect to Mj of game I& , for all JEP .
J

PROCF: Counsider for each JEP the agsocliated game

n

o . .
I%_ = { Za}...,zggci,.ou,cJ }
J

obtained from game I% by gubstituting for the payoff function Bi of players
3 . .
iEN--Mj an arbitrary constant Ci = Ki . Thus, for all these new games all the

requirements of theorem V.l are astisfied, and therefore the existence of a joint
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strategy 0€% which is simultaneously E-positive equilibrium point of games

I%a with J€EP is guaranteed. Such a point is simultaneously an E-partially
poiitive equilibrium point with respect to Mj of game I& , with Jj€P . (Q.E.D.)
J
Having this result, we are now going to introduce the most general concept.
Given an n-person game Iﬁ = { Zﬁ}ao.,ZQ;Al,.,a,An } with structure function E
and a partition M = {Ml’MZ’M3’MM’M5’M6} of a gubset M of the players get I ,

a joint strategy O€XZ 1is said to be an MM M M' M_MZ E-partially composed
12,5 3 4,8 56,s

point of game I, , if

E
804(1)%e(1)Te(1)) = X Ai(8q(5)0e(1)O2(1))
a(i) "a(i)
for all the players i€Ml UM5 s
4100(1) ey O21) = MR MOy se(ay Tris)
Se(1) (1)
for all the players i€M3UM5 s
FiOqayOpa)) = @8 Filsg05y.00(4y)

Sa(1)%4(1)

for all the players i€M2 UME and finally

G. (O . 30/ ) = min G.(8 /o \s00ren)
e(i)’7 (1) . itTe(1)V (1)
l e(1)%e(1)

for all the players iEMu UM6 .

This concept generalizes all the previous notions considered. There are

several ways of observing this extension, for example, an N N N3NM N_N

172, 8 5,8

E-composed point can be observed to be simultaneously an Nl E-partially,



- 276 -

+ N - . - . =
1\12’S E-partially , N3 E-partially , Nh,s E-partially, N5

E-partially composed point. Of course many other relations could be obtained

E-partially, NZ 5
s

immediately from the definitions.
The relationships between such points follow immediately from the results
of the previous chapter. Thus, for a game I" with structure function E and two

partitions {Ml’ME’M3’MM’M5’M6} of a subset M and {Ml’ MM’M M6} of the

3}

subset M of players set N , if a structure function E verifies a(i)s a(i)

for 1€Ml[jM ) 1)“)e( ) for ieﬂ3 Uﬁg )

for all the players i€M_, and

a(i) = a(1) , e@@De@) , fER)CIE)

y ~ + +
f 11 i i - h
or all i€M , then if Mé; M, for k l,...,6 , the get of MiMz M. MLL M6

E-partially composed points of game I1 S(M 3 Mé S,M,Iﬁ ) is contained
J

12, s jMu,sM5
in the set S(MlMg’uMéMu,u 5 6 ,M,I%) of game Ié .

A characterization of these points is formulated in the following result.

THEOREM V.1l: Let I% = { zﬁf”“’z%;Al"""An } be an n-person game

with structure function E such that the strategy sef Zﬁ of player 1€N
is non-empty, compact and convex in a euclidean space. TLet there also be
given a partition {Ml’ME’M3’MH’M5’M6} of a subset M of the set of
players N , such that all the payoff functions Ai of players 1€M

are continuous, and for all iéMlU M Ai is quasi-concave in

5 2

for fixed O for all the players
Te(1)® () d( YU £(1) pray

d(l)lJf(l)
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i€M2[JM5 . Also for all i€M2‘JM6 the function Fi is gquasi-concave in

Gd(i)€za(i) and for all 1€MquM6 the function Zﬁ is guasi-convex with

i €, . £ joi 8
respect to oe(i)ezg(i) , for fixed of(i) Z%(i) If for each joint strategy

0€. there is another point 7T€X such that

Ay (Ta(1y%6(1) (1)) =Sd('r;2§d(') A5 (841)%e(1)%£(1))
for all iEMlUL5 s
A Oy ey 1)) = MR A (O y05005y0T¢(4))
e(1)%e(1)

for all i€M3 UL5 s

Fs (Ta(1) % ¢(1)) =Sd<‘r;lz%d(.)Fi(sd(i)’gf(i))

for all i€M,U (M5-L5)U Mg and

a. (T ;1 \0 . y) = min 308 .0 y)
it e (1)’ F(1) itTe(1)’ £(41)
Se(1)Pe(1)

for all ithL’(MS-L5>lJM6 , where I_ 1is an arbitrary subset of M

> 5°

Fort vmae M . .
Then the game Iﬁ has an M1M2,3M3MM,SM§M6,S E-partially composed point.

PROOF: Given the game Iﬁ with structure function E , consider the following

associated n-person game Ig = { Z&,G.D,ZE;Bl,o.,,Bn } with structure function

and the payoff functions defined by

A, (o) if ieM
B(0) = { °

Ki otherwige

iy

)

where Ki indicates an arbitrary constant. On the other hand, let us consider the

partition {MlU(l\T—M), Mg,M3,Mu,M5,M6} of the set of players N . Thus, the
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assoclated game I satisfies all the requirements of theorem V.8 for the

E

partition just considered, and therefore this game r% has an

+ - - = =
(M- U(N-M)) M;,SM3MH,SM5M6,S E-composed point. Such a point is an

l 2,0M MH,SM5M6,S E-partially composed point of game I . (Q.E.D.)

B

Directly from this result, we now derive a general theorem regarding mixed

extensions of finite games.

THEOREM V.12: ILet Iﬁ ={=,.. Z A A } be a finite n-person

ljoo
game with structure function E and let M = {Ml’ME’M3’MM’M5’¢ }

be & partition of a subset M of the set of players N such that the

payoff function of player iGMlIJM2 is of the form

J
A10a(5) %) 2()) = 2 #O %) Te(a))

J€d(1) o

that of the player i€M3lJMu is

8 00401)% (1) %2(1)) = a§<0d(i)’oj’of(i)) ;

j€e(i)

and that of the player iEM5 is

Jk
ay (

8 (0q(1)9(1)Tp(1)) = 2 Z

j€A(i) k€e(i) 0 o Uf( ))

If for each joint strategy x€X = X 2Z. , there is another point j€X
jey 9
such that

B ariy®e(iy ®e(a)) = M2 Bi(8q05y%e (1) %e(1))

Sa(1)%a(1)
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s (i) Ve i) %o (1)) g (_T;%g (E)Ei(xd(i)’ Se(1) ¥r(1))

ieM. U
for all i M3 L5 B

min Ei(yd(i)’se(i)’xf(i)) = max min Ei(ud(i)’se(i)’xf(i))
%e(s) Pa(1)a(1) e(1) (1)

for all i€M2lJ(M5-L5) ; and finally

max Ei(sd YR INTRYE I ) = min max E.(sd VL NTRVE ) )
sd(i)ezg(i) (1)’7e(1)’71(41) ue(i)exe(i) Sd(i)ezﬁ(i) 17a(4i) (£)7%£(1)

for all ieM, U(M_-I , Where I is an arbitrary subset of M Then, the
L =Y570s

> 5 °

. . + + - = = . .
mixed extension Iﬁ hag an M1M2,SM3MM,SM5M6,S E-partially composed point.

[

PROOF: From the forms of the payoff functions, and lemmsa I.11, the expectation

function Ei for all the players i€M, M is seen to be linear in the variable

1L 75

o ° o e U o o ° - e
Gd(i) Xd(i)’ for players i Mg M it is linear with respect to Xe(i) Xe(i) 0

5

On the other hand, the minimun function F. for ieM is concave in x._,,.€X .
i 2 a(i) tda(i)

and the maximun function G. 1is convex in x \€X_ /.y , for i€M, . Thus, by the
i e(i) Te(i) L

last condition on the expectation functions, all the requirements of the previous

~

theorem, for mixed extension game Iﬁ are met and therefore it has an

S : .
M le,sM3Mh,sM5 E-partially composed point, (Q.E.D.)

We do note that the preceding results involve more generality than can be

pretended at first.
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CHAPTER VI¥*

VI.1 E-Points by Fixed Point Procedure

This last chapter is devoted to extending those concepts and characteri-
zations already formulated in the two preceding chapters. Thus, the results
obtained here, which are the most general presented, are in a certain sense final.

This chapter is to the results of the previous chapter as the third chapter
was to the first two chapters.

The simpler approach, which is considered first uses the fixed point proce-
dure which is essentially of a repetition of the treatment just considered.

The existence theorems of E-points for general games defined on linear
topological spaces will be derived from the following result which is a direct

extension of theorem V.10.

THEOREM VI.1: Let I‘é = (),
J

P n-person games defined on the same strategy sets with respective structure

"'-:Z:'BJJ"'; BJ} (jeP = {l;°'°:P}) be
n’ 1 n

functions EJ , such that the strategy set Zi of player i1eN 1is non-empty,
compact’ and convex in a locally convex linear Hausdorff space. For each

jeP let Mj be a subset of N , such that for all the players ie Mj , the

payoff function Bi is continuous in the product space I , and quasi-

. € X for fixed o , . € X . . .
al(1)  al(1) e’(1)urd(1)  e?(1)uf(a)
for each Jjoint strategy o0eX there is a point TeX such that

concave in O If

J J
Bo(t . ,o0 ., ,0 . ) = max BY(s . ,0 . ,0 .
adE) @) £ s, ex. *oadu) &) )
for all jeP and all the players ieMj , Tthen, there exists a joint strategy

o€l , which is simultanecusly for all jeP or Ej=partially positive

equilibrium point with respect to Mj of game :%
J
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- PROCF: Consider for an arbitrary joint strategy ogeX , and a playexr ieMj with
JjeP the set
@i(c) = {TeX: Bg(T . ,0 ., ,0 ) = max Bg(s ) o

. ,0 . ,0,
(1) J) fE) s . ex at (1) eti) @)
ad(1) al(1)

)}

which is well defined by virtue of the continuity of payoff function Bg . It is

convex because BJ is quasi-concave with respect to o , er , ;> and the convex-
Cq a(i) al@)

ity of the strategy sets Zi

Let us define the multivalued function

v 5 o3
as the set w’(a) _ n n @g(c)
JeP ieMj

for all the joint strategies oeX . Indeed, that the set ¥(¢) is non-empty,
follows from the last condition on the payoff functions. On the other hand, the
upper-semicontinuity of the multivalued function ¥ is guaranteed by the continuity
of the payoff functions and lemms ITI.2. Thus, the fixed point theorem given in
theorem IIT.1 can be applied to the function ¥ » since the product space S is
locally convex linear Hausdorff space, and therefore there exists a point 0ef guch
that 0e¥(0) . Such a point is an Ej—partially positive equilibrium point with
respect to Mj of game Ig. for all jeP . (Q.E.D.)

As an immediate ca;gequence of this result we derive the following general

theorem dealing with E-partially composed points:

cs2 5 A

THEOREM VI.2: Let Iﬁ = {Zl,,. 5 Ao

.,An} be an n-person game

with structure function E such that the strategy set Zi of player ieN

is non-empty, compact and convex in a locally convex linear Hausdorff space.
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Given a partition {Ml’ME’MB’M ,M5,M6} of a subset M of the players set

N such that all the payoff functions Ai of players ieM are continuous;

i U
for all 1eMl M5 a(1)¥%a (1)

o i U i-con
e(i)UF (i) eze(i)Uf(i) , and for all the players 1eM2 M5 gquasi-convex

B Ai is quasi-concave in d ex for fixed
i o) z ; i = .
in e(i)e < (1) for fixed Gd(i)\Jf(i)ch(i) Uf (1) Also for all
s - U c . . o .
1CM.2 M6 the function Fi is quasi-concave in Gd(i)ezd(i) and for all
. U . . .— .
1€Mﬁ M5 the function Gi is quasi-convex with respect to Ue(i)eze(i) 5
for fixed Uf(i)ezf(i) . If for each joint strategy oeX there is another
point 7TeZ such that
A (7T g v) = _ o g
3 a(i) e(i)’ f(i)) smax - A (85 (1% 1) f(i))
a(i) "a(i)
for all ieMiLJL

5 2
A0y ey %)) T Ay ey e )
_ e(i) Te(i)
for all 1€M5lJL5 5
Fi(Tg(s) % (1)) = mex P 5a (1) % 1))

. u _
for all J.eM2 (M5 L5) M6 and.

G. (T ,.\,0.,.\) = min G.(5.,.1s0.,.4)
(1) 7°£(1) a(i)’ " £(1)
ite (4 i Sd(i)ezd(i) it7a(d) i

for all ieMﬁlJ(M5—L5)LJM6 , Where L5 is an arbitrary subset of M5 , then
+ + — Py = = . >
the game :E has an Ml MQ,S M5 Mﬂ,s M5 M6,s E-partially composed point.

PROOF: Given the game Iﬁ having the structure function .E and the subset M ,

consider the following rn-person games

C
tg B {Zl""’zn3 Bl""’Bn} 0 Iy = {Zl""’zn; Cl"°"cn}
z ;
B = {Zl,...,Zn; Dl,...,Dn] and I‘E = [Zl,...JZn; El,...JEn}
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whose respective structure functions are E and E , where E is defined by

for every player ieN . The payoff functions are defined by

B (0) = { A,(9)  if daw UL
] K, otherwise

A R
’ Ki otherwise

D.(c) = ¢ Filos )% gy) » if 1eM, U(M L)
) Ki otherwise

and lastly

E (0) = { % (1% @) F- 1eM U (Mo-L JUM g

i Ki : otherwise

where, as usual, Ki indicates an arbitrary constant.
. . . ) " G
The quasi-concavity of payoff function Ai with respect to d(i)ezd(i)
of a player ieL5 » lmplies as has been asserted in the proof of theorem IT1T.29,
that the minimum function F., is quasi-concave in the varisble o L A\EX sy
i a(i)~"a(i)
. . . . .
In the same way, because for player 1<—:L5 Ai is quasi-convex in e(i)eze(i) P
then the maximum function Gi is also Quasi-convex in this variable.
Hence, all the requirements of theorem VI.1 applies to the previous four
games in a global way. Thus, the existence of a point 0eX which is simultaneously

an E-positive equilibrium point for each of those games, 1s assured.

Now, for the players ieM_-L let us consider the two-person game

575”7

l“i(Bf(i)) = {Zd(i),ze(i); Ai(cd(i),oe (i),'cff(i)) } , which fulfills all the

requirements of theorem ITI.9 Thus, the minimax theorem holds for it, which implies:



Ai(3d(l)’66(l),-f(l)) i 5 maxez Al(sd(l)’ae(i)’Ef(i))
a(i)~“a(i)

= minez Ai(ad(i)’se(i)’Gf(i))
Se (i) "e(i)

for all dieM_-L_ .
5 5

By virtue of these relations, we have that the point Oef is an

+ + - =3 = = . . . .
Ml ngS M5 Mﬂ,s M5 ME,S E-partially compound point of original game PE“ (Q.E.D.)

From here, we now obtain the characterization of such points for mixed

extension of continuous games.

THEOREM VI.%: Let Iﬁ = {Z L5 5 A

150 L 100

structure function E , such that the strategy set Zi of player ieN is a

.,An} be an n-person game with

compact Hausdorff space. Given a partition [Ml’ M, MB; M, M5; g1 of a
subset M of players set N » such that all the payoff functions Ai of
players 1ieM are of the form

PN

85098 (1) % (1) % (1)) = ) 85 (9550, (11995 (1)

for player ieMy U M2 s

o ) = = aj(

A5 (98 (1)7% (1) %% (1) 2 %1% % (1)

for player ieM5 U Mﬂ and finally
.k
dJ
A (0, ,.\,0 ;. \,0.,.y) = =% b al (0.,0 ,0.,.4)
1iVa(1) e (i) £(1) jed(1) kee(i) T 9 k> 7f (1)

for player ieM5 » where all the involved functions are continuous in their
respective variable. If for each joint strategy xeX there is a point yeX
such that

Ei(yd(i)’xe(i)’xf(i)) = mazx Ei(ud(i)’xe(i)’xf(i))
Ya(1)a (1)

for all ieMi U L5 5
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B ) Ye (1) % 1)) o R Bl Ry
e(1) e (1)

for all ieM_ U L

) 5°
min E, L SRS S = min B,
o e BVagy ey Te) = memn B G )
e(i) e(i) d(1)™a(i) “e(i) e(l)
for all ieM. U (M_-L and finall
ieM, U ( 5 5) y
= i E,
) max€X Ei(ud(i)’ye(i)’xf(i)) . mlneX . ma.x (u (1)’ue(i)’xf(i))
d(i)7a(d) e(1)e(1) "a(1)®a( )
for all 1eM U (M ) , where L5 is an arbitrary subset of M5 , then,
X ) + - - = .

the mixed extension DE has an Ml M2,s M5 Mh,s M5 E-partially

composed point.

PROOCF' : From the form of payoff functions and lemma III.7 we see that the ex-

Pectation functions Ei for player ieMi UM_ is linear with respect to

>
Xd(i)GXd(i) - By the same reasoning, for player 1€M2 u M2 it is linear in
Xe(i)exe(i) - Furthermore, the minimum function Fi and the maximum function

G, are respectively concave in x and convex in x
i P Y a(1)%a (1 ) e(1)¥e(1) -

Thus, because of the last condition, all the requirements of theorem VI.?

~

for mixed extension game Iﬁ are fulfilled, and therefore the existence of an

+ -+ - - =

M - i i i . E.D.
Ml 28 M5 Mh,s M;  E-partially composed point is proven. (Q.E.D )

)
A further application of the above results is derived below and is related

to a certain class of "simultaneous" E-saddle points.

THEOREM VI.l: TLet rgj = (Z,ee0,Z; Bi,...,Bi} (JeP = {1,...,p))

n-person games defined on the same strategy sets with the respective

structure functions E . such that for all JeP and all the players
J
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iel: £9(i) = ¢ . The strategy set L, of player ieN is assumed to be
non~empty, compact and convex in a locally convex linear Hausdorff space,
his payoff functions Bi with JjeP are continuous in the product variable

deX , quasi~concave in © ; e j , Tor fixed o P €X . , and
a“(1) a’(1) e’ (1) e’(1)

it is quasi-convex in o . X . for fixed o , ez . . If for
ed(1) ed(1) ad(1) al(1)

each point o€l there is a joint strateby TeX such that

BJ(T . 50 ) = max B;(s . 50, )
Tada) ed@) s . ez . Tada) Y1)

ad(1) ad@1)

and

BI(o . ,7. ) =  mi Bdo . s . )
' s .ln es *ad) seJ(i)
ed(1) ed(i)

for all JjeP and all the players ieN , then there exists a point Oex

which is simultaneously for all jeP Ej—saddle point of the game I%
J

PROOF : Consider the following 2p associated games

o
=Y = (=

= Z5 C5,e..,00)
J

1200 n

whose strategy sets coincide with the corresponding strategy sets of original

games. The structure function Ej for Jjef{l,...,2p} is given by: Ej = Ej
J . . .
- - J
if JjeP and by 4 (i) = eJ(i) 5 eJ(i) = 4 (i) 4if Je(p+l,...,2p}
Finally the payoff functions are defined by

J . .
) BY (o) if  jeP
cie) = ( *
B%(G) otherwisge.
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Hence, all the requirements of theorem VI.1 are fulfilled for these games
and therefore the existence of g point 0Oef which is Ej-positive equilibrium
roint for all these games, 1s demonstrated. Such a point is simultaneously an

Ej—saddle point of the original games Ig . (Q.E.D.)
J

VI.2: E-points by Intersection of Sets with Convex Cylinders Procedure.

In this section we deal with a second approach for E-points in general,
similar to what was done for e-simple points in the third chapter, which is based
on the procedure of Fan | 51.

These results will contain as rarticular cases those already derived in the
Previous paragraph by using a fixed point procedure.

The results of this section, will be derived in an analogous manner to that
of the thirad chapter, as consequence of the following general result, which is a
straight forward extension of theorem III.3%0. It will be Proven in an indirect

way using that theoremn.

THEOREM VI.5: Let zl,...,zn be compact and convex sets each in a

linear Hausdorff space and for each ieN = {1,...,n) and each jeP ={1,«.,0},
let hY(i) be subsets of N . TLet there also be given pn subsets
Si,...,Si JeP  of the product space = = X Zi » such that for each

ieN
ieN and each point oeZ all the cylinders

S;(G) = {tex: (v . o . ) S; }
* W) mnd)

with JjeP are convex and the cylinders

Je S?}

« L
g9 (0) = {1ez: (o . 5T .
nd(i) wewd@i)  *
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with JeP are convex and the cylinders
3t 3
Y (o) = {1ex: (0 . ,7 ; ) € Si ]
nd (1) N-nd(i)

are open. If for each 0eX there is another point 7TeX such that

(r . ,o ; ) € Si
nd (1) N-n(1)
for all ieN and jeP , then the intersection
nn s
JjeP ieP

is non-empty.

PROCF: If the set P is formed by only one element, then this theorem coincides
with the result expressed in theorem III.20. On the other hand if the set P

is composed of two elements, it is theorem III.30 itself. Finally, suppose that
the set P has more than two elements; that is P = {1,...,p} with p>2

Let us consider two arbitrary different elements of set P , which without loss

of generality are assumed to be 1 and 2. Then theorem III.30 applies to the

1

subsets Si,...,sn and Si""’si 5 8ince all the respective requirements are

verified, we have that the intersection

n (st n %)
ielN + +

is non-empty. Now, define the subset Ti C Z as the set Si n Si . Again
consider the subsets Ti,...,Ti and 'SE,...,SS , which again satisfy all the
conditions of theorem III.Z?0, and therefore, the non-voidness of the intersection
n(ry ns? )

ieN *
is assured. By following in this way, applying the mentioned theorem each time,

the non-emptyness of the complete intersection

n n g
jeP ieN T
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1s proven since the number of element of P is finite. (Q.E.D.
We note that the number P-n of subsets involved in this theorem is not
essential. Indeed, if one has m subsets where

(p-1).n <m < p.n

for a determined natural number D , then by considering the product space I
as those remainipg P-n-m subsets demanded by theorem, one obtains the desired
result only for those m subsets.

As a first application of the above theorem we now derive s general result
which generalized theorem VI.2 concerning E-partially compound roints formulated

as follows:

THEOREM VI.6: Let Iﬁ = (Z X 3 A

17T Ty

structure function E , such that the strategy set Zi of player ieN is

""Aﬁ] be an n-person game with

non-empty, compact and convex in a linear - Hausdorff space. Let there also
be given a partition {Ml’ME’MB’MH’M5’M6} of a subset M of players set N
such that all the payoff functions Ai of players ieM are continuous; for
all ieM:L U M5 5 Ai is quasi~concave in Ud(i)ezd(i) for fixed
Ge(i)Uf(i)eze(i)Uf(i) » and for all players ieM2 u M5 it is quasi-convex in
Oe(i)eze(i) for fixed Ud(i)Uf(i)ezd(i)Uf(i) 5 also for all ieM2 U M6 the
function Fi is quasi-concave in Ud(i)ezd(i) and for all ieM5 U M6 the
function Gi is quasi-convex with respect Ge(i)eze(i) , Tor fixed

Gf(i)ezf(i) - If for each real number & > O and each Jjoint strategy oex

there is a point 71eX such that
A1) % (1) %)) > P A (s (13000 (g 5T () - B
S/ \EZ. ;. ,
ai)"a(i)

for all ieMi u L5 B
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Define the sets hl(i) = hB(i) = d(i) and hg(i) = hLL

(i) = e(i) for every
player ieN . Then the cylinder
Sli(c) _ {Tex: Ai(cd(i)’Te(i)’Tf(i)) > _ ma:;cZ Ai(sd(i)’Te(i)’Tf(i)) - 8)
® a(1)""a(1) If e UL,

2 otherwise

of player ieN is open, since the payoff function Ai is continucus in the
Product variable. By the same reasoning the cylinders
TeX: A, (T g T < i T +
. (rez: A (T (1) % (1) T (1)) comE e AT yse () Teg)y) + B
S (o) ={ e(i) Te(i) . .

z otherwise i 1eM UL
are also open. Moreover by the countinuity of payoff functions, the minimﬁm

functions Fi ~and the maximum functions Gi are also comtinuous, and therefore

the cylinders

- Ty Ty 2 B Rl T)) -8 )
35 (0) = { a(i) "a(i) if 1eM2U(M5nL5)UM6
2 otherwise
and
. {tez: ¢ (0, \,7 1) < min G. (5 /.\sTo/y) + B)
Sg-l(g) - 1t e(i)” £(1) 5 (1) (1) itVe (i) f(l)if ieMLLU(M5—L5(UM6
2 otherwise

are open too. The Quasi-concavity of functions Ai and Fi with respect to the
. 0 . . S ' A3
variable d(i)ezd(i) » implies that the cylinders
TeX: A, (T o o > . 2320 s 50 =
& (o) - {{ 2 A (T (1) % (1) % 1)) L A0y % (1) %)) - 0 )
5,1 ‘ a(i)™a(i)

2 otherwise

if 1eM1UL5

and
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Ai(cd(i)’Te(i)’Gf(i)) < . mineZ Ai(cd(i)’se(i)’gf(i)) + B
: e(i) Te(1)
for all ieMBUL5 5

Fi(Td(i)’Gf(i)) > smax o Fi(sd(i)’cf(i)) - 5
"d (i) Td(d)

for all 1eM2U(M5—L5)UM6 and.
T g < i
G (T (1)2% (1)’ min G (s (5):00gy) + B
N -
e(i) "e(i)
for all ieMLL U M-L_)U M6 , Wwhere L_ is an arbitrary subset of M

575 5 57

+ + - = =
-a = M - .
then the game & has an Mi ngS M5 M L M5 s E-partially

2
composed point.

PROCF : For each player ieN and a real number - >0 , consider the following

gsets defined by

{Oéz: Al(gd(l))ce(l)’cf(l)) > max Al(sd(l)’ge(l))cf(l)) -5 }

1 _ S, €D . [\
36)1 = { a(i)~"a(i) if 1eM1UL5
2 otherwise
, {oex: Ai(dd(i)’ce(i)’cf(i)) <S mizZ Ai(cd(i)’se(i)’cf(i)) + 9 )
85 o= { e(i) Te(i) if ieMBUL5
s L b otherwise
3 foex: Fi(cd(i)’gf(i)) g s mﬁxez . Fi(sd(i);cf(i)).~ é} U JUM
Sa,i = { a(i)"ai) if ieM, (M5-L5 "
2 otherwise
and finally
, {oex: Gi(Ge(i),Gf(i)) <s mizz Gi(se(i)’cf(i)) +8 ) if ieMuu(M5mL5)UM6
S i = { e(i) Te(i)

2 otherwise.
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, {Tex: Fi(Td(i)’Gf(i)) > ] maxey F.(sd(i),ﬁf<i)) -5}
S (o) = { a(i)~"a(1) if ieMBU(M5—L5)UM6

2 otherwise

are convex. Furthermore, the quasgi~convexity of function Ai and Gi in the

variable o_,. \€X , . , dimplies tha%t both of the cylinders
e(i) e(d)

SHORE {{T€Z: ERCEIRNEIREEO % éigz , Ai,(cd(i)’se(i)’gf(i)> to ]
o | | s(1) e (1) if ieM, UL,
% otherwise
and
N {Tex: Fi(Te(i),Uf(i)) < ] minFZ Fi(se(i),cf(i)) * 5 )
SS,i(G) = “e(i) e (1) if ieMAU(M5-L5)UM6
2 otherwise

are convex. Finally, by the latter condition, the last requirement of the brevious

theorem applies to those subsets aliready considered. Thus, the intersection

l B
n{s. .n 52 . N g2 . N slL . ) for any & > 0O
ieN 0,1 0,1 8,1 5,1

is non empty. Now, defining

1 2 3 L .
ns
5,1 5,1 n SS,i N S&,i) for a given & >0 ,

where S indicates the closure of § » we then have that the family of sets

1 2 In )

ns® . ns? n

e
R (85,1 7 85,1 185 5 55,1

o ieN

satisfies the finite intersection property. Therefore, because the product space

2 1s compact, the intersection
1

n-n (s . Ns, . Ns,.Ns. )
550 ieN 9,1 d,1 0,1 0,1
. - + o+ -
1s non-empty. Hence, there exists a roint 0OeX which is an Mi Mg s M Mh s g
2 2

[ME U (M5—L5)] = E-partially composed point cf game :E
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Now, consider for a player ieM -L_ +the two-person associated game

55
r. (o, = v &g Ao, 0 T,
1)) T By By Ay )y ten)) )
which is determined by the choice af(i)ezf(i) of the respective indifferent
coalition. This game satisfies all the requirements of the minimax theorem III.23.

Hence, for it, by the definition of functions Fi and Gi we have that the following

equality holds:

o o o = 0 o
1) %@y %)) = &GP
which implies
0 0 0 = T o
A5 g (128 (1) % (1)) Fi iy (1))
= 5} o
Gi( e(i)’ f(i))
. . - . + + - - = =
for each 1eM5-L5 - Then, the point o0eX 1is an Ml M2,5 M5 Mh,s M5 M s
B-partially composed point of game I', . (Q.E.D.)

E

We note that the last condition involved in the above theorem is weaker than

the respective one in theorem VI.Z2.

As has been shown in the previous chapter and in the breceding section,
applying to the corresponding procedures, the respective particularization of
this result has always been a speclal case of a further general result. OFf course

in this case -we also have g general extension of theorem IV.1l which is Tormulated

as follows:

J j .
THEOREM VI.7: Let I‘Ej = (T2 Bi,...,Bfl} (jeP = {1,...,p}) De

b n-person games defined on the same strategy sets with the respective

structure functions EJ such that the strategy set Zi of player ieN is

non-empty, compact and convex in a linear Hausdorff space. For each jeP
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let Mj be a subset of N , such that for all the players ieMJ » the payoff
function ng is continuous in the product space 2 and Quasi-concave in

2 . If for each real

o €x for fixed o j . €L, :
e (1)UFY (1) ed(i)urd (1)

al(1) a?(1)
number & > 0 and each joint strategy 0OeX there is a point TeS such that

,0 ) -8

BY (7 g g ). > max BI(s | »0 .

)y ) 9wy T s es ad (1) (1)
| ad(1) ad(z)

for all jeP and all the players ieMj 5 then, there exists a joint strategy

gex » which is simultaneously for all JeP on Ej—partially equilibrium point

with respect to Mj of ganme D%
J

PROOF: For a given real number & >0 and a player 1eN , consider the sets

P {cex: B;(o . ,0 . ,0 . ) > max B;(s e T ) - 8}
sy = ¢ ada) ) flw) s, e el ed(1) £9(1)
9,1 Jye J )
a“(1) a“(1 if ieM.
2 otherwise J

Let us define hJ(i) = dd(1) for every player ieN . Then, the continuity
of payoff function Bi ; Tor any oceX implies that the cylinder Sgl(ﬁ) is
open and its quasi-concavity in the variable o . €x | » implies that the

. al(1) at(1)
cylinder 'Sg i(G) is convex. Furthermore, by the last condition, theorem VI.5
2

is satisfied by sets sY ., and therefore the non-emptyness of the intersection

0,1
N n Sg , forany 8 >0,
jeP ienw ©o*t
is assured. Now, defining for each & > 0 the closure set SS ; » ome can easily
. 2
see that the family R = M n sd . has the finite intersection property,

d 9,1

ieN jeP

which implies the existence of a point GeX » & member of the intersection

e n N n sl
8>0 ieN  jeP ot
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since the product space 3 is compact. - Such a point is simultaneously for all
JjeP on Ej-partially positive equilibrium point with respect to Mj of game

S
Iﬁj . (Q.E.D.)

A special case of the above theorem is related in the following result

concerned with some special E-saddle Points, which extends theorem VI.lL.
THEOREM VI.8: Iet rﬁ = {5 Bi,...,Bi } (3€P = {1,...,p})

J
be p n-person games defined on the same strategy sets with the respective

structure fﬁnctions Ej such that for all jeP and all the players

ieN: fj(i) = ¢ . Also assumed that the stratégy set Zi of player ieN
is non-empty, compact and convex in a linear Hausdorff space, his payoff
functions Bg with JjeP are continuous in the Product variable oex ,
quasi-concave in o €2 for fixed o . €X . and it is guasi-

adi) ad(i) ed(1) eJI(1)

for fixed o ex + IT for each real num-

convex in o . €2, ., .
ed(1) (1) a%(1) ad(1)

ber 3 >0 and each point 0eX +there is a joint strategy 7TeX such that

BI(T . 0. ) >  gax B(s . ,o. )-s
Tada) ed@) s, en .t oady ed(a)
and a?(1) ad(1)
BJ(G . ST, min B?(G . .8 . ) + 5
Pad) edm) s Tad) el

S . SOI
(1) e(1)
for all JjeP and all the players 1eN , then, there exists a point cex

which is simultaneously, for all JeP , an Ej-saddle point of the game I% .
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PROOF': Consider the following 2p associated games

C. . .
:EJ = (ZeE; ci,...,ci }
J
] _ . J
with structure functions Ej defined by: Ej = Ej if jeP and by d (i) = e“(1),
J .

e (1) = dJ(i) it Jelp+l,...,2p) ; Whose strategy sets are those respective of

the original game, and finally the payoff functions are given by

Bi(d) if  jeP
cdo) = { p
—Bi(G) otherwise.

Then, all the requirements of theorem VI.7 apply to these games and
therefore the existence of a point Oef which is an - Ej-positive eguilibrium
point for all these games, is guaranteed. Such a point is simultaneous on
Ej-saddle points of the original games Ig e (Q.E.D.)

o

At this point, it is interesting to ask for an extension of the result

related in theorem ITI.?2. Of course, in order to realize such an approach we

should use a straightforward generalization of theorem III.30, which is for-

mulated as follows:

THEOREM VI.O: Let Zl""’Z% be non-empty, compact and convex sets

each in a linear Hausdorff space, and for each JjeP = {1,...,p] let

J 3 . . 1 _
Bl,---,Bn be n real functions defined on the product space X iéN Zi,

such that for each ieN = {1,...,n) and jeP let hi(i) be a subset of

set N such that the function BQ(G ) ,0 . ) is lower semicontinuous
nd (1) N-hY(i)

in the variable o . ex . for fixed o . € . and it is
N-hd (i) N-nd(i) h?(1) nd(1)
quasi-concave in the variable o . €Y for fixed o . =

S . °
nd(i) nd@) N-n?(1) N-hY (1)
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If given p vectors AN = (Ai,...,hi) with JeP , for each 0eS there is
a point  TeX such that

B?(T , 0, )>X§
N-nd (1) *

for all jeP and ieN , then there exist g point TeX such that

BJ(E S, ) > A
T nd) wend@) *

for all jeP and ieN .

PROCF: . For each jeP and ielN » let us define the sets

Si = {oex: Bi(O . 50 > kg }
n? (1) m-nd (1)
Thus, the dquasi-concavity of functions Bq with respect to o . €x 5
L Jds Jog.
ho (i) hY(i)

implies that the cylinders

Sg(c) = {oex: Bi(r . ,0 Ai]

nd (1) W-nd(1)

are convex. On the other hand, the cylinders

SJl(G) = {oex: Bi(o T ) > Kg ]

. 2 0]
nd (1) n-nd (1)
are open, since the functions Bg are lower semicontinuous in the variable
o . €2 . - Finally, by the latter condition, for each point 0eX there
N-n? (i) N-nJ(1)
is another one TeX such that
(T o ) e 8Y

. b . .
nd (1) N-nd (i) *
for all JjeP and ieN . Thus, all the requirements of theorem VI.5 apply these

sets and therefore there exists a point OeX belonging to the intersection:

o e n N Si .
JeP dielN
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Such a point satisfies: . _ .
BG . 5 . ) > S
Yrd(1) menda)
for all jeP and ieN . (Q.E.D.)

Now as an immediate consequence of the previous theorem, we will derive the

following result. It is a natural extension of theorem IIT.32.

THEOREM VI.10: TLet rg = {z

J
P n-person games defined on the same strategy sets with the respective

g Ai,,..,Ai} (jeP = {1,...,p}) be
structure functions Ej such that for all jeP and all the players

1lelN: fJ(O) = @ . Assume that the strategy set Zi of player ieN is
non-empty, compact and convex in a lirear Hausdorff space, and his payoff

functions BJi are continuous in the product variable oey » Quasi-concave

in © i e . for fixed o , €x . ; and quasi-concave in
a(i) ad(z) ed (1) ed(1)
o 3 €2 Tor fixed o , IS . If for each real number & > 0
ed(1) ed(1) ad(i) ad(1)
and each point 0eX there is a joilnt strategy TeX such that
Bg(T . 50 ) > min max BY (s . ,0 . ) -5
ad(1) eJG) s 5, €T sy eB Toad) ed)
e’ (1) eY(i) a“(i) a(i)
and
Bg(c . 5T 5 ) <  mex min B‘.](s . 8 ., )+ 8
dJ(i) ev (1) s ex s . €& * dJ(i) eJ(i)

@) al() ) )

for all jeP and ieN > then, there exists a point Jex such that

Bl . 5, ) - : BI(s . s . )
Tada) eI s éax er . s ex. . * SdJ(i) SeJ(i)
ad(1) ad(1) edr) eJ()
= min max B?(s . 58 . )
s . e . s . €5, 1 dJ(i) eJ(i)
ad(i) ed(1) ad(1) ad@)

for all jeP and ieN .
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PROCF : Given a real number & > 0 » consider the following 2p vectors
I3 N 3. pdd 50 : : .
Ay = '(»%"61"“’ Sn) and A (?}51, cey Sn) ; With JeP , by taking the
components
Kg. = min max BY (s . ,s . ) -5
* 5 eZJ. 5 eZJ. * ad(1) ed (1)
and e"(1) a“(1) a’(1) ad(1)
K;i =  max min BY (s 5. 05 ) + 5
d“(1) " (d)

s . SHI s . €X .
a(1) a’(i)  ed) ad(a)
Now, for je{l,...,2p} and Player ieN , define the subset to be
hj(i) = dj(i) if jeP = }1,...,p} and hj(i) = ej(i) if gJe{p+l,...,2p} ,
and let the functions be B‘ij if jeP and =B:‘g it je{p+l,...,n} . Thus,
all the requirements of theorem VI.9 apply to these 2pn functions. Hence the

existence of a point 06(-:2 such that

BI(o®, ,° . ) > ; x BI(s . s . i
Tadi) ° ed (1) s éln es | s Ta ez * SdJ(i) SeJ(i)
ed(1) e(1) adu) ad()
< max min B‘,j(s . - ) + 8
s . en . s . €% | ad(i) ed@1)
al(1) a’(1)  ed(r) ed(a)

for all jeP and all the Players ieN , is guaranteed. Now, consider the
directed system 08 with & =0 and let 0eZ be g cluster point of 66 .
" Then, by virtue of the continuity of the payoff functions for the joint strategy
g€l , we have

Bi(a . ,0 . ) = min max Bg(s . .8 .

ad(i) ed(1) s . eX . s, eo al(1)" eY(1)

ed(1) (1) adu) @)
)

= max min B‘.j(s -
s . €& | s . eX . oad) e’ (1)
al(1) al(1) ) e

for all jeP and ieN. @.E.D.)
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Again, unfortunately we are not asble to derive that such a point is for
each JjeP an Ej-saddle point of the game Eé_
=d

Finally, we now formulate a further characterization for E-saddle points

which is a natural extension of theorem III.29. It will be obtained as an

immediate consequence of the general theorem VI.T.

THEOREM VI.11: Let IY = (Z,...,Z; BY,...,BJ} (jep = (1,...,p))
'Ej 1 n n

be p n-person games defined on the same strategy sets with the respective
structure functions Ej such that the strategy set Zi of player ieN
1s non-empty, compact and convex in a linear Hausdorff space. The prayoff
functions Bg of player i1eN are continuous in the product space and

. €X for fixed
ad(1) ad(1)

and guasi-convex in o . € for fixed
ed(1) ed(1)

guasi~-concave with respect to o

g 3 . exn .

e’ (1 urd (1) ed(i)ued (1)

o . S - If for each real number & > 0 and each point oeX there
Jors N

d (i) a“(1)

is a joint strategy TeX such that

BJ(T . ,T . g . Y > max Bq(s ) ,T . ,o ) - 5

Saa) duyda) s, en . P aduy Sy flg) e
al(1) a(1)

< min B;(T . ,8 o ) o+ %

s . ez, Toaday ) )
eJ(i) eJ(i)

for all jeP and all the players 1ieN , then, there exists a Jjoint

strategy 0es which is simultaneously for all jeP , an E;-saddle point

J

of the game rd
3
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PROCF : First of all, by the quasi-concavity of payoff functions Bg in

g . €2 . > wWe know that the minimum function Fq is alsoc guasi-concave
al(1) al(1) *

ﬁin the same variables. Similarly, the maximum function Gg is quasi-convex with

regpect to o |, €X
e(1) ed(1)

Now consider the 2p asgsociated n-person games

» Since Bg satisfies that condition too.

%5 ¢d,...,e0)

€
I5 = {Z:L’“.J n 12752y

N
J
] ] E ;
with structure function Ej defined by Ej = Ej i JeP and by d (i) =eY(i) ,
éq(i) = dJ(i) and fJ(i) = £9(1) if Je{ptl,...,2p} , whose strategy sets are

those of the original game and finally the payoff functions are given by
cd (o) {Fgf%u)"‘fm)’ HoJeR

. -Gi(%(i)’cf(i)) otherwise

Then the first requirements of theorem VI.7 are satisfied by these games.

Now we will show that the last condition. also holds. Indeed, we have that for each

real number & > 0 and each point oeX there is a joint strategy TeX such that

J J )
Bi(t . ,T ., Lo, )>ad(r . 0 . )22 >
Pl ef) #a) T T ) ) T B
> min 6f(s . Lo, )- %
s . e .t ed(1) @)
ed(1) ed(1)
> Fi(r . Lo . )4-%.5 max F%(s . ,0 . )+ %
1) @) s . ex . ad(1) £9(1)
ad(1) ad(1)
for all jeP and ieN . Hence, because we always have
ma.x F%(s . 59 . )< min a9 (s 5,00
ez al(1) £9GE) Te ., ex .t ed(1) £9(1)

de(i) ad (1) ed(1) ed(1)
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we have the following inequalities

Fj('r . ,0 . ) > max G‘.j(s . ,0 . ) - B
1330y ) s . ex b ey £i)
and ad(i) ed(1)
G;(T . 5,0 ., ) < min G?(S . 50 ) + B
ed(1) £l(1) s ex ed(1) £I(1)

i
el (1) e’(1)
for all jeP and all the players ieN . Thus, also the last requirement is

satisfied and therefore, there exists a point 0eX such that

I . ;0 . ) = max FI (s ; ,0 .
Tad) el s . ez . ad) £
and dJ(i) dq(i)
@ . ,5. ) = i G.(s . ,3 .
Toed(a) ) s mlnz. Toedi) )

) el
for all jeP and all ieN .

Finally, consider for a given JeP and ieN the associated two-person
game determined by the joint strategy o . z ; Which according with

ex |
(1) £I(1)
theorem VI.8 has the minimax broperty, that is

MG, 5. ) = a(@ . 5.
ad(1) £I(1) ed(1) £9(1)
Hence, at the point 0eX we have
J J= e
AY(o . ,o . Lo . = F(o ., ,o . )
Pad)y edu) i) Padi) )
= gJ(5 G )

eI (1) £9(1)

for all jeP and all the players ieN . (Q.E.D.)
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VI.? E~Points by Maximum Function Procedure

Finally, this baragraph is devoted to the natural extension of the results
derived in the latter section of the third chapter. Indeed, as we had in the pre=-
vious pages, we now are concerned with verifying the maximum function procedure,
built on the result due to Nikaido and Tsoda [16], is applicable for characterizg-
tions of E-points for games defined on compact and convex strategy sets in linear
topological spaces without. the Hausdorff condition. But again this new treatment
1s not a complete extension of that which was derived in the brevious paragraph,
since we are not sble to extend theorem III.35 for functions having stronger
quasi-concavity property.

The general result will be derived immediately from the following auxiliar
result concerning simultaneous B-partially postive eqﬁilibrium points where we

have weakened the requirements on the existence of the strategies.

LEMMA VI.12: et .Tg = (2,008 Bi,...,Bi] (JeP = {1,...,p}) be p
J
N-person games defined on the same strategy sets with the respective structure
functions Ej - For each jeP let Mj ‘be a subset of . If for each
Jjoint strategy o0eX such thuat
J Jor.. -
X % Bi(o, ,o, ,o. )<z =% max Bi(o, 50 . ,0 .
JeP ieM. * al(1) ed(1) £9(1) 3P i1eM. s 5, €T ad(1)" ed(1) £I(1)
! a“(1) al(1)

there exists a point 7TeX such that

zzBij(T_ ,0 ., ,0 . ) > = = Bg(o. ,0 ., ’Gj
JeP 1el, ada)y el ) JeP deM, ad(1) ed(1) £9(1)

then, a joint strategy Oex is an Ej-partially Positive equilibrium point of

game Pg for every jeP , if and only if
J
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max @(s,0)
sex

¢(0,0)

where the function © is defined by

¢(o,7) = = = Bl 5T
jeP ieMj *av (1)

T

eJ1) (1)

PROOF: Let the point 0eZ be an B -partially positive equilibrium point of game
- J

I for every jeP . Thus, we have

. 50 ., ,0 . = max B?(s . ,o . 50 L)
Tad@E) ) ) s . eI . aday el i)
: ad(1) ad@1)

o)

.
al
qt

for all jeP and ieMj, and therefore, the following inequality holds

qt

59 4 ) > max o(s,0) .

p(0,0) = = = max Bg(s .,
£9(1) sez

jeP ieM, s . eI . ad(1) ed(1)
al(1) al()

But in the second term of this inequality the maximum of the function appears, which

implies that p{(c,0) = max -9(s,T)

sex
which shows the necessity of the assertion. Now, we will show the sufficiency.
Let us suppose that there exists a point o©eX which satisfies

9(0,5) = max @(s,5)
sel

and it is not an Ej—partially Positive equilibrium point of the game fé Tor
J
every JeP , then there exists a real number & > 0 and non-empty sets JCP

and Lj C:Mj for each jeJ , such that

J = - - i - -

Bi(o , ,o. ,53. )< BI(s . ,8., ,5. ) - 5
ada) edw) 9wy s ?ax es . 1 sdJ(i) ed(1) (1)

a?(1) ad(1)
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for all jeJd and ieLj - But, then we have

g . ,0 . )< 0z max B;(s . ,0 . ,0 . )
ed (1) fJ(i) jeP-ieM, s . ex . T ad(@1) ed (1) (1)
I adE)y ad@)

DD I S CAT
jeP leM, Tad)

and therefore by the hypothesis, there exists a Jjoint strategy 7TeX such that
o(7,5) > o(5,5)
which we see is impossible from the definition of the point oeX . (Q.E.D.)
We note that the following condition, which is a natural extension of the
requirements used in Chapter ITI for the corresponding simple concepts, is completely
saﬁisfied by the above: for each real number & > O and each point 0eX +there is

Joint strategy TeX such that

B‘i](TJ. ,0 . L0 . ) > max B:‘.Z(s . ,0 ., L0 . )
al(i) ed(1) (1) s, e ad(1) (1) £(1)
a“(i) aJ(i)
for all jeP and ieLj for which
BY(o . o a ) < max .B;.](s .0 o )

Y @y ) s . er . 1) Sy a)
ad(1) ad@)

and finally

Bi(T 3 50, ,0 . ) = max Bg(s ; ,0 ,0 )
a?@1) ed@) £ 5 5 €T a (i)
al(1) &) !
for all the remaining ieMJ.-Lj with jeP .
Indeed, if for each jeP the set Lj is empty, the general condition of the

above lemms holds trivially, whereas, if for some JeP the sets Lj are non-empty,

then there exists a real number § > 0O and Lj for j.eL'j such that:

. ) < max B;(s . ,0 . ,0 . ) - B
(1) s . es . Tad) ) i
ad(1) al@)

B?(o

. ,0 , 0O
el el

for all ieMj with jeP. Thus, from this condition applied to this & , <there is

aTey for which:
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Iz Bl(o §.0%5, 00, )<z Bt o 5,095 )
JeP i, a’(1) (1) £9@1)  sep Lel, ad (1) ed(1) @)
and therefore, the requirement in the above lemma is satisfied.
Of course, one could formulate many other requirements which completely
satisfy that which was adopted above.
With this result, we will now formulate sz general characterization of those
points.
J
}

l:"';Z£3 Bi}"‘:Bn

n-person games defined on the same strategy sets having the respective struc-

be (jEP = {l;"')P] p

THEOREM VI.13: Let pé = (=

ture functions Ej > such that the strategy set Zi of player ieN is
non-empty, commct and convex in a linear topological space. For each jeP
let Mj be a subset of N , such that for all JeP  and iGMj the payoff

functions Bg are concave in o . €, for fixed
a?(1) al(z)

a z » and continuous in the variable

. . exr | .
ed(1ed (1) e (1)urd (1)

g . . € . . for fixed o . €x . ; and finally the function
ed(1)urd (1) ed(ayurd (1) ad(1) ad(1)

by by Bi(o'j LN )
JeP  ieM, ‘(1) ) ()

is continuous in o¢eX . If for each Joint strategy oeX such that

J J
£ % BY(o ., ,o. Lo ) < & X max Bi(s , ,0 29 .
JeP ieM, T ad(1) ed(1) £I(1) jepieMy s, ez boal(@) el() dn)
J I adw) ad)

there exists a point TeX such that

%5 BY(z o o ) > T z Bl . ,o

0]
. . . 9 . F} . . E) .
JeP 1eMy 1 qd(1y oJ(1) £9(1) JeP  dell, Tad) &) i)
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then, there exists a Joint strategy 0©eX which is simultaneously for all
JjeP an Ej—partially Positive equilibrium point of game I%
J
PROCF: Consider the function
'CP(G;T) = z z B‘?(G . » T PR )
. . 1 Jr. N N
jeP 1eMJ_ a“(i) e'(i) (1)
defined on the product space 2 X X . The continuity of the payoff functions Bg

with respect to the variable o for each 7TeX implies that

. . €x . . 5
el (1)l (1) ed(a)urd (1)
the function @(7,0) is continuous in oer . The other condition, implies that
the function P(0,0) 1is also continuous with respect to oex . Finally, the con-
cavity of payoff functions Bq in @ €, implies the concavity in oex

ad(1) ad(1)
of the function ©(0,T) for fixed Ter . Thus, all the requirements of theorem

IIT.35 are satisfied by the function and therefore, a point 0Tex exists such
that - - -
9(0,0) = wmax ¢(s,7)
s€]

But the latter condition on the payoff functions and lemma VI.12, imply that this
point oex is simultaneously an Ej=partially Positive equilibrium point of the

game Pé for all jeP . (Q.E.D.)
J

We now derive a characterization for Partially compound points directly from

this general result; which is formulated as follows:

THEOREM VI.1k: Tet Iy = {Zl,..,,ZE; Al,...,An} be an n-person game with

structure function E such that the strategy set Zi of player ieN isg
non-empty, compact and convex in a linear topological space. Let there also

be given a partition {Mi’ME’M5’M4’M5’M6] of a subset M of players set N
and an arbitrary L5(: MB such that for ieMlU M5 the payoff function ’Ai
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and for ieM2 U M-L_)U 6 the minimum function Fi are continuous in

575
Ge(i)Uf(i)EZe(i)Uf(i) for fixed Od(i)ezd(i) and for ieMi U M5 Ai is

. . for
concave in cd(i)ezd(i) for fixed “e(1) U f(i)eze(i) Us@)’

ieM_ UM_. A, and for dieM. U (M_-L. UM the meximum function G, are
35 i 5 U M5Lg) UMg th i
continuous is the variable o

a(1)us (1)%%a (1)up () TOF Tixed O (yER 4y

and for ieM, UM_ A, 1is convex in o CNEX . for fixed
3775 74 e(i)"e(d)

Gd(i)Uf(i)ezd(i)Uf(i) . PFurthermore let the function

JORE e A%y %)) L 2 L 2Oy e ) %))
5 55
+ =

F.(o, . 2% + oz G, (o, \,0.,..)
e, (0,01, ), a1y %@ >1€MU(M -z, e(1) "t (1)

be continuous in geX . If for each point 0eX such that
6(o) < b2 A N O + by S 7T ]
B e e v M) L RN T
d(i)"a(i) 5 ‘ Se (1) (1) M35
max

z Fi@h 112 % (1 )+ max % [-G4 (se 1)’gf(i)>]
sd(i)ezd(i) 1€M2U(M5=-L5)Ll‘46 (1)77£@1) se(i)eze( )1eM4U(M 5SUM6

5

there exists a joint strategy TeX such that

5 A (T O . \,0_,.\) + by A (o
. i dald) e(i) f(i)’
1eM.lUL5 1<—:M5UL5

a(i)’ e(l f(i)) *

+ F. (7 Y+ % ) > e(o),

Gy (T ,.\,0. .
ieMQU(M5-L5)UM6l a(i) e (1) L, UL U e(1)’7£(1)

+ + = .
- ] o ks
then, the game Iﬁ has an Ml M 2,8 M5 ML,S M. M s E-partially compound

point.
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PROCF ; Given the game Iﬁ with structure function E , the subset M with the

corresponding partition and the set L5(t M5 s consider the following n-person

games
c
Iﬁ - {Zl""’zn" Bl""’Bn} ? PE B (zl,...,zn,- Cl""’cn}
D E
I‘E = {zl,...,zn; Dl,...,Dn} and 5 = {zl,....,zn,- El""’En]

whose respective structure functions are E and E , where E ig defined by

A1) = a(i), B(1) = da@), F(1) = £(1)

for every player ieN . The Payoff functions are defined by

A, (o) if  ieM UL
B.(o) = i 1905
i e otherwise
-4, (9) 1f deM
Ci(g) - Ki otherwise
b.(s) - Fi(o'd(i )’Of(i)) if ieMEU(MS_L5,)UM6
) Kj_ otherwise
and finally ) - -
E (6) - ( G-i(Ge (4 )J(Jjo(l)) if ILE-ZML(-U(M5 LS)UM6
’ Ki otherwise

where Ki is an arbitrary constant. By virtue of the conditions on the payoff
functions, we have on the one hand that vBi(G) and Di(a) are concave in

Gd(i)ezd(i) and continuous in Ge(i)Uf(i)eze(i)Uf(i) - On the other hand, the
f i g o i in . O- - - i
unctions Ci( ) and Ei( ) are cgntlnuous in e(i)Uf(i)eZE(i)Uf(i) and concave

in Ga(i)eza(i) - Furthermore the function 6(0) is continuous in 0eX . Thus,

by the last condition all the requirements of the previous theorem are satisfied.

by the four games introduced above, and therefore a point OeX exists which is




simultaneously an E-positive equilibrium point of the games Ig > Ig and . alsc
an E-positive equilibrium point of the games Ig and Iﬁ .

Consider for player ieM_-L_ the associated two-person game

55

A, (o

1)) = Pay ey A Cau) ey Teq))

determined by the joint strategy Gf( )eZ £ (1) of the respective indifferent
coalition. From the continuity of payoff function A, separately in the variables

ex and ¢ , \eX , . , and its concavity and convexity it follows that
) e(i) "e(d)

o}
a(i)"a(i)
the theorem:IIT.39 applys to it. Thus this game has a saddle point, which implies

F; (B (1% (4 )) - Gi(ce(i)’af(i)) ’

and therefore

f5; o T = R G = o T
A5 g (11232 (1% (1)) Fs Ca 1) % 1)) G (%% (19% (1)
) - . + - = = _
Hence, the point 0eX 1is an Ml M2 s M5 Mﬁ,s M M6,s E-partially
compound point of original game T (.E.D.)

_
Another immediate consequence of theorem VI.13 is the following characteri-

zation of a special kind of simultaneous E-saddle point.

THEOREM VI.15: Let Ty = (Z,...,3 Bi, x Bg} be (JeP = {1,...,p])
J

b n-person games defined on the same strategy sets havin ng the respective

structure functions Ej » such that for all jeP and all the players
ieN £9(1) = @ . Assume that the strategy set X, of player ieN is

non-empty, compact and convex in a linear topological space, and that the

payoff functions Bi are continuous and concave in o j ex 3 for
a’(i) av(i)
fixed o ., ex . and convex in o _' ey . for fixed

ed(1) (1) ed(1) ed(1)
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g . €X . > furthermore that the function
al(1) a’(1)
6(c) = 2 5 % Bg(ﬁ 5,00
JeP el a“(i) e“(i)

is continuous in oeX . If for each joint strategy oeX such that
6(c) < 3 % max B?(s . S0,
JjeP ieN s i, &% 3 Tadi) ed (1)
a°(i) da“(1)
+ I hX max [-Bg(U . 8
jeP ieN s b3 a9(i) Y1)

. ex |
ed(1) (1)
there existg g point 7TeX such that

5 2 BI(x o, J+ x 3z BI0. .

. . i J J J i J }T J ) > 9(0) 3
JeP ieN a“(i) ed(i) JeP  ieN a“(i) eY(1)

then, there exists g point ©eS which is simultaneously Ej—saddle point

of the game pé for all  jeP .
J

PROCF ; Given the games Ig with JjeP , define the 2 b associated n-person

J
games C s . . . . .
J o . od J md - . pd. .. pd
:Ej {Zi"'°’zh’ Cl,..,,cn} and Ej , {Zﬁ"‘°’zh’ Dl,.. ,DH}

defined on the same strategy set, with structure functions Ej and Ej respectively,

where Ej is given by

aJ(i) = eJ(i) and EJ(i) = a9@)
The payoff functions are defined by
J J J J
e) = ) = - a .
Ci( ) Bi(c) and Di( ) Bi( )

Thus, by the condition breviously expressed, all the requirements of theorem

VI.13 are satisfied by those games and therefore there exists a point 0eX which
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s

is simultaneously an Ej—positive equilibrium point of the game PEJ for all jeP s
_ D. J

and an Ej—positive equilibrium point of the game IﬁJ . Such a point is simulta-

J

neously an Ej-saddle point of the original games I% (Q.E.D.)

J
We note that a similar result regarding simultaneous E-saddle points could

be easily obtained by imposing a condition on the minimum and maximum functions
and using the Nikaido's mipimax theorem. Indeed, such an approach is gimilar +o
that adopted in theorem VI.1k with the introduction of set L5 .

Finally we do note that the most general results derived here are those related

in theorems VI.7, VI.9, and VI.13. From these and their consequences all the results

expressed here can be easily derived as special cases.
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