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NONPARAMETRIC AND GAUSSTAN BIVARIATE TRANSVARTATION THEORY :

ITS APPLICATION TO ECONOMICS*

Camilo Dagum
Econometric Research Program
Princeton University

1. TIntroduction

The theory of transvariation, formulated by Corrado Gini, was first introduced
into mathematical statistics in Gini's "Il Concetto di Transvariazione e le sue
Prime Applicazioni", published in 1916.

Gini's formulation of this theory grew out of his atfempt to develop a proper
statistical method for the solution of the following problem: given the sign of
the difference between the means or medians of two populations, find a probabilis-
tic statement regarding the sign or the intensity Qf the difference (the common
area, etc.) between two random observations corresponding to each of the popula-
tions. The probabilistic statement of each characteristic defines a parameter
of transvariation, i.e., the probability of transvariation, the rth intensity
of transvariation (r = 1,2,... ), the space of transvariation and the discrimina-
tive value.

For a given sample, the estimation of the parameters of transvariation
introduces new random variables. These new variables then require of us an
estimation of their corresponding variances and an analysis of their statistical
properties.

Under the hypothesis of dependent and independent random variables we can,

in general, estimate parameters of transvariation for i(i=1,...,s) distributions

*The subject of this paper was discussed in the Econometric Research Program
Seminar under the direction of Professor Oskar Morgenstern and in the Department
of Statistics Seminar under the direction of Professor John W. Tukey. The author
1s very much indebted to them for their interest in the subject and stimulating
comments. The author expresses his appreciation to Mr. Peter Kaminsky, a Princeton
University student, for his diligence and collaboration in preparing the final
English version.



of k (k=1,...,n) dimensions. Working with marginal distributions, we are able,
in this manner, to estimate a complete set of parameters for s distribution of
n dimensions. For example, when i = 2; we can estimate the kth marginal

parameter of transvariation (k=1,2,...,n-1) and the total parameters of trané-

variation (of the order n). In sum, then, for each parameter of transvariation

between two distributions, the number of marginal and total estimations is

n
x|
k=1

n n
= 2 .

) 1

Having considered all of the 2"-1 combinations between two distributions of

n dimensions, we are afforded a broad understanding of the phenomena under

analysis.

Parameters of transvariation are a function of the means, variances, and

probability distribution function of the populations under analysis.

2. Theoretical and Applied Contributions

2.1 Historical references

Probabilistic statements of the Probability and intensity of transvariation
were first Introduced by Gini [Ref. 21] in 1916. But the idea of transvariation,
without a quantitative statement and formal development, had been advanced by
earlier scientists. The first known statement on the subject was included in
Jacob Bernoullil's classical contribution to the theory of proﬁability. [Refs. 1
and 29]. Bernoulli considered the probability that an elder brother died after
his younger one. Further, Quetelet [Ref. 39], Lexis [Ref. 23] and Johansen [Refs.
32 and 41)] pointed out the interest of analyzing the probability that two obser-

vations have a difference of sign opposite to the means of the populations under
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industrial sector was, for the purposes of this study, disaggregated into 83
branches. As a consequence, for each year of the study, we were confronted with
a four-dimensional variate that allowed us to apply the transvariation theory

between two or more distributions. and between two or more variates.

5. Notations -

We will use the following notation.and breviations.

The triple (Q, JZ , P) is called a probability space. { denotes a sample
space, wherein a sample point (elementary event) w € Q, and a set E of sample
points is a subset in the sample space, such that. EC “;Z' is a 0-field of
sets in  and P 1is a probability measure for sets in a o-field ;;;.

By A , we denote a random experiment or random observation (r.e.). In
each realization ofan r.e. we are interested in the probabilities that certain
events will occur. Thus we are interested in the measurement or observation of
numerical quantities asscoclated with each r.e. For exXample, one may be interested
in the prices of several commodities in a given market for several periods of
time, or the quantities produced for each period in a given economic unit or space.
Such numerical . quantities are sample realizations of a random variable (r.v.)
denoted by a small greek letter ge fyeee o AN r.v., £ = E(w) is a real-valued
function defined for all sample points o of a basic probability space ( Q:_jg,P).
The set of values that ¢t(w) can take for all w e & , defines Q', that is
the sample space (range space) of E&{(w). The inverse function g’l takes every
interval £ < x into a measureable w set. Therefore, if J" is a o0-field
of sets in &' , the r.v. E(w) maps the sample points w in § into sample

points & in Q' such that, for every Borel set in E' ¢ :;l” there is an



event E € ,57 , BEC Q@ , for which tE{w) € B' . Hence, the inverse image of
the set E' is
E = £ (@)
and
-1
P'(E') = P(¢ (@E®')) .

Therefore the triple (Q', “A',P') defines a new probability space induced
from a basic probability space (@, A, P) by an r.v. £().

The concluding lower case latin letters t,u,v,... are used to symbolize
sample observations of random variables corresponding to a realization of an r.e.

The cummulative distribution function (c.d.f.) F(x), where
F(x) = P(¢ <x)

specifies the probabilistic behavior of an r.v.f. Its corresponding probability
density function (p.d.f.) is f£(x) for the continuous case, and P, = P(e = xi)

for the discrete casge.
In general, £ 1is a k-dimensional vector random variable
£ = (gl:‘ . ';Ek); k=1,2,...,n .
Therefore
F(x) = F(xl’qﬂ.’xk) = P(glsxl’o.c,gksxk)
and for the sample space Q' of ¢

1
' CR,

where Rk is a k-dimensional Euclidean space. If nothing is specified, our

sample space will be

Q' = R k=1,2,...,0 .

k)



i, Bivariate Transvariation Theory

For a given r.e.A we observe a bivariate r.v.

(k1) E o= (&58,)
where '
(ll-ag) X = (lX.l,ZX.2>

are sample observations of £ and
%.3) Fx) = P(E<x, & <x,)

is its c.d.f.

We introduce an arbitrary real parameter in R2

(k) N = (M) e Ry

and we assume, without loss of generality,

(k.5) A > xg and. A= xg - %1 < 0.

) = -
which takes the ample values
(’-l--?) t = X2 - Xl .

Definition of transvariation: We have, by definition, a transvariation, in a

given r.e. A , Dbetween the r.v.gl and §2 and. the arbitrary parameters Kl and

XE’ when the difference ot = 1t 1is of opposite sign'to.the.difference_hg_xl = A

Measure of a transvariation: The absolute value of the power

(4.8) £ = (xl-x2 r



defines the ”rth intensity of a sample transvariation. When r = 1 we have an

intensity of the order 1 and a measure of this transvariation.

Convention 1l: Given a sample of independent replications of an r.e.A we then

compute as transvariations one half of the number of null differences, i.e., one

half of the times we observe Xl - x2 = 0.

The definition of transvariation is illustrated in Fig. 1. The r.v.

E = (gvﬁg) takes values x = (Xl’XE) € R, , where R, is the Buclidean

Pplane. Any sample realization of the random experiment. A such that we have

Figure 1
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an observation .

defines a transvariation, given that A\, > Kza I.e., any elementary event w ¢ Q

1

such that E(w) € 8, defines a transvariation.

Definition of transvariability: The transvariability between an r.v. £ = (gl,gg);

or its linear transformation 1T = §2-§l, and an arbitrary parameter KO = (hl,KQ),
where A = KE-Kl, is the probability that the r.v. T = gg-gl takes a value
t = Xy=Xq of sign opposite to the parameter A = ke-kl .

In figure 1, the probability of an event that fulfills the requirement (%.9)
is, by definition, the transvariability between the r.v. (4.1), or it linear

transformation (4.6), and the arbitrary parameters (4.5). In symbolic form

(4.10) P o= P> 8l <) = P(T= gk >0]n = Aa <0)
= !dP = fdG(t) = 1-G(0)
1 0

where G(t) is the c.d.f. of the r.v.T.

LEMMA 1: If the identity function X = X is a median straight line, then,

by the definition of a median straight line, it is

(4.11) p=fdP=-:2L

S
1

i.e., the unit mass is evenly distributed on each halfplane separated by the

identity function.

We will find out if there is a maximum of transvariability. Introducing the

following real variable vector of the order two
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(4.12) hy = (h,h,) .

From (4.5), we then suppose

(%.13) h = h,-h < 0
and we may now express .the transvariability as a function of h

(k.14) ph) = P(§2~§l > hg-hllkg-xl‘< 0)

P(t>n[r<0) = L/md G(t) =1-an).
h

The probability function (4.14) defines a transvariability for all h such that
h >N . This probability function corresponds, in Fig. 1, to any event to the
left of the straight line

(4.15) xl-hl = x2-h2

provided that the point A_. is to the right. Such is the case because of (b.5),

0
(4.13) and the specification h. > Ae Further, the linear function (4.15) is
parallel to the identity function

(4.16) X, = X

Since (4.14) is a non-decreasing and non-negative set function with h approaching
A, then we have, for the maximum By of transvariability
(4.17) By = limp®m) = P(r>A[A<0).
h—.A
Using set-builder notation, we define (for its corresponding graphical

representation, see Fig. 1)

(4.18) 8p = ((8,8,) [&,-8) >0, A-A <0} = (1] T>0, A <0

1 1

(+-29) Sy = ((&s8,) [M-A < &6 <0} = (1] A<7T<0)
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then
(1.20) 8, Us, = (tjJTr>xn, a<o0} .
Therefore, the maximum of transvariability (4.17) is
0
(4.21) Py = fd.G(t)' = f aP =1-¢(\)
' A SlUS2

which is a function of parameter A ..

If we, as usual, denote by Q a sample space (sure event) with elementary

events ® € Q , then, the random vector (L.1) is a function & = E(w) from
the sample space { +to the two-dimensional Euclidean space .R2 .  Therefore
i ‘
(k.22) 8, Us, C B,
and
(4.23) P < op o<1
By =1 ift 8, U S, = R,, and Py = P iff (if and.only if) one of

the following two conditions is fulfilled: i) -82 is an empty set or -ii) ,82

is a set of P-measure zero. A particular case of empty 82 occurs when
Moo= Ay, e, A=0.
For the practical utilization of the theory we need a probabilistic

concept that will assume values in a fixed interval for any value of the maximum

of transvariability. For our purposes, .this interval is .0 to 1 .

Definition of probability of transvariation: The probability of transvariation
between r.v.£, or its linear transformation 7., -and an arbitrary parameter
KO = (Ll,x2), associated with a given r.e.A, 1is, by definition, the ratio

between the transvariability and its meximum. -I.e.

(. 2k ) P - B
By

lIf R, contains no subsets of P-measure zero, then the condition is if and

only if.
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Some relevant characteristics of the probability of transvariation are the
following:
1) Its range is the closed unit interval; i.e.,

0 <P<1

2) It is dimensionless (a measure of dimension Zero ); therefore, it is
independent of the measurement units of the observations. Tt allows

a comparative analysis of different sets of observations;

3) It is a never-increasing set function. of X and

lim P(A) & p

A =00
4) If the linear function (Lemme 1)

(k.25) X -A, = XQ-K

11 2

is a median straight line, we have = % and P = 2p.

Py

Convention 2: If the maximum of transvariability is null and, a fortiori, the

transvariability will also be null; we thus assign the value zero to the probability

of transvariation.

Definition of moment of transvariation: The expectation of the intensity of the

order r defines the rth moment of transvariation. Hence

(4.26) m, = E[(ge-gl)r le, > E1s My <M1 = E( ] >0, A <0)

The moment of transvariation is then a conditional mathemstical expectation
of the rP power of the r.v.(4.6), relative to the hypothesis £, > &1, when

Kg < kl .



-1 -

Following the approach used for maximum of transvariability we have:

Definition of the maximum of the rth moment of transvariation:

(k.27) m = lim m.(h) = EL(T-N)rIT >A, AO0].
*,M h -& T

LEMMA 2: The zero-order moment of transvaeriation and its maximum is nothing

else than the transvariability and its meximum respectively.

The moment of transvariation and its meximum satisfy the following inequalities

()4--28) mr S mr,m S BI’,}\.
where
(k.29) Bea = E(7-AT)

. 1
i.e., the r h absolute moment of the deviations from . A of the r.v.T.

IEMMA 3: 1) If,Kland KE are, respectively, the expectation of the r.v.gl;

and §2 , then

= 2m

(4.30) B L T E(E) - B

ii) If Xl and. hg are the same as in i) and the bivariate probability

density function is symmetric with respect to the point A in R then

2’

(4.31) N

The proof of i) follows from the wellknown. property of‘ the deviation
from the mean of all r.v.'s. The proof of ii) follows from the assumptibn
of symmetry and also, this same assumption of symmetry, allows the extension
of (4.31) to r=0, 1.e. to the maximum of transvariability, because of the
equality;between.thé mean‘and the median. In that particular case,

1 : .

YoM T Ew T 2
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Definition of the rth intensity of transvariation: The rth root of the ratio

between the rth moment of transvariation (4.26) and its maximum (4.27) defines the
th

r intensity of transvariation. Then 1
mr T

(k.32) I, = (= Y T =1,2, 000
r,M

(k.33) I = (

For r=1 it is not necessary that the distribution be symmetric because we
may appiy Lemma 3, i).

The relevant characteristics of the intensity of transvariation are similaf
to those’of the probability of transvariation. In particular it is a dimensionless

measurement and
0<I <1 .
-Tp S

Convention 3: If, as in Convention 2, P(t >0) =P(t >A) = 0 , then we assign

the value zero to the intensity of transvariation.

5. Transvariation Between Two Independent Random Varilables

5.1 The hypothesis of independence allows the introduction of two more parameters
of transvariation, nemely: i) the area (space, in higher dimensions) and ii)
the discriminative value. This hypothesis also allows a simpler mathematical de-
velopment for r.v.'s of more than two dimensions, as will be seen in a forthcoming
paper.

Having dealt, in the preceding section, with the linear transformaetion. (4.6),
the hypothesis of independence will not be as relevant as it will be in transvaria-

tion in higher dimensions.
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If the coordinates §l and §2 of the r.v.¢ in (4.1) are independent,

its c.d.f. in (4.3) becomes

(5-1) Rl ,x,) = Fo0x) F(x)

1 1V 22

and the c.d.f. of the r.v.7 in. (4.6)

[ee]

Exl[FE(Xl +1t)] = vf-FE(xl +.t) dFl(xl)

(5.2) G(t)

-0
x

1 -EXE,[Fl(.xa-t)] = 1 - fFl(xz-t) a Fj(x,)

i

-00

From the definitions given in section .4t and from. (5.2), the methematical
forms for the parameter of transvariations under the hypothesis of independence

follow directly. For the transvariability and its meximum we have, from. (k.10),

(4.21) and (5.2)

[o¢]

(5.3) p=1-G(0) =1 'fFE(Xl) d Fl(xl)
- [Fl(xe)ng(XE)
(5.4) p, =1-G(A)=1- [Fe(xl +A) aF (x)

oo

\[Fl(xg-h) d Fe(xg)

For the rth moment of transvariation and its maximum, from (4.26), (k.27)

and (5.2), we obtain

o0 o o

(5.5) m, = ftr a G(t) =:fftr (%) + 1) A Fy(x)) at
4 54

o]

(5.6) mr,M =f(t->\.%)r ad(t) = ff (-2)F fE(Xl +t)ad Fl(xl) at
N o de
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The probability and intensity of transvariation follow at once, from (4.24),

(4.32) and from the preceding results.

5.2 Area of transvariation. Let gl and, §2 be two independent r.v.'s in Rl

with p.d.f. fl(x) and f,(x). Let Nl and l\T2 represent the size of the populations

corresponding to each of the sample spaces of gl and §2 .
Let 7n be a new r.v. such that, its p.d.f. is
lel(x) + NEfE(X)
.
Nt

(5.7) fx) =

and the size of the populations from which 1 is observed or measured following an
r.e. 1is N = Nl + N2 .

We introduce now the function g(x) of the r.v.n defined as follows:

(5.8) g(x) N £ (x) if My (x) < NE,(x)
(5.9) g(x) = Nf,(x) if WF (x) > NEs(x) .
The p.d.f. corresponding to the definitions (5.8) and (5.9) is

(5.10) g(x) g(x)

The common frequencies (common area) of the r.v.gl and 52 is, by definition,

the area of transvariation, i.e. 1 o0

(5-11) B E focw

- Rupposing.continulty, inFig. 2 we illusfrate this concept for the p.d.f. fi(x)andfé(x)
Let S Dbe the common area;and, because there is a single point of intersection,
z , (5.11) takes the following mathematical expression,

N N, [
(5.12) c -2 - F [rme s F frea
Z

=00
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Figure 2

In Table 1 we have an example of a discrete case and, of course, it will be

easy to extend the analysis to mixed (discrete-continuous) cases.

TABLE 1

x Nt (x) NT, (%) g(x) G(x)
0 3 2 2 2

1 T NG T 9

2 0 12 0 9

3 L 6 4 13

" 6 0 0 13

5 b, 9 L 17

6 T:é_ _lrg__ _l%_ 18 :
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In Figure 3 we have the cummulative frequency distribution of g(x) .

(5.11), we have C = g,laG(6) = %% = 0.30.

Applying

NG (x)

Pigure 3

LEMMA 4: The value of C in (5.11) belongs to the interval 0 < C <

Mo |-

. 1 _
It takes the maximum value of 5 when 1\Tl = N2 and gl and §2 are

equivalent r.v.!'s.

The proof of this assertion follows from (5.8), (5.9) and (5.10).
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Definition of the ratio of the transvariation area: The ratio between the area of

transvariation and its maximum, assuming that Nl = N2 and gl and §2 are equiva-
lent random variables, defines the ratio of the transvariation area. Therefore

co

(5.13) H = 2¢C = % fd G(x)

-0
The probability and the area of transvariation are different concepts. But we
can observe that, when the probability of transvariation is null the area of trans-
variation is also null. The reverse of this statement is, .quite clearly, false.

The range of (5.13) is the unit closed interval [0,1].

5.%. Discriminative value. Let £1s Eos fl(x), fg(x), Nl and N2 stand as in

section 5.2. Let

(5.14) M, = E(&l) > M, = E(gz)

Definition of discriminative value: The value of z of the r.v. gl and 52 that

minimizes the error €(x) dintroduced under the assumptions that: 1) takes

gl

only values greater than 2z ; and further 2) that §2 takes on values less than

z , are, by definition, the discriminative value between the r.v. §l and 52 .
Let nl(x) be the error resultant from the assumption that gl is greater

than x and ng(x) resultant from the assumption that §2 is less than x .

Hence @ﬁé
-(5.15) hl(x) = N fd F, (t)

-0

[>]

N, L/& F2(t)

X

(5.16) ng(x)
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Therefore, the error function is

nl(x) + ng(x)

(5.17) e(x) = T :
1

If we assume that e(x) is continuous and differenciable, the discriminative

value z 1s one of the roots of the equation

(5.18) lel(x) -Ngfg(x) = 0

that minimizes its corresponding error function, that is, an abscissa of one of the
intersection points between both frequency distributions. If there is more than
one root, the discriminative value, =z ,will be defined by the root lowest in
absolute value.

We can dismiss the restriction (5.14) and ascertain the value of 2z +that

minimizes (5.17) for each of the following alternative hypotheses.

X 5]
(5.19a) n, (x) = Ny fd_Fl(.t) 3 n,(x) = X, ﬁFg(t)
-00 X
©0 X
(5.190) nl(X) = N ﬁFl(t) 3 ny(x) = N, deg(t) .
X - 00

The value of =z +that corresponds to the minimum value of e(x), between
hypothesis (5.19a) and (5.19b), will define the discriminative value. Following
this criterion and assuming the continuity and differenciability of (5.17), the
error of the discriminative value when there is only one intersection point, is
then equal to the area of transvariation.

The concepts of area of transvariation, discriminative value and error function,

carry on a strong flavor of the Neyman-Pearson theory of testing simple hypotheses.
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6. Case of the Bivariate Normal Distribution

6.1. We will suppose now that the r.v. (4.1) has a bivariate normel distribution

(6.1) £(x)5%,) = exp [ -5 Q(x,x,)]

2xa c v/l -p

where (xl,xz) 1ls any point in the Euclidean Pplane R‘,2 , and

2 2
X -0 ) 2p(x < ) (xy-a,)  (x,-0r,)
(6.2) alx,x,) = - 1 1”21 i L1 el 22 ]

2 :
- o
(1-p7) 1 %% %

is & positive definite quadratic form.

Let the parameter (4.L) be

(6.3) (Apory) = eg,a,)

and

A= 0O, -0 <0.

2 1

al and a2 are the means and medians of §l andvg2 respectively. The variances

and covariance, are:

(6.5) var(e,) = o

I
qQ

i=1,2.
ii =

(6.6) cov(gl,ée) = p 99, = %5

Applying the definitions of transvariability (4.10) and moment of transvaria-

tion (4.26), we have

(6.7) p o= P(E>E la <a ) = -————“—:7-=ﬁ§ d[‘ JF exp[- 5 Q(x »%, )]dx ax,
270_ 0

(6.8) m

B[ (,-8,)"]¢, > gl, % < 0]

li

1
21IG g V/l' z L/ u/ﬂ (X ! > expl - 2 Q(xl,xg)] dxldx2 .
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After lengthy transformations of (6.7) and (6.8) [Ref. 9] we arrive at their
final expressions. We can arrive at the same result working with the linear trans-

formation (4.6) [Ref. 9]. In fact for the r.v. (4.6) we have

(6.9) E(T) = B(§y8) = Gy -0 = A< 0
(6.10) var T = o = 0]2_+02- 2 po,9,
Its p.d.f. is
2
(6.11) g(t) = exp [-2))
ovan 20

By direct application of (4.10) and (4.21), and after the substitution

= K ;k 5 We have:
(6.12) p = P(1>0/A<0) =1- 0 (- —2—) = o(&)
(6.13) By = P(T>A[A<0) =1-0(0) = 3
where L
(6.14) R I 2

is the c.d.f. of the standardized form of the normal distribution.

By application of (4.24) the probability of transvariation becomes:

(6.15) P - 200)

For the moment of transvariation (4.26) and its maximum (4.27) we have

(Dagum, Ref. 9)

-

1 r -2
(6.16) m = —== Jf (N +0u) e du =
r Vo
A
o
r A 1 r r r-s _s A
= N oG+ —= Z ()N G(s;-3) )
P4§; e=1
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™ -—=u
o r 2 1
(6.17) m, . o= fuevduz_
V-2 2
Where, for s = 2k
2 2k
(2K ) -3 Bl iy by) ekepian
(6.18) G(2k; -b) =§<E /_ en o(b) -~ e o T (k b
‘ 1)
and, for s=2k+1 b2
-5 k . 3
(6.19) G(2k+l; -b) = e = =z ot pr( %y okl
1=0
In (6.17), 5r,h is given by r
2 T
r 2 ¢
(6.20) 51% = E(|7 - A[") = - T (

which can be written, for r even and 0dd, respectively

2k )} 2k
(6.21) = - J o
Po ok oK 11
2k+1
2
.2 ki ek+1
(6.22) Poge1,n = = O
v
where “2k is the 2k-th central moment.
The rth intensity of transvariation follows at once by
(6.16) and (6.17) in. (k.%2).
For r=1 we have
M A
(6.23) I, = — = fox [o &) +
1,M

= /e [or &) +

al>

the substitution of

rl

A A
3@ (g)]

where @'(+) is the P.d.f. of the standardized normal distribution.
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Since we are dealing with the transvariation of the bivariate normal distribution
with respect to the means of each marginal distribution, as was set down in (6.9),
and because of the symmetry of the distribution with respect to its center of gravity
- the point of coordinates Qxl,ag) - , Lemma 1l and (4.25) are relevant and applica-
ble; hence

(6.24) X -Q. = X_ -0

Pl

is a median straight line. Therefore, PM‘; is in agreement with the result deduced
in. (6.13). Likewise, by applying Lemma 3, the maximum of the moment of transvaria-
tion for (6.17) is the same as that of (4.31). The definition of Br,x was given
in (4.29) and its value for the rth absolute central moment of the bivariate normal

distribution in (6.20), with their corresponding mathematical result, for r even

‘and 0dd, in (6.21) and (6.22), respectively.

6.2. Hypothesis of independence. The mathematical result deduced for the probability

and intensity of transvariation for the bivariate normal distribution is invariant
with respect to the hypothesis of independence. Under this hypothesis, the covariance

in (6.6) is null, because p = 0 and the variance in (6.10) becomes
2
(6.25) var(t) = 0" =0 + o0 .
Under the hypothesis of independence we can work out two other parameters of

transvaristion already introduced in sectilon 5, namely, the area of transvariation

and the discriminative value. The frequency functions corresponding to each

marginal distribution is

N (. P x
(6.26 N.f (x,) = — 1 {~LL} =>F (x)= [ £ (t) dt
) ey AP 60 f 2
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o X
N (X—OL)
. 2 2 2 ; ~
(6.27) | Nefe(xe) = QEJE;_- xﬂ} 2 ->-F2(x) = :{:fg(t) at

For the area of transvariation as well as for the discriminative value, we are

interested in the roots x of the equation

£ o8 N, o E-ap ) N, (x-a )
(6.28) o exal- —5 ) = ‘——‘/5— exp(- — ‘2 3
gl T 201 02 * 2?2

Solving (6.28) we have

2 2
a.0- -0 05) + 0.0 /A
(6.29) . - 0,05 - ay07) + 00,
‘ - 2 -2
o; =07
where
a.N
_ o 2 2 10
A (ozl- ocz) - 2(02 - cl) log 02N1 .

6.2.;. Area of ﬁr@nsvariation. VWe may analyze the following particular cases

(for a more detailed analysis, see Dagum [Ref. 9]).

l) g :E:; (%)

L % 9y A>0, Fig. g

(6.31) © = LOL0 R 0) - ) ¢ W Gy) - T ()]

2) a, ] o, A<O0, Fig. 5:

(6.32) ¢ = —2
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N.f_ (x)
11

(i=l:2)
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3) o, = Oy Oy i OLE- Fig. 6:

1 A
(6.33) cC = ﬁ}ﬁ; [N2 - N, Fe(xl) +1\Tl Fl(xl)]

) oy =0y, 0y =0y N < Ny
N
(6.34) C = 53§
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5) 01 = 02, al = ag, Nl = l\T2 is a trivial case of equivalent random

variables with populations of the same size. The area of transvariation is, of

course, edqual to % .

6.2.2. Discriminative value. In the analysts of the discriminative value we have

the following possible cases for the distributions (6.26) and (6.27):

1) They donot intersect.

2) They intersect in only one point.

3) They intersect in two points.

Case 1 gives us a singlular point for the discriminative value.

Case 2 implies 0, = 0, and Qg + @, (Fig. 6). Therefore, the discriminative

error is:

1
(6.35) x, = E-(al + ag) + g log T .

The error value is then

(6.56) Cw) - Ny Fl(xl) + NE[l—FE(Xl)]
1 Nl + l\T2
For the particular and interesting case where Nl = NE’ we have
(6.37) X, = =@, +a,)
1 271 2
and
A
e (x,) = @ )
* o /e

where A 1is given by (6.4) and o by (6.25).

Case 3, in conjunction with the alternative hypotheses (5.19a) and (5.19b),
give four possible discriminative error values for the two roots. The minimum one
defines the discriminative error value and its corresponding root is the discrimina-

tive value.



7. Means, Variances and Covariances of the.Sample Transvariation Parameters

Tele Estimators in the discrete case. In applications of transvariation theory

we deal with sample observations, i.e.,. a finite realization of an r.e.f.  Suppose
we have n realizations of an r.e.A under constant conditions. In each realiza-
tion we observe the r.v. (4.1) or its linear transformation. (4.6). Hence, a

sample observation would be

(7.1) x, = (xli, xgj); i=l,.ee k) 5 J=1,e e sk,

After convenient transformations we have all the ordinates with common

subintervals and within the same interval, i.e.

(702) X - - X = X - = h ; i’j=l,-lo’k,
1,i+1 1,i 2,J+1 23

and

(7.3) Py = p(xli? ij) .

By application of the definitions of transvariability, moment of transvariation

and their corresponding maximums, we have, for the discrete case

_ 1 -
(7.1) p = Pty > & IN, <N) +5PB(E = 8)
k L1 . K
= 2 Z p,., t3 I s
j:’& i=1 1d 2 i=1 pll
- - Py -
(7.5) n, = P&, > &= he Ih, <N+ 5 Ble, =& - he)
k 41 , k
= 5 Z p, ., *+35 & P.
sop, =1 bede By THATC
k AL-1 Xps ” Xl' r
(7.6) m = n £ £ (=) b,
r 1= 1i=1 b 1



(T.83) v var(p,) = Gz = = E(pA-p)2 = E%i (pa - % By)

The variance of maximum of transvariability

2 n - 2 1 1
(7.44) var(pM’,A) = GPM = o1 E(pM;A'PM) = -1 (quM g P_c)

The covariance between the transvariability and its maximum

- B - ip ) = =
(7.45) cov(pBy ) = 51 B(ByP) (P, p"Py) = o1 P
Likewise, from (7.39), (7.40) and (7.41) we find the unbiased estimators for
the variances of the moment of transvariation and its maximum, and the covariance
between them.

t
The variance of the r h moment of transvariation. is

2
m._ -m
‘ 2 n 2 or T
N = 0 = E - T ————
(7.46) Var(mr;A) n " B1 (mr,A mr) )
The variance of its maximum is
2 m -m 2
(7.47) Var(mr M'A) = o = er M T,M .

: ' th . : . :
The covariance between the r moment of transvariation and its maximum 18

mr+r M T M
- 3) oM
(7.48) cov(mr;A,mr’M;A) 2=

was defined in 7.42).

(

M
T+Tr M
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An unbiased estimator of the variance of probability of transvariation. (Dagum,

Ref. 9) is
2 n A2
(7.49) var(PA) = 0 = o= E(PA_P)
2
2 g
i Pe[ 2p ,_F; pMJv,” 2 COV(PA’PM;A)Y]
p° pﬁ P By

The variances and the covariance of the right hand member of (7.49) were
obtained in (7.43) to (7.45).
For the particular case where the parameters (xl,xe) are the medians of

their corresponding random variables, we have

(7.50) B, = % = 3
therefore
(7.51) ver(e,) = == ad® - p - FR ) -

Likewise, an unbiased estimator for the variance of the intensity of

Transvariation is

2 n 2
(7.52) var(Ir;A) GIr = = E(IrgA_ Ir)
1° Gi di 2 cov(m m )
_ Ir. r r,M _ ;A e, M3A j
I‘2 L m2 m2 m m M
r r,M o

.The variances and the covariance of the right hand members of (7.52) were obtained

in (7.46) to T.48).

7.6. Variances and covariances on the hypothesis of normal distributions. The

variances and covarianceés deduced in section 7.5 are of general application, un-
regstricted with respect to the particular distribution model of its corresponding

random variables. In section 7.5, working on the hypothesis of normal distribution,
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we substitute the transvariation parameter estimators for the corresponding
mathematical results for the bivariate normal distribution obtained in section 6.

Therefore, for the particular case of (N 5N ) = (o

19N ,ag), i.e. transvariation

1

with respect to the means, we have the following.
The variance of transvariability (7.43) becomes, from (6.12)

A A
g o

(7.53) ver(p) = =5 P4 =53 o) o(3)

The variance of its maximum (7.44) is, from (6.13) or (7.50)

1 1
(7.54) var(pM;A) = =Py 4y T s .
The covariance between the transvariability and its maximum (7.45) is, from
(6.12) and (6.13)

1 2 A
(7'55) COV(PA} PM,A) = _r:i b q.M - D Il"l) (D('E)

Hence, the variance of the probability. of transvariation (7.51) is

(7.56) var(P,) = 5%5 p(a-p) =

o) [o(-) - 0]

For the variance of the rth moment of transvariation (7.46) we replace
there the corresponding results deduced in (6.16), in association with (6.18)
and (6.19).

Likewise, for its maximum (T.47), we use (6.17) in association with its
corresponding result in. (6.20) to (6.22).
th

The same results are used for the variance of the r intensity of

transvariation in (7.52).
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For purposes of application, it is important that we. derive the variance
of the first order intensity of transvariation on the hypothesis of normality.

From (7.52), in comjunction with (7.46) to (7.48), we obtain
2

L m m em
(7.57) Var'(Il,A) = ¥E%i:(-% + _%zM - LM
R T RN
whereas, from (6.16) to (6.23), (6.9), (7.8) and (7.42), we have
(7‘58) ml = }\,(I)(%) + 0'@'(%:)
(7.59) m, = 0+ B) o)+ rowd)
.60 ‘ _ 1 _ g
e T BPia T T
- 1 _ 1l 2
(7.61) Woum = 2P T 2°
(1.62) T S lk]ml + m,
(7.63) L o= /2 oG + 5 0Bl

which are direct computations derived from a table of the standardized normal

distribution.
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8. Applications

8.1 Statistical Interpretation. According to the experience of this author, a

criterion for deciding whether or not there is a statistically significant differ-
ence between two distribution functions would be a significance level of 60 percent
for probability and intensity of transvariation. Thus, for a sample estimate of
greater than or equal to 60 percent for both parameters, we may conclude that there
is no statistically significant difference between the distribution of the two
random variables. The converse of this is true for a level of less than 60 .percent.

If one estimate is less than 60 percent and the other is greater than or
equal to, we need additional statistical evidence to determine the difference, in
which case we may use the following supplementary criterion:

If the average of the sample estimates of both probability and intensity of
transvariation is less than 60 percent, we may conclude that there 1s a statisti-
cally significant difference between the two corresponding distributions.

These criteria are in agreement with the purpose of the parameters of
transvariation, namely, the simultaneous measurement of the effects of the means,
variances and probability distributions of the two random variables that generated
the sample realizations under analysls.

The applications thaf follow are intended first of all, to underline the
power of transvariation .theory as a quantitative method to deal with comparative

statics in economic analysis.
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8.2. Nonparametric Estimatiomns. The following 11 statistical variables represent

1
applications of transvariation theory to economics :

1) ¥ye0) =
2) Vi6); =
3) Yo(eoy =
Y Ya66)5 T
5) Up; =
6) Yoy T
) X1 7
8) oy 7
9) Xzy =
10) X =
11) X5i =

average weekly, hours worked in;l960, for 49 States (including
Distriet of Columbia and excluding Alaska and Hawaii)of the
United States;

id. id. in 1966;

average hourly earnings in 1960, for L9 States (including
District of Columbia and excluding Alaska and Hawaii)
of the United States;

id. id. in 1966;

wage indexes of skilled workers in Buenos Aires (Argentina )

. for twelve occupations in the industrial sector in:December
1967 (Base index 1960:= 100);

id. id. for unskilled workers;

price indexes of 33 items of meat and fish included in

family basket of the cost of living index in Buenos Aires

(Argentina ) for 1967 (Base index 1960 = 100);

id. id. to x;, for 31 items of clothing (15 mens' and 16

womens' );
id. id. for 19 items of bread and cereals;
id. id. for 24 items of education.and culture;

id. id. for 39 items of fruits and vegetables.

lSources United States, Bureau of the Census, Statlstlcal Abstract of the

United States, 1967.

Argentina, . Direccion Nacional de Estad{stica y Censos,

Costo -de Vida, E.S. 60, Enero.1968.
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Table 8.1 gives the sample mean and size for each of the eleven statistical

seriles.

Table 8.1
I
Variables Mean Sample
ki size
' n.

i
yi(60)i LO. ok IEe}
Yo (60)i 2.19 L9

Uy 631.6 12
Up s 633.9 12
X4 L12.9 33
X5 510.3 31
Xz 533.8 19
X5i 617.8 39

anparametric estimatibn were performed for thirteen relevant cases out. of
the eleven variables of Table 8.1. The thirteen pairs of variables consildered to-
gether with the means of their differences and the combined number of observations

are given in Table 8.2.
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Table 8.2
Variables Mean . Combined
SN = Li-xj sample size
n = :li X IJ.J.
Vieoy " Yies)y - 2401
Y2(60)1 ™ Y2(66)3 - 02 2k01
Ui " Vpy -.2.3 14k
ST - oT:k 1023
X5 - Xz -140.9 627
%11 7 *uy -197.9 792
Xy = Xg; -204.9 1287
X5 - Xaj - k3.5 589
Xp; = %5 -100.5 Thly
Xp; - s -107.5 .1209
ETIE - 57.0 456
Xzy = x5j - 6L.o 741
X " %5y - 1.0 936

The nonparametric sample estimators of transvariability (formula T.4),

. s th
maximum of transvariability (formula 7.5), r moment of transvariation, for

r =1 and 2 (formula T7.6), maximum of the Tin moment of transvariation, for
r =1 and 2 (formula 7.7) and the.moment Ly M,(formula 7.42, for r = 1) were
2

applied to the thirteen pairs of random variables of Table 8.2. Their corresponding

estimates are given in Table 8.3.
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Table 8.3

Variables P By my tm my . L
y1onTueey; 09 oo 0163 0.6 0.401 1.348 0. 62k
Vo (60)1772 (66 )3 0.327 0.501 0.10k 0.192 0.051 0.11k 0.07h
Uy =Y 0.549  0.549  41.806  L43.068  5450.360  5645.575 5546, 51k
X%y 0.188  0.528  10.93%  Mh.7oh  1123.177  598k.101  2188.007
X%z 0.155 0.521 9.991 54.081 921.299 8772.699  2329.06k
X9 375 5 0.184  0.646  15.17%  96.%11  1863.888 20860.150  LB866.89k4
%117%s53 0.21%  0.590  13.581 10L.479  1365.905 22261.170  4168.6Lk
Xoi %35 0.370 0.472  37.367  55.5718  5665.927  9676.330  7291.372
05X 5 0.398 0.782  44.818 128.35h  7928.055 29852.770 12h32.251
Xp17%s;3 o.h2k  0.502  L6.127 100.915 7h82.945 22961.840 12hh1.592
X307, 0.487 0.613  70.787 101.5T1 15162.260 24916.560 19197.110
X31%s 3 0.468 0.575  70.5%% 103.998  14890.550 25982.760 194O0k.T00
%), 3 %55 0.505 0.512 125.957 129.512 64051.720  65839.910 64933. 400

By application of (7.43), (T.4k), (T.46), (7.47)

estimate the variances and covariances corresponding to

in the first four columns of Table 8.3.

and (7.48) we may

the estimates given

Their results are given in Table 8.k4.




e

Table 8.4

cov cov n

Variables var(pA) var(pM,A) '(PA’pM,A) var(ml’A) var(mlM’A) (mlr’mlM,A
Y1 (6091771 (66 )3 0.00005L  0.000101  0.000030 0.000156  0.000411  0.000219
Yo 60)1~72(66)3 .000092  0.00010%  0.000068 0.000017 . 0.000032 0. 000022
CITIEY ).001732  0.001732  0.001732 25.892290 26.508518  26.195810
X131 - Xpy ).000149 0.00024L  0.000087 _Yo.982051 3.891983 1.661737
X g - Xa ).000209 - 0.000399  0.000118 1.312260 9.34184k2  2.857400
Xy " %), 5 .000190  0.000289  0.00008% 2.065268  1h.645161 . 505227
X4 - X5j ,000130  ©0.000188  0.000068 0.918711 9.3026%0 2.169877
Xp; - ¥z .000396 0.000k2Lk .0.000332 7.261340 11.203%013% 8.868370
X1 = Fyg 1 0.000%22  0.000230  0.000117 7.966912  18.005515 8.990190
Xp - Fig .000202  0.000200  0.000143 L.433154  10.577835 6.445929
Xg = Ky ).000549  0.000521  0.000k14  22.310949  32.087853 '26.389556
Xz5 = %oy ).000%%6  0.000328  0.000269 13.399408  20.496268  16.309958
Xy - Xy 0.000267  0.000267  0.00026k 51.5%6287  52.477457  52.000376

By application of (%.24), (4.32), (7.49) and (7.52) we estimate the
probability and first order intensity of transvariation, their correspénding

varisnces and mean. sguare errors.

The results are given in Table 8.5.
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Table 8.5
!
Variables P = g; Iy = 51& var(PA) ,var(Il;A)'} op cIl
Y1 (60)1771(66)3 . 0.290 0.271 0.000160 0.000186 0,013 0.01%
Y2 (6011772 (66 )3 0.652 0. 544 0.000189 0.000053 0.014 0.007
Uy, - uej 1.0 0.971 0.0 0.000007 0.0 0.003
xﬁ_-xaj 0.356 0.24k4 0.000425 0.000201 0.021 0.014
X5 - x5j 0.297 0.185 0.000641 0.000197 0.025 0.01k4
X5 Xuj 0.285 10.158 0.000398 0.000116 0.020 0.011
Xy - x5j 0.361 0.13%  0.000322 0.000049 0.018 0.007
Xpy - x5j 0. 784 0.672 0.000610 0.000130 0.025 0.011
Xps = Xy 0.509 - 0.349 0. 000430 0.000236 0.021 0.015
Xp; - %5y - 0.715 0.457 0.000285 0. 000074 0.017 0.009
Xz Xuj Q. 794 0.697 0.000586 0.000108 0.024 0.010
Xg3 = 5y 0.813 0.678 0.000352 0. 000065 0.019 0.008
Xy - Fgg . 0.987 0.973 0.000026 0. 000002 0.005 0.001

The results given in Table 8.5, for the thirteen palrs of random variables
studied, in conjunction with the criteria for statistical interpretation given

in 8.1, allow the following conclusions:

1) The spatial (by States) distribution of the average weekly hours
worked in the United States in 1960 is significantly different

from the average observed in. 1966. In fact, the probability of



3)

4)

- U6 .

transvariation. estimated was equal to 29 percent, with a mean square
error equal to 1.3 percent, and the intensity of transvariation of the
first order was equal to 27.1 percent with a mean square error equal

to 1.4 percent.

The spatial (by States) distribution of the average hourly earnings in
the United States in. 1960, by application of the supplementary criterion,
is significantly different from the average observed in 1966. There is
an important group of States with averagebhourly earnings in 1960 that
overlap the average hourly earnings in 1966 of another important group

of States.

The comparative differences of wage indexes between ékilled and unskilled
workers in Buenos Aires, for twelve categories of industrial employment
in.December 1967, with base index 1960 =100, are not statistically
significant (with almost certainty). Therefore, the wage structure by

degrees of training was not changed in December 1967 compare with 1960.

The remaining ten applications correspond to the five group of items
selected from the family basket used in the computations of the cost

of living index in Buenos Aires. The first .four transvariations, which
correspond to the transvariations of the price of mean and fish in com-
parison with prices in the remaining four categories, demonstrate a
significant difference. Hence, the relative prices of meat and fish

in 1967 are significantly less than the prices of clothes, bread and
cereals, education.and culture and fruit and vegetables when compared

with a common base of 100 for the year 1960.
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The relative prices of clothes were not statistically different when they
were compared with the prices of bread and cereals. Compared with fruit and
vegetables and with education and culture, they were statistically different (by
application of the supplementary criterion of 8.1).

The remaining three cases are not statistically significant.

Therefore, the impact on the realtive prices of the highly inflationary
process in Argentina, from 1960 to 1967 (the price indexes grew from 100 in 1960
to approximately 500 in 1967), for the five categories of goods studied, were as
follows:

i) unfavorable prices of meat and fish relative to the other four groups;

ii) unfavorable prices of clothes relative to fruit and vegetables and

to educational and cultural prices and no significant differences with
the other (bread and cereals);
1ii) no significant differences of relative Pbrices between bread and cereals,

education and culture and fruit and vegetables.

8.3. Estimates under the assumption Qf Gaussian distributions. Under the
assumption of independent Gaussian distributions we can estimate the following
parameters:

1) Probability of transvariation;

2) First order intensity of transvariation;

- 3) Area of transvariation;

4) Discriminative value.
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8.3.1. Probability and intensity of transvariation. The parametric

estimations of the probability and intensity of transvariation, under the assump-
tion of the Gaussian distributions, were performed for two out of the thirteen

non-parametric cases analyzed in. 8.2. They are:

1) yl(60)i - yl(66)j (i,j.= 1,...,49) = differences of the average
weekly. hours worked in: 1960 compared with 1966 for 49 States (in-
cluding District of Columbia and excluding Alsska and Hawaii) of

the United States;

2) Yp(60)i " y2(66)j‘(i’j =1,...,49) = differences of the average
hourly earnings in 1960 compared with 1966 for 49 States (ineluding
Districﬁ of Columbis and excluding Alaska .and Hawaii) of the

United. States.

We assumed, in both cases, that the variables analyzed were statistically
independent. For the variables of average weekly hours this assumption is
acceptable. For the variables of average hourly earnings, however, the assump-
tion .can be regarded as too strong, because it is expected that both variables
will move in the same direction as economic growth, which is a causal variable.
Hence, the degree of correlation will be a function of the income distribution
structure by States. If it does not change in the 49 States then the correlation
coefficient will approach one. If the income distribution.structure by States
change with different intensity, then the degree of correlation will decrease.

Applying (6.9) and (6.25) to the sample observations, we obtained the
information we needed to compute the sample estimates of the probability and

intensity of transvariation and their corresponding variances. In Table 8.6
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we found the sample means and variances of the random variables considered and,
in Table 8.7, the sample estimates of the transvariation parameters and their

corresponding variances.

Table 8.6

Variables Mean Variance Mean Square
Error

Y1 (60)1 40.0k  1.260k4 1.12

I1(66); §1.41 0 1.3237 1.15

y2(60)i 2.19 0.1110 0.3%3%

YE(66)j 2.0 .0.1223 0.35

Y1(60)i " V1(66); -1.37  2.5841 1.61

Yp(60)1 ~ Y2(66)3 -0.21  0.2333 0.48

The probability and intensity of transvariation. estimated for the weekly
hourly earnings in both cases, nonparametric and Gaussian, are respectively
equal. For the average weekly hours worked, this equality holds only for the

intensity of transvariation estimation.

8.3.2.. Area of Transvariation. Using the information of Table 8.6 and

applying (6.29) and (6.30) in conjunction with (6.4) we can calculate the roots
of equation‘(6.28)and their corresponding standardized deviations that are

summed up in Table 8.8.
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Table 8.7

Estimators Y160)177166)5 | Y260172(66);
A
1] 4 -0.851 «0.445
2] » = ol 0.198 0.328
3. cp 01008 0.010
. Dy 0.500 . 0.500
50 o -0.010 0.010
Bym
64 P = 2p 0.395 0.656
T op 0.01k 0.014
8. m = ANO(=) + g @*(E) 0.177 . 0.10L
9 m, = M2+ + Xo ®'(%) 0.269 0.05k
10.] o 0.010 0.004
Sl
1
1. ml’M = JE;T 0.641 0.193
.1
0. Uyum = 3 1.292 0.117
L5 o 0.019 0.006
M
iy T M ]x]ml +m 0.510 0.077
psp I, = jEEf[@*(%) + = 0(=)] 0.275 0.540
6. 0 0.009 0.008
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Table 6.8

Estimators yl(6o)iwith yl(66)j ,y.2 (60 )i with y2(66)j
o.N
2 2 12
A = @xl-ag) 2(02-01) 1og;021\Tl 1.873 0.0k7
2 2
X, = Q.05 =000 + 0, 0, A 0.955 0.024
2 2
X, = Q,0, -Q,0; - 0, 0, A -2.580 -0.026
X, .
X = S5 -15.077 -2.163
02-0:L
X
x, = — 22 ‘ 40.7h3 2.%18
02-01
!
t, = 5 -49.097 -13.05k4
X -
2771
t, = = -0.581 -0.24%0
1
X -Ct2
t21 = o -45.098 -1%.057
X =0
t = -2 e 0.622 0.%9%
22 o}
2
Fl(xl) = @(tll) 0.0 0.0
= . A
Fl(xg) @(tlz) 0.280 0.405
Fg(xl) = ®(t21) 0.0 0.0
,FE(XE) = @(tge) 0.733 0.653%
c 0.274 0.376
H 0.548 0.752
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From Tables 8.6 and 8.8 we have a; # o, and A>0.; hence, we apply
(6.31) in order to estimate the area of transvariation. From Table 8.8 and

formulas (6.31) and (5.13) we have, for the variables of the average weekly

. hours worked

c = % [1- Fyley) + Fylxy) +Fy(xy) - F (x)] = 0.274

H = 2 C = 0.5)4-8

- and for the variables of average hourly earnings:

C

Il

0.376

H 2C = 0.752.

1l

8.3.3. Discriminative value. Under the assumption of Gaussian distributions,

both cases analyzed intersect in two points. Their corresponding roots Xy and

X5 , Tor each case were previously obtained in Table 8.8, when we solved (6.28)
for the area of transvariation. Working with the alternative hypotheses (5.19.a)

and (5.19b) and the two roots x. and x. we obtain four discriminative errors.

1 2

Among them, the minimum one corresponds to hypothesis (5.19.a)'where, in both

cases analyzed, x = Xy - Therefore, for the variable of average weekly hours

worked, the discriminative value is

X, = 4o.7h3 => t12=-0.581 and tee = 0.622
and the discriminative error is
Fl(XE) + l'Fg(xg) @(tle) + l—@(tge) B
e(Xg) = - 5 = 5 = 0.27 .

‘For the average hourly earnings variables, the discriminative value is

€x, = 2.318 => typ = -0.240 and typ = 0.393
and the discriminative error is
O(t.,) + 1-®(t..)
2
€ (Xg) = 12 5 2 = 0-58 o
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ABSTRACT

This paper 1s concerned with the bivariate transvariation theory. It

presents an historical account of the subject and a development of the theory.
It deals with the probability of transvariation and its related concepts,
namely, transvariability and its maximum; the B moment of transvariation,
its meximum and the rth intensity of transvariation; area of transvariation
and discriminative value. These concepts are developed without parametric
constraint and under the assumption of Gaussian distribution. The sample
variances and covariances of the transvariation parameters estimators were
herein deduced.

The applications were performed on economic variables of the United States,
namely, 1) average weekly hours worked and 2) the average hourly earnings
in the years 1960 and 1966, distributed by States. It was also applied to
economic variables of Argentina, namely, wage indexes for skilled and unskilled
industrial workers in Buenos Aires, for December 1967, (base equal 100 in 1960 )
and price indexes for five groups of commodities in 1967 (base equal 100 in year
1960). These applications allowed very important quantitative conclusions
regarding: a) the spatial distribution of average weekly hours worked and
hourly earnings in the United States in 1960 compared with 1966; b)) the relative
wage distribution between skilled and unskilled industrial workers in Buenos .
Aires (Argentina) and c) the relative price changes among five groups of
commodities included in the computation of the cost of living index in Buenos Aires.

The applications underline the fruitfulness of transvariation theory as a

guantitative method to deal with comparative statics analysis.
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