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MATHEMATICAL PROGRAMMING AND CAPITAL BUDGETING
UNDER RISK

Alvin K, Klevorick

The abundance of recent literature on capital budgeting and the variety of
pl.aces in which this literature has appeared attest to the prominent position re=
search on this subject is being given. Economists and businessmen alike are
making heavy "investments" in the study of how businesses should optimally invest,
A number of authors have brought tools of mathematical programmuing to bear
on this capital-budgeting p:roblem.1 But for the most part, these writers as well
as authors in the non-programming literature have confined their discussions to
a world of certainty. The articles by Cord, Lintner, Nislund, and Weingartner,
a chapter in Naslund's thesis, and the Stanford Technical Report by Hillier are
notable programming-literature deviations from the well-tread path.

The research discussed in this paper and the work of which it forms a
part consitute another exception to the gene'ral stream of capital-budgeting liter-
ature. The larger work is concerned first with decision-making under risk when
the decisions and the risks extend over more than one period of time, Then
capital-budgeting under risk is studied as a particular example of such decision-
making, This paper limits its concern to a discussion of a particular type of
capital-budgeting problem when risk exists,

The environment is intentionally defined as one of risk as opposed to one of
uncertainty, The decisions to be analyzed are assumed to be made with knowledge
of the probability distributions - be they subjective or objective - of outcomes

for the non-deterministic variables involved. On the other hand, an uncertain

"(31, [51, (61, [9], [11], [13], [15], [16], [18], [20], [21].
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environment would be one in which the decision-maker does not possess such
probability distributions.

Decisions made by enterprises with regard to capital investment are made
in an environment of risk, The decision-makers have an idea of the probabilities
with which different values are realized for net returns or net outlays on projects
they consider. Neither the precision of these estimates nor their subjective or
objective nature is now the issue., The important fact is that actual capital-
budgeting decisions are made in a non-deterministic environment. If theory is
to come closer to analyzing these decisions and to helping the individuals making
them, the theory must cope with the presence of risk.

The capital-budgeting problem, as considered here, is the problem of al=-
locating fixed budget dollars in several time periods among competing investment
projects. The discussion is confined to the most stringent (I hesitate to call it
the simplest) capital-budgeting situation pure capital rationing, The firm
neither borrows nor lends. 2 It has for its own use and only its own use fixed
amounts of money in each period, Assuming there are T periods for which the
firm is making plans, denote the budget ceiling in the tth period by Ct' The
firm's problem is then to choose from among the available investment opportun-
ities, extending over its planning horizon, the optimal subset of projects to be

undertaken given that the sequence of budget dollars is C CZ’ eees C

1’ T

As for the potential investment projects, suppose they are n in number.

Each proposal can be represented by a vector, similar to the description of any

activity in an activity-analysis problem, The first T elements in the 2T-element

2 .
The larger work of which this paper is a part considers the case of capital
markets where the firm can borrow and lend.



vector describing the ith project are the period-by-period net returns of cash
from that project. The last T elements in the vector are the period~by~period
inputs of cash required by it,

The net cash inflow resulting from project i in period t will be denoted a,
while the cash outlay on project i in period t will be written as Cipt In the pree=~
ent model we assume that gross and net returns from projects are stochastic
but that outlays on projects are known with certainty, This asymmetrical treat-
ment of returns and outlays can be justified if a period=-analytic view of the firm
is adopted., 4 The firm has the funds for a given period, Ct’ at the start of that
period. It uses this money for cash outlays during the period, the cti's. But
onlf,r at the end of the period does it receive the gross returns from projects,
cti + ati’ and these are stochastic, Hence while the budget constraint quantities

are deterministic, the net returns are stochastic. It is also posited that these

nhet returns are not used for future cash outlays within the planning horizon,

For example, the net returns are immediately distributed to the owners of the

firm.,

3The fact that a project begun in one of the T periods of the firm's planning
horizon will yield returns in post-horizon periods creates something of a prob-
lem. Some model-builders in capital-budgeting seem to side step the issue,
tacitly assuming the firm's planning horizon is long enough to encompass all
returns from all projects started during it. (See [3].) Others discount post=
horizon flows at some discount rate, usually the company's "cost of capital',
(See [21].) Both approaches seem less than acceptable: the latter due to diffi-
culties involved in the concept of the "cost of capital' under capital rationing;
the former because it seems hard to envision a firm with a planning horizon
long enough so that all post-horizon flows are negligible. I shall attempt to deal
with the problem by including in the Tt period net-return figure for project i
not only the net cash inflow from project i in period T but also the market value
of the project in period T.

4See [3, p. 321] for an alternative position, namely, that returns and outlays
must be treated symmetrically,



The investment proposals considered in the model are discrete indivisible
alternatives, A given project is either accepted in full or it is completely rejected,
Thus if A denotes the ith potential project, A is an integer-valued variable,
Moreover, if two identical projects are proposed simultaneously, they will be
considered to be distinct projects., This means A is not only restricted to be
integer-valued, it is further required to be a zero-one variable. It has value
zero if project i is rejected and it has value one if project i is accepted,

In addition to the zero-one restriction on each project variable, the con-
straint set of the capital-budgeting problem considered here contains the T
period-by-period budget constraints. If physical interdependences - mutual ex-
clusion or contingency relationships - exist, they too find expression in the con-
straint set of the problem. 6 In what follows we shall, for simplicity of exposi~
tion, assume that such physical interdependences among projects do not exist,
That is, while we shall discuss the presence of stochastic interrelationships
between projects, we will assume the projects are physically independent of one
another.

Describing the objective function for the capital-budgeting problem is more

difficult. The objective function clearly depends on the net cash returns from

5A1ternatively, all y; variables could simply have been required to be integral
and a further restriction imposed on the subset of y; variables representing all-
or-nothing decisions to force them to be zero or one., The approach taken here
is preferable for my purpose because the capital-investment proposals with which
I am concerned are basically large ventures, Hence, in most cases the projects
will be of the yes=no type. An ability or desire to accept a proposal more than
once will be the exception rather than the rule.

For a further discussion of these interrelationships and their constraint rep=-
resentations, see [2, p. 1l and pp., 32-33],
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the projects, the ati's. The question is "How? " Some insights into answering
the question for the risk model can be gained by considering the objective func-
tion appropriate for a world of certainty, Since the primary purpose of this
paper is to discuss the problem of capital budgeting under risk, I shall restrict
myself to a summary of my work on the certainty model,

The overwhelming majority of capital-budgeting literature argues that the
goal of a firm's capital program is to maximize the value of the owner's equity
or the value of the owner's income resulting from the business, This goal is
then translated by capital-budgeting theorists into maximization of the present
value of future net cash flows deriving from the projects, This is the objective
function one finds in most of the programming work on capital budgeting, Maximsi-
+zation of discounted present value of the investment program means the goal

should be

T i n
Maximize ) D / a. v, 1
ax ze 2, t Z ti Yl ( )
t=1 \i=1 i
. . . . th .
where Dt is the discount factor to be applied to cash flows in the t period,
Typically, the literature tells us to discount cash flows at the ""company's cost
of capital". In the case of pure capital rationing, this '"cost of capital" seems
to have become a ''weasel word, Y with nearly everyone using it but no one really
able to define it precisely., The problem is that for a firm having no recourse to
a capital market - or, more generally, having no recourse to a perfect capital
market ~ the relevant discount factors, the Dt's, are not independent entities.

Rather they are themselves obtained as a product of the analysis that determines

. . . e T
the firm's optimal investment position. Moreover, as Baumol and Quandt have

7This was most clearly shown by J Hirshleifer in [10],
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shown, the relevant discount rates cannot be determined solely on the basis of
the production-possibility information contained in the a ti's s the ¢ ti's and the
C t's. 8

I conclude that the objective function to be optimized should be a utility
function, thus treating the capital-budgeting problem as part of the general
theory of choice where utility is to be maximized subject to opportunities and
constraints, This is also the path followed by Hirshleifer and Baumol and Quandt,
The utility function in question, I then argue, is management's perception of the
utility to the owners of consumption alternatives available in different periods,
Biases or imperfections in management's vision are not excluded as a possibility,
In attempting to ascertain the owner's time preferences, management may err,
consciously or unconsciously. Denoting by W, (fort=1,2, ..., T) the sum
available for withdrawal from the firm in period t, the utility function to be
maximized is

U = U(‘;ﬁ;’l, .sz, cs e VVT) - (2)

It is also shown that this view of the capital program's goal can be reconciled
with the behavioral theory of the firm, ?

The utility function in (2) can be reduced to more basic elements of the
investment decision, namely, the individual projects. Unfortunately, the liter=-
ature has for the most part - the Baumol and Quandt article and Manne's paper

being exceptions - not drawn together the consumption-alternative approach of

8131,

9See [7], [22] for discussions of this theory of the firm.



neoclassical capital theory and the project approach of more recent capital-
budgeting theory, Hirshleifer, on the one hand never leaves his world of indif-
ference curves and production-possibility loci between consumption alternatives,
The model-builders in capital budgeting, for their part, never forsake their
individual~project formulations. Since we have agsumed that net returns gene-
rated by projects in any period are available for distribution to the firm's owners,
the consumption alternative available in period t is the sum of the projects' net

returns in that period, Hence, we have

n
W= Z 2 ¥, - (3)
i=1

The utility function to be maximized can consequently be written as

) N N
i i

i

The consideration of the objective function under certainty concludes with
an argument that the utility function in (2) is nonlinear in the W . variables, Such
nonlinearity is necessary: (1) to provide for project interactions in the utility
function, (2) to avoid the untenable implication that the marginal rate of substi~
tution between dollars in any two periods is a constant, and (3) to avoid the in-
correct stance that discount rates can be determined ex ante in the presence of
imperfect capital markets.

Returning to decision-making in the risk environment described earlier,
the expected-utility maxim is taken as the fundamental basis for behavior., The

decision-maker pursues that policy which maximizes the expected value of his
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numerical-valued utility function, Using this rule, the objective function in

the capital-budgeting-under-risk problem is
. . '\"”\ S Cn
Maximize E(U) = E U(L 2, ¥y Z a5 Vs eves Z am; Yi) s (5)
i i i

where E is the expectations operator,

The presence of risk imposes further and more specific restrictions,
besides nonlinearity in the Wt's, on the utility function to be used in the objective
function, (5). Proceeding in a quasi~axiomatic fashion, a set of properties is
specified that it is thought such a utility function should possess. The implica-
tions of these properties for the capital-budgeting-under-risk objective function
are then presented, After that a solution procedure for the problem of capital
budgeting under risk can be examined,

First, the marginal utility of each period's consumption income is assumed
to be positive., All first partial derivatives of the utility function must, conse=~
quently, be positive,

Second, the utility function must be bounded. This condition, which is
often overlooked, is required if the expected-utility maxim is to be used. Other~
wise one falls into the trap of a version of the St, Petersburg paradox.

Our third axiom states that the firm's decision~making unit is a risk~

averter, That is, suppose the firm expects (with certainty) the stream of future

10See [19, Chapter 1, Section 3, especially pp. 26-29] for the derivation of
this rule from the Von Neumann~-Morgenstern axioms.

11Fo:t' a description of the St. Petersburg paradox see [12, pp. 19-20], Arrow
[1, p. 26] and Markowitz [14, p. 154] emphasize the need for the boundedness
requirement, first pointed out by Karl Menger,
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internally generated cash throw-~offs Wl’ V‘f'z, cass WT' If management is now
confronted with a vector Z of T risks - one in each period - each with expected
value zero, it will prefer its certain status quo position (Wl, WZ’ ceay WT) to
the fairl2 risky result (V‘J’l, WZ’ cees WT) + (~Zl, 22’ cees ZT). The firm is a
risk-averter since it will prefer its certain status quo to an "actuarially neutral"
gamble, This risk-aversion axiom is equivalent to requiring that the firm's

o 13
utility function in (4) be concave in the sums Z a. ¥is t=1,2, ..., T,

The fourth condition we set for a utility Tfunc:tion for capital budgeting under
risk is that of decreasing risk aversion. K.J, Arrow and L W, Pratt, working
separately, have both discussed the question of decreasing risk aversion with
regard to the decision-maker’s single-period utility function. 14 A decision-
maker is decreasingly risk-averse if and only if the risk premium and the amount
of money he would be willing to pay for insurance against a given absolute dollar
risk decreases as his consumption income increases. The risk premium referred
to is an amount of money such that the decision-maker is indifferent between
subjecting himself to the risk and receiving the expected value of the stochastic
return minus his risk premium, Both Arrow and Pratt have derived neat
conditions under which a single-period utility function shows decreasing risk

aversion. Extending the concept to the multi-period case - as to the utility

1ZA risk is called "fair" or "actuarially neutral" if the expected value of the

change it causes in the decision-maker's position is zero; here, E(Z) = 0.
13
This can be shown by extending Jensen's Inequality to functions of vectors of
variables. See [3, pp. 151-152] for a discussion of Jensen's Inequality in the case
of functions of a single variable.

Y0, nr.
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function in (2) - engenders a number of conceptual and technical difficulties.
Nevertheless, some progress has been made with the problem and the implica-
tions of some of my results on risk aversion over time will be useful shortly.

Perhaps a brief justification of this less familiar fourth axiom is in order.
Why be concerned with decreasing risk aversion? Because 'it seems likely that
many decision-makers would feel they ought to pay less for insurance against
a given risk the greater their as-sets"15 and this is possible only if their utility
functions show decreasing risk‘aversion. Moreover, as Arrow notes, if deci~
sion~-makers' utility functions show increasing risk aversion, risky investment
becomes an inferior good. '"This result is empirically implausible' and 'we
must reject the hypothesis of increasing absolute risk aversion. If, on the other
hand, we assume decreasing absolute risk aversion, then risky investment be-
comes a normal good. 16

The final requirement we will set upon the function U(Wl’ WZ’ ceos WT)
is of a somewhat different nature from the four preceding ones, This last pro-
perty borders on the realm of analytical convenience as opposed to behavior
description or rationality for its justification. Nevertheless, insofar as the
problem would be extremely difficult, if not analytically impossible, to solve
without this restriction, it seems reasonable to believe that actual decision-
makers could not make their decisions within a framework where this property

does not obtain, Perhaps this will be clearer after the restriction has been

Br7, p. 1231,

16[1, p. 26].
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stated. It is that the utility function not impose upon us the task of having to

specify fully the frequency function f(Wl, WZ’ cesy WT) of the random variables

W
W ¢
The problem is that specifying this joint density function involves specify-
., n
ing the JOlI;lt frequency function of the T sums Z ati Yi’ since V/ ¢ = Z/ atti yi by
N j=1 i=1
(3). But Z a yi is an unknown random variable. It is a sum of a subset of
i=1

random variables, the ati's. But the random variables to be included in the sum
are only determined when the unknown v, values are found. The frequency func-
tion required can only be determined simultaneously with the optimal solution.
The optimization process would be, to say the least, extemely difficult if the
full frequency function f(Wl’ WZ’ cees WT) had to be included in the objective
function,

The fifth property stipulated, that of avoiding full specification of
f(Wl’ WZ, cess \/’ETT), is most easily met by restricting consideration to poly-
nomial utility functions. Such functions have an additional desirable prorerty.
They permit formulation of an objective function reducible to individual projects
and moments of the probability distributions of their net returns, This is ad-~
vantageous in terms of our goal of bringing together the approaches of neoclassi-
calcapital theory and capital budgeting., Applying the rule of Occam's Razor, it
is desirable to meet the requirements set on the multi~-period utility function with
the polynomial function of lowest possible degree,

The lowest-order polynomial function which satisfies the conditions set out
above is a cubic defined over a restricted range of consumption incomes, Limit-

ing the values of consumption income considered bounds the function just as, for
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example, one would have to arbitrarily bound a logarithmic utility function from
above to meet our second axiom, The range of consumption-income (or net-
returns) values to which attention is restricted is dictated by the decision-maker's
views as to the range he believes relevant and over which his attitudes are de~
scribed by our axioms, Vhile the first requirement - that of positive marginal
utility - can be met by a linear function, the risk-aversion (concavity) axiom
requires at least a second-degree function, A quadratic utility function is not
appropriate, though, since it fails to satisfy the decreasing risk-aversion re-
quirement, A cubic with suitably restricted parameter signs and values can,
however, meet all the requirements,

The objective function for the capital-budgeting~problem~under~risk thus

takes the following form:

n
MaximizeE(U):v(py+p Yz+p Y3)
Z, 173 TPy Yy iii i
i=1 n (6)
RN
Z Z(q i V5t Y45 9y Y)+Z Z L Ry ¥s ¥j Vier
1__]_3__ i=1j=1k
i4]) idjdkiti

The p, q, and R coefficients are products of the parameters of the utility function
and the moments (about the origin) of the joint distribution of the 2y 's, For ex-

ample, P; Z b My where 'b is the coefficient of V/ in the expanded form of

t=1
the utlhty function in (2) and p. E(a ) As another example,
T
- = e
Z ttt t1 ti,t] Z Z sst s1 si t3+Z/ Z thst Hvi,si,tj where
t=1 s=1t=1 v=lsgs=1t=1

s#t visttd v



“13 -

. . . 3 . . L2
bttt is the coefficient of the Wt term, bsst is the coefficient of the WS Wt term,

. . . _ o . _ 2
and bvst is the coefficient of the V-v A . % , term while Mti,ti,tj = E(ati atj)’

2z
.= Ela | . dp . . . .=Ela .a . a.)
Msi,si,tj (a51 atJ)’ ARE P, siLtj (av1 ®ei atJ)

The expression in (6) may be simplified by combining terms since with

2 3
each Y, variable required to be either zero or one we have =Y, =Y - Using

this fact, (6) may be written as:

n n
Maximize E(U) = ZP v, +L ZQ” v, y Z Z Z/ ijk v, yj Vi
i=1 i=1j=1 i=1j=1k=1
i4] 1-+‘J-r‘k¢1 (7)

where P. =p. + ».. +p...and Q.. = q.. .... Th ing model of capital
17 Py TPy TPy A0 Q1_] qu * qllj € programimng apita
budgeting under risk framed here thus consists of maximizing the objective func-
tion in (7) subject to the T budget constraints and the zero~one restrictions on the

n project variables, That is, it is desired to maximize (7) subject to

Z § t tzljooujT

y. = 0 or 1 i=l,..e5n.

(8)

This is a cubic 0-1 programming problem, with a cubic objective function
and linear constraints. The method proposed for solving this problem is based
upon the partitioning procedure for mixed-variables problems developed by

17
J. F. Benders, In order to simplify the exposition we shall assume that the
Il 1’1 n

third-order interactions incorporated in the Z Z ZJ R x Vi y ¥, can be
i=zlj=1k=1
i4j4+k#i

17
[4]; [2] also contains an excellent exposition of Bender's method.
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neglected. In effect, we posit that the projects are such that Rijk = 0 for all
i#j+k+#1i, and the problem becomes a 0-1 quadratic programming problem.,
Such interactions can be treated in a manner exactly analogous to our treatment
of pairwise interactions in what follows,

The programming problem as given in (7) and (8) must be modified in order
to make it amenable to the use of Benders. In making the appropriate changes,
we not only transform the problem into a completely linear 0-1 programming
problem but we also (and this is where Benders' method comes into the picture)
end with two distinct sets of variables, The members of one set are restricted
to be either 0 or 1 but the elements of the second set can be treated as the ordi-;.'.-
narycontinuous variables one would find in a linear programming problem.

The change in the programming formulation centers on the pairwise inter-
action terms of the form Q'ij A yj. 18 The interaction term Qij affects the value
of the objective function in (7) if and only if both ¥, and Yj are included in the
investment program considered, Define a new variable xij for each ordered i, j
pair, i # j, as follows., The new variable has a value of 1 if and only if both yi
and Yj are each l, As a result, the pairwise interaction portion of the objective

2o on ,
function may be rewritten as Z Z Qij Xij' The value taken on by Xij will equal

i

i4]
that of X0 Both are zero unless both proposal i and proposal j are accepted in
which case Xij = in =1, But, xij and in do not necessarily have the same objec -
tive function coefficient, Whilep . .= . . for all s, t,it is not necessarily
81,t] tjss1

18Rec:all that the third-order interactions Ri'

ik A Yj yk are being ignored,
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true that p__

. .= . . .forany v, s, t, Hence x_.'s objective function
vi,sitj  Tvi,sj,tj Yy Vs 8, ij J

coefficient, Q,., need not equal x..'s, Q...
ij ji ji

Three structural constraints and one non-negativity constraint are needed

to define each Xij variable. For each ordered i, j pair, i # j, we must have
x. <v., x. <y., X, >y, +ty. -1, x. >0, (9)

No integer restriction need be placed on the xij variables since the 0~1 require-
19

ment for each y, neces sitates that each Xij will be either 0 or 1. For example,

if project i is undertaken but j is not, the series of constraints in (9) becomes

ij = J

accepted, we have Xij <1, X*j <1, x

We have, in effect, created n{n - 1) new projects, xij’ alli, j fori#j.

x, .<1, x. < 0, xij z 0, xij z 0 and hence xij = 0, If,on the other hand, both are
i z 1, xij Z 0 which yield Xij =1,

Project ij has an expected-utility return of Qij and involves no cash outlays in
any period. Each such project is analogous to a contingent project, that is, one
whose acceptance depends on the acceptance of one or more other projects. But
the artificial projects represented by the Xij variables differ from the ordinary
contingent projects, While a contingent project may be accepted or rejected if
the project(s) upon which it is contingent is (are) accepted, a project represented
by an xij variable must be accepted if the proposals upon which it depends are

included in the investment program.

If one is willing to impose the requirement that X, ; be an integer (which we do
not want to do), the two constraints Xij < A and xij < yJi can be replaced by the

single constraint (their sum) 2x,, <y, + y.. For an application of this alternative
ij="1 j

approach, developed independently by W.I1. Zangwill, see [23, p. 33].
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The capital-budgeting-under-risk programming model considered here has

now been transformed into the following mixed-variables programming problems

n n n
Maximize E(U) = ZP. v, + > Z Q.. x,.
i’i /4 ij Tij
i=1 i=lj=1
n 14]
Subject tos Z Ctiyi ‘ < Ct t=1, ..., T
i=1 -y. +x,, <0 alli # j
i ij =
~-y.+x.. < 0 alli#j
v (10)
-x.,< 1 11 1 j
yi+yj xiJ= alli#j
y. = 0 orl all i
i
x,. > 0 alli# j
ij =

The y, variables are required to be 0 or 1 while the Xij variables are continuous,
1

It is to the capital-budgeting problem in this form that I have applied
Benders' decomposition. Having indicated which set of variables is restricted
to a subset of the reals (the A variables) and which set is unrestricted aside from
the linear constraints in (10) (the X4 variables), the application of Benders' method
is almost completely straightforward., Hence, rather than present a more
mathematical discussion of how the procedure is carried out, I shall discuss
verbally. the way the algorithm proceeds, The chart that follows should aid in
understanding the decision mechanism.,

We begin by selecting any financially feasible investment program, that is,
we start with any list of proposals meeting all the budget constraints, In this
initial step, the expected utility deriving fivem both the individual project's con-
tributions (the Pi's) as well as from their interactions (the Qij's) is considered,

At the same time, set v, = 1 for all projects in this initial investment program



THE ITERATIVE DECISION PROCEDURE

Pick financially feasible investment progra.m‘g
!

Solve linear program to obtain
set of reevaluation figures, one
for each project

Determine its total expected
utility figure, including both
independent and interdependent
| contributions of projects

.
!
i
)
i
i
i
}
1
1

T

H

Generate first 0-1 constraint (in addition to
budget constraints) in real projects alone on

basis of chosen program

i
)

Solve 0-1 problem in real projects alone <
|

Generate linear program in artificial projects

from solution to 0-1 problem

Solve linear program in artificial projects alone

]
H

Determine total expected utility of candidate

program of projects given by solution to prior A

0-1 problem, taking account of both independent
contributicns and interactions

T
!

Test candidate program of projects for optimality
by comparison of this total expected utility figure
with solution value of 0-1 problem

|
If optimal i If not optimal
. \ ' !
STOP [ Obtain set of reevaluation figures,
e i one for each project

H

Generate new 0=1 constraint: add to constraint set N
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and v, = 0 for all rejected proposals, The program in (10) then becomes a linear
program in the Xij variables, By solving the dual of this linear program, a set
of re~evaluation figures (one for each real project) is derived. These re-evalua-
tion values are used to modify the independent contribution each project makes to
expected utility, Pi' They modify the Pi's by the change in total expected utility
that would take place if the project's status were changed from what it is in the
candidate program.,

Using these modified valuations, a new consiraint involving only real-pro=-
ject variables (in addition to the budget constraints) is derived, It states that the
optimal value of total expected utility can be no greater than the expected utility
of the candidate solution plus an upper bound on the possible change in expected
utility, This possible change refers to the effect on expected utility if projects
are added to or removed from the candidate budget.

At each step after this initial one, a 0-~1 problem involving only the real
projects is first solved. It locates an optimal investment program taking into
account the budget constraints and some information about the effects of project
interactions, This information about inter-relationships is based on the solutions
to the duals of previously generated linear programs in the artificial projects.
Each of these linear programs has been generated in the same way as the initial
one described above. Specifically, the v, variables corresponding to projects
included in the most recently found candidate capital budget are set equal to 1.
All other 1A variables are set equal to zero, Then (10) becomes a linear program
in the xij variables and it is the dual to each such linear program that increases

our knowledge of the effects of inter-relationships.
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This information about the effects of project interactions is embodied in
constraints of the type discussed above, that is, constraints providing upper
bounds on the maximum attainable value of expected utility. V hen the optimal
investment program, taking into account the budget constraints and these con-
straints concerning interactions, is found in the 0-1 problem, a new candidate
capital budget is at hand, Solving the dual to the artificial-projects' linear pro=
gram derived from this candidate generates the relevant interdependence informa-
tion about this allocation and a new set of re-evaluation figure. This information
enables us to decide whether or not this most recently proposed set of projects
is optimal for the entire capital-budgeting problem, If it is, we have solved the
problem, If itis not, a new set of re~evaluation figures is at hand from the
linear program, Using these new figures, a new constraint in real projects is
obtained. It is added to the constraint set of the 0-1 problem and the whole
procedure is repeated again,

A word about the re-evaluation figures is in order. They constitute a
peculiar mixture of optimism and pessimism with regard to the merit of individ-
ual projects, One example of optimism is that except in the case where both
projects are in the candidate capital budget, no project's return is ever debited
for a negative interaction. No blame is ever assessed for harmiful joint accept~
ance, Qij < 0 and/or jS < Oyunless both projects involved are presently accepted
ones, As an example of the pessimistic aspect of the re~evaluation process,
suppose both project i and j are accepted in the candidate capital budget. Assume,
moreover, that their interaction is such as to diminish expected utility, for

example, Qij < 0 and jS < 0, Then each one's return would be debited by the full
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amount Qij + jS of the decrement their interaction causes i expected utility.
This is in accord with marginal analysis for removing one of them would increase
expected utility by - (Qij + jS). But each of the two projects is undervalued in
that each is debited for the full decrement they jointly cause,.

The above are just two examples of the mixture of pessimism and optimism
in individual project re-evaluation., This mixture as it appears in the 0-1 con~
straints generated at each step, leads to an overoptimistic view of the overall
advantage to be gained by altering the candidate budget allocation upon which the
re-evaluation is based,

Nevertheless, the iterative procedure locates the globally optimal budget
allocation. The best capital investment program is found for the firm operating

in the risk environment we have described.
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