- 1. a) N_1 is binomial $\sim B(n,p)$ so, $E(N_1) = np$, $Var(N_1) = np(1-p)$ thus: $E(\hat{p}) = np/n = p$ $Var(\hat{p}) = np(1-p)/n^2 = p(1-p)/n$ According to Central Limit Theorem, as n is large enough, the probability distribution of \hat{p} will be normal.
 - b) $E(\hat{p}) = 70/100 = .7$ The CI is $.7 \pm z_{.05/2} \sigma_{\hat{p}} = (.61, .79)$
 - c) L=0.04 $n\geq \frac{4Z_{\alpha/2}^2pq}{L^2}$ p=q=.5 maximizes the right hand side, so n=2400

Note: For those considered L = 0.04p, n = 9600.

- 2. a) $z=s-6=\sum_{i=1}12u_i-6$ where $u_i\sim U(0,1)$ and independent. so, $\mu_z=\mu_s-6=12\mu_U-6=12*1/2-6=6-6=0$ $\sigma_z^2=\sigma_s^2=12*\sigma_U^2=12*1/12=1$
 - b) Step 1: Generate 12 Us, Calc. Z, repeat m timesStep 2: Calc. Y from the m ZsStep 3: If not enough Ys, go to step 1 else stop
 - c) Since Z_i is **symmetrically** distributed around a zero mean, $E(Z_i^3) = 0$.

 $E(Y) = E(\sum Z_i^3) = \sum E(Z_i^3) = \sum 0 = 0.$ Note: For those who considered $E(Z^3) = E(Z)^3$, you were wrong and couldnot get credits from this part.

The standard deviation of Y will be $\sqrt{m}\sqrt{\mathrm{Var}(Z_1^3)}$. So it is positive relative to \sqrt{m} .

3. a) Since X is normal distributed with unknown variance, we should use t statistic.

	H_0 true	H_0 false
Accept H_0		type II error β
Reject H_0	type I error α	

- b) $H_a: \mu < 100,000$ Reject H_0 when $|t| \le |t_{\alpha,n-1}|$ $t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = -2.17$ $t_{0.01,16} = -2.583$ So, cannot reject H_0 .
- c) There are not enough statistical evidence to accuse the manufactors of false advertising.

d) $P = t(-2.17) \doteq .023$

P-Value means the value of α at which level we would just reject the hypothesis.

When we increase the sample size, the P-value will be decreased.