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ABSTRACT

This paper presents a procedure for the prediction of time
series for which the generating model is non-stationary. The procedure
requires that the non-stationary change in the process be fairly smooth
over time in order that this change may be estimated and used in the
prediction. Since we characterize the process by its - time changing -
spectrum, we are only using information which is approximately linear.

The procedure is applied to a time series of economic data and
found to give results which encourage us to consider further developments

of the method.



PREDICTION FOR NON-STATIONARY STOCHASTIC
PROCESSES

I. Introduction

While prediction theory and practice for stationary processes is
will developed, the practical applications of this development have not
been uniformly successful. Frequently the lack of success of predictors
based on Weiner theory is ascribed to non-stationarity of the generating
process.

In this paper we will outline a practical procedure for forming
~ predictions which requires only 'local stability' of the generating process.
In addition, this procedure will permit us to conveniently treat processes

with almost periodic variations, such as certain seasonal patterns.

II. Prediction Model

For the purposes of prediction we will suppose that the observed
time series for which future values are to be predicted is generated by

a process with a representation:

T .
X, = § !t K(w, t)dw 2.1

where K(w, t) = a random function of w and t with independent increments on w.



In order to describe the process, we wish to form an estimate of
Flw, t) = E(K(w, t) K¥w, t)) 2.2

In the case of a stationary process where F(w, t) = F(w), we form an

estimate of the spectral density:

f(w) = dF(w) 2.3

dw

and derive a prediction scheme from the estimated spectrum. Since f(w)
is not a function of time, there is no problem in using it in order to make
inferences about future values of the realization. However, in the non-

stationary case considered here, the spectral density f(w, t) is changing

over any realization which we may have. Therefore, it seems unreason-
able to estimate the spectral density by taking a simple average down the
realization since this results in an average which treats each observation
equally. In particular, we may consider the case of a linear trend in the
frequency components of the spectral density function. Then the spectral

density may be represented by:
flw, t) = glw)+ A(w)t 2.4

By averaging down a realization of n observations fromt=1, ..., n, we

will be estimating the density function

n+1
2

flw) = glw)+ Aw)



However, if we are interested in prediction of x, at some point in
time n + 7, then we wojld like to have an estimate of the spectral density
of the process up to the time n + 7. In the simple case of a linear trend

in the spectrum, an estimate based on equation 2.5 will be closest to the

true changing spectrum at t = and farthest att =1 and t = n. This

2
is clearly an undesirable property for prediction.

The traditional procedure for estimation of spectra, and subsequent
computation of optimal predicting filters has involved estimation of serial
correlation coefficients. Some assumption of stationarity over the entire
length of the realization is required in order to make inferences from these
estimates. However, an alternative procedure for estimation of spectra is
to apply digital filtering.

In simplest form we may think of estimating the spectrum of a
process by first band pass filtering the realization at a set of frequencies
(presumably equispaced) on the range 0 to m, and then computing the variance
of each filtered series. We have been able to perform the frequency decom-
position without requiring stationarity. Thus, by following this kind of

procedure we may consider possible schemes for handling non-stationarity

at each frequency.



III, The Prediction Algorithm

1f we think in terms of estimating the spectrum of a process by
digital filtering it is natural in this context to consider the possibility that
the variance of each digital filtered series is not a constant over the real-
ization. In particular, we may consider the variance of each series to be

a stochastic variable with a representation:

y/
o 2w, t) = K(@+a (@t+) a (0o 2w, t-s) 3.1
x x x X,8 x
s=1
where K (w), a (w), a (w) = constants.
X x X,S
For a suitable choice of @ s(w) this process will generate variances
3

which are fairly slowly changing functions of time. The procedure which we
will present will, in effect, use this representation of the variance at each
frequency to derive a prediction scheme at each point in time. We are, in
a sense, predicting the spectrum and deriving the prediction of the time
series from the prediction of the spectrum. A computationally simple way
of doing this is as follows:

We first complex-demodulate the series x, by forming

iwst ) '
Xj’t:L(e th) j=0, ..., m 3,2

where x.
Jst

L()

1

the complex~demodulate of x, around frequency wj

1

a low pass filter.



The m + 1 frequencies at which we demodulate may, if we have no prior
knowledge about the series, simply be chosen to lie uniformly between 0
and m. The appropriate value of m will depend on estimation criteria to

be discussed later. However, if we have some knowledge of the structure
of the process of which we have a realization, we may choose the demodula-
tion frequencies in order to obtain estimates centered on frequencies of
particular importanée. In particular, if there seems to exist some kind

of changing seasonal pattern in the record, then we should demodulate at
the fundamental seasonal frequency and each of the harmonics if we intend
to predict the seasonal pattern as a part of the process. If, on the other
hand, we want to get rid of the seasonal and predict only the '"non-seasonal"
variation, then we should pick the demodulation frequencies so as to avoid
the seasonals,

We should now observe that

flw,) = E(x. x, * 3.3
(J) (J:t J:t)

Thus we may consider the formation of estimates of the changing spectrum
by taking moving averages of x. | x, *,
.t J,t
However, we may form our prediction of x, directly by extrapolat-~

ing each complex-demodulate, then remodulating and summing up the

resulting series. We extrapolate the Xj ¢ by a scheme based on equation 3.1
2

¥i 7
A. = Kl{w,) + a(w.)t + a (w,)x, +Z w, 3.4
XJ:t (wJ) ( J) Z S( J) Jst-s F}S( J)

s=1 s=0



We carry out the extrapolation to t + T, where T is the number of time
periods into the future which we wish to forecast,

We then remodulate the ;i ¢ by

Js

V -~ "'iw't
X, = X, e ] 3.5
Jst Jst :

and form our final prediction by

m

- \ Vv v
) ; 3.6
X = Re Z it
j=0

Since we estimate the variance at each frequency by equation 3. 4
nothing in this procedure requires stationarity of either first or second
moments. All that we require for success in prediction is predictable
change in the complex-demodulates. If the original series is from a
stationary white noise process then this procedure will not prove more
successful than the simple procedure of predicting the mean of the series,
However, the more time varying structure there is in the process the
better will be the forecasts by this procedure. In particular, if there is

a deterministic component given by

Xt' = (a+pBt) enlet 3.7

then its complex-demodulate at wj will be

X, = a+fBt 3.8
)t ¥



Given a long enough realization to permit the formation of reasonable
estimates of a and B we can predict this component with a very small error.
Incidentally, it is interesting to point out in this context that we can
easily introduce into the computation a weighting function which represents
our relative valuation of errors at each frequency. Thus we would replace

equation 3. 6 by

m
o SR
%' = Re Zc.x. 3.9
t ] st
j=0
where ¢, = arbitrary weights constrained by
m
Z cj = m+ 1 3.10
j=0

However, we may choose that set of m weights which best reflect our

determination of the costs of prediction errors at each frequency.

IV. Details of Estimation Procedure

In attempting to form predictions using the scheme outlined above,
choices need to be made concerning the bandwidth of the low-pass filter
used in demodulation and the coefficients for the extrapolation of the de-
modulates. These choices are clearly interdependent as the bandwidth of
the filter determines the number of observations which are lost at the end

of the series and the apparent smoothness of the series.



In the translation of the basic procedure indicated above into an
operational numerical algorithm one important addition was made. The
raw and partially filtered observations near the end of the realization
were included with the demodulates and used in the extrapolation. This
appears to produce somewhat improved estimates as it permits using a
long moving average, from which better trend and low frequency estim-~
ates can be obtained, without completely losing the terms near the end
of the realization,

The steps involved in the algorithm are as follows:

1. In order to form the complex demodulates we use convolutions of un-
weighted moving averages. This generates the kind of low pass filter-
ing operation which we want in many fewer numerical operations than
would be required if we used the weights given by the Fourier transform

of the filter function. In addition, we preserve the end terms at each

step of the convolution for use in the prediction equation. Thus we carry

out the following operations

XJt :xteJ t«1, ..., n
3
k
X (1) = Z X, (O) 4.1
Jst Jstts
s=~k
T
k
O (x-1)
jst jstts
s=-k



If we apply r convolutions we have remaining a series of n terms

0
which has at each end k1 terms which are x. (0) (t=n-k, ..., n),

it 1
0 . |
= n=-k, + kZ’ e n-kl-l), etc. In practice

k_ terms which are x,.
jst 1

2

we have used the special case of this scheme where

Thus the one variable which we have at our disposal at this point is k.

(4)

After forming a set of m + 1 complex valued series x, for

E
i=0,1, ..., m, we must then form extrapolations of these series.
Since these series are necessarily fairly smooth functions of time it
is natural to apply a low order linear regressive scheme. However,

before applying the linear regressive we have estimated trend coef-

ficients according to

X, = a,+b.t+v. 4,3
Jst J J YJ:t

We then apply the linear regression to Yj ¢ and add back in the mean
3

and trend terms to form the predicted complex-demodulates by forming

1}'1 EZ
% = 5 | : 4.4
it Z %s Mj,t-s T Z Ps ¥y 18

S:]_ S:O

where v, . 0 for t> n and then

E

X, = X +a. +b.t
J,t Jst J J
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(4)

Since it is the magnitude and phase of x.

which we hope will
Js

be slowly changing functions of time, equation 4, 4 should be inter-

pbreted in terms of polar coordinates. Thus we extrapolate ‘Yj t, and
2

Gj ‘ rather than the real and imaginary parts of yj . 0, ¢ is, of course,
S . > 2
given by
Imiy. ]
6, , = tan T —i2t 4.5
J,t Reb’- ]

]t
At this point we have to choose values for the coefficients a and BS. If
¥
we consider equation 4.4 as a filtering scheme then we will want to

choose the a, and BS on the basis of the properties of the transfer func-

tion which they determine. This transfer function is given by

L
Zﬁs zs)\(n+s-t)
0

T(z) =

4.6

—

where A(£) =1 £>0
=0 £4<0
Thus we want to choose T(z) according to criteria of phase and
gain properties which depend on the number to time periods which we
want to predict (t - n). We could consider estimating the a and BS from
the complex~demodulates using Weiner prediction procedures. However,
in the present study we have simply chosen the coefficients on the basis

of general gain and phase criteria,
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3. Once the series )23 ¢ have been formed for values of tton + T,
3

where 7T is the number of periods which we wish to predict, then we

simply form

as the final forecast.

V. Empirical Results

The following figures show the results of the application of this
procedure to an actual time series. The application of the procedure is,
at present, at an early exploratory stage. However, the results shown
below seem to suggest interesting possibilities.

The series that was used was chosen partly due to its apparent
time-varying seasonal pattern. The series is composed of observations
taken at 10 day intervals. The data were recorded in such a way that there
are exactly 36 observations per year. Thus the fundamental seasonal and

its harmonics occur at;

km

8 k=1, ..., 18

w =

We used these 18 frequencies and w = 0 for the demodulation frequencies.
The value of k for the filtering of the demodulates was 6. Figure 4.1 shows
the demodulates and extrapolations of the demodulates for three selected

frequencies, The graphs on the left of the figure are the demodulates, while
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those on the right are the corresponding smoothed and extrapolated series,

The extrapolation equation used was:

géj,t = 1.57 }N{j,t-l -0.7 ;(j,t-Z +0.07 Vi +0.06 Vo
t=4k+ 2, n
?;j’t = 1.57 §j,t-1_0'7 §j}t_2 t-n+l,n+7
In this case we used
n = 144
T = 20

Figure 4.2 shows the original series from which the demodulates
were computed. Figure 4.3 shows the remodulation of the smoothed and
extrapolated demodulates (}"(i’t). Finally, Figure 4.4 shows the difference
between the original series and'it. We had 159 observations of the original
series X, . However, we used only the first 144 observations in computing
§<t. Therefore, there are 15 points for which we have known values of x,
for comparison with the predicted values.

The point at which we stopped using the original series for the
computation is indicated by a vertical line in each figure. In Figure 4.2
the points to the right of the line are observations which were ignored.

In Figure 4. 3 these points are the predicted values. From inspection of

Figures 4.3 and 4. 4 the predicted values seem to reproduce the periodic



-15 -

structure of the series with some indication that the prediction has properly
adapted to the changing structure of the series.

It has not been possible, so far, to examine more formally the
practical performance of this procedure. However, wé should mention that
many of the classical tests of prediction error cannot be directly applied as

they rely on stationarity for their meaning.

VI. Conclusion

We have stated a prediction procedure for realizations from non-
stationary stochastic processes which requires only that the spectral density
function vary relatively slowly with time. We consider the series as if it
had been generated by an approximately linear, but time varying, process.

We have written a program, in preliminary form, for the computa-
tion of this procedure. The application of this procedure to actual data

yields interesting and encouraging results.



