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AN IDENTITY CONCERNING THE RELATION BETWEEN THE
PAASCHE AND LASPEYRE INDICES

S. N. Afriat

Consider two occasions in which the prices and compositions of

geods, n in number, are given by the pairs of vectors (po, xo), (pl, Xl) 5

of ocrder n . The expenditures are
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With O and 1 as base and object occasions, the Laspeyre and

Paasche indices are
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The method of limitsl in index-number theory relies on the rela-

P<L,
" which is equivalent to

= - 1 1
A =1 (uO xl)(ul xo) <0

An equivalent algebraical expression for A will be found which provides g
geometrical interpretation for this condition. It appears that, though the
relation P <L follows, trivially, from the condition uo'xl >1,

ul'xo > 1, when the condition does not held, the relation has no general

necessity. This is contrary to the widely established doctrine that the

Paasche index is less than the Laspeyre index.
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Any points u, x in the positive orthants B, C of real
Euclidean spaces of dimension n define a balance and a composition. They
have scalar product u'x ; and the composition x is said to be within, on,

or over the balance u according as u'x <, =, or >1. Now, with u ¢ B P
0, = (x| ux=1,xc¢ecC}

denotes the set of compositions on a balance u . Then the given balances

Uys Uy € B and compositions Xy Xq € C are such that X, € Ouo 5 Xq € Oul .

Assume X + X, 5 and Tet

= v - = ! - °
Po1 = U'* =1, Dy =uy'x -1

Then Samuelson's Weak Axiom of Revealed Preference excludes the possibility

Doy S0, D _<O.

Hence either

>
(1) D, >0, D, >0,

in which case DolDlo >0 , or one or the other of two further possibilities
holds, such as

(IT) Dyy >0, D, <0,

in which case D _D <0 .
ol lo —

If (I) holds, that is,

uo'x >1, u

1 'Xo =L

1
then, by multiplication,

1 1 >
(uo xl)(ul x ) >1,
so that A <O . So it remains to consider a case such as (II), in which

DolDlo-S O -

Now, in the Euclidean spaces, without restriction to the positive

orthants, let U, X denote the spaces spanned by U,s Uy and Xos Xq -

Their points are of the form



u=uQ U, Q =X + X
00 + 1% 0 X% oBo lBl

where the Q's and B's are any.scalars, and they do not necessarily belong
to B, C . Given any vector u ,‘Without restriction to the positive orthant

B , by the hyperplane u will be meant the locus u'z = 1l , without restric-

tion of z +o the positive orthant C . Thus, in the case u € B , the set
Ou s Oof compositions on the balance u » 1s the intersection of the hyperplane
u with the positive orthant C

Let it now be asked of the hyperplane u that it pass through
X.» %5 that is,
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that is,
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Hence, there is the unique determination

o =A 1-a °

Similarly, if it is asked of =x +that it be on the hyperplanes uo, ul ; that is

then, uniquely,
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Fig. 1
It now appears that
A?u'x = (uD. +uD )(xD . +xD )
o lo 1 ol o ol 1 1o
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= v ) 1
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so that |
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Therefore,
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and accordingly,
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1= (u 'x )(u,'x ) = (uo 1 )(ul * )
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Hence, with
D=ux-1,
it has been established that
A = DolDlo
=— .

It follows that, if it

is given that DO

lDlo

<0, then D 40
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and

A<LQO <> D>0
While an interpretation of the condition A <O 1is not immediately obvious,
the condition D > 0 has a direct geometrical interpretation, as follows:

The linear space X spanned by X5 X cuts the intersection of the hyper-

1
planes uo, ul in a unique point x . The linear space U spanned by

'uo, ul contains a unique point u such that the hyperplane u passes through
X xi . In two dimenéions u 1is simply the join of Xo’ Xy and x is
simply the intersection of Uy, ug - The‘interbretation of the condition

A <O 1is that the origin O and the point x lie on opposite sides of the
hyperplane u .

Now furthef observationé can be made, as follows. The point
D D

ol lo
X* = x + X
o] DOl + Dlo 1 Dol + Dlo
lies on the line joining Xo X - Hence also it lies on the hyperplane u ,

since this passes through Xo’ Xy that is, u's* =1 . PFurther
Dol + Dlo

X = x¥ A

x*(u'x) ,
from which directly it appears again thet u'x*¥ =1 ; and also that x* lies
on the join of 0, x . Similarly, there is a dual system of relations in
respect to an hyperplane u¥* . Finally, since

u=u(u'x) ,
it appears that
)2

u'x = uktx¥(u'x)”

so that

(u'x)(y¥tx*) = 1 .,
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Hence, if
D*r‘= ukrx* - 1,
then

D¥ <0 <> D>0.
Now D* <0 , which means that the origih- O and the point x* 1lie on the

same side of the hyperplane u¥* ,Iand provides another geometrical interpreta-

tion of the condition A <O, in the case Dol'Dlo <0 .




