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IDENTIFICATION OF NONLINEAR SYSTEMS:
AN ALTERNATIVE TO FISHER

H. H. Kelejian

l. Introduction

In recent years economists have increasingly relied upon nonlineaxr
econometric systems to describe the economy.1 Despite this increased use,
however, theoretical results relating to such systems lag far behind the
corresponding results for linear systems. A notable exception to this
are the theoretical results given by Fisher (1959, 61, 65, 66) concerning
the identification problem in a nonlinear system. Unfortunately, the
material given by Fisher lacks an intuitive appeal, and further, the com-
plexities involved in the theoretical framework essentially restrict
Fisher's results from many economigts. Therefore, the purpose of this
Paper is to rederive some of Fisher's results from an alternative point

of view which, hopefully, is not subject to the same shortcomings.

2. The M.odel2

Consider an M equation econometric system which is linear in the
parameters and which relates M (basic) endogenous and A (basic) pre-
determined variables to each other. Let this system be nonlinear in the
sense that M° > M linearly independent functions of the endogenous
variables explicitly appear as either regressors or dependent variables

in the M equations. These functions, termed endogenous functions,

lSee, for instance, Duesenberry, et al (1965), Evans and Klein (1967),
Holt (1967), and Black and Kelejian (1968).

?Fisher's (1966, pp. 131-3%2) notation is used in order to facilitate
comparisons.




may also involve predetermined variables. Finally, assume that A° > A
linearly independent functions of the predetermined variables appear as
regressors in the system ~ e.g., these are called predetermined functions.

Such a system may be formalized as

(1) Ag = wo,

where A is an M x N° matrix of parameters where N = M+ A° 3
and the rank of A is M : p(A) =M ; u{ isan M x 1 vector of dis-
turbance terms at time +t ; 4 is an N° x 1 vector of observations at
time t on the N° linearly independent endogenous and predetermined
functions appearing in the system.

We assume that the predetermined variables and the disturbance
term have been generated by a process with finite moments and that
E[ut[xél = 0, where xt is the A x 1 vector of observations at time
t on the basic predetermined variables. Because nonlinear equations
generally admit multiple golutions, we make the assumption of a single
generating solutlon. That is, the generating process, implicit in (1),
relating the M endogenous variables to the A predetermined variables
ad the disturbance term is, essentially, single valued.5 Finally, we

assume that the 1\1'o functions of 4 have finite range, are single valued,

and are differentiable with respect to each argument.

5The alternative to this, is to assume further information which would
enable us to identify the generating solution.



3. Identification

The system described in (1) is essentially the theoretical system
described by Fisher (1966, p. 131). We now assume that equation (1) can
be solved for M endogenous functions in terms of the remaining M° - M
endogenous functions, the A° predetermined functions, and the disturbance
vector u, - Usually, these M endogenous functions will correspond to
the variables for which equation (1) was written - i.e., these M variables
will correspond to the normalization rules employed in (1). We now re-
arrange, if necessary, the elements of Q =so that it can be partitioned
as ! o= (y% F% z%) s, Where Ve is the M x 1 vector of endogenous
functions at time t for which equation (1) can be solved; F% is a
(MP -M)x1 vector, at time +t , containing the remaining endogenous
functions; Zy is the 4A° x 1 vector at time 1t of functions of the

elements of x

" alone - the predetermined functions. Using these defini-

tions we write (1) as

(2) Aly, + AF + Az = u ,

1 A2, and A5

defined. For future reference, we define ¥y @as the vector of basic

where A are the corresponding submatrices of A conformably

endogenous functions, and Ft as the vector of additional endogenous

functions.

Let the jth element of Ft be the vector function

Then, the assumptions underlying (1) imply that fjt is a random variable



with finite wean and variance. Thus, because the conditional expectation

a
of one varighle upon[set of others is, in general, a function of the

conditioning variables we have

() E[_fjt l Xl o= hJ<Xt) = h Flyees MO -1,

Jt’

vhere hjt is a function of the elements of x, » From (4) we see that

(5) f.. = h. + 0 =1,ee. 0 - 1

Jt Jt jt’? ’

where ®Jt is a random variable such that E[@dt] 1 = o.

g
Substituting (5) into (2) we have

(6) Al Ve + A2 Ht + A5 2, =V

where Ht is the (Mp - M) x 1 vector whose jth element is hjt P

- . . o _
and v, u - A, % , wvhere ¢, is the (M" - M) x 1 vector whose
jth element is th ; it is clear that E[vt{xt] = 0O . We also note

that the elements of Ht are predetermined functions since they are

functions of the elements of Xy alone. Although these functions will

generally be unknown, they can be approximated in terms of polynomials
estimated via the reduced-form equations in (5).h
The model described in (6) is a linear model relating the elements

of the basic endogenous vector yt to those of the predetermined vectors

%Because of the lack of invariance of the expectations operator with
respect to nonlinear transformations, the functions of H, will not
generally be solutions of equation (1) for the elements of F. in terms

of the elements of x, vhen u =0 - see Kelejian (1968).t




By and 2, . We assume, at first, that the #° - M+ 2° = W° - M

elements of Ht and z_ are linearly independent. A few points are

t
now noted concerning this assumption.

First, the original system (1) or (2) must contain at least one

non-constant predetermined varisble if the elements of Ht and Zt are

i

to be linearly independent. The reason for this is that if Aot 1 is

the only predetermined variable, the conditional expectations in (4) imply
that the elements of Ht are simply the unconditional means of the addi-
tional endogenous functions fjt sy =l Mo - M. Therefore, the
maximum number of linearly independent predetermined variables would be one.
Another point to note is that the NC -~ M elements of H, end z,
are the only predetermined variables that need be considered in relation

to (2). This follows from (6) in that

(7) E[y£lxt3 = L H + Iz,
where I = - AT A ad I o= -aTta
1 1 p o2 8O0, = 1 Sy

Finally, in comparing (2) with (6) we see that if the elements of

Ht and z, are linearly independent, each additional endogenous function

in (2) may be considered, for identification purposes, as just another
linearly independent predetermined variable - e.g., (6) is a linear model
in the parameter matrices Ai, i=1, 2, 3. Therefore, the conditions
necessary for the identification of these parameter matrices are given by
the standard results concerning linear systems - see Christ (1966, pp. 314
- 331) and Goldberger (1964, pp. 306-318). As an example, assuming zero

restrictions, the order condition for the identification of the first




equation is that 72 > 71 - 1 vhere 72 is the number of predetermined
variables and additional endogenous functions excluded from the first
equation, and 71 is the number of basic endogenous functions appearing

in that equation.

We now consider the case in wvhich the elements of Ht and. Zt are

linearly dependent. Clearly the above analysis will not go through since,

for example, the reduced-form parameters in (7), Hi and Hé will not be

identified because the corresponding regressor matrix will be singular.

Assume that the elements of Ht and z satisfy J < M - M

T

linear restrictions, namely

(8) B H{ f ¢ z, = 0

where B and C are constant metrices of orders j x (Mo - M) and
Jx AO s, and the rank (B) = J + Substituting the matrix representation

of (5) into (8) we see that

(9) BF, + Cuz, = ¥,

where Wt = B O and soc B wz lxt = 0O . That is, the j 1linear

+ 2
restrictions in (8) imply J additional "structural” equations for the
elements of Ft » Furthermore, these equations are linearly independent
of the original M structural equations in (2). To see this, note that
in (2) rank @Al) = M . Therefore, pre-multiplication of (2) by a

J XM matrix of rank j will result in a structure which contains the

elements of Y, ; however, these elements do not appear in (9). Fisher
(1966, pp. 134=45) has shown that the implied equations of a nonlinear

model are the results of nonlinear transformations of the original

structural equations.



Consider now the converse of the above. That is, assume the
existence of j linearly independent equations in addition to thosge given
by (2), say

(10) D

where Dl B D2 » and D5 are constant matrices of orders jx M, j x M° - M,
and j x A° , and B W, ]xt = 0O . Then, solving (2) for Y and sub-

stituting into (10) we have

(11) BF, + Cag = ¥,
vhere we have taken B = (D. = D it ) C = (O -D. aAta )

2 i71 "2’ 3 171 730
and. Wt = Wi - Dl Ail u.t « If we now take conditional expectations in

(11) with respect to x, Wwe have (8). 1In brief, we have shown that the

t

elements of Ht and =z are collinear if and only if there exists an

t
implied equation.
We now assume a result given by Fisher (1966, pp. 143-45). 1In

particular, consider the nonstochastic counterpart of (1)

(12) Ag = 0.

Let Qi be the N° x N-1 matrix whose i,J element is the partial
derivative of the ith element of qt with respect to the jth basic
variable (M endogenous + (A -~ 1) predetermined since differentiation
with respect to the constant term is impossible), Let h = (Dl D2 D5) .
Then the rows of h form a basis for the row kernel of Q% if all

values of the basic variables satisfying (12) are considered:

1
(13) hQ, = 0.




Therefore, the implied equations may be obtained in terms of the solutions
of (13).5

Thus, we proceed by assuming knowledge of both (9) and (2). First,
partition ]E‘JC into Flt and FEt vhere Flt is any vector of j
elements of Ft for which equation (9) can be solved, and F2t is the
o - M - J) x 1 vector of remaining elements of F, « Letting

E[F H (see equation 4) we note that the elements of H and

etlxt] T Yot _ ot

z, are linearly independent. We therefore proceed by combining (2) and
(9) into one system of M + j equations in M + j basic endogenous
functions (elements of Yy and Flt) B M - M~ j additional endogenous
functions (elements of th), and A° predetermined variables (elements

of Zt):

o [ G e s () e [
' 2 t

1 1t

where A21 and A22 are the corresponding partitions of A_ in (2), and

2

Bl and B2 are the corresponding partitions of B in (9). From the

discussion prior to equation (8), it is clear that (14) may be regarded,

] 1
for identification purposes, as a linear system in y: = (y£ Flt) since
-FEt may be taken as predetermined. TFor instance, the order condition under

the assumption of zero restrictions, for the first equation of (14) is

and F

t 2t

excluded from that equation, and 74 is the nunmber of elements of yf

73 > 7y - 1 vhere 75 is the number of elements of =z

appearing in the first equation.

5A point to note is that, in general, H =0 1if the elements of q, are
each functions of only one basic variable - see Fisher (1966,pp. 147-48).
In this case there are no implied equations and so the argument prior to
equation (8) still holds. Another case in which there will generally be no
implied equations is the case in which the original disturbance terms in (1)
are assumed to be generated by a particular process - €+.g8., the assumption
of normality. The reason for this is that nonlinmear transforms of, say,
normal variables are not themselves normally distributed.
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