
INFERENCE FOR GAMES WITH MANY PLAYERS

KONRAD MENZEL†

Abstract. We develop an asymptotic theory for static discrete games (“markets”) with

a large number of players, and propose a novel approach to inference based on stochastic

expansions around a “competitive” limit of the finite-player game. We show that in the

limit, players’ equilibrium actions in a given market can be represented as a mixture of i.i.d.

random variables, where for common specifications identification of structural parameters

from the limiting distribution is analogous to static panel models of discrete choice. Our

analysis focuses on aggregate games in which payoffs depend on other players’ choices only

through a finite-dimensional aggregate state at the market level. We establish conditional

laws of large numbers and central limit theorems which can be used to establish consistency

of point or set estimators and asymptotic validity for inference on structural parameters

as the number of players increases. Our results cover games with complete information or

private types, as well as intermediate cases, and allow for arbitrary mechanisms for selecting

among multiple equilibria.
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We consider the problem of estimating, or testing a hypothesis about a parameter that

characterizes some aspect of a discrete game. This includes inference regarding structural

parameters governing the distribution of payoffs in a population of players, or a descriptive

parameter for the reduced form for outcomes of the game. It is generally understood that

empirical problems of this type face significant conceptual and technical challenges: for

one, strategic interdependence typically makes exact distributions of equilibrium actions

difficult to compute and also induces statistical dependence among different agents’ choices.

Furthermore, economic theory generally does not make unique predictions on players’ choices

but may admit multiple equilibria. Most existing methods for estimation and inference for

game-theoretical models rely on the availability of data for a large number of independent

realizations of a game with a given number of players.
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In contrast, this paper develops an asymptotic theory for settings in which the number

of observed games (“markets”) may be finite or infinite, but the number of players in each

game grows large, and is not necessarily the same across markets. We show that under the

proposed asymptotic sequence, the limiting distribution of players’ choices and characteris-

tics is equivalent to a single-agent discrete choice problem that is augmented by an aggregate

equilibrium condition which may still allow for multiple solutions. In analogy to the Cournot

oligopoly model with many competing firms, we refer to that asymptotic model as the “com-

petitive limit” of the game. The previous literature considers either the case in which the

economy is “in” the limit, or develops econometric techniques based on an exact solution of

the finite-player game. In contrast, this paper explicitly derives the first-order approximation

error for estimation based on the “competitive” model when the economy is in fact finite and

strategic considerations do matter. We also describe a bootstrap bias correction procedure

for dealing with the second-order approximation error for games of strategic complements.

We propose inference based on stochastic expansions around the competitive limit that

approximate the relevant features of the exact distributions of types and actions for the

finite game that is observed in the data. Since that limiting model has a much simpler

structure and does not suffer from many of the complications of the finite-player case, we

can apply known results to obtain point identification results and derive estimators for

the limiting game, and subsequently evaluate the performance of estimators or inference

procedures in the finite-player game relative to that limit. Specifically, our results include

conditional laws of large numbers (LLN) and a central limit theorem (CLT) with mixing for

statistics and estimators that depend on players’ (equilibrium) actions. We also illustrate

the potential of higher-order bias corrections for estimators to improve their performance in

games of moderate size, which can be derived based on the sampling theory we develop in

this paper. A simulation study shows that (second-order) bias-corrected point estimators

for payoff parameters can perform reasonably well for games with as few as 10 to 15 players.

Our results cover games of complete information or private types, as well as intermediate

cases. We do not impose any assumptions regarding selection among multiple equilibria in

the finite-player economy.

Our analysis focuses on settings in which players’ types and actions in the finite game are

exchangeable. Formally, a sequence of random variables is exchangeable if its joint distribu-

tion is invariant to permutations of the ordering of its individual elements. Applied to the

context of games, the assumption of exchangeability of players means that at a fundamental

level model predictions depend on players’ attributes, but not their identities. We will argue

that exchangeability of a certain form is a feature of almost any commonly used empirical

specification for game-theoretic models with more than two players. In particular, our argu-

ment treats only the joint distribution of player types and actions as exchangeable, whereas
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the resulting conditional distribution of actions given realized types is typically asymmetric.

In other words, we only require that players’ observed and unobserved characteristics are

exchangeable random variables ex ante, but we then allow any aspect of the game - including

payoffs, strategies, information structure, and equilibrium selection - to depend on a given

realization of players’ types in a completely unrestricted manner. Our framework also allows

us to treat player-specific parameters as part of a player’s type as long as the corresponding

parameter space is invariant with respect to permutations of player identities.

The main class of applications analyzed in this paper are aggregate discrete games, in which

agents’ payoffs depend on the empirical distribution of ( or other statistic aggregating) the

actions chosen by other players in the market. Models of anonymous strategic interactions

of this type are prominent in the empirical and econometric literature on games, including

static models of firm entry,1 models of social interactions and peer effects,2, or public good

provision.3 We show that we can find an approximate representation of the (complete set

of) Bayes Nash equilibria as solutions of a fixed point problem, where both the mapping and

the fixed points converge to deterministic limits. A theoretical by-product of our analysis of

aggregate discrete games is that, broadly speaking, what information is private or common

knowledge among players does not matter for large games to first order. However, we do

show that it does affect the asymptotic variance of statistics that depend on players’ actions

in a market. In that sense information structure affects asymptotic terms up to the order

n−1/2. Our asymptotic results in section 5 exploit this representation of aggregate games

in terms of equilibrium conditions on an aggregate state, an idea which can be applied to

other types of games - e.g. Menzel (2013) derives an fixed-point representation of two-sided

matching markets with many agents.

Our results cover games of complete information or private types, as well as intermediate

cases. We argue that especially when static Bayes Nash equilibrium is used as an empirical

model of convenience to characterize agents’ choices, but there is some ambiguity regarding

the timing of individuals’ choices in the true data generating process, a complete informa-

tion static model may give a more accurate characterization of equilibrium outcomes than

assuming private types or any other specific information structure.

Our results are complementary to existing approaches to estimation of games: for one, we

find that for the competitive limit structural parameters are typically either point-identified

or completely unidentified, whereas for finite games structural parameters are often only

1as in Bresnahan and Reiss (1990), Bresnahan and Reiss (1991), Berry (1992), and Ciliberto and Tamer
(2009). In Bajari, Hong, and Ryan (2010)’s model for participation in a procurement auction, the strategic
aggregate determining expected payoffs in the second-stage auction game is the sum of log c.d.f.s of valuation
distributions among the entrants. This aggregate cannot be reduced to a finite-dimensional parameter unless
bidder types are discrete and therefore our results do not apply directly in the general case of their model.
2see Manski (1993) and Brock and Durlauf (2001)
3Todd and Wolpin (2012)
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set-identified, where the identified set can be characterized by inequality restrictions on

payoffs or choice probabilities.4 The asymptotic expansions in this paper imply that the

diameter of the sharp identification region for the n-player game is typically of the order

of n−1 or smaller for components that are point-identified in the limit.5 On the other hand

the finite-sample bounds should be expected to become uninformative for larger games for

components that are not identified in the limiting game. Hence, our limiting results help

understand the identifying power of restrictions for finite games, and assess the width of

bounds for structural parameters.

Furthermore, the sampling theory developed in this paper, including a conditional LLN

and CLT with mixing, treats players rather than markets as the basic unit of observation.

We find that for large games, only information at the level of the individual player (rather

than cross-player restrictions) has identifying power regarding structural parameters, so that

we can form equality or inequality restrictions that pool player-specific information across

different games. Our asymptotic results can then be used to establish asymptotic properties

for set estimation or inference based on moment inequalities or equalities for data from a

small number of markets, or samples of markets that are heterogeneous in size, assuming

that only the number of players in any given market is large.

Related Literature. Our theoretical results apply to games with an intermediate to large

number of players, which could be as low as 15 players, depending on the order of approxi-

mation. Discrete games of a size at or above that number are a common in empirical studies

across several fields. For example, Todd and Wolpin (2012) estimate a model of high school

students’ and teachers’ decisions to exert effort in a classroom of 20 students or more, where

students’ effort levels are strategic complements in incentivizing teacher effort. While stu-

dents can choose effort levels on a continuum, there may be multiple equilibria in students’

discrete decision whether to provide nonzero effort. In industrial organization, Bajari, Hong,

and Ryan (2010) estimate a model of firms’ decision whether to participate in a highway

procurement auction. The data set used in their analysis records 271 potential entrants that

participate in at least one auction.

Large discrete games are also prominent in the literature on social interactions - Soetevent

and Kooreman (2007) estimate an interaction model for truancy, smoking, and cell phone

use with interaction at the classroom level. Nakajima (2007) considers a model for youth

smoking where the reference group consists of other students at the same school. Other

4see e.g. Ciliberto and Tamer (2009), Pakes, Porter, Ho, and Ishii (2006), Beresteanu, Molchanov, and
Molinari (2011), and Galichon and Henry (2011)
5In fact this is a common feature for panel discrete choice models with fixed effects where payoff parameters
are known not to be point-identified for a panel of finite length (see Chamberlain (2010)), but consistent
estimation is possible as the length of the panel increases and bias correction methods are available for panels
of intermediate length, see e.g. Hahn and Newey (2004).



GAMES WITH MANY PLAYERS 5

applications of discrete choice models with social interactions in large populations include

crime rates where positive interaction effects may arise at the level of a city or neighborhood

due to social norms or limited local resources for law enforcement (Glaeser, Sacerdote, and

Scheinkman (1996) and Lazzati (2012)), social norms regarding the use of contraceptives in

rural communities in a developing country (Munshi and Myaux (2006)), and spillover effects

for job search information among unemployed workers (Topa (2001)).

An important aspect of our results concerns the treatment of multiple equilibria. A com-

mon approach to estimation of static games of complete information has been either to

assume or estimate an equilibrium selection rule,6 or to construct bounds over the family of

all possible mixing distributions.7 In contrast, for the class of models considered in this paper

there is an aggregate state variable for the market that can serve as a finite-dimensional suf-

ficient parameter for equilibrium selection. That market-specific parameter (“fixed effect”)

can be estimated consistently as n increases, which allows for conditional inference given the

selected equilibrium and therefore does not require any assumptions or knowledge regarding

the equilibrium selection mechanism. In contrast, unconditional (“random effects”) infer-

ence would have to account for the equilibrium selection mechanism as a nuisance parameter

which in practice requires smoothness or other assumptions on the form of the resulting

mixing distribution. Such an approach becomes impractical in large games because both the

number of equilibria and the number of covariates potentially affecting equilibrium selection

typically increases very fast in the number of players. Furthermore, a nonparametric treat-

ment of the mixing distribution typically requires a large number of observations for each

size of the game. Bajari, Hahn, Hong, and Ridder (2011) show that a mixture model of this

type can only have a nonzero information bound if the number of possible outcomes of the

game is greater than the number of equilibria.

Previous work in the theoretical literature on large games has focussed on purification

and approximation properties of distributional games. Kalai (2004) shows that in large

populations where types are private information, Bayes perfect Nash equilibrium is ex-post

Nash in ε-best responses. For dynamic games, Weintraub, Benkard, and van Roy (2008)

show that oblivious equilibrium approximates a Markov-perfect dynamic equilibrium as the

number of players grows large. Their work aims at exploiting the computational advantages

of working with the large-player limit rather than the finite-player version of the game. In

contrast, our focus is on robustness with respect to equilibrium selection, which requires

that any finite-player equilibrium can be approximated by an appropriately chosen set of

equilibria in the limiting game. In this sense, our analysis complements existing theoretical

6See e.g. Soetevent and Kooreman (2007), Bajari, Hong, and Ryan (2010), Chen, Tamer, and Torgovitsky
(2011), or Todd and Wolpin (2012)
7This includes Tamer (2003), Ciliberto and Tamer (2009), Beresteanu, Molchanov, and Molinari (2011), and
Galichon and Henry (2011)
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results on convergence of finite economies to continuous limiting games. However, it is

important to point out that the “competitive limit” for the game typically remains easier to

solve, so that our approach is also in part motivated by computational considerations.

Asymptotic approximations (including laws of large numbers and CLTs) that rely on

exchangeability rather than the stronger requirement of i.i.d. random variables generally

hold only conditional on some appropriately chosen tail sigma-field. Conditional convergence

results for infinitely exchangeable arrays - e.g. Blum, Chernoff, Rosenblatt, and Teicher

(1958), or Andrews (2005) in econometrics - rely directly on de Finetti’s theorem or related

ideas. For the results in this paper, we have to construct a coupling for a triangular array

of sequences that are only finitely exchangeable. Furthermore, we show that for game-

theoretic models, the conditioning sigma-field has a structural interpretation in terms of the

equilibria of a limiting game, so that uncertainty over a common aggregate state does not

preclude valid and robust inference on structural parameters. Our results on aggregative

games show some parallels with Shang and Lee (2011)’s conditional analysis of the private

information game with many players, and our analysis shows how to adapt their results to the

complete information case which does not assume that players actions are i.i.d. conditional

on observables.

In the following, we are going to describe the framework we use to model social interactions,

and section 3 shows how to establish the conditions for convergence from economic primitives

for aggregate games. We then illustrate how to derive moment conditions for estimation and

inference from the limiting model in section 4, and section 5 gives generic asymptotic results

for sample moments of that type. Section 6 illustrates our main results in a simulation

study. Appendix A derives a higher-order bias correction for estimators under many-player

asymptotics, and in appendix B we give some further extensions of the baseline specification

of our model, allowing for strategic interaction effects that depend on player characteristics

in a more general fashion.

Notation: This paper uses standard notation for operations on sets and correspondences.

Specifically, we denote the image of a set ARk under a mapping h : Rk → Rl with g(A) :=

{y ∈ Rl : g(a) = y for some a ∈ A}. The Minkowski sum of two sets A,B ⊂ Rk is defined

as A ⊕ B := {a + b : a ∈ A and b ∈ B}, and for a vector x ∈ Rk, we the sum A + x is

understood to be the Minkowski sum A ⊕ {x}. Note that if all summands are singletons,

Minkowski addition reduces to the standard notion of addition. In order to minimize the

notational burden, we adopt the convention from Molchanov (2005) p.195 to use the same

standard symbols for addition of sets or (singleton) vectors, where we write A+B for A⊕B,

A− B for A⊕ (−B), and
∑n

i=1Ai for the sum A1 ⊕ A2 · · · ⊕An.

A correspondence from X to Y , denoted by Φ : X ⇒ Y , is a mapping from elements x ∈ X
to subsets of Y . We also define the sum of two correspondences Φ1 : X ⇒ Y and Φ2 : X ⇒ Y
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as the Minkowski sum of their images, Φ1(x)⊕Φ2(x). The Hausdorff (set) distance between

two sets A,B ∈ Rk is defined as dH(A,B) := max{infa∈A d(a, B), infb∈B d(b, A)} where

d(a, B) := supb∈B d(a, b) and d(a, b) denotes the Euclidean distance between two vectors

a, b ∈ Rk.

Our notation also distinguishes between vectors (ai)i≤n := (a1, . . . , an)
′ or sequences

(ai)i≥1 := a1, a2, . . . in which elements are ordered, and sets {ai}i≤n := {a1, . . . , an} for

which indices do not imply a specific ordering of the elements.

2. Setup

We consider samples that are obtained from M instances of a static game (”market”),

where nm denotes the number of agents in the mth game. Our asymptotic results below

require that nm grows at the same rate across markets, but the number of players may be

different across markets at any point in the asymptotic sequence. In order to keep notation

simple, we let nm = n for all markets in the remainder of the paper. Each player i chooses

an action smi ∈ S from a set of pure actions S that is the same for all players and known to

the researcher. For the purposes of this paper, we restrict our attention to the case in which

agents choose among finitely many discrete actions.

Types and Information: Players’ types tmi = (x′mi, ε
′
mi)

′ consist of characteristics xmi ∈ X
that are observed by the econometrician, and unobserved payoff shocks εmi. We do not

restrict the dimension of the random vector εmi, so that our setup allows for most commonly

used finite-dimensional random coefficient models, including alternative-specific taste shifters

and heterogeneity in other preference parameters.8 Each player i observes her own type tmi,

and a public signal wm ∈ Wm which is assumed to be common knowledge. We assume that

the joint distribution of player-specific information contained in wm and types tm1, tm2, . . .

is infinitely exchangeable, i.e. the conditional distribution of types given the signal satisfies

Hm(tm1, . . . , tmn|wm) = Hm(tπ(1), . . . , tπ(n)|wm,π) for any n and permutation π of the set of

players {1, . . . , n}, where we use wm,π to denote the transformation of the signal resulting

from applying the permutation π to any player-specific information in wm.

This formulation includes the two polar cases in which wm is independent of player types

(private types), or at the other extreme the case for which (tmi)i≥1 is measurable with

respect to the sigma field generate by wm (complete information). Our setup also permits

intermediate cases regarding information structure, for example the signal wm may contain

player specific information about a subvector of tmi. For example the model in Grieco (2012)

8Naturally, different identification results will require additional assumptions on the distribution of εmi - e.g.
independence or a parametric model - but the convergence results in this section do not depend on which
components of tmi are observed by the researcher.
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assumes unobservable taste shifters of the form ξmi + εmi, where εmi is a private signal, and

observables xmi and unobserved shocks ξmi are common knowledge.

For empirical applications, it is important to distinguish between the appropriate infor-

mational assumptions for solving the game-theoretic model used for estimation, and what

information about types the players are assumed to observe at the outset of the game ob-

served in the data. For example, a simultaneous-move game may be used as a tractable

empirical model for a strategic setting in which players may in fact move sequentially or re-

vise previous decisions. In that event, past moves reveal information about players’ types, so

that any informational assumptions other than complete information may be very sensitive

to the exact timing of actions.

For example, complete information static Nash equilibrium can arise from adaptive dy-

namics in games with strategic complements (Milgrom and Roberts (1990)), or as limit points

from strategy revision processes (Blume (1993)) even if players only observe other individu-

als’ past actions, but not their payoffs. On the other hand, giving players the possibility to

revise their behavior after learning each others’ actions would typically result in movements

away from a given realization of a private information static game. Perfect observability of

outcomes rather than types is a reasonable assumption in many real-world settings which

may exhibit strategic complementarities, e.g. individuals considering whether or not to com-

mit a crime will base their decision on realized crime rates in their community, or school

children know how many of their classmates are smokers at a given point in time. Hence if

we regard a static game-theoretic model only as an approximation to a stationary point for

a process of this kind, Nash equilibria in the complete-information static game would give

a more accurate representation of the strategic outcomes than Bayes Nash equilibria for its

incomplete-information version.

Actions and Strategies: Each player selects an action from a finite set S = (s(1), . . . , s(p)), and

we let ∆S denote the space of distributions over S represented by the (p − 1) dimensional

probability simplex endowed with the Euclidean distance d(·, ·). Given the information

structure of the game, a mixed strategy for player i is given by a measurable map

σmi :

{
T ×Wm → ∆S
(t′mi, w

′
m)

′ 7→ σmi(tmi, wm) :=
(
σmi(tmi, wm; s

(1)), . . . , σmi(tmi, wm; s
(p))
)′

In the following, we let σ−i = (σm1, . . . , σi−1, σi+1, . . . , σmn) denote the profile of strategies

played by all players except i. We also use the delta function δs(q) to denote the distribution

that assigns probability 1 to the pure action s(q).

Observable Data: We assume that we observe type-action characters ymi = (smi, x
′
mi)

′ for a

random sample ofNm players (without replacement, possibly the entire market with Nm = n)

from the markets m = 1, . . . ,M , where the vector-valued payoff shocks εmi are not observed
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by the econometrician but may be known to other players. We denote the action profile for

the market by sm = (sm1, . . . , smn) ∈ Sn, and the type-action profile by ym = (y′m1, . . . , y
′
mn)

′.

Strategic Aggregate: Our formal results focus on aggregate games in which players interact

strategically only through a finite-dimensional aggregate state of the economy. For a given

strategy profile σ := (σm1, . . . , σmn) for the players in the market, we define the aggregate

state Gmn(σ) := (Gmn(s
(1); σ), . . . , Gmn(s

(p); σ))′, where

Gmn(s; σ) :=
1

n

n∑

i=1

E[σmi(s)|wm], s ∈ S

which is equal to the conditional expectation of the empirical distribution of actions Ĝmn =

(Ĝmn(s), . . . , Ĝmn(s))
′ where

Ĝmn(s) :=
1

n

n∑

i=1

1l{smi = s}

Gmn(σ) and Ĝmn coincide in a game of complete information if strategies are pure. In general

the strategies σmi may be mixed, so that the realization of player i’s action is not necessarily

tmi-measurable.

Appendix B discusses several extensions in which the state variable may be a generalized

index of players’ types and actions (e.g. entering firms’ marginal costs) and include payoff

specifications in which interaction effects may be type-specific. Examples for the second case

include spatial interactions where the strength of strategic effects depends on the distance

between any two players.

Preferences: Interactions among players are assumed to be anonymous in that strategic

interdependence is limited to interaction through the aggregate state Gn(σ). Specifically, we

assume that payoff functions can be written as

ui(smi, σm,−i, tm1, . . . , tmn) = u (δsmi
, Gn((smi, σm,−i)), tmi; θ) (2.1)

where we let (δsmi
, σm,−i) denote the mixed strategy profile (σm1, . . . , σi−1, δsmi

, σi+1, . . . , σmn).

In particular, we assume that for any given strategy profile, each agent’s payoffs only depend

on her own type, but not that of any other players. With a slight abuse of notation, we can

then denote player i’s expected payoff from choosing action smi against the profile σ−i by

ũi(smi, σ−i|wm, tmi) := E [ui(smi, s−i)|wm, tmi] =
∑

sm,−i∈Sn−1

ui(smi, sm,−i)E

[∏

j 6=i

σj(tj , wm; sj)

∣∣∣∣∣wm
]

Equilibrium: Now, let Σmn = (∆S)n denote the simplex of probability distributions over

Sn. The profile σ∗(·, wm) := (σ∗
m1(·, wm), . . . , σmn(·, wm)) is a Bayes Nash equilibrium in

the market if with probability 1 we have σ∗
mi(tmi, wm; s) > 0 only if ũi(s, σ

∗
−i|wm, tmi) ≥
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ũi(s
′, σ∗

−i|wm, tmi) for all s′ ∈ S. We let

Σ∗
mn(wm; θ) := {E[σ∗(t, wm)|wm]|σ∗(·, wm) is a Bayes Nash equilibrium givenwm} ⊂ Σmn

denote the set of distributions of actions that are supported by a Bayes Nash equilibrium

given the realized public signal wm, and players’ information (beliefs). Note that Σ∗
mn(wm; θ)

depends on the payoff parameter θ through the Nash condition on expected payoffs.

2.1. Reference Model. To frame thoughts, consider the following parametric model for a

static aggregate game.9. Suppose that given the aggregate Gn(σ), players have additively

separable payoffs of the form

ui(s
(k), s−i; θ) := µk(xmi; θ) +

p∑

l=1

δkl(xmi; θ)Gn

(
s(l); σ

)
+ εmik (2.2)

for k = 1, . . . , p. This formulation implicitly assumes that players are risk-neutral with re-

spect to their competitors’ actions. Here, the unobserved payoff shifters εmi = (εmi1, . . . , εmip)
′

are independent of xmi, but may be correlated across players. We also assume that the dis-

tribution of εmi and the functions µk(·) and δkl(·) are known up to the parameter θ. Players

maximize expected utility given their beliefs regarding other players’ strategies. The observed

action profile s1, . . . , sn is then a realization of strategies σ∗
m1(tm1, wm), . . . , σ

∗
mn(tmn, wm) that

constitute a Bayes Nash equilibrium together with the beliefs induced by the strategies and

the public signal, wm.

This model is not the most general formulation given our assumptions - e.g. we can allow

for more flexible interactions between unobserved characteristics and the other variables.

We also do not generally require a parametric model for the systematic parts of payoffs or

the distribution of unobservables - section 4.1 discusses estimation and inference on model

features relaxing some of these assumptions.

The assumption that strategic interdependence is captured entirely by the aggregate state

Gn = (Gn(s
(1)), . . . , Gn(s

(p))) is common in empirical applications. E.g. Berry (1992) ana-

lyzed a static complete information model for entry in airline markets with n potential en-

trants, where smi = 1 if firm i enters the market, and smi = 0 if it remains inactive. Given a

vector xmi of observed firm and market characteristics, his main specification of firm profits is

a special case of this setup with u (s, sm,−i, tmi, (β
′,∆)′) = s (x′miβ +∆ log (nGn − 1) + εmi),

where β and ∆ are unknown parameters to be estimated from the data. In particular, profits

are a function of the number of firms in the market, but not their types or identities.

We can extend this baseline model to allow for strategic effects that are type-specific in

that players’ decisions may also be influenced by the proportion of agents of a given type

that choose each action. An extension of this type is discussed in Appendix B. It would also

9This model is an adaptation of the nonparametric specification of the private information game in De Paula
and Tang (2012)
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be straightforward to allow for heterogeneity in individual players’ impact on the aggregate

- e.g. Ciliberto and Tamer (2009) allow for entry of a larger firm into a market may have a

larger effect on other potential entrants’ profits than entry of a small competitor.

Manski (1993) and Brock and Durlauf (2001) consider a private information version of

a binary choice model of endogenous social effects, in which agents’ payoffs depend on

the proportion of agents in a reference group choosing either action smi ∈ {0, 1}. They

specify payoffs as in the setup of this example with u (s, δsm1 , . . . , δsmn
, (x′mi, εmi)

′, θ) =

s
(
x′miβ +∆ 1

n

∑
j 6=i sj + εmi

)
. Common interpretations of this setup in empirical work in-

clude models of peer effects, stigma, or contagion.

Equilibrium Selection. In order to describe the set of distributions of type-action profiles y

that are compatible with the solution concept, we introduce an equilibrium selection rule

as an auxiliary parameter that characterizes how the ambiguity due to multiple equilibria

is resolved. A (potentially stochastic) equilibrium selection rule λmn is a mapping from wm

to distributions over the equilibrium strategy profiles σ∗
m(t). The parameter space for λmn

consists of the mappings of the public signal to the set of mixed Nash equilibria of the game

Λmn(θ) := {λmn : Wm → Σmn |λmn(wm; σm) > 0 only if σm(wm) ∈ Σ∗
mn(wm; θ) a.s.} . (2.3)

where for a given parametrization of random payoff functions, the set of action distributions

supported by Nash equilibria, Σ∗
mn(wm; θ), also depends on the parameter θ. In addition,

this formulation allows any public information to affect equilibrium selection directly - e.g.

if firm size is common knowledge in an entry game, players could always coordinate on an

equilibrium in which large firms are more likely to enter than smaller competitors. From

the econometrician’s perspective, the equilibrium selection rule λmn in the mth market is a

random variable in a cross-section of one or several observed markets.10

Given these definitions, the likelihood of the profile for themth market, ym = (ym1, . . . , ymn),

given λmn ∈ Λmn(θ) can be written as

fm(ym|θ, λmn) =
∫

T n×Wm

∑

σ∗m∈Σ∗

mn(wm;θ)

λmn(wm; σ
∗
m)

n∏

i=1

σ∗
mi(tmi, wm; smi)Hm(dtm, dwm),

where Hm(t, w) is the joint distribution of tmi and wm. Hence given Hm(t, w), there is a set

of distributions that is indexed with (θ, λ),

ym ∼ fym1,...,ymn
(ym1, . . . , ymn|θ, λmn) θ ∈ Θ, λmn ∈ Λmn(θ). (2.4)

10Some of our asymptotic arguments in the next sections require measurability of equilibrium outcomes along
a particular filtration, so that the equilibrium selection mechanism has to be defined on a common probability
space along sequences of games. However, this does not necessarily restrict the outcome distributions for
the game at a given number of players.
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We assume that the observed data can be generated by any particular equilibrium (possibly

in mixed strategies), where the equilibrium selection rule is not known to the econometrician.

2.2. Exchangeability. Asymptotic approximations of the type we just described require

that we define sequences of games with an increasing number of players. In order to ob-

tain a fairly general stochastic structure for the game that scales quite naturally, we use

the idea of exchangeability: recall that a random sequence Z1, . . . , Zn with joint distri-

bution f(z1, . . . , zn) is said to be exchangeable if for any permutation π ∈ Π(1, 2, . . . , n),

f(z1, . . . , zn) = f(zπ(1), . . . , zπ(n)). We also say that an infinite random sequence Z1, Z2, . . .

is infinitely exchangeable if Z1, . . . , Zn are exchangeable for any n = 1, 2, . . . .

Our modeling assumptions are shown to result in (equilibrium) distributions of type-action

characters ym1, . . . , ymn that are exchangeable across agents, where we take the permutations

π ∈ Π to operate on types, actions, and any player-specific parameters jointly. In particular,

the identity of individual agents in a game may often be unknown or irrelevant, so that the

parametric family fm(ym|θ, λ), θ ∈ Θ and λ ∈ Λmn(θ), should be invariant under permuta-

tions of the full set of agents, or a known subset, for each instance of the game. If the game

has a spatial structure where interactions depend on some notion of distance, the assumption

of exchangeability would not be appropriate if the analysis is conditional on agents’ location.

However, unconditional procedures can allow for spatial interaction if agents’ locations are

endogenous or can be modeled as part of their type tmi, see the discussion of type-specific

interactions in appendix B.

While infinitely exchangeable random sequences may be dependent, de Finetti’s theorem

(see e.g. Theorem 1.1 in Kallenberg (2005)) states that any infinitely exchangeable sequence

can be represented as an i.i.d. random sequence from a random marginal distribution.11

Specifically for any value of n, the joint distribution

FZ1,...,Zn
(z1, . . . , zn) =

∫ n∏

i=1

F̂Z1(zi)dQ
(
F̂Z1

)

where the marginal distribution F̂Z1 distributed according to a measure Q(·) on the space of

probability distributions for Z1. In words, any infinitely exchangeable sequence is a mixture

over i.i.d. sequences, where Z1, Z2, . . . are conditionally i.i.d. given the (random) marginal

distribution F̂Z1.

Therefore, exchangeability simplifies the characterization of outcomes of social interactions

because it allows us to separate cross-sectional heterogeneity from aggregate uncertainty

11As an important caveat, note that the equilibrium actions in a game with a finite number of players can
in general not be represented as a sample from an infinitely exchangeable sequence, but may only be finitely
exchangeable. However, if the empirical distribution of actions for the n-player game converges to a proper
limit, Theorem 3.1 in Kallenberg (2005) establishes that the conclusion of de Finetti’s theorem remains valid
in the limit.
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resulting from strategic interdependence or multiplicity of equilibria or random type distri-

butions. Specifically, we have that for n large, the likelihood depends on the equilibrium

selection rule λ0 only through the resulting marginal distribution of type-action characters

ymi = (smi, xmi), f
∗
m(ym1|θ, λ) := 1

n

∑n
i=1 fm(ymi|θ, λ), and we are going to develop a limit

theory for relevant features of that distribution as the number of players grows to infinity.

This insight also has implications for identification arguments since it implies that for large

markets, any information about the underlying parameters of the population distribution

pertains to the (random) marginal distribution F∞(y). In general the joint distribution of

ym contains more information about the parameter θ for any finite-player game than the

empirical distribution of individual agents’ action-type profiles ymi. Some approaches to

identification in finite games rely on features of the joint distribution of the type-action

characters across players (e.g. Tamer (2003) or Graham (2008)). However de Finetti’s

theorem suggests that cross-player features of the joint distribution of the type-action profile

may become uninformative about underlying preferences as markets grow ”thick,” so that

in the limit any identifying information on the parameter θ is contained in the marginal

distribution of ym1.
12

Arguments based on exchangeability are also useful for the case in which only a random

sample of players (in general without replacement) from a large game is available to the

econometrician.13 Since for large games the joint distribution can be approximated by i.i.d.

draws from the empirical distribution of player-level type-action characters, a sufficiently

large subsample of players can be used to estimate consistently the empirical distribution

arising from the large-scale interaction model, even if it only represents a small share of the

agents interacting at the population level.

In order to characterize properties of exchangeable arrays, it is generally useful to de-

fine the (descending) filtration {Fn}n≥1 generated by symmetric events: Given the ran-

dom sequence ym1, ym2, . . . we say that a random variable Zn is n-symmetric if it can be

written Zn = rn(ym1, . . . , ymn, . . . ) for some function rn(·) satisfying r(ym1, . . . , ymn, . . . ) =

r(ymπ(1), . . . , ymπ(n), . . . ) for any permutation π of (i)i≤n.

Definition 2.1. (Tail Sigma-Field) Fn as the sigma algebra generated by the set of n-

symmetric random variables r(ym1, . . . , ymn). The tail sigma-field F∞ is the sigma algebra

12For example, the main identification argument in Tamer (2003) relies on realizations of types for which
subsets of players have a unique dominant strategy, so that the Nash conditions can be characterized as
unilateral decisions by the remaining players with several undominated strategies. With a large number of
players, there is essentially a “curse of dimensionality” to an identification at infinity argument that relies
on simultaneous draws of covariates for a significant fraction of the n players at values for which a given
action becomes dominant, so that such a strategy will in general become fragile for large games, and break
down in the many-player limit.
13E.g. Manski (1993) points out that the relationship between observations in a sample of that type is in
general different from that between players in the population from which that sample was drawn.
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generated by the set of random variables r(ym1, ym2, . . . ) that are symmetric with respect to

any permutation of (i)i≥1.

Since any n-symmetric random variable is also (n−1)-symmetric, the set of all n-symmetric

random variables is contained in the set of all n− 1-symmetric variables. We therefore have

F1 ⊇ · · · ⊇ Fn ⊇ Fn+1 ⊇ · · · ⊇ F∞. The tail sigma-field F∞ also corresponds to the

sigma algebra generated by the marginal distributions of ym1. The law of large numbers and

central limit theorem below are formulated conditional on F∞, allowing for the marginal

distribution of ym1 to remain random even in the limit.

Distribution of Type-Action Characters. One general difficulty with structural inference in

large games is that the parameter space Λn of equilibrium selection rules - which are functions

of all the n players’ types - grows very fast in dimension as we let the number of players

increase.14 De Finetti’s theorem suggests that, instead of considering the family of resulting

joint distributions of the type-action profile in the mth market,

f(ym1, . . . , ymn|θ, λm) θ ∈ Θ, λm ∈ Λmn(θ),

we can restrict our attention to the resulting average marginal distribution of the exchange-

able type-action characters, 1
n

∑n
i=1 f(ymi|θ, λm), say. Specifically, if the average marginal

distribution of the exchangeable type-action characters converges to a limit f ∗
m(ym1|θ,F∞),

the joint distribution of the type action profile becomes

n∏

i=1

f ∗
m(ym1|θ,F∞) θ ∈ Θ

Note that the dependence of the marginal distribution on the sigma-field F∞ indicates that

in general the limiting marginal distribution f ∗
m(ym1|θ,F∞) is a random object whose distri-

bution no longer depends on market size, n. There are two main reasons why the limit may

remain non-deterministic: for one, types tm1, tm2, . . . were assumed to be exchangeable but

not necessarily i.i.d., so that the marginal type distribution in the mth market Hm(x, ε) is in

general not fixed. On the other hand, the equilibrium selection rule λm governing the data

generating process may be random and may randomize between distinct equilibrium distri-

butions even in the limit. At this point, we leave the conditioning set F∞ unspecified, but

we will see in the next section that for aggregate games it can be conveniently represented by

the sigma field generated by the type distribution Hm(x, ε) and limiting equilibrium value

of the aggregate which may only take a finite number of different values.

14The generic maximal number of pure Nash equilibria in an n-player discrete game with p strategies is pn−1

(see McLennan (1997)).
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3. Convergence of Equilibria

Since the main goal of this paper is to ensure that the proposed methods for inference are

asymptotically valid and robust to equilibrium selection, we have to ensure that (1) the data

generating process always has a well-defined limit, and that (2) the asymptotic approximation

does not eliminate or ignore any of the equilibria in the finite-player economy. In this section

we derive limiting results for aggregate games. For ease of exposition, we develop our results

for a given market m, and omit the first subscript m in the following discussion whenever

this does not lead to any ambiguities.

3.1. Fixed-Point Representation. Given payoff functions, we define the set of best re-

sponses to an aggregate profile G as

ψ0(t;G) := conv {δs, s ∈ S |u(s,G, t) ≥ u(s′, G, t) for all s′ ∈ S }

where δs is the unit vector in Rp corresponding to action s ∈ S. In words, ψ0(t;G) represents

the probability distributions over the pure strategies that are best responses to a value of

the aggregate equal to G for a player of type t.

At every value of G, ψ0(tmi;G) is singleton with probability 1 in most standard applica-

tions, in which case the expected best-response

Ψm0(G) := E [ψ0(tmi;G)] (3.1)

is a (single-valued) function of G. Assumption 3.3 below gives primitive conditions on payoff

functions and the distribution of tmi for Ψm0(G) to be a continuous function of G. The

assumption that Ψm0(G) is a function rather than a set-valued mapping is not needed for

our main convergence results but simplifies the exposition substantially. For a full discussion

of the more general case, we refer the reader to Appendix B of this paper.

For the n-player game, each player has to account for the effect of her strategy on the

aggregate Gn. To this end it is useful to consider the average behavior among all players

except i. Specifically, consider player i’s choice of σmi(t, w) = σ for a fixed t ∈ T and suppose

that her Bayes strategy for values t′ 6= t is given by σ∗
mi(t

′, wm) ∈ ψ0(t
′;G). The resulting

value of the aggregate is then given by

Gmn =
1

n

∑

j 6=i

E[σmj(tmj , wm)|wm] +
1

n

{
E[σ∗

mi(tmi, wm)1l{tmi 6= t}|wm] + σP (tmi = t|wm)
}
.

We therefore define

G̃−i,n(G, t, wm; σ) :=
n

n− 1
G− 1

n− 1

{
E[ψ0(tmi;G)1l{tmi 6= t}|wm] + σP (tmi = t|wm)

}

for tmi ∈ T and σ,G ∈ ∆S. If the conditional distribution of tmi|wm has a continuous

component and satisfies certain other standard regularity conditions, then Lemma 3.2 below
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Figure 1. The correspondence ψ5(tmi;G) for five draws of tmi in a five-player
binary action game (left), and the corresponding aggregate response mapping

Ψ̂5(G) (right).

implies that the set expectation in the second term is a singleton, and furthermore P (tmi =

t|wm) = 0. However, this formulation also includes the case of a complete information game

in which P (tmi = t|wm) = 1.

In order to characterize the equilibrium distributions of actionsG∗
n = (G∗

mn(s
(1)), . . . , G∗

mn(s
(p)))′,

we define the correspondence of implicit best responses supporting an aggregate state G as

ψn(t;G) :=
{
σ ∈ ∆S | σ ∈ ψ0(G̃−i,n(G, t, wm; σ), t) and G̃−i,n(G, t, σ) ∈ ∆S

}

Also, let the aggregate response mapping

Ψ̂mn(G) :=
1

n

n∑

i=1

E [ψn(tmi;G)|wm]

Figure 3.1 illustrates the construction of Ψ̂mn(G) from the individual best responses ψn(tmi;G)

for a complete information binary action game, given a realization of types tm1, tm2, . . . .

The following Proposition characterizes the set of (Bayes) Nash equilibria of the n-player

game as fixed points of Ψ̂mn:

Proposition 3.1. Suppose payoff functions are of the form (B.1). Then there exists a Bayes

Nash equilibrium with distribution G∗
mn if and only if G∗

mn ∈ Ψ̂mn(G
∗
mn).

See the appendix for a proof.

3.2. Assumptions. The main convergence result in this section establishes that the values

of G∗
mn that are supported by Nash equilibria in the finite game, G∗

mn ∈ Ψ̂mn(G
∗
mn), converge

to fixed points of the expected best response mapping, G∗
m0 ∈ Ψm0(G

∗
m0). Our argument

is based on convergence of the equilibrium mappings, Ψ̂mn(G) to Ψm0(G) and requires two

technical conditions: for one, Assumption 3.1 below gives a primitive condition on payoffs
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that is sufficient for stochastic convergence to be uniform in G. In addition, we assume that

the empirically relevant fixed points of the limiting mapping Ψm0(G) are regular in the sense

specified in Assumption 3.2 below in order for uniform convergence of the mappings to imply

convergence of their fixed points.

In order to characterize the stochastic properties of ψ0(tmi;G), define the set of types for

which s is a best response to G by

A(s,G) := {t ∈ T : u(s,G, t) ≥ u(s′, G, t) for all s′ ∈ S}

Our main assumption on the distribution of payoffs restricts the degree to which A(s,G)

may vary as we change the value of the aggregate state G:

Assumption 3.1. (i) The payoff functions are of the form (B.1), and (ii) the collection

A := {A(s,G) : s ∈ S, G ∈ ∆S}

is a VC class of sets.

There are a number of empirically relevant examples for which the second part of Assump-

tion 3.1 is satisfied: Clearly, A is a VC class if the number of types t is finite as in Kalai

(2004). Also if payoffs have a linear index structure in tmi for all G, i.e.

u(s,G, t) = v(s, t′β(G), G)

then the sets A(s,G) are intersections of the type space T with linear half-spaces in Rdim(t),

and therefore a VC class with index less than or equal to dim(t) + 1. This example is a

generalization of the framework considered by Brock and Durlauf (2001).

We next state a regularity condition that ensures that the relevant solutions to the limiting

equilibrium mapping Ψm0 defined in (B.2) are stable under perturbations of Ψm0, so that

the set of equilibria remains stable along sequences of mappings approximating the limiting

mapping. This condition also implies that solutions to the fixed point problem G ∈ Ψm0(G)

are locally unique, from which it can be shown that the number of distinct equilibrium

distributions is finite.

Assumption 3.2. (Regular Economy): For every θ ∈ Θ and population distribution

H0 ∈ P, Ψm0(G) is single-valued for all G ∈ ∆S and one of the following holds:

(i) At every distribution G∗
m0 solving G∗

m0 ∈ Ψm0(G
∗
m0), the Jacobian ∇GΨm0(G

∗) is

defined, and Ip −∇GΨm0(G
∗) has rank equal to p− 1, or

(ii) If G∗
m0 is a cumulation point of the sequence (G∗

mn)n≥1, then with probability 1,

∇GΨm0(G
∗
m0) is defined, and Ip −∇GΨm0(G

∗
m0) has rank equal to p− 1

where Ip denotes the p-variate identity matrix.
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If a fixed point G∗
m0 = Ψm0(G

∗
m0) satisfies the maximal rank condition in part (i), we also

say that G∗
m0 is regular, and we define

G∗
m0 := {G∗

m0 : G
∗
m0 = Ψm0(G

∗
m0) and G

∗
m0 is a regular point of Ψm0(G)}

as the set of regular fixed points of Ψm0. Note that the alternative conditions (i) and

(ii) are nested, and our formal results only require the weaker version, part (ii), to hold.

Rank conditions for existence and local stability of equilibria are standard in econometric

analysis of equilibrium models,15 and violations of a generalized rank condition of this kind

are typically “non-generic” in the sense that they correspond to subsets of the parameter

space of (Lebesgue) measure zero. In this paper we do not derive primitive conditions for

this assumption in terms of the population distribution of types and the parameter space Θ.

Non-regular fixed points of Ψm0 are generally unstable both with respect to local pertur-

bations of the mapping Ψm0 as well as best-response dynamics under local perturbations of

the corresponding equilibrium. In the simulation experiments for section 6, we do in fact

find that for small markets, properties of higher-order bias corrections deteriorate substan-

tially for specifications that are close to violating this assumption. These considerations are

particularly important if the type distribution Hm(t) is random at the market level - as in

the case of correlated types - which is the scenario for which we rely on the requirement in

part (ii).

Of the alternative assumptions on genericity of equilibrium points, only part (iii) restricts

equilibrium selection in the finite-player game by assuming that only regular fixed points of

Ψm0 are empirically relevant as limits for the equilibria in the observed markets. While there

is no generally accepted theory for equilibrium selection, this requirement can be motivated

through local stability properties of equilibrium points: Note that if the Hessian of Ψm0 is

not degenerate at G0, then non-regular fixed points of the best-response mapping correspond

to equilibria that are locally unstable with respect to best-response dynamics under local

perturbations in certain directions. If non-regular points can be ruled out, as in parts (i) or

(ii), our results to not require any restrictions on equilibrium selection.

One useful implication of the assumption of a regular equilibrium mapping is that the

number of fixed points of Ψm0 is finite:

Lemma 3.1. Under Assumption 3.2 part (i), the number of fixed points solving G∗
m0 ∈

Ψm0(G
∗
m0) is finite. Furthermore, under either alternative of Assumption 3.2 (a), the cardi-

nality of G∗
m0 is finite.

See the appendix for a proof, which is very similar to the classical arguments for finiteness

of the number of equilibria in regular market economies (e.g. Proposition 17.D.1 in Mas-

Colell, Whinston, and Green (1995)) or finite-player games (Theorem 1 in Harsanyi (1973)).

15See e.g. Assumption 2.1 in Hausman (1983) for the linear simultaneous equations model.
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While Assumptions 3.1 and 3.2 are sufficient for convergence of the equilibrium values

of G∗
mn, the law of large numbers and central limit theorem in the next section require

that we define the equilibrium actions for each game along the asymptotic sequence on a

common probability space. Our argument establishing such a coupling requires that the joint

distribution of best responses varies continuously in the aggregate G and that the expected

best response Ψm0(G) is a single-valued function. More specifically, we impose the following

set of additional assumptions on preferences and types for the results requiring a minimal

degree of smoothness:

Assumption 3.3. Types can be partitioned as tmi = (t′mi1, t
′
mi2)

′ such that (i) the conditional

distribution of tmi1 given tmi2 is continuous with a uniformly bounded continuous p.d.f., and

(ii) either of the following holds:

(a) (“Unordered Choice”) the subvector tmi1 has full support on R
p−1, and for the

payoff vector u(G, t) :=
(
u(s(1), G, t), . . . , u(s(p), G, t)

)
, we have that ∇tm1u(G, t) is

continuous in t and has rank p− 1 for all t ∈ T and G ∈ ∆S.
(b) (“Ordered Choice”) tmi1 ∈ R, and u(s(l), G, t)− u(s(k), G, t) is strictly monotone

in tm1 for k 6= l and almost all t ∈ T .

(iii) xmi is a subvector of tmi2.

If we consider payoffs for a fixed value of G, either condition (a) or (b) are met by most

standard parametric random utility models for choice among discrete alternatives. Typi-

cally, specifications include additive alternative-specific taste shifters that are continuously

distributed and have unbounded support conditional on observable characteristics. While

part (b) of the assumption does not require a particular ordering of the alternative choices,

classical specifications for ordered choice models include a scalar source of heterogeneity

that satisfies the monotonicity condition on utility differences. From a technical standpoint,

Assumption 3.3 also greatly simplifies the analysis as the following lemma shows.

Lemma 3.2. Suppose Assumption 3.3 (i) and (ii) hold. Then for almost all types tmi,

ψ0(tmi;G) is single-valued, and the expected best-response Ψm0(G) is a single-valued contin-

uous function at all values of G ∈ ∆S.

The proof for this lemma is in the appendix. This result helps avoid tedious case dis-

tinctions in the characterization of sequences that approach mixed strategy equilibria in the

limiting game when we turn to the construction of a coupling between games with different

numbers of players below.

3.3. Convergence of Equilibria. Our main convergence result in this section establishes

that the set of fixed points

G∗
n :=

{
G∗ : G∗ ∈ Ψ̂mn(G

∗)
}
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approaches the set of regular solutions to G = Ψm0(G), which implies that the set of (Bayes)

Nash equilibria in the finite game can be approximated by a subset of G∗
m0. We can now

state our main result on stochastic convergence of the equilibrium values of the aggregate

G∗
mn:

Theorem 3.1. Suppose Assumptions 3.1 and 3.2 hold, and that G∗
mn is a sequence of em-

pirical distributions solving G∗
mn ∈ Ψ̂mn(G

∗
mn). Then we have that (a) d(G∗

mn,G∗
m0)

a.s.→ 0,

and (b) with probability approaching 1, for every G∗
m0 ∈ G∗

m0 and every neighborhood B(G∗
m0)

of G∗
m0 we can find G̃n ∈ B(G∗

m0) such that G̃n ∈ Ψ̂mn(G̃n).

See the appendix for a proof. Given the conclusion of 3.1, part (a) of the conclusion

implies that although the number of distinct equilibria may grow very fast as the number of

players increase, the implied distributions of actions become concentrated near a finite set

G∗
m0. Taken together, parts (a) and (b) show that the set G∗

m0 of equilibrium values for the

population correspondence Φ0 is equal to the set of limiting points of the set of equilibria

in the n-player games. Note that the full-rank condition in Assumption 3.2 is crucial in

attaining the stronger conclusion (b).

It is straightforward to check that the solutions of the fixed-point problem G ∈ Ψm0(G)

correspond to the Bayes Nash equilibria (BNE) for a version of the game with n ≥ 2 players

in which types tmi are private knowledge. Since by definition, individual actions arising from

a BNE only depend on a player’s own type, from the individual agent’s perspective, the

informational requirements for optimal play are much lower in the limiting game than in

the complete information version with finitely many players. Since the mapping Ψm0, and

therefore its fixed points G∗
m0 do not depend on the information structure of the finite-player

game, our results imply that those differences are less important in aggregate games with a

large number of agents.

3.4. Coupling. Our main asymptotic results concern almost sure convergence of (ymi,n)i≤n
to a limiting sequence of type-action profiles (ymi)i≥1, where G

∗
m0 = E[ym1|F∞] and

ymi ∈ ψ0(tmi;G
∗
m0) a.s.

where under Assumption 3.3, ψ0(tmi;G
∗
m0) is single-valued with probability one. In that case,

(ymi)i≥1 = (ψ0(tmi;G
∗
m0))i≥1 also constitute an infinitely exchangeable array since types tmi

are also infinitely exchangeable. Since the set of limiting equilibria G∗
m0 may have more

than one element, convergence of the set of possible equilibria alone does not guarantee

convergence for a particular sequence of a given player i’s actions. Instead, for any realization

of the payoffs the economy could “cycle” between distant equilibrium values for G∗
mn as n

increases.



GAMES WITH MANY PLAYERS 21

Denoting player i’s type-action character in the n-player game with ymi,n := (smi,n, xmi),

a meaningful notion of almost sure, or conditional convergence therefore requires that the

triangular array (ym1,n, . . . , ymn,n)n≥1 and the limiting sequence (ymi)i≥1 are defined on a

common probability space. To address that difficulty, we introduce a coupling of the se-

quence of type-action characters determined in equilibrium, ym1,n, . . . , ymn,n, to the infinitely

exchangeable sequence ym1, ym2, . . . .

Definition 3.1. (Coupling) Suppose that for a fixed value n0, the type action character

ymi,n0 is distributed with marginal p.d.f. fm,n0(y|θ). We then say that (ymi,n0)i≤n0
can be

embedded into a triangular array of equilibrium outcomes (ymi,n)i≤n converging to an in-

finitely exchangeable array (ymi)i≥1 if there exists a sequence of equilibrium selection rules

λ ∈ Λn(θ) such that (i) fm,n0(s, x|θ, λn0) = f ∗
m,n0

(s, x|θ) for all s ∈ Sn, (ii) the type action

characters ym1,n, . . . , ymn,n are exchangeable for each n, and (iii) there exists a deterministic

null sequence cn → 0 such that for any bounded function m(y,G; θ),

|E [m(ym1,n, G; θ)−m(ym1, G; θ) |Fn]| < cn a.s.

for all n, θ ∈ Θ, and G ∈ ∆S.

This definition of a coupling of equilibrium outcomes of the game stipulates that the se-

quence match the cross-sectional distribution of type-action characters at market size n0. We

show below that when fm,n0(y|θ) is generated by a mixture over Bayes Nash equilibria, such

a coupling can be constructed with a bounding sequence cn in part (iii) that is independent

of the distribution of equilibria in the n0 player game.

It is important to distinguish the role of the coupling in our analysis from a factual

description of “real-world” economic behavior if more players were added to an existing

market. For the asymptotic results below, an asymptotic sequence is constructed for the

sole purpose of bounding a statistical approximation error, so that a uniform error bound of

this type is sufficient to ensure robustness with respect to equilibrium selection. Since the

game is only observed at one fixed value of n = n0, the coupling of the random elements

ymi,n across different values of n > n0 has no empirical significance.

For aggregate games, we show that such a coupling can constructed by introducing an

auxiliary unobserved type νm1, νm2, . . . that governs equilibrium selection and is indepen-

dent of the payoff-relevant types tm1, tm2, . . . . Specifically, we let (νmi)i≥1 be an infinitely

exchangeable sequence of random variables in Rp that are independent of (tmi)i≥1, so that

the augmented types (xmi, εmi, νmi)i≥1 also form an infinite exchangeable sequence. We as-

sume without loss of generality that the states determining equilibrium selection are public

information, i.e. the states νm1, νm2, . . . are wm-measurable. In economic terms, this implies

that in all states of the world, players agree on which equilibrium is being played.
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Given the augmented type, we assume that the sequence of (random) equilibrium selection

rules {λn}n≥1 is of the form λni(wm) := λ̃n(νmi, wm) and invariant to permutations of the

agent-specific information in wm, where λn ∈ Λn(θ) the set of equilibrium selection rules

defined in (2.3). This formulation ensures that the resulting distribution of type-action char-

acters ymi,n is exchangeable for every n. However for any given realization of νm1, . . . , νmn,

λn need not be symmetric, and may also select asymmetric equilibria.

The following proposition shows that imposing this structure on λn is not restrictive in

terms of the joint distributions of type-action profiles that can be generated for fixed n.

Proposition 3.2. (Coupling for Aggregate Games) Suppose Assumptions 3.1-3.3 hold.

For the n0-player game assume that the observed action profile is generated by a mixture over

the Nash equilibria for the type-profile (tmi)i≤n0
with probability one, and let f ∗

m,n0
(s, x|θ) be

the resulting unconditional distribution over type-action characters. Then (ymi,n0)i≤n0
can be

embedded in a triangular array of equilibrium outcomes converging to (ymi) i ≥ 1, where the

bounding sequence cn does not depend on (tmi)i≤n0
or the distribution of equilibria generating

f ∗
m,n0

(s, x|θ).
The proof for this result is in the appendix. Note that the conclusion of the proposition 3.2

implies that a coupling of this type can be found for any possible cross-sectional distribution

over Nash equilibria in the n-player game.

4. Estimation and Inference

This section develops strategies for estimation and inference that combine data from the

finite player game with moment restrictions derived for the limiting model. In general, there

is a qualitative difference between identification of structural parameters from the exact

finite-player distributions for a given value of n and identification from the “competitive

limit” under this asymptotic sequence. Since this paper considers consistency of estimators

and validity of inference as the number of players increases, we need to consider identification

from the limiting distribution f(ymi|F∞) for large-sample results rather than their analogues

for the finite-player problem.16

4.1. Moment Conditions. We formulate our main asymptotic results in terms of moments

of the type-action characters, m(y;G, θ), where the population moment is given by

m0(θ) := E[m(ymi, G
∗
m0; θ)|F∞]

16For example, the identification condition in a generic consistency result for extremum estimators typically
requires that there exists a “population” criterion function Q0(θ) that is uniquely minimized at the true
parameter, see e.g. Theorem 2.1 in Newey and McFadden (1994). The second main requirement is uniform

convergence of a feasible “sample” criterion function Q̂n(θ) to Q0(θ) under the asymptotic sequence in
question. Under regularity conditions, the limits of the population expectations of objects entering such
a criterion Q0(θ) under many-player sequences correspond to expectations under the limiting distributions
f(ymi|F∞).
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for the limiting game. We consider inference and estimation for the finite player game based

on the sample moments

m̂nM(θ) :=
1

nM

M∑

m=1

n∑

i=1

m(ymi,n, Ĝmn; θ)

In light of de Finetti’s Theorem (and Theorem 3.1 in Kallenberg (2005), respectively),

in the limit there is no loss of information by restricting our attention to moments of the

type-action characters alone and not exploiting cross-player variation for estimation or in-

ference. Rather, exchangeability of players implies that for large games any information

about structural parameters can only be recovered from the (random) marginal distribu-

tions fm(ymi|F∞), either from a given realization for the mth market, or from observed

variation of that distribution across markets.17 For identification results that rely entirely

on the realized marginal distributions, consistency of an estimator or test typically requires

that n → ∞, whereas if identification is based on variation in fm(ymi|F∞) across markets,

we may require in addition that the number of markets grows large as well, M → ∞.

We next discuss a few examples to illustrate how moment conditions of this type arise

naturally in empirical applications. Since identification analysis is not the primary objective

of this paper, the following examples are not meant to be fully general or exhaustive, but to

illustrate the potential of our asymptotic results for applications.

Parametric Estimation. Consider the following additively separable model with constant

coefficients

u(s(j), σm,−i, tmi; θ) := µj(xmi; θ) + δj(xmi; θ)
′Gn(s; σm,−i) + εij j = 1, . . . , p

where the unobserved payoff shifters εmi = (εmi1, . . . , εmip)
′ are i.i.d. across agents, and

independent of xmi. We also assume that the distribution of εmi and the functions µj(·) and
δj(·) are known up to the parameter θ ∈ R

K .

For a any value of the aggregate G , we can then compute the conditional choice proba-

bilities

Φ(s(j), x;G, θ) := P (smi = s(j)|xmi = x,G∗
m0 = G; θ)

= P

(
µj(x; θ) + δj(x; θ)

′G+ εmij ≥ max
1≤k≤p

{µk(x; θ) + δk(x; θ)
′G+ εmik}

)

17In some cases, we may observe interaction among the same players in multiple markets, generating a
panel data set that is partially exchangeable, i.e. we may treat market or player labels as irrelevant to the
econometric model, but may allow for both player and market level heterogeneity that is not independent of
observable characteristics. However, this extension would be beyond the scope of this paper, and is left for
future research.
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for actions j = 1, . . . , p. The first-order conditions for the maximum likelihood estimator of

θ are of the form 1
nM

∑M
m=1

∑n
i=1m(ymi, G

∗
m0; θ) = 0, where

m(ymi, G; θ) := ∇θ log Φ(smi, xmi;G, θ)

Identification analysis for parametric models of this form is completely analogous to the

single-agent discrete choice case. One conceptual difficulty arises from the fact that a rank

condition for local identification of the interaction effect also depends on the equilibrium

aggregates G∗
m, which are endogenous variables in this model. This typically requires cross-

market variation in G∗
m0 which can result from players coordinating on different equilibria

across different markets. However if we do not want identification to rely on assumptions

regarding equilibrium selection, we need the type distribution Hm(t) to vary across markets

in a way that we can find pairs of markets m,m′ for which the resulting equilibrium sets

G∗
m ∩ G∗

m′ = ∅.
The assumption of a parametric model for the systematic parts of payoffs and the dis-

tribution of unobserved payoff shifters can also be relaxed in many settings. For example

Matzkin (1992) gives conditions for nonparametric identification of the binary choice model

which can be applied to the “competitive limit” in a manner that is completely analogous to

the parametric case. For the binary action case, it is also possible to relax the assumption of

independence of xmi and εmi and derive moment conditions identifying the parameter from a

conditional median restriction for εmi given xmi using arguments similar to Manski (1975)’s

maximum score estimator for the single-agent binary choice problem.

Nonparametric Sign Tests. Alternatively, the researcher may be interested in qualitative

aspects of strategic interaction without specifying a parametric model for payoffs. De Paula

and Tang (2012) propose inference regarding the sign of the interaction effect for the private-

types case. We now show how to nest their procedure into our asymptotic framework which

can also be used for inference in the complete information version of the game or other

informational environments.

Consider the binary action game with S = {0, 1} and payoffs

u(1, G, tmi)− u(0, G, tmi) = µ(xmi) + δ(xmi)G− εmi

where µ(x) and δ(x) are unknown functions, and εmi is independent of xm1, . . . , xmn condi-

tional on certain market-level variables that are also observed by the econometrician. Let

{xmj}j≥1 := {xm1, xm2, . . . } denote the unordered sample (empirical distribution) of observ-

able types (xmi). Since payoff functions are symmetric up to the individual-specific value

of xmi, Proposition 1 in De Paula and Tang (2012) implies that the sign of the interaction

effect δ(xmi) is equal to the sign of

Γi(xmi) := E[smiG
∗
m0|{xmj}j≥1, xmi]− E[smi|{xmj}j≥1, xmi]E[G

∗
m0|{xmj}j≥1, xmi]
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whenever Γi(xmi) 6= 0.

Now suppose that the sign of δ(x) is constant across values x ∈ X0 ⊂ X . Then for any

function h(x) ≥ 0 with support on a subset of X0 and aggregating across market with the

same marginal distribution for xmi we have that

Γh := E[h(xmi)Γi(xmi)|{xmj}j≥1] = E[h(xmi)smiG
∗
m0|{xmj}j≥1]−E[h(xmi)smi|{xmj}j≥1]E[G

∗
m0|{xmj}j≥1]

has the same sign as δ(·) by the law of iterated expectations.

For any nonnegative function of observable types h(x) ≥ 0 such that the support of h(·)
is a subset of X0, we can form moments

m1(ymi;G) := h(xmi)smiG1l{{xmj}j≥1 = {xj}j≥1}, m2(ymi;G) := h(xmi)smi1l{{xmj}j≥1 = {xj}j≥1}

Also, let m3 := 1l{{xmj}j≥1 = {xj}j≥1} and m4(G) := G1l{{xmj}j≥1 = {xj}j≥1}.
It then follows that the sign of

Γh({xj}j≥1) := E[m1(ymi;G
∗
m0)|F∞]E[m3|F∞]

−E[m2(ymi;G
∗
m0)|F∞]E[m4(G

∗
m0)|F∞]

is either zero or equal to the sign of δ(x) on X0. Since the limiting game has the same form

as the private-types game under any of the informational settings covered by our results, we

can therefore combine our asymptotic results for the moment functions with the delta-rule

to derive the distribution for the (finite-player) sample analog

Γ̂h := m̂1m̂3 − m̂2m̂4

where m̂l :=
1
M

∑M
m=1

1
n

∑n
i=1ml(ymi,n; Ĝmn)1l{{xmj}j≥1 = {xj}j≥1} for l = 1, . . . , 4. For

any information structure covered by our results, the many-player limit of the game has

the same form as the game with private types. Hence the sign restriction on Γh holds

for the limiting sequence regardless of the specification of the information structure in the

finite-player game, and our asymptotic results can be used to construct asymptotically valid

inference procedures.

Exclusion Restrictions. In many cases, it may be desirable to allow for unobserved market-

level shocks which may have a distribution of unknown form, and may also be correlated

with observable types. Following Shang and Lee (2011), consider estimation of the binary

action game with payoffs

u(1, G, tmi)− u(0, G, tmi) = x′miβ + δG+ ξm − εmi
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where the unobserved individual taste shifter εmi is an i.i.d. standard normal random vari-

able, and ξm is an unobserved market level shock that may be correlated with xmi. Fur-

thermore, the econometrician observes a vector of instrumental variables zmi satisfying the

exclusion restriction E[ξm|zmi] = 0.

Shang and Lee (2011) propose a two-step procedure: if we define αm := δGm+ ξm, we can

estimate the model P (smi = 1|xmi, Gm, ξm) = Φ(x′miβ + αm). The resulting score equations

can be written as the sample average of the moment functions

m1(ymi, Gm; θ) := ∇θ {smi log Φ(x′miβ + αm) + (1− smi) log(1− Φ(x′miβ + αm))}

where θ := (β ′, δ, α1, . . . , αM)′, and the sample average is taken over markets m and players

i = 1, . . . , n. For inference with regarding the interaction parameter δ, the second step uses

the moment conditions

m2(ymi, Gm; θ) := zmi(αm − δGm)

where the exclusion restriction for zi implies that E [m2(ymi, G
∗
m0; θ0)| F∞] = E [zmiξm|F∞] =

0.

In the presence of market-level shocks, consistent estimation typically requires that we

observe a large number of markets, M → ∞, however based on our results in section 5,

under regularity conditions the maximum likelihood estimator for homogeneous markets is

consistent for finite M provided a rank condition for identification holds. We illustrate the

performance of our methods for an estimator of this type in the Monte Carlo study in section

6.

For any information structure covered by our results, the many-player limit of the game

has the same form, so that we can directly apply our asymptotic results directly after stacking

the two sets of moment conditions. Other modeling assumptions may result in inequality

rather than equality restrictions of this form, in which case the law of large numbers and

central limit theorem in the following section can be applied to the sample moments in order

to derive (set) inference procedures, see e.g. Chernozhukov, Hong, and Tamer (2007).

4.2. Qualitative Description of Main Results. We now give a qualitative description

of our main asymptotic results on estimation and inference which is made rigorous in section

5 and appendix A. We find that the sample moment satisfies a stochastic expansion of the

form

m̂nM(θ) = m0(θ) + (nM)−1/2Z + n−1B∗ +R∗
n

where Z is a normal random variable with mean zero and random variance, that can be

estimated consistently. B∗ and R∗
n are approximation errors and B∗ is an element of some

bounded set and the remainder satisfies nR∗
n → 0 almost surely. In this expansion, we do not

impose any restrictions on the selection of equilibria. The limiting distribution may retain
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some indeterminacy regarding equilibrium selection, but we show that this does not affect

strategies for identification or estimation.

One special case of interest is maximum likelihood or moment-based estimation of the

structural parameter θ. Specifically suppose that given a sample of games with n players

each, the parameter of interest θ is set-identified, where we denote the identified set with

Θ0,n.
18 Our analysis in section 4.1 implies that for many cases of interest, the set Θ0,n

shrinks to a point θ0 in the “competitive limit.” In that case, we can apply our limiting

theory directly to the estimating equations for the point estimator θ̂n and show that their

(generically unique) solution approximates any point in Θ0,n.

We show how to account for simultaneity in players’ choices by augmenting the main

moments by the equilibrium conditions for the aggregate state G∗
mn, which may have multiple

solutions. Given the convergence results from our theoretical analysis of aggregate games

in section 4, the joint problem of estimation of the parameters of interest and determining

the equilibria of the finite economy for any given realization of types can be approximated

by a regular estimation problem. Hence we can apply standard methods to derive the joint

distribution for m̂n(θ) and G, as well as bootstrap methods for bias reduction or other

refinements for the augmented model.

We show how to estimate the distribution of the second term using a central limit theorem

(CLT) with mixing, and consistent estimation of the (potentially random) variance matrix.

The second term in the expansion is also random, but features of its distribution can in

many cases be recovered by adapting re-sampling strategies like the bootstrap or jackknife

to this problem. As an example we show how to correct for the second-order bias of the

maximum likelihood estimator (MLE) in a discrete game of strategic complementarities

using the bootstrap, which is straightforward to implement.19 We find that with the second-

order bias correction procedure described in the appendix, we can already obtain useful

approximations for games as small as 10 to 15 players. These results suggest that for n

large enough, using the much simpler (but misspecified) limiting model for inference leads to

approximation errors that are of the same or a lower order of magnitude than the sampling

error for a fixed number of markets.20

18Note that with heterogeneously distributed markets, the identification region Θ0,n may also depend on the
number of marketsM . However, since our results are primarily about n growing large we chose not to make
that dependence explicit in our main notation.
19Recall that for regular models, bias corrections of this type typically reduce the theoretical estimator bias
to the order n−2, see e.g. Rilstone, Srivastava, and Ullah (1996), and Hahn and Newey (2004) for the case of
nonlinear panel models with fixed effects. For sufficiently smooth regular estimators and statistics, iteration
of the bootstrap principle generally allows for bias correction to higher orders than n−1, however we do not
explore this further in the context of this paper.
20For an increasing number of markets, inference will in general only be asymptotically valid in combination
with a second-order bias correction, where we also require that M grows at a rate slower than n1/3. In this
paper, we restrict our attention to the case in which M is fixed, and we leave a more systematic analysis of
“large n, large M” asymptotics for future research.
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The limiting results in this paper can also be used for set inference when the parameter

of interest is not point-identified in the limit. For example if the identified set can be

characterized by moment inequalities, bias reduction techniques may be applied directly to

the moment vector of moment equalities or inequalities characterizing the identified set.

5. Asymptotic Analysis

This section develops conditional laws of large numbers and central limit theorems for the

sample moments

m̂n(θ) :=
1

nM

M∑

m=1

n∑

i=1

m(ymi,n; Ĝmn, θ)

Our asymptotic results in this section are conditional on the sigma algebra generated by the

marginal distributions of ym1, denoted by F∞. In particular, the limits are also taken con-

ditional on the distribution, but not necessarily the individual realizations of the observable

characteristics xmi. We can therefore allow the empirical distribution of types to be random

across markets. Since ymi also includes outcomes smi that are determined endogenously in

the model, the distribution of ymi generally depends on which equilibrium is being selected

in the market. For aggregate games, Lemma 3.1 implies that under regularity conditions

(i.e. Assumptions 3.1-3.3) and conditional on the distribution of tmi, F∞ is generated by a

finite number of tail events, corresponding to the elements of the set of limiting equilibria

G∗
m0.

The following analysis only considers one single market, so that we can drop the m sub-

script without loss of generality. The results can then be applied for each m = 1, . . . ,M

separately, so that information from different markets can be combined for estimation or in-

ference, where we can also allow for type distributions and parameters to be market-specific.

The setup considered in this section is more general than the specific case of aggregate games,

but we will discuss applicability of our results mainly in terms of that specific class of games.

For the asymptotic results, we let ymi,n denote the type action character for the ith player in

the market for the game with n players, so that the type-action profiles for market m form

a triangular array (ym1,n, . . . , ymn,n)n≥1.

We maintain the following regularity conditions on the moment function m(y,G; θ) in

conjunction with the type distribution Hm(x, ε) given in the model definition in section 2:

Assumption 5.1. (Uniform Integrability) (i) The family {m(y,G; θ) : θ ∈ Θ} is a VC

class of functions, and (ii) E|m((s, xm1), G; θ)| and |E [m((s, xm1), G; θ)−m((s′, xm1), G; θ)| F∞]|
are continuous in G and bounded by a constant for all s, s′ ∈ S and uniformly in θ ∈ Θ and

G ∈ S.

We can now state our first asymptotic result which is an adaptation of Birkhoff’s law of

large numbers.
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Theorem 5.1. (Conditional LLN) Suppose Assumptions 3.1-3.3 and 5.1 hold. Then

under any assumptions on equilibrium selection, the average

1

n

n∑

i=1

m(ymi,n, Ĝmn; θ) → E [m(ym1, G
∗
m0; θ)|F∞] a.s.

as n→ ∞ under a coupling satisfying the requirements of Definition 3.1. Moreover, conver-

gence is uniform in θ.

Since this law of large numbers is uniform with respect to θ, it can be used to derive

consistency results for θ or parameter sets based on moment restrictions as those derived in

section 4.1.

For inference and confidence statements, we next develop a distribution theory that is

conditional on the tail events in F∞. To this end we are going to consider mixing convergence

in distribution: We say that for a real-valued random sequence Zn and a random variable

Z convergence in distribution, Zn
d→ Z, is mixing relative to the sigma-field F∞ if for all

events A ∈ F∞,

lim
n
P ({Zn ≤ z}|A) = P (Z ≤ z)

at all continuity points z of the c.d.f. of Z, see Hall and Heyde (1980). In general, conditions

on the coupling to obtain a CLT with mixing will be more restrictive than what was needed

for a conditional LLN. We will focus on the case of aggregate games described in section 4,

and propose a fairly intuitive approach to incorporating equilibrium conditions as additional

estimating equations into a derivation of the asymptotic distribution of m̂n(θ).

We derive the asymptotic distribution of
√
n(m̂n(θ)−m0(θ)) conditional on F∞ by aug-

menting the estimating equations by a state condition which defines equilibrium in the limit-

ing game, but only approximates the fixed-point condition for the finite player game. Recall

first that by Proposition 3.1, any Nash equilibrium G∗
mn in the aggregate game satisfies the

fixed-point condition

0 ∈ 1

n

n∑

i=1

E [ψn(tmi;G
∗
mn)|wm]−G∗

mn

With some abuse of notation, in the following we writem((x′, ψ)′, G; θ) to denote the moment

function m((x, ·), G; θ) evaluated at a realization of s under some distribution in ψ. We can

then stack the moment and fixed point conditions, and consider the joint distribution of
[
m̂n(G, θ)

Ψ̂n(G)

]
:=

1

n

n∑

i=1

[
m((ψn(tmi;G), x

′
mi)

′, Ĝmn(G); θ)

E [ψn(tmi;G)|wm]

]

where Ĝmn(G) :=
1
n

∑n
i=1 sn(ti;G), and (sn(ti;G))i≤n are independent realizations of random

variables in S with respective distributions ψ∗
n(ti;G) ∈ ψn(ti;G).
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Given θ, we let the random variable G∗
m0 := E[s1|F∞] be the limiting equilibrium value

of the aggregate conditional on F∞. Also, let m∗
m0 := E[m((ψ0(tmi;G

∗
m0), x

′
i)
′, G∗

m0; θ)|F∞],

and µm0 := (m∗
m0, G

∗
m0)

′. Similarly, define m̂mn := 1
n

∑n
i=1mn(ymi, Ĝmn; θ) and µ̂mn :=

(m̂mn, G
∗
mn).

We can then express the stacked moment conditions defining µ̂n in a more compact nota-

tion by defining the multi-valued function

rn(tmi; θ, µ) :=

[
m((ψn(t

′
mi, G), x

′
i)
′, Ĝmn(G); θ)−m

E [ψn(tmi;G)|wm]−G

]

By inspection, holding θ ∈ Θ constant, µ̂n is a solution of the inclusion

0 ∈ r̂n(θ, µ̂n) :=
1

n

n∑

i=1

rn(tmi; µ̂n)

Now let ψ∗
0(tmi;G) ∈ ψ0(tmi;G) be an arbitrary selection of the limiting best response

correspondence, and let

r(tmi; θ, µ) :=

[
m((ψ∗

0(tmi;G), x
′
i)
′, G; θ)−m

E [ψ∗
0(tmi;G)|wm]−G

]

It follows that for a given value of θ and under the conditions of the theorem, µ0 is a solution

of

0 = r0(θ, µ) := E [r(tmi; θ, µ)|F∞]

Note that the general structure may be similar in other settings, e.g. dynamic games or

matching markets, although in these classes of games the equilibrium condition will typically

be infinite-dimensional.

For the derivation of the asymptotic distribution of m̂n(θ) we denote the Jacobians

ṀG(θ) := ∇GE [m(ymi, G; θ)|F∞]|G=G∗

m0

ḂG(θ) := ∇GE [m((ψ0(tmi;G)
′, x′mi)

′, G; θ)|F∞]|G=G∗

m0

and

Ψ̇G :=




∇G P (δs(1) ∈ ψ0(tmi;G)|F∞)|G=G∗

m0
...

∇GP (δs(p) ∈ ψ0(tmi;G
∗
m0)|F∞)|G=G∗

m0




Note that ḂG(θ) and ṀG(θ) also generally depend on θ, although for the remainder we are

going to consider asymptotic distributions for a fixed value of θ and will therefore suppress

the argument.

Also define

bmi(θ) := m(ymi; θ)−m∗
0 + ṀG (ψ0(tmi;G

∗
m0)− E [ψ0(tmi;G

∗
m0)|wm])
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and the conditional covariance matrices

Ωbb′(θ) := E[bmi(θ)−m∗
0)bmi(θ)

′|F∞]

Ωψψ′(θ) := E
[
(E [ψ∗

0(tmi;G
∗
m0)|wm]−G∗

m0) (E [ψ∗
0(tmi;G

∗
m0)|wm]−G∗

m0)
′
∣∣F∞

]

Ωbψ′(θ) := E
[
(bmi(θ) (E [ψ∗

0(tmi;G
∗
m0)|wm]−G∗

m0)
′
∣∣F∞

]

In general this variance matrix depends on the information structure of the game. In the

pure private types model, E [ψ∗
0(tmi;G

∗
m0)|wm] is F∞-measurable, so that Ωmψ′ and Ωψψ′ are

both equal to zero. In the complete information model, ψ∗
0(tmi;G

∗
m0) is a.s. wm-measurable,

so that the conditional expectation is equal to the random variable itself. We also let

Ω(θ) :=

[
Ωbb′(θ) Ωbψ′(θ)′

Ωbψ′(θ) Ωψψ′(θ)

]

where in the following we are going to suppress the argument θ with the understanding that

results are for any fixed value of θ ∈ Θ.21

We now impose standard regularity conditions on the problem that ensure a joint normal

asymptotic distribution for the aggregate state and the moment conditions m̂n(θ):

Assumption 5.2. (i) The equilibrium points G∗
m0 ∈ G∗

m0 are interior points of ∆S, (ii) the
class Ms := {m((x′mi, s)

′, G; θ) : G ∈ ∆S, θ ∈ Θ} is Donsker with respect to the distribution

of xmi for each s ∈ S with a square-integrable envelope function, (iii) the eigenvalues of

Ω are bounded away from zero and infinity almost surely, and (iv) for all values of y ∈ Y,

m(y,G; θ) is differentiable in G and θ, and the derivative ∇Gm(y,G; θ) is uniformly bounded

and continuous in G.

The first part of this assumption ensures that the aggregate state Ĝmn is a regular pa-

rameter in the sense of Bickel, Klaassen, Ritov, and Wellner (1993) conditional on any tail

event in F∞. It is possible to show that this condition is satisfied e.g. if Assumption 3.3

(ii) is strengthened to hold with all eigenvalues of ∇t·1u(t, G) bounded away from zero, and

if the conditional support of t·1 given t·2 is equal to Rp−1. Under those additional condi-

tions, for every action s ∈ S and G ∈ ∆S there is a positive mass of types such that s is a

best response to G, so that Ψm0(G) ∈ int ∆S, and therefore every fixed point has to be in

the interior of ∆S. Parts (ii) and (iii) of this assumption are fairly standard. Under these

additional conditions, we can obtain the following CLT:

21Note that since marginal distributions are F∞-measurable, conditioning on F∞ already implies condition-
ing on the type distribution Hm(x, ε). For a “fixed design” approach to inference that is conditional on the
realized unordered sample {X1, . . . , Xn}, the matrix Ω(θ) can be replaced by a conditional variance matrix
where in the definition of the individual components of Ω(θ), the unconditional means m∗

0 and G∗
m0 are

replaced by their respective conditional means given xmi, E[m(tmi, G
∗
m0; θ)|xmi] and E[ψ∗

0(tmi;G
∗
m0)|xmi].

For variance estimation, these conditional means can be replaced by consistent estimators.
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Theorem 5.2. Suppose that Assumptions 3.1-3.3 and 5.2 hold. Then ḂG and (Ip − Ψ̇G)
−1

are well defined, and

√
n (m̂n(θ)− E[m(ym1, G

∗
m0; θ)|F∞])

d→ Z1 + ḂG(Ip − Ψ̇G)
−1Z2 (5.1)

mixing and uniformly in θ under a coupling satisfying the requirements of Definition 3.1,

where [
Z1

Z2

]
∼ N

([
0

0

]
,

[
Ωbb′ Ωbψ′

Ωψb′ Ωψψ′

])

This theorem is proven in the appendix. Note that despite the asymptotic conditional

independence of players’ actions by de Finetti’s theorem, we need to correct the asymptotic

variance for dependence after centering the statistic m̂n(θ) around its conditional limit.

The crucial difference to the case in which the unobserved characteristics εmi are private

information lies in the adjustment for the asymptotic variance of m̂n for endogeneity of

Ĝmn with respect to the actual realizations of the unobserved types. The correction term

is different from the variance adjustment in Shang and Lee (2011)’s analysis of the private

information case, where the realized value of Ĝmn = 1
n

∑n
i=1 smi takes the role of a noisy

measurement for its expected value in equilibrium: we already saw that in the pure private

types model, Ωψψ′ = 0, so that no adjustment is needed for the variance of the moment

m̂n(θ). More generally, the definition of Ωψψ′ together with the conditional variance identity

implies that the matrix Ωψψ′ and therefore the size of the variance adjustment increase (in

the positive definite matrix sense) in the amount of information that is shared among the

players.

There are several important cases in which the conditional expectation of the moment

function does not vary in the value of the aggregate G∗
m0, in which case no variance adjust-

ment is necessary. The following result can be verified immediately from the definition of

ḂG(θ):

Lemma 5.1. Suppose the moment functions satisfy

E [m ((ψ0(tmi;G), x
′
mi)

′, G; θ)| F∞] = 0

almost surely and for all values of G and some θ. Then ḂG(θ) = 0.

Examples for this property include any moment equalities characterizing the parameter θ

or the score functions for the maximum likelihood estimator. It should be noted that in these

cases, the premise of Lemma 5.1 typically holds only at the population parameter θ, but not

alternative values, furthermore, this property is generally not robust to misspecification of

the moment functions.

The result can also be easily adapted to settings in which the econometrician only observes

a random subsample of N < n players in the game. As before, we let qmi be an indicator
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variable that equals one if agent i in market m is included in the sample, and zero otherwise,

and (qmi)i≤n are independent of ym1, . . . , ymn. We can then define

m̃N (θ) :=
1

N

n∑

i=1

qmim(ymi,n, Ĝmn; θ)

and apply Theorem 5.2 to m̃N (θ) to obtain its asymptotic distribution.

Corollary 5.1. Suppose the assumptions of Theorem 5.2 hold, and we observe a random

sample of N ≤ n players’ type-action profiles, where n
N

is bounded and limn
N
n
→ α ∈ [0, 1].

Then √
N (m̃N(θ)− E[m(ym1, G

∗
m0; θ)|F∞])

d→ Z1 +
√
αṀG(Ip − Ψ̇G)

−1Z2

mixing and uniformly in θ under a coupling satisfying the requirements of Definition 3.1,

where Z1 and Z2 have the same properties as before.

This result also helps highlight the different roles played by the number of players in the

game and sample size in the asymptotic experiment. Specifically, the variance adjustment

accounting for the equilibrium condition is important only if the size of the observed sample

is of the same order of magnitude as the number of agents in the market.

5.1. Variance Estimation. We now turn to estimation of the conditional asymptotic vari-

ance for m̂n(θ): Given a sample ym1, . . . , ymn we can estimate the Jacobians ḂG, ṀG, and Ψ̇G

either parametrically given the distribution of tmi, or nonparametrically to obtain ̂̇BG,
̂̇
MG,

and ̂̇ΨG. For semi-parametric index models - including our second application of semipara-

metric estimation of the sign of the interaction effect - this derivative can be estimated at a

root-n rate in the presence of a continuous observed covariate with a nonzero coefficient, e.g.

using Powell, Stock, and Stoker (1989)’s weighted average derivative estimator with constant

weights (see their Corollary 4.1), or the estimator proposed by Horowitz and Härdle (1996)

if only a finite number of markets are observed, so that variation in G∗
mn is only discrete.

We therefore state the following high-level assumption for consistent variance estimation:

Assumption 5.3. (i) For every value of s ∈ S, the first two moments of |m((s, x′mi)
′, G; θ)|

are bounded by a constant for all G ∈ ∆S θ ∈ Θ, (ii) there exist consistent estimators ̂̇BG,
̂̇
MG, and

̂̇ΨG for the Jacobians ḂG, ṀG, and Ψ̇G, respectively, and (iii) we have a consistent

estimator ψ̂mi,n for the conditional expectation E[ψ∗
0(tmi;G

∗
mn)|wm].

For primitive conditions for part (ii) of this assumption, see e.g. Powell, Stock, and

Stoker (1989) and Horowitz and Härdle (1996), where we can combine their consistency

arguments with the conditional law of large numbers in Theorem 5.1. Note in particular

that identification of the Jacobians using the arguments in Horowitz and Härdle (1996)
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requires that we observe at least two markets with different limiting values of the aggregate

state, either due to differences in type distributions or equilibrium selection.

For part (iii), a suitable estimator ψ̂mi,n has to account for the assumed (or estimated)

information structure of the game: in the complete information case, ψ∗
0(tmi;G

∗
m0) is under

Assumption 3.3 a.s. unique. Hence we have that w.p.a.1, ψ∗
0(tmi;G

∗
mn) = δsmi

, the unit

vector in the direction corresponding to the action smi. If the public signal wm only contains

information about the observable types x1, x2, . . . , then a consistent parametric or nonpara-

metric estimator for the conditional expectation of δsmi
given wm can be used for ψ̂mi,n. If

the public signal is partially informative about the unobserved types ε1, ε2, . . . , and we have

a parametric model for the joint distribution of wm and the unobserved types, a parametric

estimator may be constructed from that model. This includes the setup in Grieco (2012) in

which unobserved shocks are the sum of two independent normal random variables, εmi+ξmi,

where ξmi is publicly observable and εmi is a private signal.

We can now define

v̂mi,n(θ) := [m(ymi,n, Ĝmn; θ)−m̂n(θ)]+
̂̇
MG[δsmi

−ψ̂mi,n]+ ̂̇BG(Ip− ̂̇ΨG)
−1[ψ̂mi,n−Ĝmn] (5.2)

Then a consistent estimator for the asymptotic variance is given by

V̂n = V̂n(θ) :=
1

n

n∑

i=1

v̂mi,n(θ)v̂mi,n(θ)
′

We also let A := [Iq, (I− Ψ̇′
G)

−1Ḃ′
G]

′. Our findings are summarized in the following corollary.

Corollary 5.2. Suppose the conditions of Theorem 5.2 and furthermore Assumption 5.3

hold. Then

V̂n → A′ΩA a.s.

under a coupling satisfying the requirements of Definition 3.1. Furthermore,

√
nV̂ −1/2

n (m̂n(θ)− E[m(ym1, G
∗
m0; θ)|F∞])

d→ N(0, Iq) (mixing)

See the appendix for a proof. Variance estimation for statistics based on a random sub-

sample of agents as considered in Corollary 5.1 is completely analogous where vmi,n(θ) is

replaced with

v̂mi,N(θ) := [m(ymi,n, ĜmN ; θ)−m̂N (θ)]+
̂̇
MG[δsmi

−ψ̂mi,N ]+
√
N

n

̂̇
BG(Ip− ̂̇ΨG)

−1[ψ̂mi,N−ĜmN ]

where the estimators for ṀG, Ψ̇G, and ψ̂mi,N are replace with their subsample analogs, and

ĜmN := 1
N

∑n
i=1 qmiψ̂mi,N is the empirical distribution of actions in the observed subsample.
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6. Simulation Study

For ease of exposition, we restrict attention to the case of binary choice with social in-

teractions, so that in the baseline case of anonymous interactions, the aggregate state G is

a scalar. The unobserved characteristic εmi ∼ N(0, 1) is i.i.d. across agents and indepen-

dent of xmi. The component εmi is not observed by the econometrician, but the full types

tmi = (x′mi, εmi)
′ are common knowledge among players.

Our simulated data is generated by a complete-information model in which interactions

are anonymous,

umi(s, t) := smi

(
x′miβ +∆0

1

n

n∑

j=1

smj + εmi

)
(6.1)

with an interaction effect ∆0 ≥ 0. Note that since ∆0 is nonnegative, the game is one

with strategic complementarities. We can therefore use a tâtonnement algorithm to find

the smallest and the largest equilibria (which are both in pure strategies) for any size of

the market.22. Since actions are binary and the adaptive best-response dynamics starting at

the infimum (supremum) of the strategy space are non-decreasing (nonincreasing), we can

implement an algorithm that finds either extreme equilibrium in at most n steps.

We first demonstrate convergence of the best response correspondence underlying the basic

argument for conditional convergence for aggregate games in section 4. In order to obtain a

parsimonious simulation design that generates multiple equilibria, we model types as includ-

ing both discrete and continuous components. To be specific, xi is a discrete variable which

takes values −5 or +5 with probability 0.2 each, and zero with probability 0.6. It is easy

to verify that due to the positive sign of the interaction effect ∆0, ψn(t;G) is single-valued

for all finite n and values of G and t. Figure 6 shows the average response correspondence

Ψ̂mn(G) for a single realization of a market with n = 5, 20 and 100 players, respectively

together with the limiting function Ψm0(G). The limiting best response mapping Φ0(G)

has exactly three fixed points, and for the realizations of the simulation draw shown in the

figure, the finite-player versions of the game have three or five different equilibrium values

for G∗
mn. In general there may be multiple equilibria supporting the same value of G∗

mn,

and the probability that the number of distinct equilibrium distributions in the finite player

game coincides with the number of fixed points of Ψ0(G) is strictly less than one.

We now turn to simulations of statistics of the type analyzed in section 5 in order to

assess the quality of the asymptotic approximations. The Jacobians in the expression for the

variance in equation (5.1) can be obtained if we have an estimator for the conditional marginal

effects given xmi, q(x,G) := ∇GE [ψ0(tmi;G)|xmi = x]. If the conditional distribution of εmi

given xmi is continuous and fixed with respect to xmi with p.d.f. hε(z), the conditional

model for ψ0(tmi;G) given xmi has the linear index structure considered by Powell, Stock,

22see Theorem 8 and corollaries in Milgrom and Roberts (1990)
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Figure 2. Ψ̂mn(G) for n = 5, 20, 100, and Ψm0(G) (bottom right)

and Stoker (1989) and Horowitz and Härdle (1996), and we can obtain consistent estimators

for the index coefficients ∆̂n and β̂n, and for the conditional p.d.f. ĥn(·). We can then

form q̂n(x,G) := ∆̂ĥε(x
′β̂n + ∆̂nG). Since in our setup observable types are discrete and

the number of markets is finite, the conditional marginal effects are in general not point-

identified without parametric assumptions on the conditional distribution of εmi given xmi.

We therefore use the usual parametric estimator for q(x,G) based on the Probit specification,

q̂(x,G) := ∆̂n

σ
ϕ
(
x′β̂n+∆̂nG

σ

)
, where ϕ(·) is the standard normal p.d.f..

For the binary action case, let d(x; θ) := m((1, x′)′; θ)−m((0, x′)′; θ) so that we can express

ṀG = E [d(xmi; θ)q(xmi, G
∗
m0)|G∗

m0] and Ψ̇G = E[q(xmi, G
∗
m0)|G∗

m0]

We can then obtain estimates of the Jacobians by replacing q(x,G) with its estimator q̂(x,G),

G∗
m0 with Ĝmn, and expectations with sample averages over the observed values of xmi,

̂̇
MG =

1

n

n∑

i=1

d(xmi; θ)q̂(xmi, Ĝmn) and ̂̇ΨG =
1

n

n∑

i=1

q̂(xmi, Ĝmn)

Given a consistent estimator q̂(x,G) for the conditional marginal effect, we can plug these

estimators into the expression for v̂in in equation (5.2) and obtain a consistent estimator for

the variance matrix of m̂n(θ). Figure 6 shows kernel density approximations to the simulated

p.d.f.s for G∗
mn and the corresponding t-ratios, where we standardize the deviations of G∗

mn

from the respective limiting values with the estimated standard deviation based on (5.2).
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Figure 3. Simulated p.d.f. of Ĝmn (left panel), and its studentization Ẑn =√
n
Ĝmn−G∗

m0√
V̂G,n

(right panel) for n = 10, 20, 50, 100.

Next we report results on the performance of estimators for the parameters β and ∆ for

the binary game, where we vary the number of players in each game, n, and hold the number

of markets constant atM = 20. The specification of this model includes a constant β0 = 0.5

and a coefficient on the scalar player characteristic x, β1 = 1, where x was generated from

a normal distribution with marginal variance equal to one and a within-market correlation

coefficient equal to 0.5. In this setup, it is in general necessary to have different distributions

of observable characteristics in different markets to generate sufficient variation in Ĝmn to

identify the interaction parameter ∆0, which is set equal to 1 in our simulation experiments.

In the presence of multiple equilibria, we select the highest equilibrium in half the markets,

and the lowest equilibrium in the remaining markets.

Table ?? reports measures of location and scale for the distribution of the maximum like-

lihood estimator θ̂ML based on the limiting model, as well as the bias corrected estimator

θ̂BC . The estimator θ̂BC results from the bootstrap bias reduction procedure described in

the appendix. We discard bootstrap draws which result in perfect classification, or for which

the maximization routine for computing the MLE does not converge after 100 iterations.

Simulation results are based on 1,000 Monte Carlo replications, and the bias corrected es-

timator uses S = 100 bootstrap samples. Computation of the estimators is straightforward

and was done using Matlab’s standard routine for estimating generalized linear models, and

obtaining the full set of simulation results reported in the tables took less than 4 hours on

a standard laptop computer.

The simulation results show that the MLE based on a first-order approximation to the

limiting game exhibits severe biases for small values of n, as expected, especially for the

interaction parameter ∆0. Notice also that since the number of markets is fixed at M = 20,

the standard error for the estimated interaction parameter decreases only relatively slowly
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n β̂ML
0 β̂ML

1 ∆̂ML
0 β̂BC0 β̂BC1 ∆̂BC

0

5 0.609 0.996 1.140 0.494 0.978 1.034
(0.168) (0.304) (0.646) (0.159) (0.272) (0.381)

8 0.555 1.001 1.095 0.502 1.005 0.968
(0.150) (0.249) (0.587) (0.133) (0.223) (0.354)

10 0.529 0.989 1.125 0.497 1.001 0.978
(0.136) (0.223) (0.597) (0.124) (0.200) (0.377)

15 0.513 0.989 1.116 0.502 1.009 0.975
(0.126) (0.180) (0.498) (0.111) (0.162) (0.337)

20 0.504 0.989 1.120 0.502 1.011 0.987
(0.117) (0.163) (0.476) (0.104) (0.146) (0.341)

50 0.492 0.983 1.084 0.498 0.998 1.000
(0.079) (0.099) (0.303) (0.072) (0.093) (0.254)

100 0.491 0.992 1.051 0.497 1.000 1.003
(0.060) (0.074) (0.231) (0.057) (0.071) (0.209)

200 0.498 0.998 1.020 0.501 1.002 0.995
(0.043) (0.053) (0.168) (0.042) (0.052) (0.160)

DGP 0.500 1.000 1.000 0.500 1.000 1.000

Table 1. Mean and standard deviation (in parentheses) of MLE and boot-
strap bias corrected MLE

as n grows. We can also see that the bootstrap bias correction removes a substantial part

of that bias with only minor or no increases in estimator dispersion.23 While even after bias

reduction, the estimator for the interaction parameter at n ≤ 15 still exhibits a bias that

is substantial in terms of absolute size (around 0.03), it is substantially smaller than the

standard error of the estimator (around one tenth of the magnitude) even for a game with as

few as n = 5 players. Hence for estimation, the approximation bias is not particularly large

even for games with a relatively small number of players in terms of its relative contribution

to the asymptotic mean-square error or other measures of estimator precision. However, for

inference, biases of this magnitude will lead to severe size distortions, so that we may choose

to rely on approximations of this type only for games that have a moderate to large number

of players.

We also simulate the analytical standard errors implied by Theorem 5.2 and Corollary 5.2.

Note that by Lemma 5.1 it is not necessary to adjust the asymptotic variance of the MLE for

dependence of players’ actions despite having generated the data from a complete information

game. Furthermore, since the bias correction is only of the order n−1, the analytical standard

errors for the bias-corrected and uncorrected MLE are the same to first order. Table ??

23Simulations with other parameter values and type distributions give similar results. However in cases in
which we have near-violations of the regularity condition in Assumption 3.2 (e.g. if the mapping Φ0 has two
fixed points that are very close to each other), the performance of the bias reduction procedure deteriorates
substantially for small values of n, as should be expected.
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n β̂ML
0 β̂ML

1 ∆̂ML
0 β̂BC0 β̂BC1 ∆̂BC

0

5 0.172 0.290 0.811 0.172 0.290 0.811
(0.168) (0.304) (0.646) (0.159) (0.272) (0.381)

8 0.162 0.245 0.758 0.162 0.245 0.758
(0.150) (0.249) (0.587) (0.133) (0.223) (0.354)

10 0.160 0.225 0.728 0.160 0.225 0.728
(0.136) (0.223) (0.597) (0.124) (0.200) (0.377)

15 0.147 0.191 0.646 0.147 0.191 0.646
(0.126) (0.180) (0.498) (0.111) (0.162) (0.337)

20 0.135 0.169 0.575 0.135 0.169 0.575
(0.117) (0.163) (0.476) (0.104) (0.146) (0.341)

50 0.092 0.107 0.375 0.092 0.107 0.375
(0.079) (0.099) (0.303) (0.072) (0.093) (0.254)

100 0.065 0.075 0.259 0.065 0.075 0.259
(0.060) (0.074) (0.231) (0.057) (0.071) (0.209)

200 0.045 0.052 0.177 0.045 0.052 0.177
(0.043) (0.053) (0.168) (0.042) (0.052) (0.160)

Table 2. Analytical standard errors (means across simulation draws) and
simulated standard deviation (in parentheses) of MLE and bootstrap bias cor-
rected MLE

reports the mean of the analytical standard error across simulated samples together with the

simulated standard deviation of the uncorrected and the bias corrected MLE, respectively,

in parentheses (the latter coincide with the simulated standard deviations in Table ??). We

find that the analytical standard errors somewhat overestimate true estimator dispersion for

small n, but approximate the simulated quantities as n grows large. The approximation

works substantially better for the uncorrected MLE and the parameters β0 and β1. In

practice, it may be preferable to use bootstrap or simulation methods to obtain higher-order

accurate standard errors for games of small or moderate size.

In order to evaluate inference based on the asymptotic results in section 5, we also simulate

null rejection frequencies for tests based on the individual coefficients. Specifically, we test the

null of the “true” respective values of the parameters β0, β1,∆0 used for the data generating

process using t-tests based on the MLE (both corrected and uncorrected) at a nominal size

of α = 0.05. For all tests, we use the analytical standard errors and Gaussian limiting

approximation suggested by Corollary 5.2. Overall, the tests based on the bias-corrected

estimator rejects at a rate of less than 0.055 for all n ≥ 8, however rejection rates for the

interaction parameter ∆0 are distorted downwards due to the upward bias of the analytical

standard error for n ≤ 50. Tests based on the uncorrected MLE overreject at a substantial

rate for small to intermediate values of n.
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n β̂ML
0 β̂ML

1 ∆̂ML
0 β̂BC0 β̂BC1 ∆̂BC

0

5 0.089 0.079 0.145 0.056 0.060 0.023
8 0.061 0.081 0.122 0.038 0.053 0.011
10 0.044 0.085 0.146 0.047 0.052 0.021
15 0.050 0.069 0.097 0.039 0.035 0.012
20 0.067 0.083 0.132 0.043 0.041 0.024
50 0.066 0.070 0.081 0.046 0.043 0.024

100 0.069 0.061 0.071 0.048 0.051 0.036
200 0.052 0.062 0.063 0.046 0.052 0.049

Table 3. False rejection rates for a t-test for the true parameter values at
the nominal 95% significance level

Appendix A. Bias Reduction

In this appendix, we give a description of a parametric bootstrap procedure for bias reduction which

we implemented for the simulations in section 6. It is important to note that the (singleton-valued) bias

correction is in general only valid if the mapping ψn(t;G) is single-valued at all values t = tm1, . . . , tmn

and G in some neighborhood of G∗
m0. For the simulation experiments in section 5, the positive sign of the

interaction parameter ∆0 guarantees that this is indeed the case in that specific example. Our discussion

of this specific case is meant to illustrate the usefulness of asymptotic expansions for estimation problems

in which the number of players is not large enough for the first-order approximations to be precise enough.

The formulation of a more general (potentially set-valued) bias correction procedure is beyond the scope of

this paper and will be left for future research.24

Resampling as a systematic means for (higher-order) bias reduction was first proposed by Quenouille

(1956) and James Tukey. Bias correction using bootstrap was proposed in Efron (1979)’s seminal paper. For

a comparison between Jackknife and analytical bias corrections in the context of nonlinear panel models, see

also Hahn and Newey (2004). For expositional convenience, we focus on the case of complete information,

however a similar strategy can be used for other assumptions on the information structure of the game. For

this part, denote the MLE for β = (θ′, G′
0)

′ using the full sample with β̂n = (θ̂′n, Ĝ
′
mn)

′, assuming that the

parameter θ is point identified, and other regularity conditions are met.

For the bootstrap estimator of the bias term, we generate B conditional bootstrap samples, where the

bth sample is of the form
(
t̃mi
)
i≤n, where t̃mi = (x′mi, ε̃

′
mi)

′ and ε̃mi is a random draw from the distribution

H(ε). We then let β̃b := (θ̃′b, G̃
′
b)

′ be the solution of the equations

0 =
1

n

n∑

i=1

m((x′mi, ψn(t̃mi; G̃b)); θ̃b)

G̃b =
1

n

n∑

i=1

ψn(t̃mi; G̃b, θ̂n)

where in the case of multiple roots for the equilibrium conditions, we pick the solution that is closest to Ĝmn.

24Note that it is generally possible to form conservative bounds for the higher-order bias based on the influence
functions for θ, where we take component-wise minima and maxima over the potentially non-unique best
responses s ∈ ψn(tmi;G).
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For incomplete information games, we can simply replace the second equation in the previous display with

G̃b =
1

n

n∑

i=1

Ê

[
ψ∗
n(t̃i; G̃b, θ̂n)

∣∣∣wm
]

if wm is observed by the researcher, where Ê [·] denotes a parametric or semi-parametric estimator of the

respective conditional choice probabilities for s(1), . . . , s(p) given wm. If the public signal wm contains

information that is not observed by the researcher, then θ̃b and G̃b could be obtained by solving the above

equations where the unobserved components of wm are replaced with simulation draws that are independent

for b = 1, . . . , B, resulting in simulated public signals w̃m,1, . . . , w̃m,B.

The bootstrap bias corrected estimator for θ is then given by

θ̂BC = 2θ̂n − 1

B

B∑

b=1

θ̃b

It is beyond the scope of this paper to provide an analytical derivation of the higher-order bias of the regular

MLE θ̂, but to illustrate the basic idea behind this procedure, note that the expectation of a regular estimator

for β = (θ′, G′
0)

′ generally admits an expansion

EF [β̂] = β +
Bias(F )

n
+O

(
n−2

)

where the θ subscript indicates an expectation taken with respect to the population distribution F which

may be characterized by θ and other nuisance parameters. Note that from a CLT, the Op
(
n−1/2

)
term in the

stochastic expansion of a regular estimator β̂ has expectation equal to zero. This expansion can be shown

to be valid for the parameter values in section 6, where the positive sign of the interaction effect guarantees

that ψn(tmi;G) is single-valued for each individual and all values of G.25

The bootstrap estimator of the bias uses samples from an estimate F̂n of the population distribution,

where β̂n = β(F̂n) is a smooth functional of the estimated distribution. Therefore, the MLE based on a

bootstrap sample admits an analogous expansion

EF̂n
[β̂n] = β̂n +

Bias(F̂n)

n
+O

(
n−2

)

Since F̂n is known, we can either compute or approximate the expectation on the left hand side as an average

over estimates β̃s obtained from bootstrap samples b = 1, . . . , B, and obtain an estimator of the bias term,

1

n
B̂ias :=

1

B

B∑

b=1

θ̃b − β̂n =
Bias(F̂n)

n
+O

(
n−2

)
+OP

(
B−1/2

)

In the simulation experiments in section 5, the data generating process F is assumed to be known up to

the parameter θ and an equilibrium selection mechanism, so that (first-order) consistency of θ̂ML implies

convergence of the empirical law. Hence, if the second-order bias Bias(F ) is a continuous functional of F

with respect to some norm, and the empirical or estimated law F̂ converges weakly to F with respect to

that same norm, the bootstrap bias corrected estimator satisfies

E[θ̂BC ] = θ +
Bias(F )− E[Bias(F̂n)]

n
+O

(
n−2

)
= θ +O

(
n−2

)

25However in general B(F ) may be set valued, so that the bias reduction procedure described in this appendix
is not universally valid. We leave the construction of (potentially set-valued) bias corrections for a more
general setting for future research.
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Note that in general sampling error in the equilibrium value of G∗
mn contributes to the higher-order bias in

the MLE for θ, so that in general it is necessary to re-solve for the new equilibrium values G̃b.

Appendix B. Extensions of the Baseline Model

This appendix discusses extensions of the baseline version of the aggregate game introduced in section

2. For one, we show how to allow for aggregate states that are a generalized index of players’ types and

actions. Furthermore, we show how to extend our results for aggregate games to cases in which interaction

effects may be type-specific. We also generalize the convergence results from section 3 to the case in which

the population best-response mapping Ψm0(G) may be set-valued.

B.1. Aggregate States depending on Player Types. In the baseline version of our game-theoretic

model, payoffs were assumed to depend only on the empirical distribution of other players’ actions. In some

applications, the relevant state variable is a more general index aggregating players’ types and actions within

the market. Specifically, payoffs may depend on an aggregate state variable of the form

Gmn(σ) :=
1

n

∑

s∈S

n∑

j=1

E [σmj(s)K(s, tmj , ξm)|wm]

where ξm is a vector of market-specific state variables that takes values in some set Ξ, andK : S×T ×Ξ → Rq

is a known function.

For example, in an entry game the entry of a “larger” firm into a market may have a larger effect on other

potential entrants’ profits than entry of a small competitor. If firms compete in a static Cournot oligopoly

upon entering the market, then the continuation values for the entry decision depend on an index of marginal

costs among entrants rather than only their number. As an empirical example, Ciliberto and Tamer (2009)’s

heterogeneous competitive effects specification allows for each airline to have a different effect on all other

competitors, but e.g. entry of American Airlines has the same effect on each of the other carriers.

As another example, Todd and Wolpin (2012) develop a model for education outcomes where teachers’ and

students’ effort are complementary inputs in students’ mastery of the curriculum. If the teacher is rewarded

based on the average level of student knowledge in the class room at the end of the year, her optimal effort

choice depends on an index aggregating students’ effort levels in the classroom. Hence, students’ effort

choices are strategic complements in incentivizing teacher effort, and are determined in a static coordination

game of complete information. While student effort emi is modeled as a continuous choice, their model

includes a fixed cost for exerting any effort that is strictly greater than a minimal level emi. Denoting the

interior solution to the student’s optimization problem after incurring the fixed cost with e∗mi > emi, the

student’s problem reduces to a discrete choice between the corner solution emi or the interior solution e∗mi,

and we can define the binary choice indicator smi := 1l{emi > emi}. Given that notation, Todd and Wolpin

(2012) show that in their model that student i’s optimal effort level depends only on his own type tmi,

teacher and classroom characteristics ξm, and the state variable of the form26

Gmn(σ) :=

n∑

j=1

smjK(tmj),

where K(tmj) is a nonlinear function of student j’s initial level of knowledge, variable cost of exerting effort,

and marginal utility of knowledge.

26See equation (7) in their paper.
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Using the same notation as before in the paper, we can define the expected response function

Ψ̃m0(G) := E

[∑

s∈S
ψ0(tmi;G, s)K(s, tmi, ξm)

]

and the aggregate response mapping

Ψ̂mn(G) :=
1

n

n∑

i=1

E

[∑

s∈S
ψn(tmi;G, s)K(s, tmi, ξm)

∣∣∣∣∣wm
]

where ψ0(t;G, s) and ψn(t;G, s) denote the coordinate of ψ0(t;G) and ψn(t;G), respectively, corresponding

to the pure action s. It is then straightforward to verify that any value of G∗
mn supported by a Nash

equilibrium has to satisfy the fixed point condition G∗
mn ∈ Ψ̂mn(G

∗
mn).

Then, if the functionK(s, t, ξ) is bounded, the aggregate state variable Gmn only takes values in a compact

subset of Rq. Hence, if the modified mapping Ψm0(G) satisfies Assumption 3.2, it has only a finite number

of fixed points, and the conclusions of Theorem 3.1 and Proposition 3.2 generalize directly to this extended

model. Similarly, the asymptotic results of section 5 go through for this alternative model without any major

modifications.

B.2. Type-Specific Interactions. The reference model (2.2) assumed that players’ payoffs depend only

on the proportion of all players that chose a given action. In this appendix we give an extension in which

players’ decisions may also be influenced by the proportion of agents of a given type that choose each action.

Specifically, suppose there is a known function z : T → Z, where Z is some (finite or infinite) set, such that

z(tmi) captures all type-specific information that is relevant for any of the other players’ payoffs. We can

then define the extended aggregate state

Gmn(s, z;σ) :=
1

n

n∑

i=1

E [σmi(s)1l{z(tmi) = z}|wm] , s ∈ S

In the following, we denote the space of joint distributions over Z and S with ∆(S×Z). Given the extended

aggregate state, preferences are assumed to be of the form

ui(s, σ−i, t) = u (smi, Gmn(s, ·;σ−i), ti; θ) (B.1)

Since Gmn ∈ ∆(S × Z), this formulation allows for much richer forms of strategic interaction between

individual agents. For example the sign and strength of the interaction effect between player i and j may

be stronger if the distance between z(tmi) and z(tj) is small, or agents with certain values z(tmi) may have

a stronger strategic impact on other players than the average player.

This extension is highly relevant for empirical applications. For example, the empirical model for airline

entry in Ciliberto and Tamer (2009) groups companies as large versus medium airlines, and low cost carriers,

allowing competition effects on profits to vary within and across categories. In this case, the relevant

aggregate state would be the number of entrants of each type of airline. We can also use type-specific

interactions to accommodate models spatial interactions, where we treat player i’s “location” as part of her

type tmi, and the asymptotic experiments consists of adding new players at existing locations in T . In the

terminology of spatial dependence, a limiting sequence of this type can be understood as “infill” asymptotics

rather than relying on weak dependence in “increasing domain” asymptotics. However in that case the

assumption that the aggregate state G is finite-dimensional is restrictive.



44 KONRAD MENZEL

We now define the correspondences ψ0(t;G) and Ψm0(G) := E[ψ0(t;G)|wm] as in the case of no type-

specific interactions. Furthermore, we let

G̃−i,n(G, t, z, wm;σ) =
n

n− 1
G− 1

n− 1

{
E[ψ0(tmi;G)1l{tmi 6= t}|wm] + σP (tmi = t|wm)

}

if z(t) = z, and G̃−i,n(G, t, z, wm;σ) = G otherwise. Then

ψn(t;G) :=
{
σ ∈ ∆S | σ ∈ ψ0(G̃−i,n(G, t, wm;σ), t) and G̃−i,n(G, t, z, σ) ∈ ∆S

}

Then, following the same argument as in the proof of Propostion 3.1, the set of aggregate states sup-

ported by a Bayes Nash equilibrium equals the set of fixed points of the aggregate mapping Ψ̂mn(G) :=
1
n

∑n
i=1 E [ψn(tmi;G)|wm].

For the remainder of this discussion, we distinguish two cases depending on whether Z is finite or infinite.

In the first case, ∆(S×Z) is finite-dimensional and compact, so that all our main formal results remain valid

without any major changes. In order to allow for Z to be infinite, we have to allow for D := ∆(S × Z) to

be a general Banach space. Now, for a Banach space D, the mapping Ψm0 : D → D is Fréchet differentiable

if there exists a continuous linear map Ψ̇m0 : D → D such that for every compact set K ⊂ D,

sup
h∈K

sup
G+th∈D

∥∥∥∥
Ψm0(G + th)−Ψm0(G)

t
− Ψ̇m0(G)(h)

∥∥∥∥→ 0

as t → 0, see van der Vaart and Wellner (1996) section 3.9. Note that for D a subset of a Euclidean space,

Fréchet differentiability is equivalent to continuous differentiability of Ψm0, where for any vector h ∈ D the

linear mapping Ψ̇m0(G)(h) corresponds to the matrix product ∇GΨm0(G)h, and ∇GΨm0 is the Jacobian

matrix of Ψm0 at G.

For the remainder of this section, we take Assumptions 3.1 and 3.3 to hold with respect to the extended

aggregate G = G(s, z;σ). Note that neither assumption required that the aggregate G be finite-dimensional.

The following assumption replaces Assumption 3.2 from the main text.

Assumption B.1. (Regular Economy): For every θ ∈ Θ and population distribution H0 ∈ P, Ψm0(G)

is single-valued for all G ∈ ∆S and one of the following holds:

(i) The number of distributions G∗
m0 solving G∗

m0 ∈ Ψm0(G
∗
m0) is finite with probability 1, and the

mapping G − Ψm0(G) is Fréchet differentiable at each G∗
m0 with continuously invertible derivative

(I − Ψ̇m0(G
∗
m0)).

(ii) The number of cumulation points G∗
m0 of the sequence (G∗

mn)n≥1 is finite with probability 1, and at

any cumulation point G−Ψm0(G) is Fréchet differentiable at each G∗
m0 with continuously invertible

derivative (I − Ψ̇m0(G
∗
m0)).

where I denotes the identity. (b) Furthermore, for every δ > 0 we can find η > 0 such that d(G,G∗) > δ for

all fixed points G∗ implies d(Ψm0(G), G) > η.

The invertibility requirement on I − Ψ̇m0 generalizes the rank condition of Assumption 3.2. Since the

proof of Lemma 3.1 only used local uniqueness of equilibria from the rank condition of Assumption 3.2

together with compactness of ∆S, the additional requirement of a finite number of fixed points for Ψm0 in

part (a) is only restrictive if ∆(S ×Z) is not compact. In contrast, when Z is infinite we have to verify this

additional requirement separately. While to the knowledge of the author, there are no general conditions

guaranteeing a finite number of fixed points in that case, there are conditions on Ψm0 under which the fixed

point is unique - e.g. if Ψm0 is a contraction mapping, then uniqueness follows from Banach’s fixed point
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theorem. More generally, the main theorem of Kellogg (1976) gives a weaker condition for uniqueness on the

fixed point mapping, only requiring that the eigenvalues of Ψ̇m0(G) are different from 1 at all G ∈ ∆(S ×Z).

Part (b) is immediately satisfied in the case of finite Z since ∆(S ×Z) is compact. If Ψm0 is a contraction

mapping with contraction constant λ < 1, then part (b) holds with η = 1
1−λδ.

27 However more generally,

verification of this requirement for the infinite-dimensional case is not straightforward.

Together with Assumptions 3.1 and 3.3, Assumption B.1 is sufficient to establish the conclusion of Theorem

3.1. For the construction of a coupling, note that the proof of Proposition 3.2 requires the number of equilibria

to be finite, but does not use compactness or finite dimension of ∆S directly. Hence, the result still applies, so

that the law of large numbers in Theorem 5.1 generalizes immediately to the case of type-specific interactions:

Corollary B.1. (Law of Large Numbers) Suppose Assumptions 3.1, 3.3, B.1, and Condition 5.1 hold.

Then the average

1

n

n∑

i=1

m(ymi,n, Ĝmn; θ) → E [m(ym1, G
∗
m0; θ)|F∞] a.s.

If Z is a finite set, it is also straightforward to extend the central limit theorem in Theorem 5.2. For Z =

{z1, . . . , zJ} we can define ψ̄0(t, z;G) := ψ0(t;G)1l{z(t) = z} and the vector ψ̄0(t;G) =
(
ψ̄0(t, z1;G)

′, . . . , ψ̄0(t, zJ ;G)
′)′.

For an arbitrary selection ψ̄∗
0(tmi;G) ∈ ψ̄0(tmi;G), we can define Ω̄ as the conditional covariance matrix of(

m0(tmi, G; θ)
′,E[ψ̄∗

0(tmi;G)
′|wm]

)′
given F∞. Given this notation, we can state the asymptotic distribution

of the moment vector m̂n(θ) with type-specific interactions:

Corollary B.2. (Asymptotic Distribution) Suppose Assumptions 3.1, 3.3, 5.2, and B.1 hold, and that

Z is finite. Then the conclusion of Theorem 5.2 holds, where the matrices ṀG and Ψ̇G are taken to be

derivatives with respect to the extended aggregate state, and the covariance matrix Ω is given by Ω̄.

We do not derive the asymptotic distribution for the case of an infinite set Z which has the structure of a

semiparametric Z-estimation problem. However, it is important to note that the proof of Theorem 5.2 relies

on the existence of a coupling from Proposition 3.2, but does not require compactness or finite dimension

of ∆S otherwise. Given the coupling, Theorem 3.3.1 and Lemma 3.3.5 in van der Vaart and Wellner (1996)

continue to apply under Assumption B.1 even if the parameter G is not finite-dimensional. A fully rigorous

treatment of the case of an infinite set Z requires additional notation and regularity conditions and is beyond

the scope of this paper.

B.3. Convergence if Ψm0(G) is Set-Valued. This subsection discusses the case in which the limiting

equilibrium mapping is set-valued, which will in general be the case if the distribution of types is not

continuous. Specifically, we allow the expected best response mapping

Ψm0(G) := E [ψ0(tmi;G)] (B.2)

to be a correspondence Ψm0 : ∆S ⇒ ∆S. Specifically, the expectation operator E[·] is taken to denote

the (Aumann) selection expectation of the random set ψ0(tmi;G) ⊂ ∆S and tmi ∼ Hm(t). The Aumann

selection expectation of a closed random set X : Ω → 2X is defined as

E[X ] := closure{E[ξ] : ξ ∈ Sel(X)}
27Suppose that G∗ is the (unique) fixed point of Ψm0. Then for any G ∈ ∆(S × Z),

‖G−G∗‖ = ‖G−Ψm0(G)+Ψm0(G)−G∗‖ ≤ ‖G−Ψm0(G)‖+‖Ψm0(G)−Ψm0(G
∗)‖ ≤ ‖G−Ψm0(G)‖+λ‖G−G∗‖

where we use the triangle inequality and that G∗ is a fixed point of Ψm0. Hence, ‖G − Ψm0(G)‖ ≥ (1 −
λ)‖G−G∗‖ for any value of G which establishes the claim.
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where Sel(X) denotes the set of measurable selections ξ(ω) ∈ X(ω) such that E‖ξ‖1 < ∞. See Molchanov

(2005) for a full exposition.

In order to generalize Assumption 3.2 to set-valued mappings we first have to define a graphical derivative

of a correspondence: Recall that the graph of a correspondence Φ : X ⇒ Y is the set gph Φ := {(x, y) ∈
X × Y : y ∈ Φ(x)}. The contingent derivative of the correspondence Φ at (x′0, y0)

′ ∈ gph Φ is a set-valued

mapping DΦ(x0, y0) : X ⇒ Y such that for any u ∈ X

v ∈ DΦ(x, y)(u) ⇔ lim inf
h↓0,u′→u

d

(
v,

Φ(x0 + hu′)− y

h

)

where d(a,B) is taken to be the distance of a point a to a set B.28 Note that if the correspondence Φ is

single-valued and differentiable, the contingent derivative is also single-valued and equal to the derivative of

the function Φ(x). The contingent derivative of Φ is surjective at x0 if the range of DΦ(x0, y0) is equal to

Y. In the following, let the mapping Φ0(G) := Ψm0(G) −G.

Assumption B.2. (Regular Economy): (a) For every θ ∈ Θ and population distribution H0 ∈ P, one of

the following holds:

(i) The contingent derivative of Φ0(G) is lower semi-continuous and surjective for all G, and satisfies

0 ∈ DΦ0(G
∗
m0, 0)(u) if and only if u = 0

at every distribution G∗
m0 solving G∗

m0 ∈ Ψm0(G
∗
m0).

(ii) If G∗
m0 is a cumulation point of the sequence (G∗

mn)n≥1, then with probability 1, the contingent

derivative of Φ0(G
∗
m0) is lower semi-continuous and surjective and satisfies

0 ∈ DΦ0(G
∗
m0, 0)(u) if and only if u = 0

(b) Furthermore, for every δ > 0 we can find η > 0 such that for the convex hull K(G, η) := conv
(⋃

d(G′,G)<η Ψm0(G
′)
)
,

we have

sup
Ψ∈K(G,η)

dH


Ψ,

⋃

d(G′,G)<η

Ψm0(G
′)


 < δ for all G ∈ ∆S.

This is a generalization of Assumption 3.2 in the main text: it is straightforward to show that for a

single-valued, differentiable function Ψm0(G), the rank condition in Assumption 3.2 part (i) is sufficient for

the generalized rank condition in part (i) of Assumption B.2. Furthermore, part (b) holds for any continuous

function Ψm0(G). Therefore, Assumption 3.2 implies Assumption B.2.

Part (b) of Assumption B.2 requires that the local range of Ψm0 can be approximated by a convex set.

Note that for η = 0 the Hausdorff distance between Ψm0(G) and its convex hull is zero because Ψm0 is

convex-valued. It is also straightforward to verify that for p = 2, this condition is met if the correspondence

Ψm0(G) is continuous everywhere except at finitely many values of G.29

In order to understand the transversality condition for the case of a limiting correspondence Ψm0, consider

the case S = {0, 1}, so that G ∈ [0, 1]. If there is a fixed point G∗ such that Ψm0(G
∗) is a convex set with

nonempty interior, then the second part of Assumption 3.2 (ii) is violated if and only if there exists sequences

Gn 6= G∗ with limnGn = G∗ and Ψn ∈ Ψm0(Gn) such that limn
Ψn−G∗

|Gn−G∗| = 0. The regularity condition may

fail e.g. if for all G in a one-sided neighborhood of G∗, Ψm0(G) is set valued and contains G∗, or if in that

one-sided neighborhood Ψm0(G) is single valued with limGn→G∗

m0
Ψm0(Gn) = Ψm0(G

∗
m0), and the one-sided

28See Definition 5.1.1 and Proposition 5.1.4 in Aubin and Frankowska (1990)
29In fact, lower semi-continuity at all except finitely many values of G is sufficient.
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Figure 4. Schematic illustration of Assumption 3.2. The bottom three pan-
els are examples of a failure of the transversality condition (left) and/or the
surjectivity condition (all three panels).

derivative of Ψm0(G
∗
m0) = Ip−1, the (p − 1) dimensional identity matrix. See also figure B.3 for graphical

examples.

As in the main main text we say that if a fixed point G∗
m0 = Ψm0(G

∗
m0) satisfies the generalized rank

condition in part (i) of Assumption B.2, it is regular, and we define the set of regular fixed points

G∗
m0 := {G∗

m0 : G∗
m0 = Ψm0(G

∗
m0) and G

∗
m0 is a regular point of Ψm0(G)}

We can now strengthen Lemma 3.1 and Theorem 3.1 from the main text to hold under the weaker conditions

in Assumption B.2.

Lemma B.1. Under Assumption B.2 (a) (i), the number of fixed points solving G∗
m0 ∈ Ψm0(G

∗
m0) is finite.

Furthermore, under either alternative of Assumption B.2 (a), the cardinality of G∗
m0 is finite.

Theorem B.1. Suppose Assumptions 3.1 and B.2 hold, and that G∗
mn is a sequence of empirical distributions

solving G∗
mn ∈ Ψ̂mn(G

∗
mn). Then for G∗

m0 := {G∗
m0 ∈ ∆S : G∗

m0 ∈ Ψm0(G
∗
m0)} and as n→ ∞, we have that

(a) d(G∗
mn,G∗

m0)
a.s.→ 0, and (b) with probability approaching 1, for every G∗

m0 ∈ G∗
m0 and every neighborhood

B(G∗
m0) of G

∗
m0 we can find G̃n ∈ B(G∗

m0) such that G̃mn ∈ Ψ̂mn(G̃mn).

For the technical arguments, we refer to the proofs of Lemma 3.1 and Theorem 3.1 in the appendix, which

are entirely based on Assumption B.2 rather than its stronger version in the main text.

Appendix C. Proofs for Results from Section 3

Proof of Proposition 3.1. Suppose that G∗ /∈ Ψ̂mn(G
∗). Then by definition of Ψ̂mn, there exists at

least one player i such that σmi(tmi) /∈ ψn(G
∗, tmi), so that σmi is not a best response to any profile σm,−i
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satisfying 1
n

∑n
j=1 E[σj |wm] = G∗. Conversely, if G∗ ∈ Ψ̂mn(G

∗), by the definition of Minkowski summation

and selection expectations, we can find σm1, . . . , σmn such that σmi ∈ ψn(G
∗, tmi) for all i = 1, . . . , n and

1
n

∑n
i=1 E[σmi|wm] = G∗, so that G∗ is indeed generated by a Nash equilibrium. Existence of an equilibrium

distribution G∗
mn for finite n follows from an existence theorem for Bayes Nash equilibria in finite games,

see e.g. Theorem 1 in Milgrom and Weber (1985), which includes Nash equilibria in mixed strategies for the

complete information game as a special case �

Proof of Lemma 3.1: We prove this theorem using Assumption B.2 rather than Assumption 3.2, noting

that the latter is sufficient for the former as explained in Appendix B. Since the game is finite with |S| = p,

the space of distributions ∆S is the (p − 1) dimensional probability simplex, and therefore compact. Un-

der Assumption 3.2 (a) part (i), each equilibrium G∗ is locally unique by Proposition 5.4.8 in Aubin and

Frankowska (1990). We can use these open neighborhoods of the equilibrium points to cover ∆S, and by

compactness, there exists a finite subcover N1, . . . ,NJ , say. By construction, each set Nj , j = 1, . . . , J

contains at most one equilibrium point, so that the number of equilibria is at most J , and therefore finite.

The second statement follows immediately, noting that by definition the set G∗
m0 only includes the regular

fixed points of Ψm0 �

Proof of Theorem 3.1. We prove this theorem using Assumption B.2 rather than Assumption 3.2, noting

that the latter is sufficient for the former as explained in Appendix B.

We start by establishing claim (a), where the proof proceeds in the following steps: we first construct

a convex-valued correspondence Ψ̃n(G) and show uniform convergence in probability of the convex hull of

Ψ̂n(G) to Ψ̃mn(G). We then show graphical convergence of the correspondence Ψ̃mn(G) to Ψm0(G). Finally,

we conclude that any sequence of solutions Ĝ∗
mn of the fixed point inclusion Ĝ∗

mn ∈ Ψ̂mn(Ĝ
∗
n) approaches

the set G∗
m0 with probability one.

Recall that the correspondence

Ψ̂n(G) :=
1

n

n⊕

i=1

E [ψn(tmi;G)|wm]

where “
⊕

” denotes the Minkowski sum over the Aumann selection expectations of the sets ψn(tmi;G) for

i = 1, . . . , n. Also let

Ψ̃n(G) := E [ψn(tmi;G)]

where the operator E[·] denotes the (Aumann) selection expectation with respect to the random type tmi ∼
H0. Note that from standard properties of Aumann expectations, Ψ̃mn(G) is convex at every value G ∈ ∆S.

Uniform Convergence. We will now show almost sure uniform convergence of the convex hull of Ψ̂n(G) to

Ψ̃mn(G). In order to accommodate any alternative assumptions regarding the informational content of the

public signal wm, we will first show convergence for the correspondence

Ψ̂∗
mn(G) :=

1

n

n⊕

i=1

ψn(tmi;G)

which is equal to Ψ̂mn(G) in the case of complete information. We then argue that convergence for Ψ̂mn(G)

follows by the law of iterated expectations under any alternative assumptions regarding wm.
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In the following, we denote the support function of the set Ψ̂∗
mn(G) by

ĥ∗n(v;G) := inf
G′∈Ψ̂mn(G)∗

〈v,G′〉

for any v on the (p− 1) dimensional unit sphere in Rp, and we also let

h̃n(v;G) := inf
G′∈Ψ̃mn(G)

〈v,G′〉

Since for the Minkowski sum of two convex sets K1 and K2, the support function satisfies h(a1K1 ⊕
b2K2, v) = a1h(K1, v) + b2h(K2, v), we can rewrite

ĥ∗n(v;G) =
1

n

n∑

i=1

̺n(v;G, tmi)

where at a given value of G and type t,

̺n(v;G, t) := inf
G′∈ψn(t;G)

〈v,G′〉 = inf
G′∈conv ψn(t;G)

〈v,G′〉

is the support function of the set ψn(t;G).

In order to show that ĥn converges to h̃n uniformly, i.e.

sup
v,G

∣∣∣ĥ∗n(v;G)− h̃n(v;G)
∣∣∣ a.s.→ 0

note first that the sets conv ψn(tmi;G) are convex polytopes whose vertices are equal to one or zero, yielding

at most 2p different sets for conv ψn(tmi;G). Hence we can represent the support function ̺n(v;G, t) as

a simple function defined on sets that are p fold intersections of the sets A(s,G) and their complements.

Since the VC property is preserved under complements and finite intersections, Assumption 3.1 implies that

̺n(v;G, t) is a VC class of functions indexed by (v,G) for every n with a VC index that does not depend of

n.

Now by the same argument as in the proof of Theorem 3.1.21 in Molchanov (2005), almost sure con-

vergence of the support functions implies almost sure convergence for the set conv
(
1
n

⊕n
i=1 ψn(tmi;G)

)

to E[ψn(tmi;G)] with respect to the Hausdorff metric, where convergence is uniform in G by boundedness

of ̺n(v;G, t) and the VC property of the support functions for ψn(tmi;G). Replacing ψn(tmi;G) in the argu-

ment with its conditional expectation ψ̃n(wm;G) := E[ψn(tmi;G)|wm], this implies that conv
(
1
n

⊕n
i=1 E[ψn(tmi;G)|wm]

)

converges almost surely to

E[ψ̃n(wm;G)] = E[E[ψn(tmi;G)|wm]] = E[ψn(tmi;G)]

where the last step follows from the law of iterated expectations. In particular, we have that

dH

(
conv(Ψ̂mn(G)), Ψ̃mn(G)

)
a.s.→ 0

uniformly in G.

Graphical Convergence. Now fix δ > 0, and for a set A ⊂ ∆S × ∆S, let Aδ :=
{
x ∈ (∆S)2 : d(x,A) ≤ δ

}

denote the δ-expansion of A with respect to (∆S)2. In order to establish that Ψ̃mn(G) = E [ψn(t;G)]

converges to Ψm0(G) = E [ψ0(t;G)] graphically, we show that for n large enough the two inclusions gphΨ̃mn ⊂
(gphΨm0)

δ
and gphΨm0 ⊂

(
gphΨ̃mn

)δ
hold:

In order to verify the first inclusion, consider a point (G′
1,Γ

′)′ such that Γ ∈ Ψ̃mn(G1), where Γ =

(Γ(s(1)), . . . ,Γ(s(p))) ∈ ∆S. From the definition of Ψ̃mn, it follows that there exist Gl(s), Gu(s) such that

P (t ∈ A(s,Gu(s))) ≥ Γ(s) and P (t /∈ A(s,Gl(s))) ≥ 1−Γ(s), where d(G1, Gl(s)) ≤ 1
n and d(G1, Gu(s)) <

1
n
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for all s. In particular, we have that Γ(s) ∈ conv
(⋃

G′:d(G,G′)≤ 1

n
Ψm0(G

′)
)
. Now by Assumption B.2 (b), we

can find η > 0 such that d
(
Γ, conv

(⋃
d(G,G1)<η

Ψm0(G)
))

< δ/3, w.l.o.g. η < δ/3. Hence, for n ≥ 1/η, we

also have d
(
Ψ(s),

⋃
G′:d(G,G′)≤η Ψm0(G

′)
)
< δ/3, so that there exists G2 such that d(G2, G1) < η < δ/3 and

d(Γ,Ψm0(G2)) < δ/3. Hence, for n ≥ 1/η we have d((G′
1,Ψ

′
1), gph(Ψm0)) < δ for all (G′

1,Γ
′)′ ∈ gph(Ψ̃mn),

which establishes the first inclusion.

For the second inclusion, consider a point (G′
1,Γ

′)′ such that Γ ∈ Ψm0(G1) and the extremal points Γ∗
p

of Ψm0(G1) which are of the form Γ∗
p = P (t ∈ A(s(p), G1)) for p = 1, . . . , S − 1, and

∑
q 6=p Γ

∗
q = 1 − P (t ∈

A(s(p), G1)). It is immediate that the values Ψ ∈ Ψm0(G1) are convex combinations of Γ∗
p, p = 1, . . . , S − 1,

in particular Γ =
∑p

q=1 λqΓ
∗
q where λq ≥ 0 and

∑p
q=1 λq = 1. From the construction of Ψ̃mn, it can now be

seen that for n large enough, Γ ∈
(
Ψ̃mn(G2)

)δ/3
, where G2 := (nG1 − λ)/(n− 1). Hence, if n is in addition

larger than 2/δ, we have d((G′
1,Γ

′), gph(Ψ̃mn)) < δ, establishing the second inclusion.

Convergence to Limiting Points. Given δ > 0 we define

η := inf {d(G,Ψm0(G)) |G ∈ ∆S : d(G,G∗
m0) ≥ δ }

By Lemma 3.1, the number of elements in G∗
m0 is finite, so that since ∆S is compact and dH(G,Ψm0(G)) is

lower-semi-continuous in G, we have that η > 0, where existence of the minimum follows e.g. by Theorem

1.9 in Rockafellar and Wets (1998).

Combining uniform convergence of Ψ̂n to Ψ̃n in probability, and graphical convergence of Ψ̃n to Ψm0 via the

triangle inequality, we can choose n large enough such that the probability of dH(gph(conv(Ψ̂n)), gphΨm0) <

min{δ, η} is arbitrarily close to one. Hence the probability that there exists a fixed point G̃ ∈ conv(Ψ̂n(G̃))

with d(G̃,G0) > δ converges to zero as n increases.

Finally, since Ĝmn ∈ Ψ̂mn(Ĝmn) implies Ĝmn ∈ conv(Ψ̂n(Ĝmn)), we have that d(Ĝmn,G∗
m0) < δ with

probability approaching one, which establishes assertion (a).

Achievability of Limiting Equilibria. We now turn to the proof of part (b) of Theorem 3.1. We proceed by

showing that for every regular equilibrium point G∗
m0 ∈ G∗

m0, we can find a neighborhood of G∗
m0 such that

Ψm0(G) is an inward map on that neighborhood. Then we show that by graphical convergence, Ψ̂mn(G) is

also an inward map on all such neighborhoods with probability approaching one. We then apply a fixed-point

theorem for inward maps to a transformation of the problem and conclude that with probability approaching

1, local solutions exist near every G∗
m0 ∈ G∗

m0.

Construction of Neighborhoods. Let Γ0(G) := Ψm0(G)−G be defined as in the main text. In the following,

we say that Ψm0 is a (possibly multi-valued) inward map on a convex set K ⊂ ∆S, if for all G ∈ K,

Ψm0(G) ∩ (G + TK(G)) 6= ∅, where TK(G) is the tangent cone of K at G. We will now show that for

every G∗
0,j ∈ G∗

m0, j = 1, . . . , |G∗
m0|, and neighborhood U(G∗

0,j) of G∗
0,j , we can find a compact convex set

K̄j ⊂ U(G∗
0,j) containing an open set around G∗

0,j , and such that Ψm0 restricted to K̄j is an inward map.

To this end, note first that for that every vector u 6= 0 and v ∈ DΓ0(G
∗
0,j , G

∗
0,j)(u), we have that the inner

product u′v 6= 0, where without loss of generality we assume u′v < 0. Specifically, we can choose a diagonal

matrix B with elements Bjj ∈ {−1, 1}, j = 1, . . . , p− 1, and rewrite the inclusion as

G∗
0,j −B(G−G∗

0,j) ∈ Ψm0(G
∗
0,j −B(G−G∗

0,j))

for any such B, or equivalently,

G = G∗
0,j + (G−G∗

0,j) ∈ Ψm0(G
∗
0,j −B(G −G∗

0,j)) + (I −B)(G −G∗
0,j) =: Ψ̃B(G)
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Now if we let ΓB(G) := Ψ̃B(G)−G, by Assumption B.2 (a), the contingent derivative of ΓB is surjective, and

we can choose B such that there exists a vector vB ∈ gph DΓB(G
∗
0,j , G

∗
0,j)(u), the inner product u

′ · vB ≤ 0.

The second part of Assumption B.2 (i) implies that this inequality is strict, and has the same sign for any

other v′B ∈ gph DΓB(G
∗
0,j , G

∗
0,j)(u) by convexity of the contingent derivative.

We will prove this claim by contradiction: Suppose that for a sequence hn → 0 we can construct a

sequence of closed balls Kn of radius hn around the fixed point G∗
0,j such that for every n there exists Gn on

the boundary of Kn such that Ψm0(Gn)∩ (Gn+TKn
(Gn)) = ∅. In particular, Ψm0(Gn)−Gn ⊂ [TKn

(Gn)]
C ,

where the superscript C denotes the complement of a set, and without loss of generality we will take Ψm0(Gn)

to be single-valued.

Now, let Ψ̃0n(G) denote the least-squares projection of Ψm0(G) onto Khn
n := {G : d(G,Kn) ≤ hn}, the

hn-expansion of Kn. Note that if Ψm0(G) − G ⊂ [TKn
(G)]C , then also Ψ̃0n(G) − G ⊂ [TKn

(G)]C . Now

consider the sequence of vectors vn := h−1
n

(
Gn −G∗

0,j , Ψ̃0n(Gn)−Gn

)
in Kn ×Khn

n . Since this sequence

is contained in the closed ball of radius 2 - a compact set - there exists a converging subsequence vn(ν),

ν = 1, 2, . . . and n(ν) → ∞, where limν→∞ vn(ν) =: v ≡ (vG, vΨ). Since 0 ∈ Ψ̃0n(G
∗
0,j)−G∗

0,j by assumption,

v is also an element of the graph of the contingent derivative of Ψm0(G) −G at (G∗, G∗).

Furthermore, Kn is convex, so that G∗
0,j − Gn ∈ TKn

(Gn). Since Kn is a closed ball, at every point Gn

on the boundary of Kn, TKn
(Gn) is a closed half-space. This implies that [TKn

(Gn)]
C = −int(TKn

(Gn)),

where int(A) denotes the interior of a set A. Now, by construction Gn − Ψ̃0n(Gn) ∈ [TKn
(Gn)]

C , so that

the inner product (Gn − G∗
0,j)

′(Ψ̃0n(Gn) − Gn) > 0 for all n. Hence, taking limits along the subsequence

n(ν), ν = 1, 2, . . . , we have v′GvΨ ≥ 0. However, this contradicts that for the contingent derivative of Ψm0

at (G∗
0,j , G

∗
0,j) we had u

′v < 0 whenever v ∈ DΓ0(G
∗
0,j , G

∗
0,j)(u). Hence every hn-neighborhood of G∗

0,j must

contain a compact convex subset K̄j containing an open set around G∗
0,k such that Ψm0 has to be inward on

K̄j as claimed before.

Also, since K̄j is compact, and Ψm0(G) − G is continuous, we have that the length of the projection of

Ψm0(G) − G onto TK̄j
(G) is bounded away from zero as G varies over K̄j. Noting that the convex hull of

Ψ̂mn(G) is lower semi-continuous and converges to Ψm0(G) graphically in probability, we have that Ψ̂mn is

also inward on K̄j with probability approaching one.

Local Existence of Fixed Points of Ψ̂mn. In order to remove the non-convexities of the mapping Ψ̂mn(G),

we consider a transformation of the graph of Ψ̂mn on the set K̄j under a continuous one-to-one mapping

Hj : K̄j× K̄j → G×G, [G,Ψ] 7→ [Hj(G,Ψ−G),Ψ]. We can choose the mapping Hj such that Hj(G,Ψ−G)
is strictly monotone in its second argument, and Hj(G, 0) = G, and the values of (Hj(G, Ψ̂mn(G)), Ψ̂mn(G))

are convex for every G ∈ ∆S. Note that the two conditions on Hj(·) imply that G is a fixed point of Ψ̂mn if

and only if it is also a fixed point of (Hj(G, Ψ̂mn −G), (Ψ̂mn (G)). Furthermore, since the transformations

Hj map any point on the boundary of K̄j onto itself, they also preserve the inward mapping property of

Ψ̂mn.

Since the transformed mapping is nonempty with closed and convex values, upper semi-continuous, and

inward on K̄j , existence of a fixed point in K̄j follows from Theorem 3.2.5 in Aubin and Frankowska (1990).

Since the number of sets K1, . . . ,Ks is finite, and the set of fixed points of the transformed mapping is equal

to that of Ψ̂mn, it follows that with probability approaching one, Ψ̂mn has a fixed point in the neighborhood

of each equilibrium point G∗
0,j ∈ G∗

m0, establishing the conclusion in part (b) �

C.1. Proof of Lemma 3.2. We first consider case (a). Consider a pair of actions (s(k), s(l)), and let

t̃ := (t̃1, t̃2) ∈ T1 × T2 such that a player of type t̃ is indifferent between these two or more actions given the

aggregate state G. Note that tm1 is a finite-dimensional random variable in a Euclidean space and therefore
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its conditional distribution given tm2 is tight. Hence, for a fixed δ > 0, we can find a compact subset K ⊂ T1
such that tmi1 ∈ K with conditional probability greater than 1− δ given tmi2 = t̃2.

Since by Assumption 3.3 (ii), the Jacobian ∇tm1
u(G, tmi) is continuous and has rank equal to p − 1,

there exist a neighborhood N(t̃1) of t̃1 and a vector a(t̃1) ∈ Rp−1 \ {0} such that the directional derivative

a(t̃1)
′∇tm1

[
u(s(k), G, t)− u(s(l), G, t)

]
> 0 for all t = (tm1, t̃2) such that tm1 ∈ N(t̃1). Consider the pro-

jection B( ˜tm1)tm1 := [Ip−1 − a(t̃1)(a(t̃1)
′a(t̃1))−1a(t̃1)

′]tm1. By construction of a(t̃1) and B(t̃1), we have

B(t̃1)a(t̃1) = 0 and that for every b ∈ Rp−1 there exists at most one value of tm1 ∈ N(t̃1) such that

B(t̃1)tm1 = b and u(s(k), G, t) = u(s(l), G, t), where t = (tm1, t̃2).

Therefore, since conditional on t̃2, tm1 is continuously distributed with full support on Rp−1, and B :=

{B(t̃1)tm1 : tm1 ∈ Rp−1} constitutes a proper linear subspace of Rp−1, we have that P (u(s(k), G, t) =

u(s(l), G, t), tm1 ∈ N(t̃1)|t̃2, B(t̃1)tm1) = 0 for all b ∈ B. Hence by the law of total probability we can

integrate out B(t̃1)tm1, so that the probability P (u(s(k), G, t) = u(s(l), G, t), tm1 ∈ N(t̃1)|t̃2) = 0.

Without loss of generality we can take the family of neighborhoods N(t̃1) to be a cover of K. Since K is

compact, there is a finite subcover N1, . . . , NJ , and by the law of total probability

P
(
u(s(k), G, t) = u(s(l), G, t), tm1 ∈ K

∣∣∣ t̃2
)
=

J∑

j=1

P
(
u(s(k), G, t) = u(s(l), G, t), tm1 ∈ Nj

∣∣∣ t̃2
)
= 0

for any given pair of action s(k), s(l). Since the number of pairs of actions
(
p
2

)
is finite, we also have

P
(
u(s(k), G, t) = u(s(l), G, t) for some k 6= l, tm1 ∈ K

∣∣ t̃2
)

(C.1)

≤∑k<l P
(
u(s(k), G, t) = u(s(l), G, t), tm1 ∈ K

∣∣ t̃2
)
= 0

Since δ ≥ P (tm1 /∈ K|t̃2) can be chosen arbitrarily small, we have by the law of total probability that

ψ0(tmi;G) is a singleton with probability 1, and the correspondence Ψm0(G) is in fact single-valued.

For case (b), it is sufficient to notice that due to strict monotonicity of the payoff differences u(s(l), G, t)−
u(s(k), G, t), for every value of t̃2 there is at most one value of tm1 such that a player of type (tm1, t̃

′
2)

′ is

indifferent between actions s(k) and s(l). Since the number of actions is finite, the conditional probability of

a tie given t2 = t̃2 is zero, and the conclusion follows from the law of total probability �

C.2. Proof of Proposition 3.2. Let νm1, νm2, . . . be a sequence of i.i.d. draws from the uniform distri-

bution on the p-variate probability simplex ∆S :=
{
π ∈ R

p
+ :
∑p

q=1 πq = 1
}
, where p is the number of pure

actions available to each player. Then (ν′m1, . . . , ν
′
mn)

′ is uniformly distributed on

(∆S)n =

{
π ∈ R

n(p−1)
+ :

p∑

q=1

πiq = 1 for all i = 1, . . . , n

}
.

Now fix wm ∈ Wm and let λ∗n0
(wm) be the distribution over Bayes Nash equilibria σ∗ that generates

the mixture f∗
n0
(s, x|θ) over Σ∗(wm). Without loss of generality we can assume that the ith coordinate of

λ∗0n is of the form λ∗n0,i
(wm) := λ̃n0

(νmi, wm), where the function λ̃n0
(·, wm) is symmetric with respect to

permutations among players for whom the individual payoff-relevant information in wm is the same. Then λ∗n0

constitutes a partition of (∆S)n0 that can be chosen to be symmetric with respect to the same permutations

of indices 1, . . . , n0, and therefore satisfies the symmetry assumptions on the equilibrium selection rule λn(·).
In particular, the resulting distribution of type-action characters, f(s, x|θ, λ∗n0

) = f∗
n0
(s, x|θ) for all s ∈ S.30

30We can in general map every Bayes Nash equilibrium to σ̄(σ∗) ∈ (∆S)n where the ith coordinate is given by
σ̄i(σ

∗) := E[σ∗
mi(tmi, wm)|wm]. We can then find a partition (up to shared boundaries) (∆S)n =

⋃
σ∗ Vn(σ

∗)
such that for any BNE σ∗, σ̄(σ∗) ∈ Vn(σ

∗), and P ((νm1, . . . , νmn) ∈ Vn(σ
∗)) = λ∗n0

(wm). Note that if for two
players i, j the public signal wm contains the same player-specific information about types, Hm(tmi|wm) =
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We now prove part (ii). By Theorem 3.1, we have that the equilibrium value of the aggregate d(G∗
mn,G∗

m0)
a.s.→

0, where G∗
m0 is a finite set. Suppose we now fix n1 and wm, and let G̃∗ := argminG∈G∗

m0
d(G,G∗

n1
), where

G∗
n1

is the value of the equilibrium aggregate under the selection rule λn1
. By Theorem 3.1 (b), for each

η > 0 there exists n1 large enough (but not necessarily larger than n0) such that with probability 1− η we

can find an equilibrium that supports some G̃∗
n for all n ≥ n1 such that d(G̃∗

n, G̃
∗) < rn a.s. for a sequence

rn → 0. Hence we can choose the sequence λn(·) such that for the first n1 coordinates of νm1, . . . , νmn and

tm1, . . . , tmn coinciding with νm1, . . . , νn1
and tm1, . . . , tn1

, respectively, we have G∗
n = G̃∗

n for all n ≥ n1.

Now let M := supθ∈Θmaxs,s′∈S |E[m((s, x); θ) −m((s′, x); θ)]|, which is finite by assumption. Now we

can bound

E [ |m(ym1,n; θ)−m(ym1; θ)|| Fn] ≤MP (sn1 6= s1|Fn)
Now notice that by Assumption 3.3 and Lemma 3.2, the set ψ0(tmi; G̃

∗) is the singleton {smi} with probability

one. Therefore since tm1, . . . , tmn are i.i.d. draws from H0(t), we have

P (sn1 6= s1|Fn) =
1

n

n∑

i=1

1l
{
ψ0(tmi; G̃

∗) 6= ψ0(tmi;G
∗
mn)

}
≤ 2P (ψ0(tm1; G̃

∗) 6= ψ0(tm1;G
∗
mn))

say, w.p.a.1 by the strong law of large numbers. Now notice that by Assumption 3.3, P (ψ0(tmi; G̃
∗) 6=

ψ0(tmi;G)) is continuous in G so that, since G∗
mn → G̃∗ a.s., we can make P (ψ0(tmi; G̃

∗) 6= ψ0(tmi;G
∗
mn))

arbitrarily small by choosing n large enough, establishing requirement (ii), where n1 and cn can be chosen

independently of Ĝ∗
n0

and f∗
n0
(s, x|θ) �

Appendix D. Proofs for Results from Section 5

D.1. Proof of Theorem 5.1. Since the assumptions of this theorem subsume the conditions for Propo-

sition 3.2, we can find a sequence of equilibrium selection rules {λn}n≥1, λn ∈ Λn(θ) that is of the form

λni = λn(νmi, wm). Since the augmented types (xmi, εmi, νmi)i≥1 are exchangeable and λn is invariant

to permutations of the agent-specific information in wm, the resulting observable type-action characters

ymi,n := (smi,n, x
′
mi)

′ are also exchangeable for every n.

Furthermore, it follows from Proposition 3.2 that

sup
G∈∆S

|E [m(ym1,n, G; θ)−m(ym1, G; θ) |Fn]| < cn a.s.

for all n and θ ∈ Θ, and a deterministic null sequence cn → 0 that does not depend on the cross-sectional

distribution at n0. Furthermore, G∗
mn

a.s.→ G∗
m0 by Theorem 3.1, and Ĝmn −G∗

mn
a.s.→ 0 by the strong law of

large numbers since types are conditionally i.i.d. given F∞. Since E [m(ym1, G; θ)|F∞] is also continuous in

G and the number of equilibrium points G∗
m0 is finite by Lemma 3.1, we also have that

∣∣∣E
[
m(ym1,n, Ĝmn; θ)−m(ym1, G

∗
m0; θ) |Fn

]∣∣∣→ 0a.s. (D.1)

Also, by Proposition 3.2, the column-wise limit of ymi,n as n → ∞ is well-defined with probability one for

every i = 1, 2, . . . , so that n-exchangeability of ym1,n, . . . , ymn,n implies that the limiting sequence (ymi)i≥1

is infinitely exchangeable.

Hm(tj |wm), then the coordinate sets {σ̄i(σ∗)} and {σ̄j(σ∗)} are the same, so that w.l.o.g. we can choose
the sets Vn(σ

∗) to be symmetric in its ith and jth coordinate. Noting that νm1, νm2, . . . are wm-measurable

by assumption, we can choose the ith component of λn(wm) as λni(wm) = λ̃n(νmi, wm) := σ∗ if and only
if (νm1, . . . , νmn) ∈ Vn(σ

∗), so that the implied distributions for n = n0 are the same under λ∗n0
(wm) and

λn0
(·, wm).
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Now a standard argument (see e.g. Kingman (1978)) yields that for any n-symmetric event An ∈ Fn and

any j = 1, . . . , n,

E[m(ym1, G
∗
m0; θ)1lAn

] = E[m(yj , G
∗
m0; θ)1lAn

] = E

[
1

n

n∑

i=1

m(ymi, G
∗
m0; θ)1lAn

]

Since 1
n

∑n
i=1m(ymi, G

∗
m0; θ)1lAn

is Fn-measurable, we obtain

E[m(ym1, G
∗
m0; θ)|Fn] = E

[
1

n

n∑

i=1

m(ymi, G
∗
m0; θ)

∣∣∣∣∣Fn
]
=

1

n

n∑

i=1

m(ymi, G
∗
m0; θ)

Hence by Condition 5.1, the sequence

Z∗
n :=

1

n

n∑

i=1

m(ymi,n, Ĝmn; θ) +
1

n

n∑

i=1

[
m(ymi, G

∗
m0; θ)−m(ymi,n, Ĝmn; θ)

]

satisfies a uniform integrability condition. Since in addition

E[Z∗
n|Fn+1] = E

[
1

n

n∑

i=1

m(ymi, G
∗
m0; θ)

∣∣∣∣∣Fn+1

]
= E [m(ym1, G

∗
m0; θ)| Fn+1]

=
1

n

n+1∑

i=1

m(ymi, G
∗
m0; θ) = Z∗

n+1,

Z∗
n is a reverse martingale adapted to the filtration {Fn}∞n=1, so that by the reverse martingale theorem (e.g.

Theorem 2.6 in Hall and Heyde (1980)), Z∗
n
a.s.→ E[m(ym1, G

∗
m0; θ)|F∞].

On the other hand, (D.1) implies that
∣∣∣∣∣Z

∗
n − 1

n

n∑

i=1

m(ymi,n, Ĝmn; θ)

∣∣∣∣∣ =
∣∣∣E
[
m(ymi, G

∗
m0; θ)−m(ymi,n, Ĝmn; θ)|Fn

]∣∣∣→ 0a.s.

so that
1

n

n∑

i=1

m(ymi,n, Ĝmn; θ)
a.s.→ E[m(ym1, G

∗
m0; θ)|F∞]

Furthermore, almost sure convergence is joint for any random vector satisfying the conditions of this

Theorem, so that uniformity in θ follows from Condition 5.1 following the same reasoning as in the proof of

the (almost sure) Glivenko-Cantelli theorem for the i.i.d. case, see van der Vaart (1998), Theorems 19.1 and

19.4 �

D.2. Proof of Theorem 5.2. To establish the conclusion of this theorem, we verify the conditions for

Theorem 3.3.1 in van der Vaart and Wellner (1996) to derive the asymptotic distribution of
√
n(µ̂ − µ0).

Note that for notational simplicity, we suppress the θ argument below whenever θ can be regarded as fixed.

For a vector b and a set A, we also denote A+ b := A⊕ {b} to simplify notation.

First, note that under Assumption 3.3, Ψm0(G) is single-valued at every point G ∈ ∆S by Lemma 3.2.

Hence, the Aumann selection expectation defining Ψm0(G) coincides with the usual expectation of a vector-

valued random variable, and under Assumption 3.3 (i) the mapping G 7→ G−Ψm0(G) is Fréchet differentiable

with continuous derivative Ip−1 − Ψ̇G.

By assumption 5.2 (iv), the Jacobian

ṀG(G) := ∇GE[m(ymi, G; θ)|F∞] = E[∇Gm(ymi, G; θ)|F∞]
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is well-defined and bounded. Similarly, by Assumption 3.3 (iii), the derivative of the conditional probability

Ψ̇G(s,G;xmi) := ∇GP (δs ∈ ψ0(tmi;G)|xmi,F∞)

exists and is bounded and continuous in G a.s.. Hence we can interchange differentiation and integration, so

that by the law of iterated expectations

ḂG(G) := ∇GE [m((ψ0(tmi;G)
′, x′mi)

′, G; θ)| F∞] := ṀG(G) +
∑

s∈S
E

[
m((s, x′mi)

′; θ)Ψ̇G(s,G;xmi)|F∞
]

Since Ψ̇G(G;xmi) is a.s. bounded, and by Assumption 5.2 (ii), the functions m((s, x′mi)
′, G; θ) are dominated

by a square integrable envelope for all s ∈ S, we can use the Cauchy-Schwarz inequality to establish that

the elements of ∇GE [m((ψ0(tmi;G)
′, x′mi)

′, G; θ)| F∞] are bounded and continuous in G in a neighborhood

of G∗
m0.

Next consider the difference between the maps r̂n(µ) := r̂n(θ, µ). Let r
∗
n(tmi;µ) be an arbitrary selection

of the multi-valued function

r∗n(tmi;µ) ∈
[
m((ψ0(t

′
mi, G), x

′
i)

′, Ĝmn(G); θ)−m

E [ψ0(tmi;G)|wm]−G

]

We can now decompose the difference between the maps r̂n(µ) := r̂n(θ, µ) and r0(µ) := r0(θ, µ) into

√
n(r̂n(µ0)− r0(µ0)) =

1√
n

n⊕

i=1

[rn(tmi;µ0)− r∗n(tmi;µ0)] +
1√
n

n∑

i=1

[r∗n(tmi;µ0)− r(tmi;µ0)]

+
1√
n

n∑

i=1

[r(tmi;µ0)− E [r(tmi;µ0)|F∞]]

=: T1 + T2 + T3

We first show that the first term is asymptotically negligible: DefineM := supθ,Gmaxs,s′∈S |E [m((s,X), G; θ)−m((s′, X), G; θ

which is finite by Assumption 5.1. If we let Ln :=
{
G′ ∈ ∆S : ‖G0 −G′‖ ≤ 1

n

}
and πn(µ0) := P

(
ψ0(tmi;G0) 6=

⋃
G′∈Ln

ψ∗
0(tmi

then we can bound ∥∥E
[ ∣∣(r∗n(tmi;µ0)− r(tmi;µ0))

2
∣∣∣∣F∞

]∥∥ ≤ πn(µ0)(1 +M)

Similarly, we can bound

|E[r∗n(tmi;µ0)− r(tmi;µ0)|F∞]| ≤ πn(µ0)

Now notice that, as shown above Assumption 3.3 implies that at every value of G, there are no atoms of

”switchers” in the type distribution. Since the density of the type distribution is bounded from above, we

therefore have that limn nπn(µ0) < ∞ for each µ0. Since with probability one, µ0 only takes finitely many

values, the common upper bound for all µ0 is finite for all F∞-measurable events. Therefore the variance

and absolute value of the expectation of the first term T1 := 1√
n

⊕n
i=1 [rn(tmi;µ0)− r∗n(tmi;µ0)] converge

to zero almost surely as n → ∞, so that applying Markov’s inequality, T1 converges to zero in probability

conditional on F∞.

For the second term, notice that the components in r∗n(t;µ) corresponding to the equilibrium conditions

are equal to those in r(t;µ) so that we only have to account for the components corresponding to the moment

functions. We can use a mean-value expansion of the moment function m(y,G; θ) with respect to G to show
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that

T2 :=
1√
n

n∑

i=1

[
m((ψ0(t

′
mi, G), x

′
i)

′, Ĝmn(G); θ) −m((ψ0(t
′
mi, G), x

′
i)

′, G; θ)
]

=

[
1

n

n∑

i=1

∇Gm((ψ0(t
′
mi, G), x

′
i)

′, G; θ)

]
√
n(Ĝmn(G) −G) + op(1)

By the conditional law of large numbers in Theorem 5.1, 1
n

∑n
i=1 ∇Gm((ψ0(t

′
mi, G), x

′
i)

′, G; θ) → ṀG(G)

almost surely, which is continuous in G by assumption, and furthermore

√
n(Ĝmn(G) −G) =

1√
n

(
n∑

i=1

ψ0(ti;G)−G

)
+ op(1)

by an analogous argument to our analysis of the term T1.

Since ψ0(tmi;G
∗
m0) is single-valued with probability 1, and tmi are i.i.d. draws from the distribution

Hm(t|wm), we can apply a standard CLT and obtain

T2 + T3 :=
1√
n

n∑

i=1

[r∗n(tmi;µ0)− r0(µ0)]
d→ N(0,Ω(G∗

m0)) (D.2)

Since conditional on F∞, T1 → 0 in probability, convergence in distribution with mixing follows from

Slutsky’s theorem.

Next, consider the Jacobian of the (augmented) population moments,

∇µr0(µ) = −
[
Iq −Ḃ0(G

∗
m0)

0 Ip−1 − Ψ̇m0(G
∗
m0)

]

By Assumption 3.2, the derivative Ip−1 − Ψ̇m0(G
∗
m0) has full rank at every G∗

m0 ∈ G∗
m0, and we already

showed above that Ḃ0(G) and Ψ̇m0(G) are continuous in G. Due to the block-diagonal structure it is

therefore straightforward to verify that the inverse of ∇µr0(µ) is well-defined and continuous in µ in a

neighborhood around µ0 and for all values of θ ∈ Θ.

We can now verify the conditions of Lemma 3.3.5 in van der Vaart and Wellner (1996). By Assumption

3.1 (iii), the class H := {ψ0(tmi;G) : G ∈ ∆S} is a VC subgraph class, and therefore Donsker. Also, by

Assumption 5.2, Ms := {m((s, x), G; θ), G ∈ ∆S, θ ∈ Θ} is a Donsker class for each s ∈ S, and S is finite.

Note that the class R := {r(tmi;µ, θ), µ ∈ R
q × ∆S, θ ∈ Θ} is a Lipschitz transformation of M1, . . . ,Mp

and H with the same envelope function as M1. Hence, by Theorem 2.10.6 in van der Vaart and Wellner

(1996), R is also Donsker with respect to the distribution of types.

Note also that as shown before, ψ0(tmi;G, s) is single-valued at every G except for a set of types of measure

zero. Since payoffs are continuous in t and G, and the p.d.f. of the type distribution is continuous in t, it

follows from Assumption 3.3 and Lemma 3.2 that E‖r(tmi;µ)− r(tmi;µ0)‖2 is also continuous in µ.

Finally, by Proposition 3.2, we can construct the coupling such that conditional on F∞, Ĝmn−G0 → 0 in

outer probability, so that by Lemma 3.3.5 in van der Vaart and Wellner (1996) we have that for the empirical

process

‖Gn(r(·, µ) − r(·, µ0))‖ = o∗P
(
1 +

√
n‖µ− µ0‖

)

Hence we can apply Theorem 3.3.1 in van der Vaart and Wellner (1996) to obtain the asymptotic distribution

of
√
n(µ̂n − µ0).

It remains to show uniformity with respect to θ. Note that since R is Donsker as θ varies in Θ, convergence

of r̂n(θ, µ) is also uniform in θ. Finally, since by Assumption 5.2 (ii), the class Ms has a square-integrable
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envelope function that does not depend on θ, by the same arguments as before the elements of the derivative

ḂG are bounded so that the bounds in the previous arguments do not depend on θ �

D.3. Proof of Corollary 5.2. By the same reasoning as in the proof of Theorem 5.2, the matrices ḂG,

ṀG, and (I − Ψ̇G)
−1 are well-defined, so that by Assumption 5.3 (i), the first two moments of |vmi|

are bounded. Also, v̂mi,n is continuous in m̂n, G
∗
mn,

̂̇BG, ̂̇MG, and ̂̇ΨG which converge to their lim-

its m0, G
∗
m0, ḂG, ṀG, and Ψ̇G respectively. Therefore, we can apply Theorem 5.1 to establish that

1
n

∑n
i=1 v̂mi,nv̂

′
mi,n → E[vmiv

′
mi|F∞] a.s.. Next, the covariance matrix of (m(ymi,n, Ĝmn; θ)

′, ψ̂′
in)

′ is given by

Ωn(G
∗
mn) where Ωn(G) := Var(m((ψ∗

n(tmi;G), x
′
mi)

′, Ĝmn(G); θ),E[ψ∗
n(tmi;G)|wm]|F∞) for some selection

ψ∗
n(tmi;G) ∈ ψn(tmi;G). By similar arguments as in the proof of Theorem 5.2, Ωn(G) → Ω(G) uniformly

in G. Note that Ω(G) is continuous in G and G∗
mn → G∗

m0 a.s., so that Ω(G∗
mn) → Ω by the continuous

mapping theorem.

Since by Assumption 5.3, the estimated Jacobians converge to ḂG, ṀG, and Ψ̇G, respectively, we therefore

have that the conditional expectation of the product vmiv
′
mi converges to A

′ΩA. By Assumption 5.3 (i) we

therefore obtain V̂n → A′ΩA almost surely, as claimed in the first claim of the Corollary. The second part

follows immediately from Theorem 5.2 and Slutsky’s Lemma �
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