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INFORMATION LOST IN AGGREGATION:

A BAYESIAN APPROACH

H. H, Kelejian

1. Introductionl

In a recent article Chetty (1968) demonstrated that
cross sectional and time series data may be combined via Bayes'
theorem to obtain sharper posterior distributions of the parameters
which are common to both types of regression models, The purpose
of this note is to correct and extend some of Chetty's results
in order to analyze the nature of the information lost in aggrega-
ting cross sectional into time series data. Among other things,
it will be shown that such information is important only in a
small sample framework, For instance, it turns out that if there
are a large number of cross sectional units, and if cross sectional
observations are available for a large number of years, the infor-
mation lost in aggregating cross sectional into time series data
is negligible. Ironically, the information lost in aggregation
will not be negligible if the number of cross-sectional units is
small. Thus, the results presented below refute just such an
assumption implicitly made by Orcutt, Watts and Edwards (1968,
P. 7T77) in their Monte Carlo study of aggregation loss.,

2. Model and Assumptions

We begin by assuming that we have T observations on a
time series regression model. In addition, we assume that obser-
vations on the corresponding cross sectional regression model are
available for T, < T of these time periods. Thus, the full

1The research described in this paper was supported by the
National Science Foundation (GS 18L40).



information posterior distribution of the parameters common to
both types of models would be based on the Tl sets of cross
sectional observations, and the complementary set of T-T1 joint
time series observations.2 The difference between the variance~
covariance matrix of the full information posterior distribution
and that obtained for the corresponding posterior distribution
based only on the T joint time series observations can be taken
as a measure of the information lost in aggregation,

Consider the regression model

(1) Yieg = 2+ xb; 4+ wb, + zitb3 t e 1= 1,000,000

l,..l,T,

where Yig is the value of the dependent variable corresponding

to the ith cross sectional unit at time t ; a is a constants
b, is a Ky X 1 vector of parameters: x, isa 1x K, vector
of observations at time t on 1Y independent variables:5 b2

is a KE X 1 vector of parameters: W, isa 1x K2 vector of

observations on K2 independent variables which are assumed to

vary only with respect to the cross sectional un:i.ts;’llL b5 is a

K5 X 1 vector of parameters: Zie is 1 x K5 vector of observa~
tions on K§ independent variables which relate at time +t +to

. th . . . .
the i cross sectional unit: ¢ is a disturbance term.

it

2Chetty (1968) implicitly assumes that the cross sectional
observations do not correspond to a time period covered by the
time series data. See Chetty (1968, p. 281).

3Examples of variables which may only vary with respect to
time are prices and interest rates.

Examples of such variables are those related to demographic,
occupational, or social class considerations.
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¥ .
We assume that €it
o.2

2
Be,p = o, Eeit = , and Eéitejt
for i+ 3 amd s $ t . Finally, we assume that ¢;, is inde~
pendent of all of the regressors in (1), and the distribution of

the regressors in (1) is independentof a, by, b,, b3 .

is normally distributed with

Ee 0

., € .
it is

3. Aggredation Loss

In this section we first derive the posterior distribution
of b3 which is based only on the T joint time series observations
and then compare its variance-covariance matrix to that of the full
information posterior distribution. We begin by expressing in
matrix formulation the time series counterpart of (1):

(2) Y = XC + Zb5 + €

= HB+ ¢
where Y 1is the T X 1 vector whose tth element is the cross
sectional average of y;, i C' = (A b]) where A = a + Qibg.and

where w 1is the 1 ><K2 vector whose elements are the cross
sectional averages of the elements of w. o3 X is the T X Kl + 1

matrix whose tth row is (1 xt)y 7Z and € are T X K and

3
T X 1 matrices defined comparably to Y . It follows that
H=(X2) and B' = (C! bé) . We note that the elements of ¢
are normally distributed with Ee = 0 and Eee' = N-lczl .

By Bayes' theorem, the posterior distribution of C, b3,

and 9 is

(3) »®(c, bB,G}data) = K p(c, bﬁp) L(c, b, ¢|data)

3

where X is the normalizing constant, p(C, b3’ o) is the
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prior density, and L(C, b, 0ldata) is the likelihood function
corresponding to (2), Henceforth, we eliminate reference to
normalizing constants by using the symbocl c¢  to denote factor of
proportionality.

Following Chetty (1968), Tiao and Zellner (1964B), and
Jeffreys (1961) we assume that we have no prior information and
that the elements of C and b are independent of O , We

3
therefore take as our prior

(%) B(c, by, 7) o= o1,

It is not difficult to show--see Tiao and Zellner (196L4B)~~that
the posterior distribution defined by (2), (3), and (L) 1is

(5) P(c, b3, o] data) cc o=(T+1) exp[-p_2 (vs2 + Q(B, ﬁ, H'H))]
2o
2 -] A ' A F) ) -1
where s~ = v © (Y - HB)'(Y-HB),v = T-1~K1-K3, B = (H'H) H'Y ,

A
and 0O(B, B, H'H) is a quadratic form in B , which is centered
. A A A
at B with matrix H'H: Q = (B~B)'H'H(B-B) .
Integrating out ¢ from (5) we obtain the posterior

distribution of ¢ and b3

-(v+1+K;fK3)

H'H
)] . :

(6) p(c, b,|data) oc [1 + (B, B,
? vs

2

It is clear from (6) that B has a multivariate +t distribution

A
which is centered at B with variance-covariance matrix

sz(;¥§) (H’H)"l ., It follows that the marginal distribution of

oA term corresponding to (;%5 is mistakenly omitted from

Chetty's (1968) analysis. For an excellent discussion of the
properties of the multivariate t as they relate to a multivar-
iate normal compounded with a gamma-2 variable see Raiffa and
Schlaifer (1961, pp. 256-59).
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b3 is also a multivariate t with mean vector given by. the

~

corresponding elements of B, and variance-covariance matrix

2, VvV 1 -1
(7) vo= (35 (8, 2)
where 2 x = Z--»X(X’X)"l X'Z, Finally, before the sample isg

drawn s2 can be considered as a random variable and hence

2
(8) Elv|x,2] = (5 (%) (21 z )7t

X

It is noted that with the exception of the second factor, the

result given in (8) is identical to that which would be obtained
from a classical regression analysis of (2).

We turn to derive the full information posterior distri=-
bution of b3 . Without loss of generality, we assume that the
available Tl sets of cross sectional observations relate to the
first 'I’l time periods. Thus our time series and cross sectional
observations may be expressed in terms of the models

+ €.

(9) Yit lt,

a + xtb1 + wib2 + Zitb5 i=1l,.een; t = 1,...Tl;

(10) Yt A+xtbl+ztb3+€t’ t=Tl+l,c.cT,

where Yer Zpo and €, are the cross sectional averages of

Yig» 2440 @nd €,,, and A has already been defined in (2).
The joint likelihood function of (9) and (10) is
1
o -
(11) L(a, by, b,, b, | data) oc oRT, ¥ T-T, X
ex - = ., =a~x. b, - w.b, - z..b -
PR T2 oy gop Vit tP1 = ViPy - Z3bs)
T
b 3 - A - - 2
2 eom a1 (yp - & X by zth) 1 .

1



Let G = - - - . - .
it (yit a thl wlb2 zlth) and let G, be the
2 2 b3 -
£ it = DG 7 i(Git Gy

Using this, it is clear that the likelihood function in (11) can

cross sectional average of Gi Then % G )2

-

be rewritten as

T

1 n 2
(12) L(a,bl,bg,b3, o|data) @c T expl[- ggetfl(yt-A_thl -ztb5) 1%
T
1 D S S AR SO 2
An-1)T; expl 0o t=l i=1 (¢ = wiby = 25b5)" ]

* * * .
where Yier V5 and Z;p are, respectively, the deviations of

Yig o wi., and Zi e from their cross sectional averages.

The form of equation (12) permits an observation. For
instance, the likelihood function defined by the first two
factors of (12) is jdentical to that defined by the pure time
series model (2). Therefore, the information contained in the
cross sectional observations that is not accounted for by the
time series data (i.e., that information lost in aggregation) is
given by the likelihood function defined by the third and fourth
factors of (12).6 Since this likelihood is least peaked when
§it = 0, éi = 0, and Eit = 0, it follows that the information
lost in aggregation is at a minimum when the cross sectional

variances of the variables involved are zero.

6 _(n-l)T n %
g Z - -
The factor 1 reflects the fact that i=l(yit wib2
)2

zitb3 contains only n-l 1linearly independent terms.



In determining our prior density, we again assume that
we have no prior information and that the elements of a, bl,
ba, and b3 are independent of ¢ , Thus, analygous to (L),
our prior is

(13) P(a: bl’ b2’ b3: 7) a o=l .

Combining (12) and (13) in accordance with Bayes' theorem

and using (5) we obtain the full information posterior distri-
bution

1
(1) pF(a, b, b, b5, ol data) FrTonT, T, X
Tl n
n 2 ay 1 : * *® * 2
expl- =5 (vs% + Q(B,B,H'H) - == Z Z (3.,-w.b,=2.,b. )% ] ,
202 202 t=1 i=1 it "i72 Tit73

¥ #* *
We now express the n 'I‘l observations on vy, z,, , and w,

it’? “it it
in a seqguential fashion, In particular,
* * * * .
let vy, = Y(t-1)n+i’ Zit = Z(t-1)n+i > 2nd let the observations
*
on w, appearing in the double summation in (14k) be numbered

correspondingly. Then, denoting the double summation in (14) by

£ , we have nTl

- 5 * - * - * 2

*

- ¥
Now let the nT; observations on yj,

wy and ﬁj be given by the
. * ¥ ¥ ¥ %
vector and matrices y, w, z. Further, let Hy = (w z),
~ - *
D! = (bé b%), and D = (HiHl) 1 HjY . It is clear, then, that

f can be expressed as

2 ey
(16) t = (vlsl + (D, D, HiHl)



) -], % » * il
where v, = (n-l)'I‘l - K, - K3 , and sl = ¥y (y - HlD)’(y - HlD).

It follows from (15) and (16) that the posterior distribution in

(14) can be rewritten as

. 1
o
(17) PF(a, by, by, b3, | data) cc T T+nT, T, X

Pl e
expl - —lg (nvs® + vlsi + nQ(B,B,H'H) + Q(D,D, H{H,) 1.
20

Because we are interested in the full information posterior
distribution of by , the other parameters appearing in (17),
1 P
practical purposes, the elements of b

namely a, b 03 and O mnust be integrated out. Since, for

3 are the only parameters
common to both B and D , the necessary integrations can be per-
formed using the properties of the multivariate normal. Thus,

integrating (17) first with respect to a , and then with respect

to bl R b2 , and 0O we cbtain

2 ~ ®1 X
(18) PF(baldata) occ [ (nvs™ + Vlsi + Q(bj,b3,z'w z.w)
+ Q(b5,£3, nzt 7z ) 17(T+nTy -Ty =K, =K, -1)/2

-~ ~
where b3 and b3 are’ the K3 X 1 subvectors, respectively, of
A ~ , ¥ % =1 % ¥ ’
D and B which correspond to b3, z w = z - @(%’@ Lz , and
z % has been defined in (7). The final form of the posterior

distribution is obtained by completing the quadratic in (18) 7

TBoth Chetty (1968) and Tiao and Zellner (196L4B) mistakenly
omit a term analygous to A from their results.
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Ft *‘* ' F -
(19) PF(bBldata)@c[1+(b5'b3)r (Z.wz.w+ nz.xz.x)(ba'ba ) ] m

J
(vns2 + v si + A)

1
(T + nTl-Tl-Kl-K2-1)
m = 5 = s
P *, ¥ ' -1 o x ~ ' - .
where b5 = [Z.WZ.W + 0z oz ] [Z:WZ.WbB + nZ.XZ.be ] s
e ~ ~ Fo,E, % F
= t >t t t - ? t
and A b3 Z.wz,bi + anz.xé.xb5 b3 (Z.WZ.W+ nZ.XZ.X)b3 .

It is clear from (19) that the full information posterior

distribution of b5 has a multivariate t distribution with

®=T+(n-l)Tl—Kl-K2-K -1 = v+(n-l)Tl-K degrees of freedom, The

F
3

2

and has variance-covariance

3
distribution is centered at b

matrix

L E s zrz )L

(20) Vp = (n'lsg)(ggg)(n zZ o e

>

2

where 82 = (vns® + vlsi + A) @ . From the sampling theory point

of view bF can be interpreted as a weighted average of the least

squares estimate of b5

b3 » and the least squares estimate of b3

cross sectional data after the mean has been eliminated within

based only on the time series data,

based only on the

each of the Tl cross sections.

In comparing the "time series" posterior distribution
in (6) to the full information posterior distribution in (19)
we note that the former is centered at g while the latter is

3

centered at bF . Before the sample is taken b3, b5, and so b?



can be regarded as random variables., Within this sampling

”~
theory framework it is not difficult to show that Eb3 = Ebg = b5

A

and that the conditional variance~covariance matrix of b

is
p)
92 1 =L Fo.
?y = (n) Z.xz.x) while that of b is
o, 2 -1 % % -1
o, = (=) [2'. 2 +n"" z' z ] . Thus, one would not expect

2 n X WX W W
the means of the posterior distributions in (6) and (19) to be

different; however, if these means are used as point estimates of

A
b3 » bg is to be preferred to b3 since ®1-®2 is positive

semi definite.8

Consider now the variance-covariance matrices in (7) and

(20). Again, before the sample is taken 52

in (20) is a
random variable, and using procedures similar to those used by
Goldberger (196k, p. 166), it is not difficult to show that

ES® = 02 « Thus, the first factor in (7) and (20) have the same
expectation. However, since © = Vv + (n-l)T1 > v, the second
factor in (20) is less than the second factor in (7). Finally,
in light of footnote (8), each diagonal element of the third
factor in (20) is less than or equal to the corresponding element
in the third factor of (7). Therefore, the full information

posterior distribution in {19) is sharper than the "time series"

distribution given in (6),

8This follows from a theorem described in Goldberger ( 196k,
P. 38) which states that if A = B i C where B and C are
positive definite matrices, then B™* - A~ is positive semi
definite.



A final point concerning the asymptotic counterparts of
the variance-covariance matrices in (7) and (20) from the sampling

theory point of view should be noted. 1In particular replacing

2
- o
s in (7) and n 152 in (20) by their expected value (H ) we
see that
2)2 Vv ' -1 -1
(21) v = (D55 (212 )7 = of(am)7]
and
2
& @ -1 %, * -1 -1
(22) Ve = () (533) 21,3y + 27 20 2 17 = o((ar)™)

where, in general, O(nJ) is a term of at most nJ in probability.,

In brief, both Vv and V are of the order (nT)-l. Now note

F
that?
-1%, ® -1 -1
1 -— 1
-1% ¥ , ® % -1
[z n Z.wz.w(z.xz.x + z.wz.w) 1.

It follows from (21) - (23) that

2
(2k) v-vp = 3 [(Z:xz.x)“l [3¥§ - 5%53 *
FERELE D TTRLE ) e v B ek T
= %?[o(T“l) o(T'l) + o(T'l) o(Ty) o((T + nTl)-l) 1.
9

The formula used in deriving (23) is one described in Tiao
and Zellner (1964B) which states that if Q, is an mx n

matrix and Q, is an n X m matrix, then

-l l -l
(I-QlQE) = I + Ql(I - Qte) 92 .
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From (24) we see that if (T/Tl) - o , the difference between

V and Vi is of a lower order in probability than (nT)-ly

thus VF and V converge, asymptotically, regardless of the magni~

tude of n . Indeed, from (2L) we see that even if n, T, and
Ty »= , V and VF still converge to the same matrix. These
results suggest that information lost in aggregating cross sec-
tional into time series data is actually only a small sample

problem,

It is interesting to note that in the unrealistic case

T and Ty = but n remains finite and small, V and Vi do
not converge to the same matrix, This, however, approximates one
of the two cases considered by Orcutt, Watts and Edwards (1968)
in their Monte Carlo study of aggregation loss. In particular,
they considered the cases T = T; = 20, n = 16, and T,
n = 16, As expected from (24), their results show that the

= T = 80,

standard errors of the regression parameter estimates increase,

in both cases, when only the time series data are used. However,
it is also clear from (24) that the relative increase should be
less when T = 80 than when T = 20 . The results given in their
Monte Carlo study confiyxm this expectation - see Orcutt, Watts,

and Edwards (1968, Table 1).
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