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1. Introduction

In a recent article in this journal Goldfeld and Quandt (k)
suggested a maximum likelihood approach to the estimation of a Cobb-
Douglas type model when the model includes both multiplicative and
additive disturbance terms. As expected, an analytical expression
for the solution to the maximization problem did not exist. Indeed,
because of the complexity of the likelihood function, their maximization
algorithm had to be used in conjunction with a numerical integration
technigue.

The purpose of this paper is to generalize and simplify the work
by Goldfeld and Quandt. Specifically, an estimation technique is
suggested which does not require the specification of the disturbance
terms beyond their means and variances, which does not require the
compounding of a maximization algorithm with a numerical integral
technique, but yet leads to asymptotically efficient estimates of the
parameters of the regression function. In addition, the procedure
readily lends itself to interpretation. TFor instance, it will become

evident that if the distribution of the multiplicative disturbance term

is not knownh, the gcale parameter of the model (unlike the other

parameters) will not be identified.
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2. Model Specification and Estimation

Consider the model suggested by Goldfeld and Quandt,
o o

- E_t -
(1) Ve = %%y ¢ ¢ Byt © +v ,t =1, .. .10,
where Xqg = - Xyt are the tth observations on the k independent
variables,l and u and vy are the tth values of the disturbance

terms. We assume that u, and v, are independent of each other, are

: = v = 2 _ 42

independent of Xyg o+ v - Xp o and Eut = Bv, = 0, and Eut = cu , and
2 2

Evt =0, - We also assume that u, and vy are independent of u

and vS for all s #t . We do not, however, assume normality on any

other particular distribution.
u u

Iet A be. the mean of e t . Then e t may be expressed as

u
(2) e v A+ ¢t .

where E¢, = 0 . Substituting (2) into (1) we obtain

% "
(3) Vi = Bxlt coe e Xy + Vi o
% %
where B = uOA, and w, = aoxlt e xkt¢t + vy o Since ¢t and Ve
are independent of x, = (Xlt ... xkt)’ it follows that E[thxt] =0 .
Therefore if we ignore the heteroscedasticity of w and apply nonlinear

t

least squares to (3), the resulting estimates of B and oq, . . . Op »
although not efficient, will be consistent.2 The remainder of the
procedure may now be evident. These estimates will be used to obtain

a consistent estimate of the variance of w,, then (3) will be transformed

to rid L of its heteroscedasticity, and finally, nonlinear least

1Goldfeld and Quandt assume that the independent variables are

nonstochastic. This assumption, however, is unnecessary for the results
of this paper.

2The proof of this would be almost identical to the one described
in Aigner and Goldberger (1, p. T15). Actually, in a different context,
such a proof is ocutlined below.



squares will be applied to the transformed model.

The conditional variance of wt is easily shown to be
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where o¢ is the wvariance of ¢t , C = a00¢ , and Zt = Xlt . .o th
Now, the consistent estimates of B and Gps o o v O described

above enable us to obtain a congistent estimate of vy from (3), namely
- ! %
(5) Ve =¥y - BXp . oo Xy

The consistency of ﬁ£ implies that

~2 2
(6) Wy =W+ At

where the probability limit of A, with respect.to n 1is zero. Given

t

(6) and (k) it is clear that a consistent estimate of the conditional

variance of W, can be easily obtained by ordinary least squares via

the linear regression3

~2 2 ~
(1) W = O *czg + e

. 2&1 2a,
where z, = xlt Coe s K and Et is a disturbance term. Specifically,

~

if the estimates of 03 and c¢ are 03 and ¢ , then our consistent

estimate of the conditional variance of W£ is

(8) oo, =62 + ez

Finally, nonlinear least squares can now be applied to our basic

model (3) after it has been transformed by dividing it though by Swi .

The resulting estimates of B and a o are obviously consistent,

1> " Tk

and, since oWy is a consistent estimate of owt, these estimates should

370 see this note that (k) implies that wi =cz, + 03 + 1, , vhere
~2 2 . ~
- = + N
E[rtlxt] 0. Thus w_ = cz, + o + (rt At) Since z, converges

to z, the results from (7) follow. The reader should note that limits

of expectations are not being taken. That convergence in probability
need not imply convergence in moments is nicely demonstrated in
Dhrymes (2, pp. 88-89).



also be asymptotically efficient.u

' t
To see this let” y, f, and w be the n x 1 vectors whose t b

% O

elements are Vi Bxlt .« . . xkt , and Wt . Then the proposed estimates

can be obtained by minimizing S where

(9) S=(y -1) £y - ©)

where Z—l is the n x n diagonal matrix whose tth diagonal element is
Sst . Let P denote the (k+l) x 1 vector of parameters: P' = (B al...ak)-
Then minimizing S with respect to P yields

=1

(10) %Igz: (f-y)=o0

~
~

where fp is the n x k¥ + 1 matrix %%—evaluated at our estimate P ,

and f is the n x 1 vector, £, evaluated at P. Linearizing (10) about the
true parameters we have
(11) 1t (f+ 2 (P-P)-y)=0
1Y iY
or

(12) P-P= (£ st )y ler 17y |
D p p

where I 1is the n x n diagonal matrix whose tth diagonal element

2

is o, - It follows from (12) that P is consistent. Further, under

general conditions, it can be shown5 that VT (P - P) convergences

in distribution to a multivariste normal with mean vector zero and

The estimate of the scale parameter a, can be obtained from the
final estimate of B = aOA, and our estimate of ¢ = ag i . It is

interesting to note that to do this (solve for ao) the density of u

g

t
must be such that ci and A depend upon a single common parameter.

Furthermore, to know how 02 and A relate to each other in terms of that

¢

parameter the density of u, must be specified.

t
5See Dhrymes (2, p. 108). For a concise discussion of some of
the problems involved in discussing sequences of random variables see
Chapter 3 of Dhrymes (2).



conditional covariance matrix
-1 -1

13) V~=T(f' & "f )
(13) P ( jY P

A consistent estimate of V; is obviously

° S wmla -1
(14) Vo=q(fr 27F )77 .
P D D
Since V§ is the asymptotic covariance matrix of the Aitken estimator, it

follows that P is asymptotically efficient.6

~

One could, of course, iterate on this technigque. That is, P
could be used to obtain another estimate of I which would lead to
another estimate of P , etc. The asymptotic properties, however, of
the resulting estimate of P would not be different from those of P
described above.
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