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A NOTE ON USING PROFIT FUNCTIONS

TO AGGREGATE PRODUCTION FUNCTIONS

*
Richard R, Cornwall

Several recent articles ([&1, [71, [8]) have followed
Houthakker's procedure [3] for aggregating the production functions
of the firms in an industry to get the production function of the
industry. By production function of an industry, we mean a func~
tion which specifies, for each vector of inputs to the industry,
that output which is gotten when these inputs are allocated to
the firms in the industry so as to maximize the industry’s output.

This note points out that this aggregation can be carried out

by Houthakker [3],

Suppose firm a in industry A (A is a set of indices)
has a production function #£(x;a)., for each n-vector x of
inputs, £(x;a) is the maximum amount of the output commodity
Obtainable by firm = « For any n-~vector P  of input pPrices,

and an output price Py » the profit for firm a is n(po,p,a) =

sup{PQf(xra) -p* x}.l n(e,%:a) is the profit function of firm
x

a . It is convenient to also define the normalized profit function

of firm a .

= e
Some of the ideas in this note came from conversations with
Gregory Chow.

n
P*¥X nmeans Z p.x. .,
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7TN(P?B-) = sup{f(x:a) - p«x} ,
X

Since w(e,*;a) is clearly positively homogeneous of degree one,

N 1
(1) Mpy,pia) = p T (Egp:a) .

From the theory of conjugate functions [6], we know that
. . . ) . n ?
if £( «;a) is an uppersemicontinuous, concave function on IR s
‘ . n
then WN(-;a) is a lowersemicontinuous convex function on MW
and f(x;a) can be calculated from the function WN(-;a) by the
formulas?
P . |
f(xra) = infi7 (psa) + pex} .
p
Suppose there are no external economies or diseconomies
among the firms in industry A ., Then it is plausible (and is
. . . . N
demonstrated in the Appendix) that the maximum profit 7 (p) ob-
tainable by the industry as a whole at input prices p and output
price one is the sum of the profits WN(pya) ever a in A ,

Since it is often analytically convenient to let A be infinite,

°1¢ £(+za) is initially defined only on a subset g of R,
then it can be extended to all of R0 by letting f£(xja) = - @
for x not in g .

5These remarks can be exglained as follows (where to ease notation
we omit the index a): 7 («) is the negative of the concave con-

Jugate of f£(.): WN(p) = sup{ £(x) ~ pex} = -inf{p’x-—f(x)}==~f*(p).
o ® x
But f(x) = f%P(x) ([6], page 308) so
£(x) =inflp+x~£ (p) ) = inf{1(p) +p e x) = - sup{( ~x)+p - ()}
Nt P p
==~ (7")"(~x) ,




we represent this sum as an integral:

m™(p) = IA ™(pra) au(a)

where M 1is a nonnegative measure.h The industry production

function £ is then calculated

£(x) = inf(T(p) + p.+x} .
p

This simple idea is illustrated by considering an n-factor
version of a model originally considered by Houthakker [3]. We
Suppose there is a collection A of firms each of which has a
Leontief-type technology with fixed input~-output coefficients
al,...,an (ai is the quantity of input i needed to produce
one unit of output), There is only one firm with any particular
vector (al,...,an) of input-output.coefficients, so we use the
vectors a = (al,...,an) to label the firms. (Thus A = ]Rﬁ)

Each firm a also has a capacity contraint limiting firm a to

a maximum output of
a i
ola) = & 1M a,
where Ko and . are fixed nonnegative scalars. It will turn

out that this nonnegativity constraint on the parameters o,

serves to keep the industry production function concave,

hThis use of nonnegative measures to "count" economic agents
has been explored by Debreu [1] and Hildenbrand [2].




The function ¢ is called the distribution density function.

An alternative interpretation of ® is that there are o(a) Ffirms
each having input-output coefficients vector a and each having
a capacity of one unit of output. Note that if all the ai are
greater than one, then in this industry the distribution of output
capacity is directly proportional to the input-output coefficients
and thus inversely proportional to "efficiency." If each of the
ai is less than one, output capacity is directly proportional to
efficiency,
In this model, it is clear that firm a has the normalized

profit function

ola) [1-p + a] if 1 >pea

™(pra) = :
o otherwise

From earlier remarks, we conclude that the profit function

corresponding to Ats technology is

1
N 1/p, Pn..]_(l ®n rg
T (p) = [ da [ da _q eoe

o)

Substitutin Y: = p.a i=l,...,n, this becomes
g i s




l-%y.
1 1-y 2 a1
N 1 n nY; %; a
T (p) = ByeD, fodyn fo AYpaqees [ oKy 1;(5;‘) [1-Syldy,
n =Q.
(2). = Kl 1]-{: Pi * Lo

where Kl is the positive, finite constant (i.e. independent of

p) defined by

n
1~ 2%,
1 1-y, 2ni ai~l[ %
K = f dy fdy s fl{ Hy- l_ Y‘] dy .
1 o n 0 n=1 o) 1 i 1“1 1

The industry production function is wholly characterized by
(2). It is a standard result that the production function correg-
ponding to (2) is Cobb-bDouglas. To actually compute this production
function, we use (1) to derive the profit function corresponding

to this normalized profit function:

T(pysP) = p, T ( == p)

where A » We then use Shephard's Lemma [5] to derive

i
!
=MD
Q




the industry supply function Xo(vo,p) and derived demand functions

Xi(po;p) ’ i=l,s..,n:

£(pg,p) = L= (p,p) = LN gy o)
o'\ P P p_ ‘Po? o Fo’s

o o

. (3)

. or %
%, (Posp) == 55= (psp) = 5 (5, p)

-1 1

If we then cleverly choose to evaluate the product

n ai/luh
I [%,(p,,p)] , it turns out that:
i=1
n . ) ai/l-k nooa, ) a./1-n
I [X.(p.,p)] =0 [ == 7(p ,p)]
i=1] 10 i=1 Py o’
_ 1?K[ n 1-n : )
I Ta, 1=x(p,,p
1 1 Pq ©
1
- -l 0% TN
= 1-A [K -g.[ al ] AO(POJP) .

n
= K X
XO I—I b
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Thus the industry has a Cobb-Douglas production function with

returns to scale ~§I « It is easily checked that the usual

A
conditions that the coefficients %g%— be nonnegative and sum
to no more than unity are equivalent to the condition that
@; 20, i=l,...,n .

This derivation of the industry production function differs
from that of Houthakker [3] in that he derived each of the n+l1
equations (3) (for the case n=2) by a separate integration
similar to the integration used above to find the industry profit
function. The conceptual advantage of using profit functions is
that it demonstrates how to carry out this aggregation for less
simple models and thus answers a question raised by Houthakker:
namely, once one has derived the n+l equations (3), how does one
"eliminate" the variables P, and p to find the implicit rela~
tion among Xo,Xl,...Xh ? The answer is to compute the hegative
of the convex conjugate of WN(p) (see footnote 3 above). 1In
the Appendix, we indicate a procedure for making this computation,
for this particular profit function, without the need to guess the
answer in advance as we did above. 1In any case, even if an easily
analysable form cannot be gotten for the convex conjugate of

WN(p) s it is possible to approximate this conjugate by numerical

means.




APPENDIX

We show first that if each firm a in industry A has a
profit function w(g:a) and if there are no external economies
or diseconomies among the firms, then the industry profit function
is 7(qg) = [7(gsa) ar (a) . We shall represent firm a's
technology by a technology set T(a) which is a subset of the
commodity space S (where 8§ is any separable Banach space or

even Polish space). In the case considered in the text where £firm

. . 1+
a has a production function £(+;a) on =" s WwWe have S = R" !
and T(a) = {(xo,-x) e ®ML, X, < £f(x)} . For any price vector

g 1in the dual space S' , the supremum of the profits attainable
by firm a is 7m(g:;a) = sup{qg+z: zeT(a)} .

The assumption that there are no external economies or
diseconomies among the firms means just that the industry's tech-
nology set is the sum of the firm technology setss [ T(a) daw(a) .
1f A 1is finite, we have [ T(a) du(a) = = T(a) . Otherwise, to
represent the industry technology set we migi suppose A supports

a nonnegative "counting" measure ¥ [ 1 ] and [ 2 ]. But then

the industry profit function is

sup{g+z: ze [ T(a) dk(a) )

]

T(q)
= [ m(qg ;a)ar(a)

as was to be shown. The second equality holds whenever [ T(a)di(a)

is not empty and the set {(a,z): z ¢ T(a)} is measureable in



A x 8§ (Theorem C, page 621 in "[2]). 1In particular, it is true
whenever A is finite.

Our second objective in this Appendix is to give an alter-
native calculation of the négative of the convex conjugate of the

n
. . . -, . .
hormalized profit function: WN(p) = Kl iE1 p;t . This function

n

is clearly positively homogeneous of degree A = = I @, « In
1

S.

this case the following Proposition simplifies thing

>

Proposition: If g is a closed convex function positively
homogeneous of degree F and if z* e dg(z) (or,

equivalently, =z € ag*(z*))6 then

a) z ez = B g(z)

b) g¢*(2*) = (p-1) g(z)

c) "L x o dg(tz)

a) o¥(tz*) = gH/#-1 g(z¥) for all t> o .

Note that a) is just an extension of Euler's Theorem to
convex functions; b) is the statement we shall use below in the
calculation of the conjugate of the profit function; d) is close

to the statement that g* is positively homogeneous of degree

E%I . DMore precisely, g* is positively homogeneous of degree

;%I at each point z* in the domain of g* where g¢* is sub-

differentiable, This collection of z''s includes the relative

5For the definitions of these terms and of the subdifferential
0f(x) of a function, see [6].

6 g* is the convex conjugate of g .
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interior of the domain of g¢* ([6], Theorem 23.4, page 217).
In particular, d) implies that the relative interior of the

domain of g is a cone (as is the domain of g),7

PROOF: a) Given z and z  in dg(z) , define a convex

function h of a scalar variable t by h(t) = g(tz . Since

z¥ ¢ d(z), it is easily seen that 2 2 € dh(1) . On the

other hand, for t > 0O " g(z) , so h 1is differentiable

%% (1) = ¥ g(z) . Thus dh(1l) contains just the

» h(t)

i

at t=1 with

number Kg(z) ([6], Theorem 25.1, page 242), Thus 2z +z = Hg(@) .

b) If z e dg(@ , then g*(z*) = z%ez - g(z) ([6],

Theorem 23.5, page 218). IMaking use of part a), this gives b).

c) Since z" e dg(® , then for any other vector x in

S and any positive scalar t ,

o %) 2 glz) + 2%+ (¥ -2) .

But then
M
g(x) = t o(¥)
*
> t" [g(z) + 2" (B - 2)
M-l s

= gltz) + t z¥e (x - tz) .
T : B L. 1 .
Note that if A = BT » then i + X = 1 . Rockafellar has

shown, using gauge functions, that when M is greater than 1
and g is closed proper convex and positively homogeneous of
degree M , then g* is closed, convex proper and positively
homogeneous of degree H/H-l ([6], corollary 15.3.1, page 135).
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Since this is true for all x , Sl dgltz) .

A
a) If z e dg(z) , then by c), tz* e g(t' 1 z)

so that ([6], Theorem 23,5, page 218)
1

L L

g (tz") (t2") « ("t z) - g(e™ 1 2)

it

e

..]_(

-

=t Nz vz - g(z))

_E

tH’"lg*( Z* )

by ([6], Theorem 23.5, page 218) again.

We return now to the computation of the conjugate of WN .8
N no oy *
Letting z =p , g(p) =T (p) = Ky 4Ly By » = 2 = x and

g (z¥) = - f(x),9 the condition z* ¢ 3g(z) becomes (for positive

N o
* oT N .
() x; =~z ==& (p) = Eé ™ (p) i=l,es.,n .

!—I-

Since g 1is closed, convex and positively homogeneous of degree

n
A= Z -0, , part b) of the Proposition asserts (4) implies
1

s

(An-1) WN(p) = g*(z ) = = £(x) so that (L&) gives

This derivation follows the solution given to this problem
in an unpublished paper by Lawrence J. Lau.

9The motivation for these definitions is given in footnote 3
in the text,
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_ b £(x
(5) P, = T S .

b3 £

Finally, the condition z e dg(z) is equivalent to =z e 3g (z%)

which is translated as p; = %ﬁ— (x) , i=l,..e,n , so (5)
i
becomes
0f . X £(x) =1 n
c\)xi - l"}\ Xi ey 008y L]

This set of differential equations clearly has the solution

Hx) - -al/x~l

for some constant K5 - Thus £ 1is a Cobb-Douglas function
with returns to scale "= ,

To evaluate K3 ;s We use again the relation

z*' Z - g*(z*)

il

m(p) = g(z)

(6) £(x) - pex

i

which holds whenever (4) holds. But

pPpe*Xx -Z e« Z

“x g(z) by part a) of the Proposition

- T (p)

(7)

Furthermore,
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%
n Wy St
N =%
£(x) = K g X,
o,
n =
o, -
(8) = K3 If[b_.!—. .”.N(p)] by (&)
i
o, L =N
n n 1N 1-n
= ks Ina ™ 1 00 p® 1 )
1 3
%y
. -3
n 1-n T
1-N N
(8) = KB{]lIai 1 & m(p) .
Substituting (7) and (8) into (6) gives
. =1 . %
T(p) = nw(p) + kg PN [ Ta Iy Ny
1

Since this is true for all positive p and WN(p) is positive
when p is positive, then we can divide this equation by WN(p)

to give:
i
n —ai 1~A
Ky = (1-n) EKl g o, ]

so that Kz equals the constant K, found in the text. This

completes this alternative derivation of the production function

£.
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